JP2008130523A - Led lighting circuit and illumination fixture using it - Google Patents

Led lighting circuit and illumination fixture using it Download PDF

Info

Publication number
JP2008130523A
JP2008130523A JP2006317752A JP2006317752A JP2008130523A JP 2008130523 A JP2008130523 A JP 2008130523A JP 2006317752 A JP2006317752 A JP 2006317752A JP 2006317752 A JP2006317752 A JP 2006317752A JP 2008130523 A JP2008130523 A JP 2008130523A
Authority
JP
Japan
Prior art keywords
circuit
led
current
voltage
led load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006317752A
Other languages
Japanese (ja)
Other versions
JP4888082B2 (en
Inventor
Hiroyuki Nishino
博之 西野
Eiji Shiohama
英二 塩濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006317752A priority Critical patent/JP4888082B2/en
Priority to EP07830163A priority patent/EP2094063A4/en
Priority to US12/447,123 priority patent/US20100109537A1/en
Priority to PCT/JP2007/070429 priority patent/WO2008050679A1/en
Publication of JP2008130523A publication Critical patent/JP2008130523A/en
Application granted granted Critical
Publication of JP4888082B2 publication Critical patent/JP4888082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To uniformize the light output from numerous LEDs and to suppress power consumption for its uniformization in an LED lighting circuit used for an illumination fixture or the like. <P>SOLUTION: A current from a DC-DC converter 35 to an LED module 32 is detected by a resistor R2, the detected current is compared with a reference voltage Vref from the reference voltage source 38 in a comparison circuit 37, and the DC-DC converter 35 is controlled by a control circuit 36 in response to its result, thereby totally controlling a load current by a constant current control. Furthermore, in the respective LED load circuits U1 to U3 constituting the module 32, control elements Q1 to Q3 constituting a current mirror are installed in series, an impedance element A is installed in series against the element Q1 to prepare a reference current, and the voltage drop in its system is made to be the maximum. Accordingly, even if there is variance in an ON voltage Vf, current values in the respective circuits U1 to U3 are equally controlled, and the light output can be equalized. Moreover, a circuit to prepare only the reference current is not required, and a loss of that share is eliminated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、LEDの点灯回路およびそれを用いる照明器具に関し、特に複数並列に設けられるLEDの電流を均等にするための手法に関する。   The present invention relates to an LED lighting circuit and a luminaire using the same, and more particularly to a technique for equalizing the currents of LEDs provided in parallel.

前記LED(発光ダイオード)を前記照明器具に用いる場合のように、必要な光出力を得るために多数のLEDを用いる場合、また少電流のLEDは効率が高く同じ光出力を得るにもチップを細分化する場合、それらを相互に直列に接続して点灯させるには、過大な電源電圧が必要になる。一方、前記多数のLEDを相互に並列に接続して点灯させると、過大な電流が必要になる。したがって、現実的には用途に応じた適当な直並列構成が採用される。しかしながら、青色LEDの場合、そのON電圧Vfは3〜3.5V程度で、ばらつきが大きく、前記直並列に組合わせると、相互に並列な各直列回路間の分流比に差が生じ易く、すなわち各直列回路間の明るさに差が生じ易いという問題がある。   When using a large number of LEDs to obtain the required light output, such as when using the LEDs (light emitting diodes) in the luminaire, a low current LED is more efficient and can be used to obtain the same light output. When subdividing, an excessive power supply voltage is required to light them by connecting them in series. On the other hand, if the plurality of LEDs are connected to each other in parallel and turned on, an excessive current is required. Therefore, in practice, an appropriate series-parallel configuration according to the application is adopted. However, in the case of a blue LED, the ON voltage Vf is about 3 to 3.5 V and varies widely. When combined in series and parallel, a difference in the shunt ratio between the series circuits parallel to each other tends to occur. There is a problem that a difference in brightness between the series circuits tends to occur.

詳しくは、LEDの光出力は通電電流値に依存するとされ、この観点からすれば、直列構成の場合は、個々のLEDのON電圧Vfにばらつきがあったとしても、通電電流値は同じであるので、個々のLEDの光出力ばらつきも小さい。これに対して、並列構成の場合は、直列構成のLEDのON電圧Vfの和が異なれば、点灯回路(電源回路)の一括出力から各直列回路に流れる電流値は前記ON電圧Vfの低い回路に集中することになり、直列回路毎に光出力ばらつきは大きくなる。   Specifically, the light output of the LED depends on the energization current value. From this point of view, in the case of the series configuration, the energization current value is the same even if the ON voltage Vf of each LED varies. Therefore, the light output variation of each LED is also small. On the other hand, in the case of the parallel configuration, if the sum of the ON voltages Vf of the LEDs in the series configuration is different, the current value flowing from the collective output of the lighting circuit (power supply circuit) to each series circuit is a circuit with a low ON voltage Vf. As a result, the optical output variation increases for each series circuit.

図9は、典型的な従来技術のLED点灯回路1の構成を示すブロック図である。この従来技術は、特許文献1に示されたものである。このLED点灯回路1では、LED負荷を多数直列に接続したLED負荷回路u1〜u3を3回路並列に接続してLEDモジュール2が構成されている。そのLEDモジュール2には、商用電源3からの電圧Vacを、ノイズカット用のコンデンサc1から整流ブリッジ4にて直流化し、DC−DCコンバータ5を介して電圧変換した直流電圧VDCが与えられる。   FIG. 9 is a block diagram showing a configuration of a typical prior art LED lighting circuit 1. This prior art is disclosed in Patent Document 1. In this LED lighting circuit 1, an LED module 2 is configured by connecting three LED load circuits u <b> 1 to u <b> 3 in which many LED loads are connected in series in parallel. The LED module 2 is supplied with the DC voltage VDC obtained by converting the voltage Vac from the commercial power source 3 into a DC voltage from the noise-cutting capacitor c1 by the rectifier bridge 4 and converting the voltage through the DC-DC converter 5.

DC−DCコンバータ5は、前記整流ブリッジ4の直流出力電圧をスイッチングするスイッチング素子q0と、前記のスイッチングによる励磁エネルギーを蓄積/放出するチョークコイルlと、前記チョークコイルlからの出力電流を整流・平滑化するダイオードdおよび平滑コンデンサc2と、前記スイッチング素子q0を流れる電流を電圧に変換して検知するための抵抗r1と、前記スイッチング素子q0のスイッチングを制御する制御回路6とを備えて構成される昇圧チョッパー回路から成る。   The DC-DC converter 5 rectifies the output current from the choke coil l, the switching element q0 for switching the DC output voltage of the rectifier bridge 4, the choke coil l for storing / releasing the excitation energy by the switching, and the choke coil l. It comprises a smoothing diode d and a smoothing capacitor c2, a resistor r1 for detecting the current flowing through the switching element q0 by converting it into a voltage, and a control circuit 6 for controlling the switching of the switching element q0. A boost chopper circuit.

一方、各LED負荷回路u1〜u3には、それらを流れる通電電流値を相互に等しくするための定電流回路q1〜q3が各々直列に挿入されている。そして、前記定電流回路q1〜q3の印加電圧(負担電圧)は、比較回路7において、基準電圧源8からの基準電圧Vrefと比較され、比較結果が前記制御回路6に与えられており、制御回路6は、前記各定電流回路q1〜q3の印加電圧が直列LEDのON電圧Vfの総和よりも小さくなるように上記DC−DCコンバータ5の定電圧出力を制御する。これによって、各定電流回路q1〜q3での損失抑制が図られている。しかしながら、この従来技術では、前記LEDのON電圧Vfのばらつきが大きい程、全体の光出力レベルが変動し、定電流回路q1〜q3での損失も大きいなどの課題を有する。   On the other hand, constant current circuits q1 to q3 are inserted in series in the LED load circuits u1 to u3 in order to make the energization current values flowing through them equal to each other. The applied voltage (burden voltage) of the constant current circuits q1 to q3 is compared with the reference voltage Vref from the reference voltage source 8 in the comparison circuit 7, and the comparison result is given to the control circuit 6, The circuit 6 controls the constant voltage output of the DC-DC converter 5 so that the voltage applied to each of the constant current circuits q1 to q3 is smaller than the sum of the ON voltages Vf of the series LEDs. Thereby, loss suppression in each of the constant current circuits q1 to q3 is achieved. However, this conventional technique has problems such that the greater the variation in the ON voltage Vf of the LED, the more the overall light output level fluctuates and the loss in the constant current circuits q1 to q3 increases.

図10は、他の従来技術のLED点灯回路11の構成を示すブロック図である。この従来技術は、特許文献2に示されたものである。このLED点灯回路11では、各LED負荷回路u1〜u3への総通電電流値を抵抗r2で電圧変換して検出し、比較器17において、その電圧を基準電圧Vrefと比較した結果が一定値になるように、PWM制御回路16を介してDC−DCコンバータ15を制御するように構成されている。DC−DCコンバータ15は、直流電源13からの電圧Vdcをスイッチング素子q0によってスイッチングしてトランスtの1次側に与え、2次側出力を整流平滑回路14にて整流・平滑化した直流電圧VDCを前記各LED負荷回路u1〜u3へ与えることで、電源側と負荷側とを絶縁する1石フライバックコンバータで構成されている。そして、このLED点灯回路11でも、各LED負荷回路u1〜u3に定電流回路d1〜d3がそれぞれ直列に設けられている。   FIG. 10 is a block diagram showing a configuration of another conventional LED lighting circuit 11. This prior art is disclosed in Patent Document 2. In this LED lighting circuit 11, the total energization current value to each LED load circuit u1-u3 is detected by converting the voltage with the resistor r2, and the result of comparing the voltage with the reference voltage Vref in the comparator 17 becomes a constant value. Thus, the DC-DC converter 15 is controlled via the PWM control circuit 16. The DC-DC converter 15 switches the voltage Vdc from the DC power supply 13 by the switching element q0 and applies it to the primary side of the transformer t. The DC voltage VDC obtained by rectifying and smoothing the secondary output by the rectifying and smoothing circuit 14 is provided. Is provided to each of the LED load circuits u1 to u3, thereby constituting a one-stone flyback converter that insulates the power supply side from the load side. And also in this LED lighting circuit 11, the constant current circuits d1-d3 are each provided in series with each LED load circuit u1-u3.

図11は、前記定電流回路d1〜d3の具体例を示す電気回路図である。この定電流回路d1〜d3は、前記LED負荷回路u1〜u3に直列に接続されるトランジスタq11および抵抗r11と、前記トランジスタq11のコレクタ−ベース間を接続する抵抗r12と、前記トランジスタq11のベース−エミッタ間に介在されるツェナダイオードdzとを備えて構成される。そして、抵抗r11の電圧降下とトランジスタq11のベース−エミッタ間電圧Vbeとの和がツェナダイオードdzのツェナ電圧と略一致する条件で、トランジスタq11のコレクタ電流が定電流化される。   FIG. 11 is an electric circuit diagram showing a specific example of the constant current circuits d1 to d3. The constant current circuits d1 to d3 include a transistor q11 and a resistor r11 connected in series to the LED load circuits u1 to u3, a resistor r12 connecting between a collector and a base of the transistor q11, and a base of the transistor q11. And a Zener diode dz interposed between the emitters. The collector current of the transistor q11 is made constant under the condition that the sum of the voltage drop of the resistor r11 and the base-emitter voltage Vbe of the transistor q11 substantially matches the Zener voltage of the Zener diode dz.

これによって、各LED負荷回路u1〜u3の電流は個々に定電流化され、しかもDC−DCコンバータ15の一括出力電流も上述のように定電流制御されるので、LEDのON電圧Vfのばらつきによる光出力のばらつきはかなり抑制できる。しかしながら、FETのソースホロワ回路から成る簡単な前記定電流回路q1〜q3に比べて、この定電流回路d1〜d3は、損失が大きいという問題がある。   As a result, the currents of the LED load circuits u1 to u3 are individually made constant, and the collective output current of the DC-DC converter 15 is also controlled by the constant current as described above. Variations in light output can be significantly suppressed. However, there is a problem that the constant current circuits d1 to d3 have a large loss as compared with the simple constant current circuits q1 to q3 formed of FET source follower circuits.

そこで、本件発明者は、図12で示すようなLED点灯回路21を、特許文献3で提案した。その従来技術によれば、各LED負荷回路u1,u2と直列にトランジスタq21,q22および抵抗r21,r22をそれぞれ接続するとともに、前記トランジスタq21,q22とカレントミラー回路を構成するトランジスタq20を抵抗r23,r24,r20によって直流電源23の端子間に接続している。そして、直流電源23からの電圧VDCおよび抵抗r23,r24,r20などによって定まる基準電流がトランジスタq20に流れ、その基準電流にトランジスタq21,q22を流れる電流をバランスさせることで、光出力のばらつきを抑制するようになっている。なお、何れかの抵抗(この例ではr24)と並列に設けたバイパススイッチswによって該抵抗r24を短絡することで、前記基準電流を増加させ、光出力を増加させられるようにもなっている。
特開2002−8409号公報 特開2004−319583号公報 特開2004−39290号公報
Therefore, the present inventor has proposed an LED lighting circuit 21 as shown in FIG. According to the prior art, transistors q21 and q22 and resistors r21 and r22 are connected in series with the LED load circuits u1 and u2, respectively, and the transistor q20 and the transistor q20 constituting the current mirror circuit are connected to resistors r23, The terminals r24 and r20 are connected between the terminals of the DC power supply 23. A reference current determined by the voltage VDC from the DC power supply 23 and the resistors r23, r24, r20 and the like flows to the transistor q20, and the current flowing through the transistors q21 and q22 is balanced with the reference current, thereby suppressing variations in optical output. It is supposed to be. Note that, by short-circuiting the resistor r24 by a bypass switch sw provided in parallel with one of the resistors (r24 in this example), the reference current can be increased and the optical output can be increased.
Japanese Patent Laid-Open No. 2002-8409 JP 2004-319583 A JP 2004-39290 A

上述のようなミラー回路による方法は、各LED負荷回路u1,u2間の電流のバランスを取るのに都合が良いものの、電源電圧VDCの変動によって基準電流が変動し、また前記基準電流を作成する抵抗r23,r24,r20およびトランジスタq20での損失が発生するという問題もある。   Although the method using the mirror circuit as described above is convenient for balancing the currents between the LED load circuits u1 and u2, the reference current fluctuates due to fluctuations in the power supply voltage VDC, and the reference current is generated. There is also a problem that losses occur in the resistors r23, r24, r20 and the transistor q20.

本発明の目的は、多数のLEDの光出力を、低損失で均一化することができるLED点灯回路およびそれを用いる照明器具を提供することである。   The objective of this invention is providing the LED lighting circuit which can equalize the light output of many LED with low loss, and a lighting fixture using the same.

本発明のLED点灯回路は、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うようにしたLED点灯回路において、前記各LED負荷回路に直列に設けられ、カレントミラー回路を構成して前記各LED負荷回路における通電電流値を連動させる制御素子であって、いずれか1つが前記カレントミラーの基準電流回路となるようにダイオード構造とされるそのような制御素子と、前記ダイオード構造の制御素子の回路に直列に挿入され、LEDのON電圧をVfとし、そのばらつきをσとし、直列段数をnとするとき、定格電流でVf×n×σ以上の電圧降下を生じるインピーダンス素子とを含むことを特徴とする。   The LED lighting circuit of the present invention is an LED lighting circuit in which an electric current is supplied from a DC power source to an LED module in which a plurality of LED load circuits each composed of one or a plurality of series LEDs are arranged in parallel with each other. A control element that is provided in series with each LED load circuit, and that configures a current mirror circuit to link the energization current value in each LED load circuit, so that any one becomes a reference current circuit for the current mirror. When such a control element having a diode structure and a control element circuit having the diode structure are inserted in series, the ON voltage of the LED is Vf, the variation is σ, and the number of series stages is n. And an impedance element that causes a voltage drop of Vf × n × σ or more with current.

上記の構成によれば、照明器具などに用いられるLED点灯回路において、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源が点灯駆動するにあたって、前記各LED負荷回路に直列に、カレントミラー回路を構成する制御素子を設け、それらの制御素子において、いずれか1つを前記カレントミラーの基準電流回路となるようにダイオード構造とし、制御端子を介して残余の回路の制御素子の通電電流値を連動させることで、各LED負荷回路間のバランスを取るようにする。具体的には、前記制御素子がトランジスタである場合には、制御端子であるベースと、コレクタとを短絡するとともに、ベースを共通に接続する。また、前記制御素子がMOS型トランジスタである場合には、制御端子であるゲートと、ドレインとを短絡するとともに、ゲートを共通に接続する。さらに、前記ダイオード構造とした制御素子の回路に直列に、ダイオードなどで実現することができるインピーダンス素子を挿入し、そのインピーダンス素子が、LEDのON電圧をVfとし、そのばらつきをσとし、直列段数をnとするとき、定格電流でVf×n×σ以上の電圧降下を生じるようにする。   According to the above configuration, in an LED lighting circuit used for a lighting fixture or the like, a direct current power source is lit for an LED module in which a plurality of LED load circuits composed of one or a plurality of serially arranged LEDs are arranged in parallel with each other. In driving, in series with each LED load circuit, a control element constituting a current mirror circuit is provided, and in these control elements, any one of them has a diode structure to be a reference current circuit of the current mirror, The LED load circuits are balanced by interlocking the energization current values of the control elements of the remaining circuits via the control terminals. Specifically, when the control element is a transistor, the base that is the control terminal and the collector are short-circuited and the bases are connected in common. When the control element is a MOS transistor, the gate and drain which are control terminals are short-circuited and the gates are connected in common. Further, an impedance element that can be realized by a diode or the like is inserted in series with the control element circuit having the diode structure, and the impedance element is set to Vf as the ON voltage of the LED, σ as the variation, and the number of series stages. Where n is a voltage drop of Vf × n × σ or more at the rated current.

したがって、LEDのON電圧Vfにばらつきがあっても、前記カレントミラー回路の基準電流を作成する回路は、LEDのON電圧Vfの総和を含めて、LED電流による電圧降下が最も高い回路となっており、各LED負荷回路における電流値を均等に制御し、多数のLEDからの光出力を均一化することができる。また、基準電流のみを作成する回路が不要で、その分の回路損失を無くすこともできる。   Therefore, even if the LED ON voltage Vf varies, the circuit that creates the reference current of the current mirror circuit is the circuit that has the highest voltage drop due to the LED current, including the sum of the LED ON voltage Vf. In addition, the current value in each LED load circuit can be controlled uniformly, and the light output from a large number of LEDs can be made uniform. In addition, a circuit for generating only the reference current is unnecessary, and the circuit loss corresponding to the circuit can be eliminated.

また、本発明のLED点灯回路では、前記インピーダンス素子は、LEDであることを特徴とする。   In the LED lighting circuit of the present invention, the impedance element is an LED.

上記の構成によれば、前記カレントミラーの基準電流回路となるLED負荷回路の直列LED段数を多く設定するだけで、前記ON電圧Vfの総和が最も高くなるように設定することができ、容易に構成できるとともに、インピーダンス素子による消費電力を有効に活用することもできる。   According to the above configuration, it is possible to set the sum of the ON voltages Vf to be the highest by simply setting a large number of series LED stages of the LED load circuit serving as the reference current circuit of the current mirror. The power consumption by the impedance element can be effectively utilized while being configured.

さらにまた、本発明のLED点灯回路は、前記インピーダンス素子の端子間を短絡することができる短絡スイッチと、前記短絡スイッチが開成され、前記制御素子がカレントミラー動作を行っている状態で、前記各LED負荷回路におけるLEDのON電圧Vfの総和を検出する検出手段と、前記検出手段の検出結果に応答し、制御素子が前記ダイオード構造となっているLED負荷回路のON電圧Vfの総和が最も高い場合には前記短絡スイッチを閉成し、そうでない場合には前記短絡スイッチを開成する切換え制御手段とを含むことを特徴とする。   Furthermore, the LED lighting circuit of the present invention includes a shorting switch capable of short-circuiting the terminals of the impedance element, the shorting switch being opened, and the control element performing a current mirror operation. The detection means for detecting the sum of the LED ON voltages Vf in the LED load circuit, and the sum of the ON voltages Vf of the LED load circuits in which the control element has the diode structure is the highest in response to the detection result of the detection means. Switching control means for closing the short-circuit switch in the case, and opening the short-circuit switch in the other case.

上記の構成によれば、上述のようにカレントミラーによって電流均一化動作を行おうとすると、LEDのON電圧Vfの総和が最も高い回路が基準電流回路とならなければならないのに対し、前記インピーダンス素子の端子間を短絡する短絡スイッチを予め設けておき、実際に検出手段が各LED負荷回路におけるLEDのON電圧Vfの総和を測定してみて、切換え制御手段が、制御素子がダイオード構造となっているLED負荷回路のON電圧Vfの総和が最も高い場合には前記短絡スイッチを閉成してインピーダンス素子を機能させず、そうでない場合には前記短絡スイッチを開成してインピーダンス素子を機能させる。   According to the above configuration, when the current equalization operation is performed by the current mirror as described above, the circuit having the highest sum of the ON voltages Vf of the LEDs must be the reference current circuit, whereas the impedance element A short-circuit switch for short-circuiting between the terminals of the LED load circuit is provided in advance, and when the detection means actually measures the sum of the ON voltages Vf of the LEDs in each LED load circuit, the switching control means has a diode structure as the control element. When the sum of the ON voltage Vf of the LED load circuit is highest, the short-circuit switch is closed to prevent the impedance element from functioning. Otherwise, the short-circuit switch is opened to function the impedance element.

したがって、経年変化などに対して、必要な場合だけインピーダンス素子を機能させることができ、該インピーダンス素子での損失を抑えることができる。   Therefore, the impedance element can be made to function only when necessary with respect to aging and the like, and loss in the impedance element can be suppressed.

また、本発明のLED点灯回路は、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うようにしたLED点灯回路において、前記各LED負荷回路に直列に設けられ、カレントミラー回路を構成して前記各LED負荷回路における通電電流値を連動させる制御素子であって、いずれか1つが前記カレントミラーの基準電流回路となるようにダイオード構造とされるそのような制御素子と、前記ダイオード構造の制御素子の回路以外の回路に並列に挿入され、そのLED負荷回路のインピーダンスを低減するインピーダンス素子とを含むことを特徴とする。   Further, the LED lighting circuit of the present invention is an LED lighting circuit in which a current is supplied from a DC power source to an LED module in which a plurality of LED load circuits composed of one or a plurality of series LED's are arranged in parallel with each other. A control element that is provided in series with each of the LED load circuits and that configures a current mirror circuit to link an energization current value in each of the LED load circuits, one of which is a reference current circuit of the current mirror And including such a control element having a diode structure, and an impedance element inserted in parallel to a circuit other than the control element circuit of the diode structure to reduce the impedance of the LED load circuit. To do.

上記の構成によれば、照明器具などに用いられるLED点灯回路において、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源が点灯駆動するにあたって、前記各LED負荷回路に直列に、カレントミラー回路を構成する制御素子を設け、それらの制御素子において、いずれか1つを前記カレントミラーの基準電流回路となるようにダイオード構造とし、制御端子を介して残余の回路の制御素子の通電電流値を連動させることで、各LED負荷回路間のバランスを取るようにする。具体的には、前記制御素子がトランジスタである場合には、制御端子であるベースと、コレクタとを短絡するとともに、ベースを共通に接続する。また、前記制御素子がMOS型トランジスタである場合には、制御端子であるゲートと、ドレインとを短絡するとともに、ゲートを共通に接続する。さらに、前記ダイオード構造とした制御素子の回路以外の回路に、そのLED負荷回路のインピーダンスを低減するインピーダンス素子を並列に挿入する。   According to the above configuration, in an LED lighting circuit used for a lighting fixture or the like, a direct current power source is lit for an LED module in which a plurality of LED load circuits composed of one or a plurality of serially arranged LEDs are arranged in parallel with each other. In driving, in series with each LED load circuit, a control element constituting a current mirror circuit is provided, and in these control elements, any one of them has a diode structure to be a reference current circuit of the current mirror, The LED load circuits are balanced by interlocking the energization current values of the control elements of the remaining circuits via the control terminals. Specifically, when the control element is a transistor, the base that is the control terminal and the collector are short-circuited and the bases are connected in common. When the control element is a MOS transistor, the gate and drain which are control terminals are short-circuited and the gates are connected in common. Further, an impedance element for reducing the impedance of the LED load circuit is inserted in parallel to a circuit other than the control element circuit having the diode structure.

したがって、LEDのON電圧Vfにばらつきがあっても、前記カレントミラー回路の基準電流を作成する回路は、LEDのON電圧Vfの総和を含めて、LED電流による電圧降下が最も高い回路となっており、各LED負荷回路における電流値を均等に制御し、多数のLEDからの光出力を、均一化することができる。また、基準電流のみを作成する回路が不要で、その分の回路損失を無くすこともできる。   Therefore, even if the LED ON voltage Vf varies, the circuit that creates the reference current of the current mirror circuit is the circuit that has the highest voltage drop due to the LED current, including the sum of the LED ON voltage Vf. Thus, the current value in each LED load circuit can be controlled uniformly, and the light output from a large number of LEDs can be made uniform. In addition, a circuit for generating only the reference current is unnecessary, and the circuit loss corresponding to the circuit can be eliminated.

さらにまた、本発明のLED点灯回路では、前記直流電源は、DC−DCコンバータであり、前記各LED負荷回路を流れる総電流値または前記ダイオード接続された制御素子に対応するLED負荷回路を流れる電流値を検出する電流検出手段と、前記電流検出手段からの検出結果を比較するための基準電圧源および比較器と、前記比較器からの出力に応じて、前記LEDモジュールへの通電電流値の総和が予め定める値となるように前記直流電源をフィードバック制御する制御手段とを備えて構成されることを特徴とする。   Furthermore, in the LED lighting circuit of the present invention, the DC power source is a DC-DC converter, and the total current value flowing through each LED load circuit or the current flowing through the LED load circuit corresponding to the diode-connected control element. A current detection means for detecting a value, a reference voltage source and a comparator for comparing detection results from the current detection means, and a sum of energization current values to the LED module according to the output from the comparator And a control means for feedback-controlling the DC power supply so that the value becomes a predetermined value.

上記の構成によれば、直流電源から前記各LED負荷回路への通電電流値を検出し、その検出結果に基づいて、前記通電電流値の総和が予め定める値となるように、フィードバックによって前記直流電源を定電流制御するので、定電圧制御に比べて、制御素子での損失が小さく、低損失化することができる。   According to the above configuration, the current value flowing from the DC power source to each LED load circuit is detected, and the DC current is fed back by feedback so that the sum of the current values becomes a predetermined value based on the detection result. Since the power source is controlled at a constant current, the loss at the control element is small compared to the constant voltage control, and the loss can be reduced.

また、本発明の照明器具は、前記のLED点灯回路を用いることを特徴とする。   Moreover, the lighting fixture of this invention uses the said LED lighting circuit, It is characterized by the above-mentioned.

上記の構成によれば、LEDのON電圧(Vf)が極端にばらついても、多数のLEDからの光出力を均一化することができるとともに、低損失な照明器具を実現することができる。   According to said structure, even if the ON voltage (Vf) of LED varies extremely, the light output from many LED can be equalize | homogenized and a low-loss lighting fixture can be implement | achieved.

本発明のLED点灯回路は、以上のように、照明器具などに用いられるLED点灯回路において、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源が点灯駆動するにあたって、前記各LED負荷回路に直列に、カレントミラー回路を構成する制御素子を設け、それらの制御素子において、いずれか1つを前記カレントミラーの基準電流回路となるようにダイオード構造とし、制御端子を介して残余の回路の制御素子の通電電流値を連動させることで、各LED負荷回路間のバランスを取るようにするとともに、前記ダイオード構造とした制御素子の回路に直列にインピーダンス素子を挿入し、そのインピーダンス素子が、LEDのON電圧をVfとし、そのばらつきをσとし、直列段数をnとするとき、定格電流でVf×n×σ以上の電圧降下を生じるようにする。   As described above, the LED lighting circuit of the present invention is an LED lighting circuit used for lighting fixtures, etc., for an LED module in which a plurality of LED load circuits composed of one or a plurality of series LED's are arranged in parallel with each other. Thus, when the DC power supply is lit, a control element constituting a current mirror circuit is provided in series with each LED load circuit, and one of these control elements serves as a reference current circuit for the current mirror. In this way, a diode structure is used, and the energizing current values of the control elements of the remaining circuit are linked via the control terminal so as to balance the LED load circuits, and the control element circuit having the diode structure. An impedance element is inserted in series with the impedance element, and the impedance element sets the ON voltage of the LED to Vf. Was a sigma, when the serial number is n, to produce a Vf × n × sigma or more voltage drop at rated current.

それゆえ、LEDのON電圧Vfにばらつきがあっても、前記カレントミラー回路の基準電流を作成する回路は、LEDのON電圧Vfの総和を含めて、LED電流による電圧降下が最も高い回路となっており、各LED負荷回路における電流値を均等に制御し、多数のLEDからの光出力を均一化することができる。また、基準電流のみを作成する回路が不要で、その分の回路損失を無くすこともできる。   Therefore, even if the LED ON voltage Vf varies, the circuit that generates the reference current of the current mirror circuit is the circuit that has the highest voltage drop due to the LED current, including the sum of the LED ON voltage Vf. Therefore, the current value in each LED load circuit can be controlled uniformly, and the light output from many LEDs can be made uniform. In addition, a circuit for generating only the reference current is unnecessary, and the circuit loss corresponding to the circuit can be eliminated.

また、本発明のLED点灯回路は、以上のように、前記インピーダンス素子をLEDとする。   Moreover, the LED lighting circuit of this invention uses the said impedance element as LED as mentioned above.

それゆえ、前記カレントミラーの基準電流回路となるLED負荷回路の直列LED段数を多く設定するだけで、前記ON電圧Vfの総和が最も高くなるように設定することができ、容易に構成できるとともに、インピーダンス素子による消費電力を有効に活用することもできる。   Therefore, it is possible to set the total sum of the ON voltages Vf to be the highest only by setting a large number of series LED stages of the LED load circuit serving as the reference current circuit of the current mirror, and it can be easily configured. The power consumption by the impedance element can be effectively utilized.

さらにまた、本発明のLED点灯回路は、以上のように、上述のようにカレントミラーによって電流均一化動作を行おうとすると、LEDのON電圧Vfの総和が最も高い回路が基準電流回路とならなければならないのに対し、前記インピーダンス素子の端子間を短絡する短絡スイッチを予め設けておき、実際に検出手段が各LED負荷回路におけるLEDのON電圧Vfの総和を測定してみて、切換え制御手段が、制御素子がダイオード構造となっているLED負荷回路のON電圧Vfの総和が最も高い場合には前記短絡スイッチを閉成してインピーダンス素子を機能させず、そうでない場合には前記短絡スイッチを開成してインピーダンス素子を機能させる。   Furthermore, as described above, in the LED lighting circuit of the present invention, when the current equalization operation is performed by the current mirror as described above, the circuit having the highest sum of the LED ON voltages Vf must be the reference current circuit. On the other hand, a short-circuit switch for short-circuiting between the terminals of the impedance element is provided in advance, and when the detecting means actually measures the sum of the LED ON voltages Vf in each LED load circuit, the switching control means When the total of the ON voltage Vf of the LED load circuit having a diode structure as the control element is the highest, the short-circuit switch is closed to prevent the impedance element from functioning. Otherwise, the short-circuit switch is opened. The impedance element is made to function.

それゆえ、経年変化などに対して、必要な場合だけインピーダンス素子を機能させることができ、該インピーダンス素子での損失を抑えることができる。   Therefore, the impedance element can be made to function only when necessary with respect to secular change and the like, and loss in the impedance element can be suppressed.

また、本発明のLED点灯回路は、以上のように、照明器具などに用いられるLED点灯回路において、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源が点灯駆動するにあたって、前記各LED負荷回路に直列に、カレントミラー回路を構成する制御素子を設け、それらの制御素子において、いずれか1つを前記カレントミラーの基準電流回路となるようにダイオード構造とし、制御端子を介して残余の回路の制御素子の通電電流値を連動させることで、各LED負荷回路間のバランスを取るようにするとともに、前記ダイオード構造とした制御素子の回路以外の回路に、そのLED負荷回路のインピーダンスを低減するインピーダンス素子を並列に挿入する。   Further, as described above, the LED lighting circuit of the present invention is an LED module in which a plurality of LED load circuits composed of one or a plurality of series-connected LEDs are arranged in parallel with each other in an LED lighting circuit used for a lighting fixture or the like. On the other hand, when the DC power supply is driven to light, a control element constituting a current mirror circuit is provided in series with each LED load circuit, and one of these control elements is a reference current circuit of the current mirror. The diode structure is configured so that the energizing current values of the control elements of the remaining circuits are interlocked via the control terminal so as to balance each LED load circuit, and the control element having the diode structure. An impedance element for reducing the impedance of the LED load circuit is inserted in parallel with the circuit other than the above circuit.

それゆえ、LEDのON電圧Vfにばらつきがあっても、前記カレントミラー回路の基準電流を作成する回路は、LEDのON電圧Vfの総和を含めて、LED電流による電圧降下が最も高い回路となっており、各LED負荷回路における電流値を均等に制御し、多数のLEDからの光出力を、均一化することができる。また、基準電流のみを作成する回路が不要で、その分の回路損失を無くすこともできる。   Therefore, even if the LED ON voltage Vf varies, the circuit that generates the reference current of the current mirror circuit is the circuit that has the highest voltage drop due to the LED current, including the sum of the LED ON voltage Vf. Thus, the current value in each LED load circuit can be controlled uniformly, and the light output from a large number of LEDs can be made uniform. In addition, a circuit for generating only the reference current is unnecessary, and the circuit loss corresponding to the circuit can be eliminated.

さらにまた、本発明のLED点灯回路は、以上のように、直流電源から前記各LED負荷回路への通電電流値を検出し、その検出結果に基づいて、前記通電電流値の総和が予め定める値となるように、フィードバックによって前記直流電源を定電流制御する。   Furthermore, as described above, the LED lighting circuit according to the present invention detects the energization current value from the DC power source to each of the LED load circuits, and based on the detection result, the sum of the energization current values is a predetermined value. Thus, the DC power supply is controlled at a constant current by feedback.

それゆえ、定電圧制御に比べて、制御素子での損失が小さく、低損失化することができる。   Therefore, compared with the constant voltage control, the loss in the control element is small, and the loss can be reduced.

また、本発明の照明器具は、以上のように、前記のLED点灯回路を用いる。   Moreover, the lighting fixture of this invention uses the said LED lighting circuit as mentioned above.

それゆえ、LEDのON電圧(Vf)が極端にばらついても、多数のLEDからの光出力を均一化することができるとともに、低損失な照明器具を実現することができる。   Therefore, even if the ON voltage (Vf) of the LED varies extremely, it is possible to make the light output from a large number of LEDs uniform and to realize a low-loss lighting fixture.

[実施の形態1]
図1は、本発明の実施の一形態に係るLED点灯回路31の構成を示すブロック図である。このLED点灯回路1では、LEDD1を多数直列に接続したLED負荷回路U1〜U3を3回路並列に接続してLEDモジュール32が構成されている。各LED負荷回路U1〜U3における直列LED負荷の段数は任意であり、単一のLEDから構成されていてもよい。
[Embodiment 1]
FIG. 1 is a block diagram showing a configuration of an LED lighting circuit 31 according to an embodiment of the present invention. In the LED lighting circuit 1, an LED module 32 is configured by connecting three LED load circuits U1 to U3 in which a large number of LEDD1s are connected in series to each other in parallel. The number of series LED loads in each of the LED load circuits U1 to U3 is arbitrary, and may be composed of a single LED.

各LED負荷回路U1〜U3は、LEDD1が共通の放熱板に搭載されてボンディングされ、波長変換用の蛍光体や光拡散用のレンズ等も取付けられて構成されている。このLEDモジュール32およびLED点灯回路31は、照明器具として用いられ、前記LED負荷としては青または紫外光を放出し、そのLED負荷からの光を前記蛍光体で波長変換して白色光として放射する。前記LED負荷回路U1〜U3の並列回路数も任意であり、たとえばRGBの3原色で発光させた光を合成するなどの白色光を得るための手法も任意である。   Each of the LED load circuits U1 to U3 is configured such that the LEDD1 is mounted on a common heat sink and bonded, and a wavelength conversion phosphor, a light diffusion lens, and the like are attached. The LED module 32 and the LED lighting circuit 31 are used as a lighting fixture. The LED load emits blue or ultraviolet light, and the light from the LED load is wavelength-converted by the phosphor and emitted as white light. . The number of parallel circuits of the LED load circuits U1 to U3 is also arbitrary, and a method for obtaining white light, for example, combining light emitted by the three primary colors of RGB is also arbitrary.

前記LEDモジュール32には、商用電源33からの電圧Vacを、ノイズカット用のコンデンサC1から整流ブリッジ34にて直流化し、DC−DCコンバータ35を介して電圧変換した直流電圧VDCが与えられる。DC−DCコンバータ35は、前記整流ブリッジ34の直流出力電圧をスイッチングするスイッチング素子Q0と、前記のスイッチングによる励磁エネルギーを蓄積/放出するチョークコイルLと、前記チョークコイルLからの出力電流を整流・平滑化するダイオードDおよび平滑コンデンサC2と、前記スイッチング素子Q0を流れる電流を電圧に変換して検知するための抵抗R1と、前記スイッチング素子Q0のスイッチングを制御する制御回路36とを備えて構成される昇圧チョッパー回路から成る。   The LED module 32 is supplied with the DC voltage VDC obtained by converting the voltage Vac from the commercial power source 33 into a direct current from the noise-cutting capacitor C <b> 1 by the rectifier bridge 34 and converting the voltage through the DC-DC converter 35. The DC-DC converter 35 rectifies the output current from the choke coil L, the switching element Q0 that switches the DC output voltage of the rectifier bridge 34, the choke coil L that stores and discharges the excitation energy by the switching, and the like. It comprises a smoothing diode D and a smoothing capacitor C2, a resistor R1 for detecting the current flowing through the switching element Q0 by converting it into a voltage, and a control circuit 36 for controlling the switching of the switching element Q0. A boost chopper circuit.

そして直流電源であるそのDC−DCコンバータ35からLEDモジュール32へ流れる電流は、電流検知抵抗R2によって電圧値に変換されて、比較回路37において、基準電圧源38からの基準電圧Vrefと比較され、その比較結果が前記制御回路36にフィードバックされる。制御回路36は、前記抵抗R1,R2の検知結果に応答して、前記スイッチング素子Q0のスイッチング周波数やデューティを制御する。こうして、前記電圧VDCの定電圧制御およびLEDモジュール32へ流れる電流の定電流制御が行われるようになっている。   The current flowing from the DC-DC converter 35, which is a DC power supply, to the LED module 32 is converted into a voltage value by the current detection resistor R2, and compared with the reference voltage Vref from the reference voltage source 38 in the comparison circuit 37. The comparison result is fed back to the control circuit 36. The control circuit 36 controls the switching frequency and duty of the switching element Q0 in response to the detection results of the resistors R1 and R2. Thus, constant voltage control of the voltage VDC and constant current control of the current flowing to the LED module 32 are performed.

注目すべきは、本実施の形態では、各LED負荷回路U1〜U3には、それらを流れる通電電流値を相互に等しくするために、カレントミラー回路を構成する制御素子Q1〜Q3が直列に設けられており、それらの制御素子Q1〜Q3の内のいずれか1つ(図1の例ではQ1)を前記カレントミラーの基準電流回路となるようにダイオード構造とし、制御端子を介して残余の制御素子(図1の例ではQ2,Q3)の通電電流値を連動させることで、各LED負荷回路U1〜U3間のバランスを取ることである。   It should be noted that in the present embodiment, each of the LED load circuits U1 to U3 is provided with control elements Q1 to Q3 constituting a current mirror circuit in series in order to make the current values flowing through them equal to each other. One of the control elements Q1 to Q3 (Q1 in the example of FIG. 1) has a diode structure so as to be a reference current circuit of the current mirror, and the remaining control is performed via the control terminal. It is to balance the LED load circuits U1 to U3 by interlocking the energization current values of the elements (Q2 and Q3 in the example of FIG. 1).

具体的には、前記制御素子Q1〜Q3がこの図1のようにトランジスタである場合には、制御端子であるベースと、コレクタとを短絡するとともに、ベースを共通に接続する。また、前記制御素子がMOS型トランジスタである場合には、制御端子であるゲートと、ドレインとを短絡するとともに、ゲートを共通に接続する。   Specifically, when the control elements Q1 to Q3 are transistors as shown in FIG. 1, the base that is the control terminal and the collector are short-circuited and the bases are connected in common. When the control element is a MOS transistor, the gate and drain which are control terminals are short-circuited and the gates are connected in common.

さらに注目すべきは、前記ダイオード構造とした制御素子Q1のLED負荷回路U1に直列にインピーダンス素子Aを挿入し、そのインピーダンス素子Aが、LEDD1のON電圧をVfとし、そのばらつきをσとし、直列段数をnとするとき、定格電流でVf×n×σ以上の電圧降下Vaを生じるようにすることである。   Further, it should be noted that an impedance element A is inserted in series into the LED load circuit U1 of the control element Q1 having the diode structure, and the impedance element A has the ON voltage of the LEDD1 as Vf and the variation thereof as σ. When the number of stages is n, the voltage drop Va is not less than Vf × n × σ at the rated current.

前記インピーダンス素子Aは、たとえば図2(a)で示すような1または複数段のダイオード、図2(b)で示すようなツェナダイオード、図2(c)で示すような抵抗などから実現することができる。前記図2(a)で示すダイオードを用いる場合、たとえば1つで0.7Vの細かなばらつきに対応することができ、図2(b)で示すツェナダイオードを用いる場合、前記ON電圧Vfの総和で2V以上の大きなばらつきに対応することができ、図2(c)で示すような抵抗を用いる場合、常時損失が発生するものの、前記ダイオードよりも細かなばらつきに対応することができ、ON電圧Vfのばらつきが小さい場合や、LEDD1が少数段の場合に好適である。   The impedance element A is realized by, for example, one or a plurality of stages of diodes as shown in FIG. 2A, a Zener diode as shown in FIG. 2B, a resistance as shown in FIG. Can do. When the diode shown in FIG. 2 (a) is used, for example, one can cope with a fine variation of 0.7V, and when the Zener diode shown in FIG. 2 (b) is used, the sum of the ON voltage Vf. 2V, and when using a resistor as shown in FIG. 2 (c), a loss always occurs, but it is possible to cope with a finer variation than the diode, and the ON voltage This is suitable when the variation in Vf is small or when the LEDD1 has a small number of stages.

このように構成することで、LEDD1のON電圧Vfにばらつきがあっても、前記カレントミラー回路の基準電流を作成する回路は、LEDD1のON電圧Vfの総和を含めて、LED電流による電圧降下が最も高い回路となっており、各LED負荷回路U1〜U3における電流値を均等に制御し、多数のLEDD1からの光出力を均一化することができる。また、基準電流のみを作成する回路が不要で、その分の回路損失を無くすこともできる。さらにまた、トランジスタなどの制御素子Q1〜Q3の1つをダイオード構造とするとともに、ミラー回路に構成するだけであるので、安価な構成で実現することができる。   With this configuration, even if the ON voltage Vf of the LEDD1 varies, the circuit that generates the reference current of the current mirror circuit has a voltage drop due to the LED current including the sum of the ON voltage Vf of the LEDD1. It is the highest circuit, and the current values in the LED load circuits U1 to U3 can be uniformly controlled, so that the light outputs from the multiple LEDs D1 can be made uniform. In addition, a circuit for generating only the reference current is unnecessary, and the circuit loss corresponding to the circuit can be eliminated. Furthermore, since one of the control elements Q1 to Q3 such as a transistor has a diode structure and is only configured as a mirror circuit, it can be realized with an inexpensive configuration.

たとえば、LED負荷回路の数を前記U1〜U3の3つとし、その各LED負荷回路U1〜U3を5段のLEDD1で構成し、前記ON電圧Vfのばらつきを±5%とするとき、前記抵抗R2の検知結果による一括定電流制御のみの場合、すなわち制御素子Q1〜Q3が設けられていない場合には、各LED負荷回路U1〜U3間の電流ばらつきは、17.5〜22.7mA(前記一括定電流制御の電流値は60mA)となるのに対して、前記制御素子Q1〜Q3を設け、前記のようにON電圧Vfの総和が最も高いLED負荷回路U1に対応した制御素子Q1を基準として他の制御素子Q2,Q3にミラー動作を行わせることで、電流ばらつきは、20.0〜20.1mAに抑えることができる。同様に、前記ON電圧Vfのばらつきを±10%とした場合には、一括定電流制御のみで15.2〜25.8mA、ミラー動作を行わせることで、20.0〜20.1mAとすることができる。   For example, when the number of LED load circuits is three of U1 to U3, each of the LED load circuits U1 to U3 is constituted by five stages of LEDs D1, and the variation of the ON voltage Vf is ± 5%, the resistance In the case of only the collective constant current control based on the detection result of R2, that is, when the control elements Q1 to Q3 are not provided, the current variation between the LED load circuits U1 to U3 is 17.5 to 22.7 mA (described above). The current value of the batch constant current control is 60 mA), whereas the control elements Q1 to Q3 are provided, and the control element Q1 corresponding to the LED load circuit U1 having the highest sum of the ON voltages Vf as described above is used as a reference. As described above, by causing the other control elements Q2 and Q3 to perform the mirror operation, the current variation can be suppressed to 20.0 to 20.1 mA. Similarly, when the variation of the ON voltage Vf is ± 10%, 15.2 to 25.8 mA is obtained only by collective constant current control, and 20.0 to 20.1 mA is obtained by performing the mirror operation. be able to.

このLED点灯回路31の直流電源は、前述の図9で示すLED点灯回路と同様に、チョークコイルLを有するDC−DCコンバータ35であるけれども、図10で示すトランスtを有する絶縁型のDC−DCコンバータであってもよく、特にLEDモジュール32に対する直流電源は任意である。しかしながら、前記制御素子Q1〜Q3を用いるカレントミラー動作による定電流制御を行うにあたって、直流電源には、定電圧制御と、定電流制御とでは、定電流制御を用いる方が好ましい。   The DC power source of the LED lighting circuit 31 is a DC-DC converter 35 having a choke coil L, as in the LED lighting circuit shown in FIG. 9, but an insulation type DC-DC having a transformer t shown in FIG. A DC converter may be used, and in particular, a DC power supply for the LED module 32 is arbitrary. However, when performing the constant current control by the current mirror operation using the control elements Q1 to Q3, it is preferable to use the constant current control for the DC power supply in the constant voltage control and the constant current control.

図3には、DC−DCコンバータ35が、上述のような抵抗R2の検知結果による定電流制御のみを行った場合と、前記図10で示すような電圧VDCの定電圧制御のみを行った場合とにおける前記制御素子Q1〜Q3による損失について、詳しく示す。また、図3には、前述の図10および図11で示す定電流回路d1〜d3を用いた場合において、定電流制御を行った場合と、定電圧制御を行った場合とにおける損失についても詳しく示す。試算の条件は、各LED負荷回路U1〜U3を流れる電流、すなわちLEDD1の定格電流を20mA、LEDD1のON電圧Vfを3.2V、そのばらつきを±10%、制御素子(トランジスタ)Q1〜Q3のhfeを100とする。   FIG. 3 shows a case where the DC-DC converter 35 performs only constant current control based on the detection result of the resistor R2 as described above and only performs constant voltage control of the voltage VDC as shown in FIG. The loss due to the control elements Q1 to Q3 will be described in detail. FIG. 3 also shows in detail the loss when the constant current control is performed and when the constant voltage control is performed when the constant current circuits d1 to d3 shown in FIGS. 10 and 11 are used. Show. The conditions for the trial calculation are as follows: the current flowing through each LED load circuit U1 to U3, that is, the rated current of LEDD1 is 20 mA, the ON voltage Vf of LEDD1 is 3.2 V, the variation is ± 10%, and the control elements (transistors) Q1 to Q3 Let hfe be 100.

図3から明らかなように、本実施の形態のカレントミラー回路による電流バランス制御では、ON電圧Vfのばらつきが無い方が損失が小さいものの、ON電圧Vfのばらつきの有無に拘わらず、定電流制御の方が、定電圧制御に比べて、損失が小さいことが理解される。これに対して、前述の図10および図11で示す定電流回路d1〜d3を用いた電流バランス制御でも、ON電圧Vfのばらつきの有無に拘わらず、定電流制御の方が、定電圧制御に比べて、損失が小さいけれど、定電流制御では、総電流量が制限されているので、ON電圧Vfのばらつきが有っても無くても、損失が同じであることが理解される。したがって、本実施の形態のカレントミラー回路による電流バランス制御に対しては、定電流制御が好ましく、何れの条件でも、定電流回路d1〜d3を用いる場合に比べて、電流バランスを確保するにあたっての損失を大幅に削減できることが理解される。   As is clear from FIG. 3, in the current balance control by the current mirror circuit of the present embodiment, the loss is smaller when there is no variation in the ON voltage Vf, but the constant current control is performed regardless of whether there is a variation in the ON voltage Vf. It is understood that the loss is smaller than the constant voltage control. On the other hand, even in the current balance control using the constant current circuits d1 to d3 shown in FIG. 10 and FIG. 11 described above, the constant current control is more effective for the constant voltage control regardless of whether the ON voltage Vf varies. In comparison, although the loss is small, in the constant current control, the total current amount is limited. Therefore, it is understood that the loss is the same regardless of whether the ON voltage Vf varies. Therefore, constant current control is preferable for the current balance control by the current mirror circuit of the present embodiment, and in ensuring the current balance in any condition compared to the case where the constant current circuits d1 to d3 are used. It is understood that the loss can be greatly reduced.

上述の説明では、制御素子(トランジスタ)Q1〜Q3のエミッタ面積比、すなわち各LED負荷回路U1〜U3におけるLEDD1の定格電流は、各相互に等しかったけれども、相互に異なるように構成されてもよく、その場合、制御素子Q1〜Q3は、その異なる設定電流比を維持するように制御を行う。また、本発明におけるLEDD1には、有機EL(オーガニックLED)も適用可能である。   In the above description, the emitter area ratios of the control elements (transistors) Q1 to Q3, that is, the rated currents of the LEDs D1 in the LED load circuits U1 to U3 are equal to each other, but may be configured to be different from each other. In this case, the control elements Q1 to Q3 perform control so as to maintain the different set current ratios. Moreover, organic EL (organic LED) is applicable to LEDD1 in this invention.

また、前記インピーダンス素子Aは、LEDで実現することもでき、その場合、図4のLED点灯回路31aで示すように、LEDモジュール32aのLED負荷回路U1aにおいて、余分なLEDD10を設け、該LED負荷回路U1aの直列LED段数を残余のLED負荷回路U2,U3よりも多く設定するだけでよい。たとえば、σ=10%程度であるときには、n=10程度までは追加のLEDD10を1つ、n=20程度までは追加のLEDD10を2つというように、ばらつきをσと直列段数をnとに対応して、常にそのLED負荷回路U1aのON電圧Vfの総和が最も高くなるように設定すればよい。このように構成することで、前記ON電圧Vfの総和を最も高くする構成を、容易に構成することができるとともに、インピーダンス素子Aによる消費電力を有効に活用することもできる。   The impedance element A can also be realized by an LED. In this case, as shown by the LED lighting circuit 31a in FIG. 4, an extra LEDD10 is provided in the LED load circuit U1a of the LED module 32a, and the LED load It is only necessary to set the number of series LED stages of the circuit U1a to be larger than that of the remaining LED load circuits U2 and U3. For example, when σ = about 10%, one additional LEDD10 is provided until n = 10, and two additional LEDs D10 are provided until n = 20, so that the variation is σ and the number of series stages is n. Correspondingly, the LED load circuit U1a may be set so that the total sum of the ON voltages Vf is always the highest. With this configuration, it is possible to easily configure a configuration that maximizes the sum of the ON voltages Vf, and it is also possible to effectively use the power consumed by the impedance element A.

[実施の形態2]
図5は、本発明の実施の他の形態に係るLED点灯回路51の構成を示すブロック図である。このLED点灯回路51において、前述のLED点灯回路31に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、このLED点灯回路51では、前記インピーダンス素子Aの端子間に短絡スイッチSWが設けられるとともに、その短絡スイッチSWが開成され、前記制御素子Q1〜Q3がカレントミラー動作を行っている状態で、Vf検出回路52が前記各LED負荷回路U1〜U3におけるLEDのON電圧Vfの総和を検出し、その検出結果から、切換え制御回路53が、制御素子Q1が前記ダイオード構造となっているLED負荷回路U1のON電圧Vfの総和が最も高い場合には前記短絡スイッチSWを閉成し、そうでない場合には前記短絡スイッチSWを開成することである。
[Embodiment 2]
FIG. 5 is a block diagram showing a configuration of an LED lighting circuit 51 according to another embodiment of the present invention. The LED lighting circuit 51 is similar to the LED lighting circuit 31 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in this LED lighting circuit 51, a short-circuit switch SW is provided between the terminals of the impedance element A, the short-circuit switch SW is opened, and the control elements Q1 to Q3 perform a current mirror operation. In this state, the Vf detection circuit 52 detects the sum of the LED ON voltages Vf in the LED load circuits U1 to U3. From the detection result, the switching control circuit 53 has the control element Q1 in the diode structure. The short-circuit switch SW is closed when the sum of the ON voltages Vf of the LED load circuit U1 is the highest, and the short-circuit switch SW is opened otherwise.

図6は、前記Vf検出回路52および切換え制御回路53の一構成例を示すブロック図である。Vf検出回路52は、2つの比較器CP1,CP2と、それらの出力を加算するANDゲートGとを備えて構成される。各比較器CP1,CP2の非反転入力端には共通に前記インピーダンス素子Aが設けられているLED負荷回路U1の端子電圧が与えられ、非反転入力端には前記インピーダンス素子Aが設けられていないLED負荷回路U2,U3の端子電圧がそれぞれ与えられる。したがって、各比較器CP1,CP2からは、LED負荷回路U1の端子電圧の方が低い場合、すなわちDC−DCコンバータ35の出力電圧VDCからの電圧降下量が大きい場合にハイレベルが出力され、ANDゲートGからは、LED負荷回路U1の電圧降下量が最も大きい場合にハイレベルが出力される。   FIG. 6 is a block diagram showing a configuration example of the Vf detection circuit 52 and the switching control circuit 53. As shown in FIG. The Vf detection circuit 52 includes two comparators CP1 and CP2 and an AND gate G that adds their outputs. The terminal voltage of the LED load circuit U1 in which the impedance element A is provided in common is applied to the non-inverting input terminals of the comparators CP1 and CP2, and the impedance element A is not provided in the non-inverting input terminal. Terminal voltages of the LED load circuits U2 and U3 are respectively given. Accordingly, the comparators CP1 and CP2 output a high level when the terminal voltage of the LED load circuit U1 is lower, that is, when the amount of voltage drop from the output voltage VDC of the DC-DC converter 35 is large, and AND A high level is output from the gate G when the voltage drop amount of the LED load circuit U1 is the largest.

前記切換え制御回路53は、前記ANDゲートGの出力がベースに与えられるトランジスタTR1と、そのベース抵抗R11およびコレクタ抵抗R12と、前記コレクタ抵抗R12を介してトランジスタTR1によって駆動されるフォトカプラPCとを備えて構成される。したがって、前記ANDゲートGからハイレベルが出力されると、トランジスタTR1がONし、フォトカプラPCのフォトダイオードD11が点灯して前記短絡スイッチSWを構成するフォトトランジスタTR2がONし、インピーダンス素子Aをバイパスする。   The switching control circuit 53 includes a transistor TR1 to which an output of the AND gate G is applied to a base, a base resistor R11 and a collector resistor R12, and a photocoupler PC driven by the transistor TR1 through the collector resistor R12. It is prepared for. Therefore, when a high level is output from the AND gate G, the transistor TR1 is turned on, the photodiode D11 of the photocoupler PC is turned on, the phototransistor TR2 constituting the short-circuit switch SW is turned on, and the impedance element A is turned on. Bypass.

このように構成することで、前述のようにカレントミラーによって電流均一化動作を行おうとすると、LEDD1のON電圧Vfの総和が最も高い回路が基準電流回路とならなければならないのに対し、実際にVf検出回路52が各LED負荷回路U1〜U3におけるLEDのON電圧Vfの総和を測定してみて、インピーダンス素子Aが必要な場合にだけ、切換え制御回路53が挿入するので、経年変化などに対して、必要な場合だけインピーダンス素子Aを機能させることができ、該インピーダンス素子Aでの損失を抑えることができる。   With this configuration, when the current equalization operation is performed by the current mirror as described above, the circuit having the highest sum of the ON voltages Vf of the LEDD1 must be the reference current circuit. The Vf detection circuit 52 measures the total of the LED ON voltage Vf in each of the LED load circuits U1 to U3, and the switching control circuit 53 is inserted only when the impedance element A is necessary. Thus, the impedance element A can function only when necessary, and the loss in the impedance element A can be suppressed.

[実施の形態3]
図7は、本発明の実施の他の形態に係るLED点灯回路61の構成を示すブロック図である。このLED点灯回路61において、前述のLED点灯回路31に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、このLED点灯回路61では、LEDモジュール32bにおいて、制御素子Q2,Q3が前記ダイオード構造となっていないLED負荷回路U2,U3の端子間に並列にインピーダンス素子A2,A3が設けられることである。そして、このインピーダンス素子A2,A3は、対応するLED負荷回路U2,U3のインピーダンスを低減し、端子間電圧を前記LED負荷回路U1の端子間電圧よりも低くクランプするものであり、たとえば図7で示すようにツェナダイオードから成り、或いはツェナダイオードと直列にさらに抵抗素子を備える構成なども用いることができる。
[Embodiment 3]
FIG. 7 is a block diagram showing a configuration of an LED lighting circuit 61 according to another embodiment of the present invention. The LED lighting circuit 61 is similar to the LED lighting circuit 31 described above, and corresponding portions are denoted by the same reference numerals, and description thereof is omitted. It should be noted that in the LED lighting circuit 61, in the LED module 32b, impedance elements A2 and A3 are provided in parallel between terminals of the LED load circuits U2 and U3 in which the control elements Q2 and Q3 do not have the diode structure. That is. The impedance elements A2 and A3 reduce the impedance of the corresponding LED load circuits U2 and U3, and clamp the inter-terminal voltage lower than the inter-terminal voltage of the LED load circuit U1, for example, in FIG. As shown in the figure, a configuration including a Zener diode or a resistance element in series with the Zener diode can be used.

このように構成してもまた、LEDD1のON電圧Vfにばらつきがあっても、前記カレントミラー回路の基準電流を作成するLED負荷回路U1は、LEDD1のON電圧Vfの総和を含めて、LED電流による電圧降下が最も高い回路となっており、各LED負荷回路U1〜U3における電流値を均等に制御し、多数のLEDD1からの光出力を、均一化することができる。また、基準電流のみを作成する回路が不要で、その分の回路損失を無くすこともできる。   Even with this configuration, even if there is a variation in the ON voltage Vf of the LEDD1, the LED load circuit U1 that creates the reference current of the current mirror circuit includes the total of the ON voltage Vf of the LEDD1 and includes the LED current. The voltage drop due to is the highest in the circuit, and the current values in the LED load circuits U1 to U3 can be uniformly controlled, and the light output from the multiple LEDs D1 can be made uniform. In addition, a circuit for generating only the reference current is unnecessary, and the circuit loss corresponding to the circuit can be eliminated.

[実施の形態4]
図8は、本発明の実施の他の形態に係るLED点灯回路71の構成を示すブロック図である。このLED点灯回路71において、前述のLED点灯回路31に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、このLED点灯回路71では、DC−DCコンバータ35に定電流のフィードバック制御を行うにあたって、その電流検知抵抗R2を、各LED負荷回路U1〜U3の内、何れか1つ(図8の例ではU1)に挿入することである。この場合、前記抵抗R2による損失を削減することができる(図8の例では、図1の例に対して、略1/3)。また、基準となるLED負荷回路以外でLEDD1に断線が生じても、残余の回路は、一定の電流値のままで点灯を続けることができる。
[Embodiment 4]
FIG. 8 is a block diagram showing a configuration of an LED lighting circuit 71 according to another embodiment of the present invention. The LED lighting circuit 71 is similar to the LED lighting circuit 31 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in the LED lighting circuit 71, when the constant current feedback control is performed on the DC-DC converter 35, the current detection resistor R2 is set to any one of the LED load circuits U1 to U3 (see FIG. In the example of 8, it is inserted into U1). In this case, the loss due to the resistor R2 can be reduced (in the example of FIG. 8, approximately 1/3 of the example of FIG. 1). Further, even if the LEDD1 is disconnected other than the reference LED load circuit, the remaining circuits can continue to be lit with a constant current value.

ここで、特開2006−203044号公報には、ON電圧Vfが異なる並列LEDの電流調整を行うにあたって、直列にトランジスタを接続するとともに、そのゲートを共通に駆動し、さらに前記ON電圧Vfが小さいLEDに対しては、直列にダミーのダイオードを接続し、前記ON電圧Vfの差を小さくすることが示されている。しかしながら、この先行技術では、カレントミラーの基準電流は別途に作成しており、前記ON電圧Vfの差を小さくするためにダイオードが挿入されるのに対して、本実施の形態では、カレントミラーの基準電流が作成できるように、前記ON電圧Vfの差が大きくなるように挿入される。したがって、この先行技術のようにRGB発光で白色光を発生する場合、この先行技術ではON電圧Vfの小さい(2V程度)Rの素子の系統にダイオードを挿入することになるが、本実施の形態では、ON電圧Vfの大きい(3〜3.5V程度)Bの素子の系統にダイオードを挿入することになり、全く異なるものである。   Here, in Japanese Patent Application Laid-Open No. 2006-203044, when adjusting the current of parallel LEDs having different ON voltages Vf, transistors are connected in series and their gates are driven in common, and the ON voltage Vf is small. It is shown that a dummy diode is connected in series with the LED to reduce the difference in the ON voltage Vf. However, in this prior art, the reference current of the current mirror is created separately, and a diode is inserted in order to reduce the difference in the ON voltage Vf. It is inserted so that the difference of the ON voltage Vf becomes large so that a reference current can be created. Therefore, when white light is generated by RGB emission as in this prior art, in this prior art, a diode is inserted into a system of R elements having a small ON voltage Vf (about 2 V). Then, a diode is inserted into a system of B elements having a large ON voltage Vf (about 3 to 3.5 V), which is completely different.

本発明の実施の一形態に係るLED点灯回路の構成を示すブロック図である。It is a block diagram which shows the structure of the LED lighting circuit which concerns on one Embodiment of this invention. 図1で示す点灯回路におけるインピーダンス素子の一例を示す図である。It is a figure which shows an example of the impedance element in the lighting circuit shown in FIG. 図1で示す本発明の一実施形態と図10および図11で示す従来技術とで、並列のLED負荷回路へ供給する電流のバランス制御に要する損失計算の結果を示す図である。It is a figure which shows the result of the loss calculation required for balance control of the electric current supplied to a parallel LED load circuit by one Embodiment of this invention shown in FIG. 1, and the prior art shown in FIG. 10 and FIG. 本発明の実施の一形態に係るLED点灯回路における他の構成例を示すブロック図である。It is a block diagram which shows the other structural example in the LED lighting circuit which concerns on one Embodiment of this invention. 本発明の実施の他の形態に係るLED点灯回路の構成を示すブロック図である。It is a block diagram which shows the structure of the LED lighting circuit which concerns on the other form of implementation of this invention. 図1で示す点灯回路におけるVf検出回路および切換え制御回路の一構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a Vf detection circuit and a switching control circuit in the lighting circuit illustrated in FIG. 1. 本発明の実施のさらに他の形態に係るLED点灯回路の構成を示すブロック図である。It is a block diagram which shows the structure of the LED lighting circuit which concerns on other form of implementation of this invention. 本発明の実施の他の形態に係るLED点灯回路の構成を示すブロック図である。It is a block diagram which shows the structure of the LED lighting circuit which concerns on the other form of implementation of this invention. 典型的な従来技術のLED点灯回路の構成を示すブロック図である。It is a block diagram which shows the structure of a typical prior art LED lighting circuit. 他の従来技術のLED点灯回路の構成を示すブロック図である。It is a block diagram which shows the structure of the LED lighting circuit of another prior art. 図10で示すLED点灯回路における定電流回路の具体例を示す電気回路図である。It is an electric circuit diagram which shows the specific example of the constant current circuit in the LED lighting circuit shown in FIG. さらに他の従来技術のLED点灯回路の構成を示すブロック図である。It is a block diagram which shows the structure of the LED lighting circuit of another prior art.

符号の説明Explanation of symbols

31,31a,51,61,71 LED点灯回路
32,32a,32b LEDモジュール
33 商用電源
34 整流ブリッジ
35 DC−DCコンバータ
36 制御回路
37 比較回路
38 基準電圧源
52 Vf検出回路
53 切換え制御回路
A,A2,A3 インピーダンス素子
C2 平滑コンデンサ
CP1,CP2 比較器
D ダイオード
D1,D10 LED
D11 フォトダイオード
G ANDゲート
L チョークコイル
PC フォトカプラ
Q0 スイッチング素子
Q1〜Q3 制御素子
R1,R2 抵抗
R11 ベース抵抗
R12 コレクタ抵抗
SW 短絡スイッチ
TR1 トランジスタ
TR2 フォトトランジスタ
U1,U1a,U2,U3 LED負荷回路
31, 31a, 51, 61, 71 LED lighting circuit 32, 32a, 32b LED module 33 commercial power supply 34 rectifier bridge 35 DC-DC converter 36 control circuit 37 comparison circuit 38 reference voltage source 52 Vf detection circuit 53 switching control circuit A, A2, A3 Impedance element C2 Smoothing capacitor CP1, CP2 Comparator D Diode D1, D10 LED
D11 Photodiode G AND gate L Choke coil PC Photocoupler Q0 Switching element Q1-Q3 Control element R1, R2 Resistance R11 Base resistance R12 Collector resistance SW Short-circuit switch TR1 Transistor TR2 Phototransistor U1, U1a, U2, U3 LED load circuit

Claims (6)

1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うようにしたLED点灯回路において、
前記各LED負荷回路に直列に設けられ、カレントミラー回路を構成して前記各LED負荷回路における通電電流値を連動させる制御素子であって、いずれか1つが前記カレントミラーの基準電流回路となるようにダイオード構造とされるそのような制御素子と、
前記ダイオード構造の制御素子の回路に直列に挿入され、LEDのON電圧をVfとし、そのばらつきをσとし、直列段数をnとするとき、定格電流でVf×n×σ以上の電圧降下を生じるインピーダンス素子とを含むことを特徴とするLED点灯回路。
In an LED lighting circuit in which a current is supplied from a DC power supply to an LED module in which a plurality of LED load circuits composed of one or a plurality of series LEDs are arranged in parallel with each other,
A control element that is provided in series with each LED load circuit, and that configures a current mirror circuit to link the energization current value in each LED load circuit, so that any one becomes a reference current circuit for the current mirror. Such a control element having a diode structure;
When the LED ON voltage is Vf, the variation is σ, and the number of series stages is n, the voltage drop of Vf × n × σ or more is generated at the rated current. An LED lighting circuit comprising an impedance element.
前記インピーダンス素子は、LEDであることを特徴とする請求項1記載のLED点灯回路。   The LED lighting circuit according to claim 1, wherein the impedance element is an LED. 前記インピーダンス素子の端子間を短絡することができる短絡スイッチと、
前記短絡スイッチが開成され、前記制御素子がカレントミラー動作を行っている状態で、前記各LED負荷回路におけるLEDのON電圧Vfの総和を検出する検出手段と、
前記検出手段の検出結果に応答し、制御素子が前記ダイオード構造となっているLED負荷回路のON電圧Vfの総和が最も高い場合には前記短絡スイッチを閉成し、そうでない場合には前記短絡スイッチを開成する切換え制御手段とを含むことを特徴とする請求項1または2記載のLED点灯回路。
A shorting switch capable of short-circuiting between terminals of the impedance element;
Detecting means for detecting the sum of the ON voltages Vf of the LEDs in the LED load circuits in a state where the short-circuit switch is opened and the control element is performing a current mirror operation;
In response to the detection result of the detecting means, the short-circuit switch is closed when the sum of the ON voltage Vf of the LED load circuit having the diode structure as the control element is the highest, and the short-circuit otherwise. 3. The LED lighting circuit according to claim 1, further comprising switching control means for opening the switch.
1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うようにしたLED点灯回路において、
前記各LED負荷回路に直列に設けられ、カレントミラー回路を構成して前記各LED負荷回路における通電電流値を連動させる制御素子であって、いずれか1つが前記カレントミラーの基準電流回路となるようにダイオード構造とされるそのような制御素子と、
前記ダイオード構造の制御素子の回路以外の回路に並列に挿入され、そのLED負荷回路のインピーダンスを低減するインピーダンス素子とを含むことを特徴とするLED点灯回路。
In an LED lighting circuit in which a current is supplied from a DC power supply to an LED module in which a plurality of LED load circuits composed of one or a plurality of series LEDs are arranged in parallel with each other,
A control element that is provided in series with each LED load circuit, and that configures a current mirror circuit to link the energization current value in each LED load circuit, so that any one becomes a reference current circuit for the current mirror. Such a control element having a diode structure;
An LED lighting circuit comprising: an impedance element that is inserted in parallel to a circuit other than the control element circuit having the diode structure and reduces an impedance of the LED load circuit.
前記直流電源は、DC−DCコンバータであり、
前記各LED負荷回路を流れる総電流値または前記ダイオード接続された制御素子に対応するLED負荷回路を流れる電流値を検出する電流検出手段と、
前記電流検出手段からの検出結果を比較するための基準電圧源および比較器と、
前記比較器からの出力に応じて、前記LEDモジュールへの通電電流値の総和が予め定める値となるように前記直流電源をフィードバック制御する制御手段とを備えて構成されることを特徴とする請求項1〜4のいずれか1項に記載のLED点灯回路。
The DC power supply is a DC-DC converter,
Current detection means for detecting a total current value flowing through each LED load circuit or a current value flowing through the LED load circuit corresponding to the diode-connected control element;
A reference voltage source and a comparator for comparing the detection results from the current detection means;
And a control unit that feedback-controls the DC power supply so that a total sum of energization current values to the LED module becomes a predetermined value in accordance with an output from the comparator. Item 5. The LED lighting circuit according to any one of Items 1 to 4.
前記請求項1〜5のいずれか1項に記載のLED点灯回路を用いることを特徴とする照明器具。   A lighting fixture using the LED lighting circuit according to any one of claims 1 to 5.
JP2006317752A 2006-10-25 2006-11-24 LED lighting circuit and lighting apparatus using the same Expired - Fee Related JP4888082B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006317752A JP4888082B2 (en) 2006-11-24 2006-11-24 LED lighting circuit and lighting apparatus using the same
EP07830163A EP2094063A4 (en) 2006-10-25 2007-10-19 Led lighting circuit and illuminating apparatus using the same
US12/447,123 US20100109537A1 (en) 2006-10-25 2007-10-19 Led lighting circuit and illuminating apparatus using the same
PCT/JP2007/070429 WO2008050679A1 (en) 2006-10-25 2007-10-19 Led lighting circuit and illuminating apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006317752A JP4888082B2 (en) 2006-11-24 2006-11-24 LED lighting circuit and lighting apparatus using the same

Publications (2)

Publication Number Publication Date
JP2008130523A true JP2008130523A (en) 2008-06-05
JP4888082B2 JP4888082B2 (en) 2012-02-29

Family

ID=39556131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006317752A Expired - Fee Related JP4888082B2 (en) 2006-10-25 2006-11-24 LED lighting circuit and lighting apparatus using the same

Country Status (1)

Country Link
JP (1) JP4888082B2 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016198A (en) * 2008-07-03 2010-01-21 Panasonic Corp Semiconductor light source driving device and semiconductor light source driving method
JP2010086826A (en) * 2008-09-30 2010-04-15 Kyocera Corp Light source device and display
JP2010171014A (en) * 2009-01-22 2010-08-05 Nanker (Guangzhou) Semiconductor Manufacturing Corp Electric circuit of led lighting fixture
JP2010205453A (en) * 2009-02-27 2010-09-16 Toshiba Lighting & Technology Corp Led lighting device
JP2011060745A (en) * 2009-09-10 2011-03-24 Future Eve Technology Kk Electric circuit and luminaire
JP2012509558A (en) * 2008-11-17 2012-04-19 エクスプレス イメージング システムズ,エルエルシー Electronic control device and method for adjusting power supply for solid state lighting
WO2013118208A1 (en) * 2012-02-07 2013-08-15 パナソニック株式会社 Light-emitting circuit, light-emitting module, and illumination device
US8810138B2 (en) 2009-05-20 2014-08-19 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination
US8872964B2 (en) 2009-05-20 2014-10-28 Express Imaging Systems, Llc Long-range motion detection for illumination control
US8878440B2 (en) 2012-08-28 2014-11-04 Express Imaging Systems, Llc Luminaire with atmospheric electrical activity detection and visual alert capabilities
US8896215B2 (en) 2012-09-05 2014-11-25 Express Imaging Systems, Llc Apparatus and method for schedule based operation of a luminaire
US8901825B2 (en) 2011-04-12 2014-12-02 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination using received signals
US8922124B2 (en) 2011-11-18 2014-12-30 Express Imaging Systems, Llc Adjustable output solid-state lamp with security features
US8926139B2 (en) 2009-05-01 2015-01-06 Express Imaging Systems, Llc Gas-discharge lamp replacement with passive cooling
US8941320B2 (en) 2012-05-22 2015-01-27 Samsung Display Co., Ltd. Method of driving a light source, light source apparatus for performing the method and display apparatus having the light source apparatus
JP2015503193A (en) * 2011-11-22 2015-01-29 クリー インコーポレイテッドCree Inc. Drive circuit and associated method for a solid state lighting device including a high voltage LED component
JP2015519682A (en) * 2012-03-29 2015-07-09 フォセオン テクノロジー, インコーポレイテッドPhoseon Technology, Inc. Load current control circuit
US9131552B2 (en) 2012-07-25 2015-09-08 Express Imaging Systems, Llc Apparatus and method of operating a luminaire
US9131571B2 (en) 2012-09-14 2015-09-08 Cree, Inc. Solid-state lighting apparatus and methods using energy storage with segment control
US9185777B2 (en) 2014-01-30 2015-11-10 Express Imaging Systems, Llc Ambient light control in solid state lamps and luminaires
US9203307B2 (en) 2012-10-31 2015-12-01 Cree, Inc. Power converter with bias voltage regulation circuit
US9204523B2 (en) 2012-05-02 2015-12-01 Express Imaging Systems, Llc Remotely adjustable solid-state lamp
US9210759B2 (en) 2012-11-19 2015-12-08 Express Imaging Systems, Llc Luminaire with ambient sensing and autonomous control capabilities
US9210751B2 (en) 2012-05-01 2015-12-08 Express Imaging Systems, Llc Solid state lighting, drive circuit and method of driving same
US9288873B2 (en) 2013-02-13 2016-03-15 Express Imaging Systems, Llc Systems, methods, and apparatuses for using a high current switching device as a logic level sensor
US9301365B2 (en) 2012-11-07 2016-03-29 Express Imaging Systems, Llc Luminaire with switch-mode converter power monitoring
US9360198B2 (en) 2011-12-06 2016-06-07 Express Imaging Systems, Llc Adjustable output solid-state lighting device
US9414449B2 (en) 2013-11-18 2016-08-09 Express Imaging Systems, Llc High efficiency power controller for luminaire
US9445485B2 (en) 2014-10-24 2016-09-13 Express Imaging Systems, Llc Detection and correction of faulty photo controls in outdoor luminaires
US9462662B1 (en) 2015-03-24 2016-10-04 Express Imaging Systems, Llc Low power photocontrol for luminaire
US9466443B2 (en) 2013-07-24 2016-10-11 Express Imaging Systems, Llc Photocontrol for luminaire consumes very low power
US9497393B2 (en) 2012-03-02 2016-11-15 Express Imaging Systems, Llc Systems and methods that employ object recognition
US9538612B1 (en) 2015-09-03 2017-01-03 Express Imaging Systems, Llc Low power photocontrol for luminaire
US9572230B2 (en) 2014-09-30 2017-02-14 Express Imaging Systems, Llc Centralized control of area lighting hours of illumination
WO2017154128A1 (en) * 2016-03-09 2017-09-14 株式会社島津製作所 Semiconductor light-emitting device
US9924582B2 (en) 2016-04-26 2018-03-20 Express Imaging Systems, Llc Luminaire dimming module uses 3 contact NEMA photocontrol socket
US9985429B2 (en) 2016-09-21 2018-05-29 Express Imaging Systems, Llc Inrush current limiter circuit
US10098212B2 (en) 2017-02-14 2018-10-09 Express Imaging Systems, Llc Systems and methods for controlling outdoor luminaire wireless network using smart appliance
US10219360B2 (en) 2017-04-03 2019-02-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US10230296B2 (en) 2016-09-21 2019-03-12 Express Imaging Systems, Llc Output ripple reduction for power converters
US10568191B2 (en) 2017-04-03 2020-02-18 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
WO2020044818A1 (en) * 2018-08-31 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Light source apparatus, adjustment method, and sensing module
US10904992B2 (en) 2017-04-03 2021-01-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11212887B2 (en) 2019-11-04 2021-12-28 Express Imaging Systems, Llc Light having selectively adjustable sets of solid state light sources, circuit and method of operation thereof, to provide variable output characteristics
US11234304B2 (en) 2019-05-24 2022-01-25 Express Imaging Systems, Llc Photocontroller to control operation of a luminaire having a dimming line
US11375599B2 (en) 2017-04-03 2022-06-28 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11765805B2 (en) 2019-06-20 2023-09-19 Express Imaging Systems, Llc Photocontroller and/or lamp with photocontrols to control operation of lamp

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016198A (en) * 2008-07-03 2010-01-21 Panasonic Corp Semiconductor light source driving device and semiconductor light source driving method
JP2010086826A (en) * 2008-09-30 2010-04-15 Kyocera Corp Light source device and display
JP2012509558A (en) * 2008-11-17 2012-04-19 エクスプレス イメージング システムズ,エルエルシー Electronic control device and method for adjusting power supply for solid state lighting
US9967933B2 (en) 2008-11-17 2018-05-08 Express Imaging Systems, Llc Electronic control to regulate power for solid-state lighting and methods thereof
US9125261B2 (en) 2008-11-17 2015-09-01 Express Imaging Systems, Llc Electronic control to regulate power for solid-state lighting and methods thereof
JP2010171014A (en) * 2009-01-22 2010-08-05 Nanker (Guangzhou) Semiconductor Manufacturing Corp Electric circuit of led lighting fixture
JP2010205453A (en) * 2009-02-27 2010-09-16 Toshiba Lighting & Technology Corp Led lighting device
US8926139B2 (en) 2009-05-01 2015-01-06 Express Imaging Systems, Llc Gas-discharge lamp replacement with passive cooling
US8987992B2 (en) 2009-05-20 2015-03-24 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination
US8810138B2 (en) 2009-05-20 2014-08-19 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination
US8872964B2 (en) 2009-05-20 2014-10-28 Express Imaging Systems, Llc Long-range motion detection for illumination control
JP2011060745A (en) * 2009-09-10 2011-03-24 Future Eve Technology Kk Electric circuit and luminaire
US8901825B2 (en) 2011-04-12 2014-12-02 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination using received signals
US9713228B2 (en) 2011-04-12 2017-07-18 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination using received signals
US8922124B2 (en) 2011-11-18 2014-12-30 Express Imaging Systems, Llc Adjustable output solid-state lamp with security features
JP2015503193A (en) * 2011-11-22 2015-01-29 クリー インコーポレイテッドCree Inc. Drive circuit and associated method for a solid state lighting device including a high voltage LED component
US9360198B2 (en) 2011-12-06 2016-06-07 Express Imaging Systems, Llc Adjustable output solid-state lighting device
WO2013118208A1 (en) * 2012-02-07 2013-08-15 パナソニック株式会社 Light-emitting circuit, light-emitting module, and illumination device
US9408278B2 (en) 2012-02-07 2016-08-02 Panasonic Intellectual Property Management Co., Ltd. Light-emitting circuit with variable resistor element, and light-emitting module and illumination device including the same
US9497393B2 (en) 2012-03-02 2016-11-15 Express Imaging Systems, Llc Systems and methods that employ object recognition
JP2015519682A (en) * 2012-03-29 2015-07-09 フォセオン テクノロジー, インコーポレイテッドPhoseon Technology, Inc. Load current control circuit
US9867252B2 (en) 2012-03-29 2018-01-09 Phoseon Technology, Inc. Load current control circuit
US9210751B2 (en) 2012-05-01 2015-12-08 Express Imaging Systems, Llc Solid state lighting, drive circuit and method of driving same
US9204523B2 (en) 2012-05-02 2015-12-01 Express Imaging Systems, Llc Remotely adjustable solid-state lamp
US8941320B2 (en) 2012-05-22 2015-01-27 Samsung Display Co., Ltd. Method of driving a light source, light source apparatus for performing the method and display apparatus having the light source apparatus
US9131552B2 (en) 2012-07-25 2015-09-08 Express Imaging Systems, Llc Apparatus and method of operating a luminaire
US9801248B2 (en) 2012-07-25 2017-10-24 Express Imaging Systems, Llc Apparatus and method of operating a luminaire
US8878440B2 (en) 2012-08-28 2014-11-04 Express Imaging Systems, Llc Luminaire with atmospheric electrical activity detection and visual alert capabilities
US8896215B2 (en) 2012-09-05 2014-11-25 Express Imaging Systems, Llc Apparatus and method for schedule based operation of a luminaire
US9693433B2 (en) 2012-09-05 2017-06-27 Express Imaging Systems, Llc Apparatus and method for schedule based operation of a luminaire
US9131571B2 (en) 2012-09-14 2015-09-08 Cree, Inc. Solid-state lighting apparatus and methods using energy storage with segment control
US9203307B2 (en) 2012-10-31 2015-12-01 Cree, Inc. Power converter with bias voltage regulation circuit
US9301365B2 (en) 2012-11-07 2016-03-29 Express Imaging Systems, Llc Luminaire with switch-mode converter power monitoring
US9433062B2 (en) 2012-11-19 2016-08-30 Express Imaging Systems, Llc Luminaire with ambient sensing and autonomous control capabilities
US9210759B2 (en) 2012-11-19 2015-12-08 Express Imaging Systems, Llc Luminaire with ambient sensing and autonomous control capabilities
US9288873B2 (en) 2013-02-13 2016-03-15 Express Imaging Systems, Llc Systems, methods, and apparatuses for using a high current switching device as a logic level sensor
US9466443B2 (en) 2013-07-24 2016-10-11 Express Imaging Systems, Llc Photocontrol for luminaire consumes very low power
US9414449B2 (en) 2013-11-18 2016-08-09 Express Imaging Systems, Llc High efficiency power controller for luminaire
US9781797B2 (en) 2013-11-18 2017-10-03 Express Imaging Systems, Llc High efficiency power controller for luminaire
US9185777B2 (en) 2014-01-30 2015-11-10 Express Imaging Systems, Llc Ambient light control in solid state lamps and luminaires
US9572230B2 (en) 2014-09-30 2017-02-14 Express Imaging Systems, Llc Centralized control of area lighting hours of illumination
US9445485B2 (en) 2014-10-24 2016-09-13 Express Imaging Systems, Llc Detection and correction of faulty photo controls in outdoor luminaires
US9462662B1 (en) 2015-03-24 2016-10-04 Express Imaging Systems, Llc Low power photocontrol for luminaire
US9538612B1 (en) 2015-09-03 2017-01-03 Express Imaging Systems, Llc Low power photocontrol for luminaire
CN108780981A (en) * 2016-03-09 2018-11-09 株式会社岛津制作所 Semiconductor light-emitting apparatus
US10511144B2 (en) 2016-03-09 2019-12-17 Shimadzu Corporation Semiconductor light-emitting device
WO2017154128A1 (en) * 2016-03-09 2017-09-14 株式会社島津製作所 Semiconductor light-emitting device
CN108780981B (en) * 2016-03-09 2020-06-23 株式会社岛津制作所 Semiconductor light emitting device
US9924582B2 (en) 2016-04-26 2018-03-20 Express Imaging Systems, Llc Luminaire dimming module uses 3 contact NEMA photocontrol socket
US9985429B2 (en) 2016-09-21 2018-05-29 Express Imaging Systems, Llc Inrush current limiter circuit
US10230296B2 (en) 2016-09-21 2019-03-12 Express Imaging Systems, Llc Output ripple reduction for power converters
US10098212B2 (en) 2017-02-14 2018-10-09 Express Imaging Systems, Llc Systems and methods for controlling outdoor luminaire wireless network using smart appliance
US10568191B2 (en) 2017-04-03 2020-02-18 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US10390414B2 (en) 2017-04-03 2019-08-20 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US10219360B2 (en) 2017-04-03 2019-02-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US10904992B2 (en) 2017-04-03 2021-01-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11375599B2 (en) 2017-04-03 2022-06-28 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11653436B2 (en) 2017-04-03 2023-05-16 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
WO2020044818A1 (en) * 2018-08-31 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Light source apparatus, adjustment method, and sensing module
US11234304B2 (en) 2019-05-24 2022-01-25 Express Imaging Systems, Llc Photocontroller to control operation of a luminaire having a dimming line
US11765805B2 (en) 2019-06-20 2023-09-19 Express Imaging Systems, Llc Photocontroller and/or lamp with photocontrols to control operation of lamp
US11212887B2 (en) 2019-11-04 2021-12-28 Express Imaging Systems, Llc Light having selectively adjustable sets of solid state light sources, circuit and method of operation thereof, to provide variable output characteristics

Also Published As

Publication number Publication date
JP4888082B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4888082B2 (en) LED lighting circuit and lighting apparatus using the same
EP2094063A1 (en) Led lighting circuit and illuminating apparatus using the same
JP2008108564A (en) Led lighting circuit, and luminaire using it
JP2008130377A (en) Led lighting circuit and illumination fixture using it
US9699844B2 (en) Multichannel constant current LED driving circuit, driving method and LED driving power
JP2008130513A (en) Led lighting circuit and illumination fixture using it
JP5981337B2 (en) Low cost power supply circuit and method
JP4888077B2 (en) LED lighting circuit and lighting apparatus using the same
JP2008130989A (en) Led lighting circuit, and luminaire using the same
JP2008130295A (en) Led lighting circuit and illumination fixture using it
JP2008108565A (en) Light emitting diode lighting circuit and luminaire using it
US10306722B2 (en) LED driving circuit
JP4950631B2 (en) Method and apparatus for supplying power to a light emitting diode array
US8373346B2 (en) Solid state lighting system and a driver integrated circuit for driving light emitting semiconductor devices
US8624513B2 (en) Multichannel lighting unit and driver for supplying current to light sources in multichannel lighting unit
US7800316B2 (en) Stacked LED controllers
US8004204B2 (en) Power circuit and illumination apparatus
KR20110022038A (en) Led lamp driver and method
WO2012059778A1 (en) Driver for two or more parallel led light strings
JP2003059676A (en) Power supply device of light-emitting diode
US9060405B2 (en) Apparatus for controlling the operation of an LED, and method for controlling drive current thereof
JP7155150B2 (en) LED lighting driver and driving method
Dietrich et al. A capacitor-free single-inductor multiple-output LED driver
US9526134B2 (en) Illumination module
JP2022541259A (en) Improved balance control for 2-channel CCT dimming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees