JP2008130422A - Lighting system and liquid crystal display device provided with same - Google Patents

Lighting system and liquid crystal display device provided with same Download PDF

Info

Publication number
JP2008130422A
JP2008130422A JP2006315424A JP2006315424A JP2008130422A JP 2008130422 A JP2008130422 A JP 2008130422A JP 2006315424 A JP2006315424 A JP 2006315424A JP 2006315424 A JP2006315424 A JP 2006315424A JP 2008130422 A JP2008130422 A JP 2008130422A
Authority
JP
Japan
Prior art keywords
light source
point light
illumination
light
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006315424A
Other languages
Japanese (ja)
Other versions
JP4842107B2 (en
Inventor
Atsuyuki Tanaka
敦幸 田中
Takashi Masuda
岳志 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006315424A priority Critical patent/JP4842107B2/en
Publication of JP2008130422A publication Critical patent/JP2008130422A/en
Application granted granted Critical
Publication of JP4842107B2 publication Critical patent/JP4842107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting system capable of improving a dynamic range of an image without using a partition wall for isolating an illumination region the same as a case that the partition wall is used, and provide a liquid crystal display device provided with the same. <P>SOLUTION: A backlight 20 as the lighting system is provided with a point light source 23 including a white LED 21 and a lens 22, a comparison diffusion member 25 with an illumination region 25a corresponding to the point light source 23. A surface of the lens 22 has a minimum curvature radius at a part where a boundary axis I, which links a center of the point light source 23 and an end of the illumination region 25a, passes, and has a shape in which the curvature radius increases as close to an optical axis L side from this part. Radiation intensity of emitted light of the white LED 21 is changed at the lens 22, and radiation strength distribution having a peak in a direction of an angle θm can be obtained. Radiated light of uniform illuminance is obtained in the illumination region 25a and leakage of illuminated light to the adjacent illumination region 25a can be prevented without using a conventional partition wall. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば透過型の液晶パネルを背面側から照明するいわゆるバックライトに好適な照明装置に関する。   The present invention relates to an illumination device suitable for a so-called backlight that illuminates, for example, a transmissive liquid crystal panel from the back side.

液晶表示装置は、薄型、低消費電力及び高精細等の特徴を有し、また、製造技術の発達による画面サイズの大型化が進みつつあることから、従来のCRT(陰極線管)に替わってテレビジョン装置への適用が進みつつる。   A liquid crystal display device has features such as thinness, low power consumption, and high definition, and a screen size is increasing due to development of manufacturing technology. Therefore, a liquid crystal display device is replaced with a conventional CRT (cathode ray tube) instead of a conventional television. John's application is progressing.

しかしながら、液晶表示装置で表示される画像は、その表示方法に起因して、CRTの画像と比較してダイナミックレンジが低いという問題がある。この問題を解決するため、液晶パネルを複数の表示領域に区画し、この表示領域に対応する複数の照明領域をバックライトに形成し、このバックライトの照明領域の輝度制御を独立して行うようにした液晶表示装置がある。この液晶表示装置は、液晶パネルの表示領域に表示する画像の明暗に応じて、バックライトの各照明領域の照明光の輝度を制御している。すなわち、明るい画像を表示する表示領域に対応する照明領域は照明光の輝度を高くする一方、暗い画像を表示する表示領域に対応する照明領域は照明光の輝度を低くする。これにより、画像のダイナミックレンジを拡大してコントラスト感の向上を図っている。   However, the image displayed on the liquid crystal display device has a problem that the dynamic range is lower than that of the CRT image due to the display method. In order to solve this problem, the liquid crystal panel is divided into a plurality of display areas, a plurality of illumination areas corresponding to the display areas are formed in the backlight, and brightness control of the illumination areas of the backlight is performed independently. There is a liquid crystal display device. In this liquid crystal display device, the luminance of illumination light in each illumination area of the backlight is controlled in accordance with the brightness of an image displayed on the display area of the liquid crystal panel. That is, the illumination area corresponding to the display area displaying the bright image increases the brightness of the illumination light, while the illumination area corresponding to the display area displaying the dark image decreases the brightness of the illumination light. Thereby, the dynamic range of the image is expanded to improve the contrast feeling.

このような複数の照明領域を有するバックライトとしては、従来、図15に示すようなものがある(例えば、特開2002−99250号公報参照)。このバックライトは、液晶パネルの直下に光源が位置するように用いられる直下型のバックライトであり、複数の光源501を備え、各光源501からの光を隔壁502で分割して照明領域を形成している。上記光源501は、隔壁502を突き抜けるように互いに平行に配置された複数の冷陰極蛍光管と、この冷陰極蛍光管の下方に照明領域毎に配置された図示しないLED(発光ダイオード)で構成されている。上記蛍光管を常時点灯すると共に、上記LEDの輝度を照明領域毎に制御して、液晶パネルの表示領域に表示される画像のダイナミックレンジを拡大するようにしている。また、各照明領域を隔壁502で隔離することにより、隣接する照明領域間における照明光の干渉を防止して、高品位の画像を得るようにしている。
特開2002‐99250号公報
Conventionally, such a backlight having a plurality of illumination areas is as shown in FIG. 15 (see, for example, JP-A-2002-99250). This backlight is a direct type backlight used so that the light source is located directly under the liquid crystal panel. The backlight includes a plurality of light sources 501 and divides the light from each light source 501 by a partition wall 502 to form an illumination area. is doing. The light source 501 is composed of a plurality of cold cathode fluorescent tubes arranged parallel to each other so as to penetrate the partition wall 502, and an LED (light emitting diode) (not shown) arranged for each illumination region below the cold cathode fluorescent tube. ing. While always lighting the said fluorescent tube, the brightness | luminance of said LED is controlled for every illumination area, and the dynamic range of the image displayed on the display area of a liquid crystal panel is expanded. Further, by separating each illumination area by the partition wall 502, interference of illumination light between adjacent illumination areas is prevented, and a high-quality image is obtained.
JP 2002-99250 A

しかしながら、上記従来のバックライトは、以下のような課題を有する。すなわち、照明領域を隔離する隔壁502は、製造に手間がかかる。また、隔壁502を突き抜けるように蛍光管を組み付けるのに手間がかかる。また、LEDは指向性が低いので、隔壁と液晶パネルとの間の隙間を通して、隣接する照明領域に光の漏れが生じやすいという不都合がある。   However, the conventional backlight has the following problems. That is, it takes time to manufacture the partition wall 502 that isolates the illumination area. Also, it takes time to assemble the fluorescent tube so as to penetrate the partition wall 502. Further, since the LED has low directivity, there is a disadvantage that light leaks easily to the adjacent illumination area through the gap between the partition wall and the liquid crystal panel.

そこで、本発明の目的は、照明領域を隔離する隔壁を用いることなく、隔壁を用いた場合と同等に画像のダイナミックレンジを向上できる照明装置と、これを備えた液晶表示装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an illuminating device that can improve the dynamic range of an image as in the case of using a partition without using a partition that separates the illumination area, and a liquid crystal display device including the same. is there.

上記課題を解決するため、本発明の照明装置は、複数の点状光源と、この点状光源からの光を拡散する光拡散部材とを備え、前記光拡散部材は、前記複数の点状光源に対応して形成される複数の照明領域を有する照明装置において、前記点状光源は、該点状光源の中心と、この点状光源に対応する前記照明領域の端とを結ぶ線が前記光軸に対してなす角度をθmとしたとき、絶対値が0<θ≦θmを満たす角度θの方向に、放射強度の最大値を有することを特徴としている。   In order to solve the above problems, an illumination device of the present invention includes a plurality of point light sources and a light diffusion member that diffuses light from the point light sources, and the light diffusion member includes the plurality of point light sources. In the illumination device having a plurality of illumination areas formed corresponding to the point light source, a line connecting the center of the point light source and an end of the illumination area corresponding to the point light source is the light. When the angle formed with respect to the axis is θm, the absolute value has a maximum value of radiation intensity in the direction of angle θ satisfying 0 <θ ≦ θm.

また本発明は、上記構成の照明装置において、前記点状光源は、発光ダイオードと、この発光ダイオードの出射光の放射強度分布を変更するレンズとを有することを特徴とする。   According to the present invention, in the illumination device configured as described above, the point light source includes a light emitting diode and a lens that changes a radiation intensity distribution of light emitted from the light emitting diode.

また本発明は、上記構成の照明装置において、前記レンズの光出射側の表面は、前記発光ダイオードの出射光の放射強度分布を変更する形状を有することを特徴とする。   According to the present invention, in the illumination device configured as described above, the surface on the light emission side of the lens has a shape that changes a radiation intensity distribution of the emission light of the light emitting diode.

また本発明は、上記構成の照明装置において、前記レンズの形状は、光出射側の表面が、前記光軸に対してθmの角度の位置から前記光軸に向うにつれて曲率半径が大きくなる形状であることを特徴とする。   According to the present invention, in the illumination device having the above-described configuration, the lens has a shape in which a radius of curvature increases as the surface on the light exit side increases from the position at an angle of θm to the optical axis toward the optical axis. It is characterized by being.

また本発明は、上記構成の照明装置において、前記点状光源の周りに配置された遮光部材を備えることを特徴とする。   According to the present invention, in the illumination device having the above-described configuration, a light-shielding member disposed around the point light source is provided.

また本発明は、上記構成の照明装置において、前記遮光部材は、前記点状光源から出射された光のうち、前記光軸に対してθmよりも大きい角度の光を遮ることを特徴とする。   In the illumination device having the above-described configuration, the light-shielding member blocks light having an angle greater than θm with respect to the optical axis, out of light emitted from the point light source.

また本発明は、上記構成の照明装置において、前記光拡散部材の複数の照明領域は、各照明領域に対応する点状光源以外の点状光源から出射された光が実質的に入射しないことを特徴とする。   Further, in the illumination device having the above-described configuration, the present invention is configured such that light emitted from a point light source other than the point light source corresponding to each illumination region is not substantially incident on the plurality of illumination regions of the light diffusion member. Features.

また本発明は、上記構成の照明装置において、前記複数の点状光源は、出射光の輝度が制御されることを特徴とする。   According to the present invention, in the illumination device configured as described above, the plurality of point light sources is controlled in luminance of emitted light.

また本発明は、上記構成の照明装置と、この照明装置の光出射側に配置された液晶パネルとを備えることを特徴とする液晶表示装置である。   According to another aspect of the present invention, there is provided a liquid crystal display device including the illumination device having the above-described configuration and a liquid crystal panel disposed on a light emission side of the illumination device.

本発明の第1の構成によると、点状光源から出射された光は、光拡散部材の前記点状光源に対応する照明領域内に入射し、この照明領域内で拡散されて概ね均一の照明光が得られる。また、点状光源は、絶対値が0<θ≦θmを満たす角度θにおいて放射強度が最大であるので、この点状光源に対応する照明領域の照度を、隣接する照明領域よりも高くできる。したがって、この照明装置を液晶パネルに用いた場合、複数の照明領域を互いに隔離する隔壁を設けなくても、液晶パネルに表示する画像のダイナミックレンジを向上することができる。   According to the first configuration of the present invention, the light emitted from the point light source enters the illumination area corresponding to the point light source of the light diffusing member, is diffused in the illumination area, and is substantially uniform. Light is obtained. Moreover, since the point light source has the maximum radiation intensity at an angle θ satisfying an absolute value of 0 <θ ≦ θm, the illuminance of the illumination area corresponding to the point light source can be made higher than that of the adjacent illumination area. Therefore, when this lighting device is used for a liquid crystal panel, the dynamic range of an image displayed on the liquid crystal panel can be improved without providing a partition that separates a plurality of lighting regions from each other.

なお、本発明の照明装置は、液晶パネルに限られず、例えば電気泳動表示パネルのような他の表示装置のパネルに用いることもできる。   The lighting device of the present invention is not limited to a liquid crystal panel, and can be used for a panel of another display device such as an electrophoretic display panel.

本発明の第2の構成によると、発光ダイオードの出射光の放射強度分布をレンズで変更することにより、対応する照明領域内の照度を簡易な構成によって効果的に高めることができる。すなわち、上記レンズによって、比較的低い発光ダイオードの指向性を高めることができるので、隣接する照明領域への光の漏れを従来よりも低減できる。   According to the second configuration of the present invention, by changing the radiation intensity distribution of the emitted light of the light emitting diode with the lens, the illuminance in the corresponding illumination region can be effectively increased with a simple configuration. That is, since the directivity of a relatively low light emitting diode can be enhanced by the lens, light leakage to the adjacent illumination region can be reduced as compared with the conventional case.

本発明の第3の構成によると、所定の放射強度分布が得られるレンズを容易に製造できる。   According to the third configuration of the present invention, a lens capable of obtaining a predetermined radiation intensity distribution can be easily manufactured.

本発明の第4の構成によると、発光ダイオードからの光を、対応する照明領域内に、均一かつ高い照度で照射することができる。   According to the 4th structure of this invention, the light from a light emitting diode can be irradiated with a uniform and high illumination intensity in a corresponding illumination area.

本発明の第5の構成によると、点状光源に対応する照明領域の外側への照射光の漏れを、効果的に防止できる。   According to the fifth configuration of the present invention, it is possible to effectively prevent leakage of irradiation light to the outside of the illumination area corresponding to the point light source.

本発明の第6の構成によると、点状光源に対応する照明領域の外側への照射光の漏れを、確実に防止できる。   According to the sixth configuration of the present invention, it is possible to reliably prevent leakage of irradiation light to the outside of the illumination area corresponding to the point light source.

本発明の第7の構成によると、隣接する照明領域への光の漏れを確実に防止できる。   According to the 7th structure of this invention, the leak of the light to an adjacent illumination area can be prevented reliably.

本発明の第8の構成によると、この照明装置を液晶パネルに用いた場合、この液晶パネルに表示する画像に応じて上記複数の点状光源の出射光の輝度が制御されることにより、上記液晶パネルに表示する画像のダイナミックレンジを向上することができる。   According to the eighth configuration of the present invention, when the illumination device is used for a liquid crystal panel, the luminance of the emitted light of the plurality of point light sources is controlled according to an image displayed on the liquid crystal panel, thereby The dynamic range of the image displayed on the liquid crystal panel can be improved.

本発明の第9の構成によると、隔壁を用いることなく照明領域間の照射光の漏れを防止できる照明装置を備えることにより、液晶パネルに表示する画像のコントラストを簡易かつ安価に向上できる液晶表示装置が得られる。   According to the ninth configuration of the present invention, a liquid crystal display that can improve the contrast of an image displayed on the liquid crystal panel easily and inexpensively by providing an illumination device that can prevent leakage of irradiation light between illumination areas without using a partition wall. A device is obtained.

以下、本発明の実施形態の照明装置を、図面を参照しつつ詳細に説明する。   Hereinafter, an illumination device according to an embodiment of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1(a)は、第1実施形態の照明装置としてのバックライト20を模式的に示す平面図である。図1(b)は、このバックライト20の模式断面図であり、図1(c)は、点状光源の構成部材である白色LED(発光ダイオード)21の模式平面図である。このバックライト20は複数の点状光源23を備え、この点状光源23は、白色LED21と、この白色LED21の上部に配置されたレンズ22を含んでいる。白色LED21は、発光波長が互いに異なる赤色LED21Rと、緑色LED21Gと、青色LED21Bとの3つの素子で形成されている。点状光源23の上方に、この点状光源23からの光を拡散する光拡散部材25が配置されている。点状光源23を収容するケーシングの内側面に、反射シート24が設けられている。この反射シート24は、点状光源23の側方に配置された側面シート24aと、点状光源23の白色LED21の搭載面側に配置された底面シート24bとで形成されている。
(First embodiment)
Fig.1 (a) is a top view which shows typically the backlight 20 as an illuminating device of 1st Embodiment. FIG. 1B is a schematic cross-sectional view of the backlight 20, and FIG. 1C is a schematic plan view of a white LED (light emitting diode) 21 that is a constituent member of a point light source. The backlight 20 includes a plurality of point light sources 23, and the point light source 23 includes a white LED 21 and a lens 22 disposed on the white LED 21. The white LED 21 is formed by three elements of a red LED 21R, a green LED 21G, and a blue LED 21B having different emission wavelengths. A light diffusing member 25 that diffuses light from the point light source 23 is disposed above the point light source 23. A reflection sheet 24 is provided on the inner surface of the casing that houses the point light source 23. The reflection sheet 24 is formed by a side sheet 24 a disposed on the side of the point light source 23 and a bottom sheet 24 b disposed on the mounting surface side of the white LED 21 of the point light source 23.

上記複数の点状光源23は、ケーシングの底面に28mmピッチで行列方向に配置している。ケーシングと光拡散部材25の間には、従来におけるような照明領域を互いに隔てる隔壁は設けられていない。   The plurality of point light sources 23 are arranged in a matrix direction at a pitch of 28 mm on the bottom surface of the casing. No partition wall is provided between the casing and the light diffusion member 25 to separate the illumination areas from each other.

光拡散部材25は、日東樹脂工業(株)製のCLAREX(商品名)DR−IIIC DR−60Cを使用し、厚さが2.0(mm)、かつ、Haze率が96(%)のものを使用している。この光拡散部材25は、透過率が93%である一方、吸収率が7%である。また、入射角0°の光の反射率が3.3%であり、入射角20°の光の反射率が3.2%であり、入射角40°の光の反射率が3.8%であり、入射角60°の光の反射率が11.0%である。この光拡散部材25は、点状光源23の搭載面からh=20(mm)の高さに下面が位置するように配置している。光拡散部材25には、複数の点状光源23に対応して複数の照明領域25a,25a,・・・が形成される。この光拡散部材25の照明領域25a,25a,・・・は、境界線25b,25b,・・・で仮想的に画定される。   The light diffusing member 25 uses CLAREX (trade name) DR-IIIC DR-60C manufactured by Nitto Jushi Kogyo Co., Ltd., and has a thickness of 2.0 (mm) and a haze ratio of 96 (%). Is used. The light diffusing member 25 has a transmittance of 93% and an absorptance of 7%. The reflectance of light at an incident angle of 0 ° is 3.3%, the reflectance of light at an incident angle of 20 ° is 3.2%, and the reflectance of light at an incident angle of 40 ° is 3.8%. The reflectance of light with an incident angle of 60 ° is 11.0%. The light diffusing member 25 is arranged so that the lower surface is located at a height of h = 20 (mm) from the mounting surface of the point light source 23. A plurality of illumination areas 25 a, 25 a,... Are formed in the light diffusion member 25 corresponding to the plurality of point light sources 23. The illumination areas 25a, 25a,... Of the light diffusing member 25 are virtually defined by boundary lines 25b, 25b,.

図2(a)は点状光源23の模式断面図であり、図2(b)は点状光源23の模式平面図である。図3は、点状光源23と光拡散部材25との位置関係を説明する模式断面図である。点状光源23のレンズ22は、PMMA(ポリメタクリル酸メチル)、PC(ポリカーボネート)及びEP(エポキシ樹脂)等の透明樹脂材料や、透明なガラスを用いて形成することができる。   FIG. 2A is a schematic cross-sectional view of the point light source 23, and FIG. 2B is a schematic plan view of the point light source 23. FIG. 3 is a schematic cross-sectional view for explaining the positional relationship between the point light source 23 and the light diffusing member 25. The lens 22 of the point light source 23 can be formed using a transparent resin material such as PMMA (polymethyl methacrylate), PC (polycarbonate) and EP (epoxy resin), or transparent glass.

このレンズ22は、以下に説明するように、白色LED21からの光の放射強度分布を所定の分布に変更する形状を有する。図3において、白色LED21の光出射面の法線方向に向う光軸をLとする。また、点状光源23の中心から、光拡散部材25の照明領域25aの端、すなわち、仮想的に描かれる境界線25bに向う軸(以下、境界軸という)をIとする。なお、点状光源23の中心とは、白色LED21の平面視における発光領域の重心を、搭載面である下側面に下ろした点をいう。また、境界軸Iは、拡散部材25の下側面における境界線25bを通ることとする。光軸Lと境界軸Iとの間の角度をθm(°)とすると、照明領域の幅H(mm)と、白色LED21の搭載面から光拡散部材25の下面までの距離h(mm)とでθmの値が定まる。例えば、H=28mmであり、かつ、h=20mmである場合、θmは約35°になる。   As will be described below, the lens 22 has a shape for changing the radiation intensity distribution of light from the white LED 21 to a predetermined distribution. In FIG. 3, L is the optical axis that faces the normal direction of the light emitting surface of the white LED 21. Also, let I be the axis (hereinafter referred to as the boundary axis) from the center of the point light source 23 toward the end of the illumination region 25a of the light diffusion member 25, that is, the virtually drawn boundary line 25b. In addition, the center of the point light source 23 means a point where the center of gravity of the light emitting region in the plan view of the white LED 21 is lowered to the lower side which is the mounting surface. The boundary axis I passes through the boundary line 25b on the lower surface of the diffusing member 25. If the angle between the optical axis L and the boundary axis I is θm (°), the width H (mm) of the illumination area and the distance h (mm) from the mounting surface of the white LED 21 to the lower surface of the light diffusion member 25 The value of θm is determined by. For example, when H = 28 mm and h = 20 mm, θm is about 35 °.

レンズ22の表面は、光軸Lが通る光軸部22aと、光軸と略直角方向を向く側部22bとで概ね構成されている。レンズ22の表面の光軸部22aの形状は、光軸を通る断面において、点状光源23の中心から角度θmの方向の部分、すなわち、境界軸Iが通る部分を曲率半径が2mmの曲線とする。この境界軸Iが通る部分よりも光軸L側の部分を、光軸Lに向うにつれて曲率半径が大きくなるように、なだらかな曲線の形状に形成する。このなだらかな曲線は、光軸Lが通る点で連結する。一方、レンズ22の表面の側部22bは、点状光源23の中心から光軸Lと直角方向に延びる軸I’を設定して、以下のように形成する。すなわち、点状光源23の中心から角度θmの方向の部分に描いた曲率半径2mmの曲線において、軸I’方向座標が最大となる点から、光軸Lと平行の方向に軸I’まで線を引いて側部22bの断面形状を設定する。   The surface of the lens 22 is generally composed of an optical axis portion 22a through which the optical axis L passes and a side portion 22b that faces in a direction substantially perpendicular to the optical axis. The shape of the optical axis portion 22a on the surface of the lens 22 is a curve with a radius of curvature of 2 mm in a section passing through the optical axis in the direction of the angle θm from the center of the point light source 23, that is, the portion through which the boundary axis I passes. To do. The portion closer to the optical axis L than the portion through which the boundary axis I passes is formed in a gentle curved shape so that the radius of curvature increases toward the optical axis L. This gentle curve is connected at the point where the optical axis L passes. On the other hand, the side portion 22b of the surface of the lens 22 is formed as follows by setting an axis I 'extending in a direction perpendicular to the optical axis L from the center of the point light source 23. That is, in a curve having a radius of curvature of 2 mm drawn from the center of the point light source 23 in the direction of the angle θm, a line extending from the point where the axis I ′ direction coordinate is maximum to the axis I ′ in the direction parallel to the optical axis L. To set the cross-sectional shape of the side portion 22b.

このように表面形状が設定されたレンズ22を有する点状光源23は、図4に示すような角度特性が得られる。図4において、横軸は点状光源23の中心からの方向を表す角度であり、縦軸は規格化された放射強度である。横軸の0°は、光軸L方向を示している。図4に示すように、このレンズ22を有する点状光源23は、角度θmの方向に放射強度のピークを有し、角度θmよりも絶対値が小さい角度θにおいては0°に向かうにつれて放射強度が低減する。   The point light source 23 having the lens 22 having the surface shape set as described above can obtain angular characteristics as shown in FIG. In FIG. 4, the horizontal axis is an angle representing the direction from the center of the point light source 23, and the vertical axis is the normalized radiation intensity. 0 ° on the horizontal axis indicates the direction of the optical axis L. As shown in FIG. 4, the point light source 23 having this lens 22 has a peak of radiation intensity in the direction of the angle θm, and the radiation intensity increases toward 0 ° at an angle θ whose absolute value is smaller than the angle θm. Is reduced.

このような放射強度分布を有する点状光源23を用いることにより、光拡散部材25の照明領域25aに、図5に示すような照度分布が得られる。図5において、横軸は点状光源23の中心から光軸Lの直角方向の距離であり、縦軸は最大値で規格化した規格化強度である。図5の横軸において、−H/2とH/2との間が照明領域25aの幅に相当する。図5には、本実施形態の照度分布に加えて、LEDのみを用いた第1比較例の点状光源によって光拡散部材25を照射した場合の照度分布を重ねて示している。図5において、本実施形態の点状光源23の照度分布を実線で示している一方、第1比較例の点状光源の照度分布を破線で示している。図5から分かるように、本実施形態のレンズ22を有する点状光源23を用いることにより、この点状光源23に対応する照明領域25a内に、概ね均一の照度の照明光が得られる。   By using the point light source 23 having such a radiation intensity distribution, an illuminance distribution as shown in FIG. 5 is obtained in the illumination region 25a of the light diffusion member 25. In FIG. 5, the horizontal axis is the distance in the direction perpendicular to the optical axis L from the center of the point light source 23, and the vertical axis is the normalized intensity normalized by the maximum value. On the horizontal axis of FIG. 5, the width between −H / 2 and H / 2 corresponds to the width of the illumination area 25a. In FIG. 5, in addition to the illuminance distribution of the present embodiment, the illuminance distribution when the light diffusing member 25 is irradiated by the point light source of the first comparative example using only LEDs is shown superimposed. In FIG. 5, while the illuminance distribution of the point light source 23 of the present embodiment is indicated by a solid line, the illuminance distribution of the point light source of the first comparative example is indicated by a broken line. As can be seen from FIG. 5, by using the point light source 23 having the lens 22 of the present embodiment, illumination light having a substantially uniform illuminance can be obtained in the illumination area 25 a corresponding to the point light source 23.

図6(a)及び(b)は、本実施形態の点状光源23と第2比較例の点状光源123について、各レンズの形状と、各レンズにおいて光線追跡を行った結果を示す模式断面図である。図6(a)が本実施形態の点状光源23を示す図であり、図6(b)が第2比較例の点状光源123を示す図である。本実施形態の点状光源23と第2比較例の点状光源123は、互いに同じ白色LED21を備える一方、レンズ22,122の表面形状が互いに異なる。本実施形態の点状光源23は、レンズ22の表面が、光軸を通る断面において、角度θmの部分の曲率半径が小さく、この角度θmの部分よりも光軸側の部分の曲率半径が大きい形状に形成されている。一方、第2比較例の点状光源123は、レンズ122の表面が、曲率半径が略単一の球面状に形成されている。   FIGS. 6A and 6B are schematic cross sections showing the shape of each lens and the result of ray tracing in each lens for the point light source 23 of the present embodiment and the point light source 123 of the second comparative example. FIG. FIG. 6A is a diagram showing the point light source 23 of the present embodiment, and FIG. 6B is a diagram showing the point light source 123 of the second comparative example. The point light source 23 of the present embodiment and the point light source 123 of the second comparative example include the same white LED 21, but the surface shapes of the lenses 22 and 122 are different from each other. In the point light source 23 of this embodiment, the surface of the lens 22 has a small radius of curvature at the angle θm in the cross section passing through the optical axis, and the radius of curvature at the optical axis side is larger than the angle θm. It is formed into a shape. On the other hand, in the point light source 123 of the second comparative example, the surface of the lens 122 is formed in a spherical shape having a substantially single curvature radius.

本実施形態の点状光源23が有するレンズ22では、図6(a)に示すように、光軸に対して角度θmよりも小さい部分を通過する光線経路が、角度θmよりも大きい部分を通過する光線経路よりも密になって、所定の指向性が得られる。一方、第2比較例の点状光源123が有するレンズ122では、図6(b)に示すように、光軸に対していずれの角度においても光線経路が概ね均一になり、指向性が殆ど無い。   In the lens 22 included in the point light source 23 of the present embodiment, as shown in FIG. 6A, the light ray path that passes through the portion smaller than the angle θm with respect to the optical axis passes through the portion larger than the angle θm. It becomes denser than the light beam path, and a predetermined directivity is obtained. On the other hand, in the lens 122 included in the point light source 123 of the second comparative example, as shown in FIG. 6B, the light path is almost uniform at any angle with respect to the optical axis, and there is almost no directivity. .

図7(a)及び(b)は、本実施形態の点状光源23が有する特性を説明する図であり、図8(a)及び(b)は、第2比較例の点状光源123が有する特性を説明する図である。図7(a)及び図8(a)において、横軸が点状光源の中心からの角度であり、縦軸が規格化された放射強度である。また、図7(b)及び図8(b)において、横軸が点状光源の中心からの距離であり、縦軸が規格化された照度である。本実施形態の点状光源23は、図7(a)に示すように、光軸に対して35°の方向に放射強度のピークを有し、これにより、図7(b)に示すように、照明領域25aに相当する範囲内に略均一の照度の照明光が得られる。   FIGS. 7A and 7B are diagrams for explaining the characteristics of the point light source 23 of the present embodiment. FIGS. 8A and 8B show the point light source 123 of the second comparative example. It is a figure explaining the characteristic which has. In FIG. 7A and FIG. 8A, the horizontal axis is the angle from the center of the point light source, and the vertical axis is the normalized radiation intensity. 7B and 8B, the horizontal axis is the distance from the center of the point light source, and the vertical axis is the normalized illuminance. As shown in FIG. 7A, the point light source 23 of the present embodiment has a peak of radiation intensity in a direction of 35 ° with respect to the optical axis, and as a result, as shown in FIG. 7B. Illumination light with substantially uniform illuminance is obtained within a range corresponding to the illumination region 25a.

これに対して、比較例の点状光源123は、図8(a)に示すように、光軸方向をピークとして、光軸からの角度が大きくなるにつれて放射強度が減少する放射強度分布を有する。これにより、図8(b)に示すように、光軸が通る中心部分に照度のピークが形成され、照明領域の端に相当する位置では大幅に照度が低下してしまう。以上のように、本実施形態によれば、所定の表面形状を有するレンズ22を用いることにより、白色LED21からの光の特性を変更して、照明領域25a内に均一の照度の照明光を得ることができる。   On the other hand, as shown in FIG. 8A, the point light source 123 of the comparative example has a radiation intensity distribution in which the radiation intensity decreases as the angle from the optical axis increases with the optical axis direction as a peak. . As a result, as shown in FIG. 8B, an illuminance peak is formed at the central portion through which the optical axis passes, and the illuminance is significantly reduced at a position corresponding to the end of the illumination area. As described above, according to the present embodiment, by using the lens 22 having a predetermined surface shape, the characteristics of light from the white LED 21 are changed, and illumination light with uniform illuminance is obtained in the illumination area 25a. be able to.

図9は、第3比較例の点状光源223を示す図である。この点状光源223は、レンズ222が非球面状の表面を有するので第2比較例の点状光源123と比較して強い指向性を有するが、本実施形態の点状光源23とは異なる照度分布を有する。図9に示すように、第3比較例の点状光源223のレンズ222の表面は、光軸の近傍部分が、この光軸の周りの部分よりも白色LED221側に窪んだ凹状断面を有する。これにより、図10の曲線Aに示すように、光軸の近傍部分において照度が略均一となる照度分布が得られるが、照度が略均一となる範囲外においても、照度が比較的大きくなる。   FIG. 9 is a diagram showing a point light source 223 of the third comparative example. The point light source 223 has a strong directivity compared to the point light source 123 of the second comparative example because the lens 222 has an aspherical surface, but the illuminance is different from that of the point light source 23 of the present embodiment. Have a distribution. As shown in FIG. 9, the surface of the lens 222 of the point light source 223 of the third comparative example has a concave cross section in which a portion near the optical axis is recessed toward the white LED 221 than a portion around the optical axis. As a result, as shown by a curve A in FIG. 10, an illuminance distribution is obtained in which the illuminance is substantially uniform in the vicinity of the optical axis, but the illuminance is relatively large even outside the range where the illuminance is substantially uniform.

これは、第3比較例のレンズ222の表面は、白色LED221の側方にも出射光を照射する形状を有しているからである。図10には、半球レンズを備えた点状光源による照度分布を破線による曲線Bで重ねて図示している。図10において、横軸は光軸からの距離であり、縦軸は出射光量である。また、図10中のH’は、1つの点状光源123が照射すべき照明領域の幅である。   This is because the surface of the lens 222 of the third comparative example has a shape that emits emitted light to the side of the white LED 221 as well. In FIG. 10, the illuminance distribution by the point light source provided with the hemispherical lens is shown by being overlapped with a curved line B by a broken line. In FIG. 10, the horizontal axis represents the distance from the optical axis, and the vertical axis represents the amount of emitted light. Further, H ′ in FIG. 10 is the width of the illumination area to be irradiated by one point light source 123.

また、図10には、第3比較例の点状光源223を所定間隔で配置し、全光源が点灯した場合の光量を表す曲線Cを重ねて示している。また、半球レンズを備えた点状光源を所定間隔で配置し、全光源を点灯した場合の光量を表す曲線Dを重ねて示している。図10の曲線Cで示すように、隣り合う第3比較例の点状光源223を点灯した場合、隣合う照明領域の間で概ね均一の光量が得られるが、曲線Aで示すように、隣合う照明領域の間に照明光の漏れが生じている。したがって、第3比較例の点状光源223を用いて照明装置を構成した場合、表示画像のコントラストの向上が不十分になる。   FIG. 10 also shows a curve C representing the amount of light when the point light sources 223 of the third comparative example are arranged at predetermined intervals and all the light sources are turned on. In addition, a curved line D representing the amount of light when the point light sources provided with hemispherical lenses are arranged at predetermined intervals and all the light sources are turned on is shown superimposed. As shown by the curve C in FIG. 10, when the adjacent point light sources 223 of the third comparative example are turned on, a substantially uniform amount of light can be obtained between the adjacent illumination areas. There is a leakage of illumination light between the matching illumination areas. Therefore, when the illumination device is configured using the point light source 223 of the third comparative example, the contrast of the display image is not sufficiently improved.

これに対して、本実施形態の点状光源23は、図7(b)に示すように、照明領域25aに相当する範囲内に略均一の照度の照明光が得られる上に、照明領域25aの外側の照度を大幅に低下させることができるので、隣り合う照明領域25a間に照明光が漏れることを効果的に防止できる。   On the other hand, as shown in FIG. 7B, the point light source 23 of the present embodiment can obtain illumination light with substantially uniform illuminance within a range corresponding to the illumination area 25a, and the illumination area 25a. Since the illuminance outside can be significantly reduced, it is possible to effectively prevent the illumination light from leaking between the adjacent illumination regions 25a.

本実施形態のバックライト20を用いて構成した液晶表示装置は、液晶パネルに表示する画像のダイナミックレンジを効果的に拡大できる。詳しくは、本実施形態のバックライト20の光拡散部材25の光出射側に、透過型の液晶パネルを対向配置して液晶表示装置を構成する。この液晶表示装置は、液晶パネルに表示する画像に基づいてバックライト20の点状光源23の輝度を制御する輝度制御回路を備える。この輝度制御回路により、液晶パネルの明るい画像を表示する表示領域に対応する照明領域について、対応する点状光源23の輝度を高く制御する。一方、液晶パネルの暗い画像が表示される表示領域に対応する照明領域について、対応する点状光源23の輝度を低く制御する。   The liquid crystal display device configured using the backlight 20 of the present embodiment can effectively expand the dynamic range of images displayed on the liquid crystal panel. Specifically, a liquid crystal display device is configured by disposing a transmissive liquid crystal panel on the light emitting side of the light diffusion member 25 of the backlight 20 of the present embodiment. The liquid crystal display device includes a luminance control circuit that controls the luminance of the point light source 23 of the backlight 20 based on an image displayed on the liquid crystal panel. With this luminance control circuit, the luminance of the corresponding point light source 23 is controlled to be high for the illumination region corresponding to the display region for displaying a bright image on the liquid crystal panel. On the other hand, the brightness of the corresponding point light source 23 is controlled to be low in the illumination area corresponding to the display area where the dark image on the liquid crystal panel is displayed.

これにより、液晶パネルに表示する画像のダイナミックレンジを拡大できる。また、本実施形態のバックライト20は、従来のように照明領域の間を隔離する隔壁が不要であるので、構造が簡易で組み立てが容易であり、安価に製造できる。したがって、液晶表示装置の画像のコントラスト感を、従来と同様に、しかも簡単かつ安価に向上することができる。さらに、本実施形態のバックライト20は、光源として白色LED21のみを用いるので、従来の冷陰極蛍光管とLEDとを光源として用いたバックライトにおけるような、冷陰極蛍光管とLEDの発光スペクトルの違いに起因して生じる色再現誤差の問題も無い。   Thereby, the dynamic range of the image displayed on the liquid crystal panel can be expanded. Further, the backlight 20 according to the present embodiment does not require a partition wall that separates the illumination areas as in the prior art, and thus has a simple structure, is easy to assemble, and can be manufactured at low cost. Therefore, the contrast of the image of the liquid crystal display device can be improved easily and inexpensively as in the conventional case. Further, since the backlight 20 of the present embodiment uses only the white LED 21 as a light source, the emission spectrum of the cold cathode fluorescent tube and the LED as in the conventional backlight using the cold cathode fluorescent tube and the LED as the light source is as follows. There is no problem of color reproduction error caused by the difference.

上記実施形態において、点状光源23のレンズ22は、赤色LED21R、緑色LED21G及び青色LED21Bの3つのLEDからの出射光を効率的に混色する観点から、拡散剤を添加した透明樹脂材料を用いるのが好ましい。これにより、照明領域間の色ムラの発生を更に効果的に防止できる。   In the above embodiment, the lens 22 of the point light source 23 uses a transparent resin material added with a diffusing agent from the viewpoint of efficiently mixing the emitted light from the three LEDs of the red LED 21R, the green LED 21G, and the blue LED 21B. Is preferred. Thereby, the occurrence of color unevenness between the illumination areas can be more effectively prevented.

(第2実施形態)
図11(a)は、第2実施形態の照明装置としてのバックライト80を模式的に示す平面図であり、図11(b)は、本実施形態のバックライト80の模式断面図であり、図11(c)は、点状光源83を構成する白色LED81の模式平面図である。本実施形態のバックライト80は、第1実施形態と同様に、行列方向に配置された複数の点状光源83を備え、この点状光源83は、白色LED81と、この白色LED81の上部に配置されたレンズ82を含んで形成されている。白色LED81は、赤色LED81Rと、緑色LED81Gと、青色LED81Bとの3つの素子で形成されている。
(Second Embodiment)
Fig.11 (a) is a top view which shows typically the backlight 80 as an illuminating device of 2nd Embodiment, FIG.11 (b) is a schematic cross section of the backlight 80 of this embodiment, FIG. 11C is a schematic plan view of the white LED 81 constituting the point light source 83. Similar to the first embodiment, the backlight 80 of the present embodiment includes a plurality of point light sources 83 arranged in the matrix direction, and the point light sources 83 are disposed on the white LEDs 81 and on the white LEDs 81. The formed lens 82 is included. The white LED 81 is formed by three elements of a red LED 81R, a green LED 81G, and a blue LED 81B.

点状光源83の上方に光拡散部材85が配置されている一方、点状光源83を収容するケーシングの内側面に反射シート84が設けられている。この反射シート84は、点状光源83の側方の側面シート84aと、白色LED81の搭載面側の底面シート84bとで形成されている。上記点状光源83、光拡散部材85及び反射シート84は第1実施形態におけるものと同様である。一方、本実施形態は、点状光源83の周りに配置された遮光部材86を備える点が、第1実施形態と異なる。   A light diffusing member 85 is disposed above the point light source 83, while a reflection sheet 84 is provided on the inner surface of the casing that houses the point light source 83. The reflection sheet 84 is formed of a side sheet 84 a on the side of the point light source 83 and a bottom sheet 84 b on the mounting surface side of the white LED 81. The point light source 83, the light diffusion member 85, and the reflection sheet 84 are the same as those in the first embodiment. On the other hand, this embodiment is different from the first embodiment in that a light shielding member 86 disposed around the point light source 83 is provided.

点状光源83の白色LED81及びレンズ82は、第1実施形態の白色LED21及びレンズ22と同様の構成を有する。この白色LED81とレンズ82を含む点状光源83は、28mmピッチで行列方向に配置している。光拡散部材85は、点状光源83の搭載面からh=20mmの高さに配置している。光拡散部材85には、複数の点状光源83に対応して複数の照明領域85a,85a,・・・が形成される。この照明領域85a,85a,・・・は、境界線85b,85b,・・・で仮想的に画定され、照明領域85aの幅Hは28mmである。   The white LED 81 and the lens 82 of the point light source 83 have the same configuration as the white LED 21 and the lens 22 of the first embodiment. The point light sources 83 including the white LEDs 81 and the lenses 82 are arranged in a matrix direction at a pitch of 28 mm. The light diffusion member 85 is arranged at a height of h = 20 mm from the mounting surface of the point light source 83. A plurality of illumination areas 85 a, 85 a,... Are formed on the light diffusing member 85 corresponding to the plurality of point light sources 83. These illumination areas 85a, 85a,... Are virtually defined by boundary lines 85b, 85b,..., And the width H of the illumination area 85a is 28 mm.

図12(a)は、点状光源83及び遮光部材86の模式断面図であり、図12(b)は、点状光源83及び遮光部材86の模式平面図である。図12(a)及び(b)に示すように、本実施形態のバックライト80は、第1実施形態と同様の構成の点状光源83の周りに、直角三角形の横断面を有する遮光部材86を平面視においてロ字状に取り囲んでいる。   12A is a schematic sectional view of the point light source 83 and the light shielding member 86, and FIG. 12B is a schematic plan view of the point light source 83 and the light shielding member 86. As shown in FIGS. 12A and 12B, the backlight 80 of the present embodiment has a light shielding member 86 having a right triangular cross section around a point light source 83 having the same configuration as that of the first embodiment. In a square shape in plan view.

本実施形態のバックライト80は、点状光源83のレンズ82が第1実施形態と同様の表面形状に形成されいている上に、点状光源83の周りに遮光部材86を備えるので、対応する照明領域85aの外側への照明光の漏れを更に効果的に防止できる。すなわち、本実施形態の遮光部材86は、図4に示された第1実施形態の点状光源23の角度特性と比較して、絶対値がθmよりも大きい角度θにおける放射強度を効果的に削減できる。   The backlight 80 according to the present embodiment corresponds to the lens 82 of the point light source 83 having a surface shape similar to that of the first embodiment and a light shielding member 86 around the point light source 83. Leakage of illumination light to the outside of the illumination area 85a can be further effectively prevented. That is, the light shielding member 86 of the present embodiment effectively reduces the radiation intensity at an angle θ whose absolute value is larger than θm, as compared with the angle characteristics of the point light source 23 of the first embodiment shown in FIG. Can be reduced.

図13は、本実施形態の点状光源83及び遮光部材86によって得られる光の角度特性を示す図である。図13において、横軸は点状光源83の中心からの方向を表す角度であり、縦軸は規格化された放射強度である。図13に示すように、この点状光源83及び遮光部材86は、角度θmの方向に放射強度のピークを有すると共に、角度θmよりも絶対値が大きい角度θにおいては、大幅に放射強度を削減できる。このような放射強度分布により、図14に示すような照明光の照度分布が得られる。図14から分かるように、照明領域の幅Hに相当する範囲内には略均一な照度の照明光が得られる一方、照明領域の幅Hの外側には、照明光の漏れを効果的に防止できる。   FIG. 13 is a diagram showing angle characteristics of light obtained by the point light source 83 and the light shielding member 86 of the present embodiment. In FIG. 13, the horizontal axis is an angle representing the direction from the center of the point light source 83, and the vertical axis is the normalized radiation intensity. As shown in FIG. 13, the point light source 83 and the light shielding member 86 have a peak of the radiation intensity in the direction of the angle θm, and greatly reduce the radiation intensity at an angle θ having an absolute value larger than the angle θm. it can. With such a radiation intensity distribution, an illuminance distribution of illumination light as shown in FIG. 14 is obtained. As can be seen from FIG. 14, illumination light having a substantially uniform illuminance can be obtained within a range corresponding to the width H of the illumination area, while leakage of illumination light is effectively prevented outside the width H of the illumination area. it can.

本実施形態のバックライト80の光出射側に液晶パネルを対向配置し、上記バックライト80の点状光源23の輝度を制御する輝度制御回路を設けて液晶表示装置を構成する。上記バックライト80により、隣接する照明領域への照明光の漏れを高度に防止できるので、この液晶表示装置は、液晶パネルに表示する画像のダイナミックレンジを更に拡大できる。   A liquid crystal panel is disposed opposite to the light emitting side of the backlight 80 of this embodiment, and a luminance control circuit for controlling the luminance of the point light source 23 of the backlight 80 is provided to constitute a liquid crystal display device. Since the backlight 80 can highly prevent leakage of illumination light to adjacent illumination areas, this liquid crystal display device can further expand the dynamic range of images displayed on the liquid crystal panel.

本実施形態において、遮光部材86は、角度θmよりも絶対値が大きい角度θの方向の光を遮ることができれば、どのような材料を用いてもよいが、光の吸収による損失を削減するために、リフレクタ材料を用いるのが好ましい。   In the present embodiment, the light shielding member 86 may be made of any material as long as it can block light in the direction of the angle θ having an absolute value larger than the angle θm, but in order to reduce loss due to light absorption. In addition, it is preferable to use a reflector material.

また、上記各実施形態のバックライト20,80の点状光源23,83は、放射強度のピークが光軸Lに対して角度θmの方向に存在したが、角度θmよりも絶対値が小さく、かつ、0よりも大きい角度θの方向に放射強度のピークを有していてもよい。   Further, in the point light sources 23 and 83 of the backlights 20 and 80 of the above embodiments, the peak of the radiation intensity exists in the direction of the angle θm with respect to the optical axis L, but the absolute value is smaller than the angle θm. And you may have the peak of radiation intensity in the direction of angle theta larger than 0.

また、上記各実施形態のバックライト20,80は、液晶パネルに用いて液晶表示装置を構成したが、例えば電気泳動表示パネルのような他の表示装置のパネルに用いてもよい。   In addition, the backlights 20 and 80 of the above embodiments are used for a liquid crystal panel to constitute a liquid crystal display device, but may be used for a panel of another display device such as an electrophoretic display panel.

図1(a)は第1実施形態の照明装置としてのバックライトを示す模式平面図であり、図1(b)はバックライトの模式断面図であり、図1(c)は点状光源の構成部材である白色LEDを示す模式平面図である。FIG. 1A is a schematic plan view showing a backlight as the illumination device of the first embodiment, FIG. 1B is a schematic sectional view of the backlight, and FIG. 1C is a point light source. It is a schematic plan view which shows white LED which is a structural member. 図2(a)は点状光源の模式断面図であり、図2(b)は点状光源の模式平面図である。FIG. 2A is a schematic cross-sectional view of a point light source, and FIG. 2B is a schematic plan view of the point light source. 点状光源と光拡散部材との位置関係を説明する模式断面図である。It is a schematic cross section explaining the positional relationship between a point light source and a light diffusing member. 点状光源の角度特性を示す図である。It is a figure which shows the angle characteristic of a point light source. 第1実施形態の点状光源による照度分布と、第1比較例の点状光源による照度分布とを重ねて示した図である。It is the figure which overlapped and showed the illuminance distribution by the point light source of 1st Embodiment, and the illuminance distribution by the point light source of a 1st comparative example. 図6(a)は第1実施形態の点状光源における光追跡結果を示す模式断面図であり、図6(b)は第2比較例の光源における光追跡結果を示す模式断面図である。FIG. 6A is a schematic cross-sectional view showing a light tracking result in the point light source of the first embodiment, and FIG. 6B is a schematic cross-sectional view showing a light tracking result in the light source of the second comparative example. 図7(a)は第1実施形態の点状光源の角度特性を示す図であり、図7(b)は第1実施形態の点状光源による照度分布を示す図である。FIG. 7A is a diagram showing the angle characteristics of the point light source of the first embodiment, and FIG. 7B is a diagram showing the illuminance distribution by the point light source of the first embodiment. 図8(a)は第2比較例の点状光源の角度特性を示す図であり、図8(b)は第2比較例の点状光源による照度分布を示す図である。FIG. 8A is a diagram showing the angle characteristics of the point light source of the second comparative example, and FIG. 8B is a diagram showing the illuminance distribution by the point light source of the second comparative example. 第3比較例の点状光源を示す図である。It is a figure which shows the point light source of a 3rd comparative example. 第3比較例の点状光源の照度分布と、半球レンズを有する点状光源の照度分布とを重ねて示した図である。It is the figure which piled up and showed the illuminance distribution of the point light source of the 3rd comparative example, and the illuminance distribution of the point light source which has a hemispherical lens. 図11(a)は第2実施形態の照明装置としてのバックライトを示す模式平面図であり、図11(b)はバックライトの模式断面図であり、図11(c)は点状光源の構成部材である白色LEDを示す模式平面図である。FIG. 11A is a schematic plan view showing a backlight as the illumination device of the second embodiment, FIG. 11B is a schematic cross-sectional view of the backlight, and FIG. 11C is a point light source. It is a schematic plan view which shows white LED which is a structural member. 図12(a)は点状光源及び遮光部材の模式断面図であり、図12(b)は点状光源及び遮光部材の模式平面図である。12A is a schematic cross-sectional view of a point light source and a light shielding member, and FIG. 12B is a schematic plan view of the point light source and the light shielding member. 点状光源及び遮光部材によって得られる光の角度特性を示す図である。It is a figure which shows the angle characteristic of the light obtained by a point light source and a light-shielding member. 点状光源及び遮光部材によって得られる照明光の照度分布を示す図である。It is a figure which shows the illumination intensity distribution of the illumination light obtained by a point light source and a light-shielding member. 従来のバックライトを示す図である。It is a figure which shows the conventional backlight.

符号の説明Explanation of symbols

20 バックライト
21 白色LED
22 レンズ
22a レンズの表面の光軸部
22b レンズの表面の側部
23 点状光源
24 反射シート
25 光拡散部材
25a 照明領域
25b 境界線
20 Backlight 21 White LED
DESCRIPTION OF SYMBOLS 22 Lens 22a Optical-axis part of the lens surface 22b Side part of the lens surface 23 Point light source 24 Reflection sheet 25 Light-diffusion member 25a Illumination area 25b Boundary line

Claims (9)

複数の点状光源と、この点状光源からの光を拡散する光拡散部材とを備え、
前記光拡散部材は、前記複数の点状光源に対応して形成される複数の照明領域を有する照明装置において、
前記点状光源は、該点状光源の中心と、この点状光源に対応する前記照明領域の端とを結ぶ線が前記光軸に対してなす角度をθmとしたとき、
絶対値が0<θ≦θmを満たす角度θの方向に、放射強度の最大値を有することを特徴とする照明装置。
A plurality of point light sources, and a light diffusion member that diffuses light from the point light sources,
The light diffusing member has a plurality of illumination areas formed corresponding to the plurality of point light sources,
When the angle between the line connecting the center of the point light source and the end of the illumination area corresponding to the point light source is θm with respect to the optical axis,
An illuminating device having a maximum value of radiation intensity in a direction of an angle θ satisfying an absolute value of 0 <θ ≦ θm.
請求項1に記載の照明装置において、
前記点状光源は、発光ダイオードと、この発光ダイオードの出射光の放射強度分布を変更するレンズとを有することを特徴とする照明装置。
The lighting device according to claim 1.
The point light source includes a light emitting diode and a lens that changes a radiation intensity distribution of light emitted from the light emitting diode.
請求項2に記載の照明装置において、
前記レンズの光出射側の表面は、前記発光ダイオードの出射光の放射強度分布を変更する形状を有することを特徴とする照明装置。
The lighting device according to claim 2,
The illumination device according to claim 1, wherein a surface of the lens on the light emission side has a shape for changing a radiation intensity distribution of light emitted from the light emitting diode.
請求項3に記載の照明装置において、
前記レンズの形状は、光出射側の表面が、前記光軸に対してθmの角度の位置から前記光軸に向うにつれて曲率半径が大きくなる形状であることを特徴とする照明装置。
The lighting device according to claim 3.
The illuminating device according to claim 1, wherein the lens has a shape in which a radius of curvature of the surface on the light emitting side increases toward the optical axis from a position at an angle of θm with respect to the optical axis.
請求項1に記載の照明装置において、
前記点状光源の周りに配置された遮光部材を備えることを特徴とする照明装置。
The lighting device according to claim 1.
An illuminating device comprising: a light shielding member disposed around the point light source.
請求項5に記載の照明装置において、
前記遮光部材は、前記点状光源から出射された光のうち、前記光軸に対してθmよりも大きい角度の光を遮ることを特徴とする照明装置。
The lighting device according to claim 5.
The said light shielding member shields the light of the angle larger than (theta) m with respect to the said optical axis among the lights radiate | emitted from the said point light source.
請求項1に記載の照明装置において、
前記光拡散部材の複数の照明領域は、各照明領域に対応する点状光源以外の点状光源から出射された光が実質的に入射しないことを特徴とする照明装置。
The lighting device according to claim 1.
The illumination device characterized in that light emitted from a point light source other than the point light source corresponding to each illumination region does not substantially enter the plurality of illumination regions of the light diffusion member.
請求項1に記載の照明装置において、
前記複数の点状光源は、出射光の輝度が制御されることを特徴とする照明装置。
The lighting device according to claim 1.
The illumination device, wherein the plurality of point light sources are controlled in luminance of emitted light.
請求項1乃至8のいずれか1つに記載の照明装置と、
この照明装置の光出射側に配置された液晶パネルとを備えることを特徴とする液晶表示装置。
A lighting device according to any one of claims 1 to 8,
A liquid crystal display device comprising: a liquid crystal panel disposed on a light emitting side of the illumination device.
JP2006315424A 2006-11-22 2006-11-22 Illumination device and liquid crystal display device including the same Expired - Fee Related JP4842107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315424A JP4842107B2 (en) 2006-11-22 2006-11-22 Illumination device and liquid crystal display device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315424A JP4842107B2 (en) 2006-11-22 2006-11-22 Illumination device and liquid crystal display device including the same

Publications (2)

Publication Number Publication Date
JP2008130422A true JP2008130422A (en) 2008-06-05
JP4842107B2 JP4842107B2 (en) 2011-12-21

Family

ID=39556048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315424A Expired - Fee Related JP4842107B2 (en) 2006-11-22 2006-11-22 Illumination device and liquid crystal display device including the same

Country Status (1)

Country Link
JP (1) JP4842107B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103275A (en) * 2009-11-12 2011-05-26 Light Beam Co Ltd Light emitting diode lighting fixture
CN102741738A (en) * 2010-02-12 2012-10-17 奥斯兰姆奥普托半导体有限责任公司 Optoelectronic semiconductor component, lighting device and lens
CN102889486A (en) * 2012-10-27 2013-01-23 欧普照明股份有限公司 Illumination lamp
JP2019220266A (en) * 2018-06-15 2019-12-26 株式会社エンプラス Surface light source device and display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5555927B2 (en) 2011-03-25 2014-07-23 ナルックス株式会社 Lighting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002049326A (en) * 2000-08-02 2002-02-15 Fuji Photo Film Co Ltd Plane light source and display element using the same
JP2005315924A (en) * 2004-04-27 2005-11-10 Enplas Corp Face light source device, image display device, and luminous flux controlling plate
JP2006092983A (en) * 2004-09-27 2006-04-06 Enplas Corp Light-emitting device, planar light source device, display device, and light flux control member
JP2006286608A (en) * 2005-03-07 2006-10-19 Nichia Chem Ind Ltd Planar illumination light source and planar illumination device
JP2006313683A (en) * 2005-05-09 2006-11-16 Toyoda Gosei Co Ltd Light source device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002049326A (en) * 2000-08-02 2002-02-15 Fuji Photo Film Co Ltd Plane light source and display element using the same
JP2005315924A (en) * 2004-04-27 2005-11-10 Enplas Corp Face light source device, image display device, and luminous flux controlling plate
JP2006092983A (en) * 2004-09-27 2006-04-06 Enplas Corp Light-emitting device, planar light source device, display device, and light flux control member
JP2006286608A (en) * 2005-03-07 2006-10-19 Nichia Chem Ind Ltd Planar illumination light source and planar illumination device
JP2006313683A (en) * 2005-05-09 2006-11-16 Toyoda Gosei Co Ltd Light source device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103275A (en) * 2009-11-12 2011-05-26 Light Beam Co Ltd Light emitting diode lighting fixture
CN102741738A (en) * 2010-02-12 2012-10-17 奥斯兰姆奥普托半导体有限责任公司 Optoelectronic semiconductor component, lighting device and lens
CN102889486A (en) * 2012-10-27 2013-01-23 欧普照明股份有限公司 Illumination lamp
JP2019220266A (en) * 2018-06-15 2019-12-26 株式会社エンプラス Surface light source device and display

Also Published As

Publication number Publication date
JP4842107B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
US10613386B2 (en) Backlight device and liquid crystal display device
US10670919B2 (en) Backlight device and liquid-crystal display device
US9880417B2 (en) Illumination lens for LED backlights
EP2166275B1 (en) Illuminating device and liquid crystal display
JP4589361B2 (en) Light source cube, flat light source unit and liquid crystal display device using the same
JP5550505B2 (en) Planar illumination device and liquid crystal display device including the same
KR101828730B1 (en) Multi-aperture illumination layer for tileable display
US20130114022A1 (en) Light emitting device, surface light source, liquid crystal display device, and lens
JPWO2009125618A1 (en) Light emitting device
KR20060135207A (en) Light emitting diode lamp improving luminance and backlight assembly using the same
JP2006286906A (en) Light emitting diode device and back-light apparatus and liquid crystal display apparatus using the same
JP2008010693A (en) Liquid crystal display device
JP2007141546A (en) Optical mixing plate and direct backlight using it
WO2009145319A1 (en) Light source device and display unit equipped with light source device
US10983394B2 (en) Thin direct-view LED backlights
US20060249742A1 (en) Light emitting device for achieving uniform light distribution and backlight unit employing the same
JP4842107B2 (en) Illumination device and liquid crystal display device including the same
CN114740652A (en) Backlight module, display panel and display device
JP2007335312A (en) Light source device, and display
JP2009043738A (en) Plane light source device
US20130120689A1 (en) Surface light source and liquid crystal display device
JP2007188695A (en) Lighting system for display device
JP2011060706A (en) Lighting system and display device
JP2007294252A (en) Light emitting panel, luminaire, and electric illumination panel
JP2007157520A (en) Side light source mixing type back light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Ref document number: 4842107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees