JP2008129779A - Method and apparatus for automatically converting mesh data of finite element analysis - Google Patents

Method and apparatus for automatically converting mesh data of finite element analysis Download PDF

Info

Publication number
JP2008129779A
JP2008129779A JP2006312939A JP2006312939A JP2008129779A JP 2008129779 A JP2008129779 A JP 2008129779A JP 2006312939 A JP2006312939 A JP 2006312939A JP 2006312939 A JP2006312939 A JP 2006312939A JP 2008129779 A JP2008129779 A JP 2008129779A
Authority
JP
Japan
Prior art keywords
conversion
triangular
quadrilateral
angle
mesh data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006312939A
Other languages
Japanese (ja)
Other versions
JP4592101B2 (en
Inventor
Takayuki Yamada
孝幸 山田
Hirokazu Azuma
洋和 東
Tatsuya Inoyama
達也 井ノ山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Jidosha Kogyo KK
Toyota Motor East Japan Inc
Original Assignee
Kanto Jidosha Kogyo KK
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Jidosha Kogyo KK, Kanto Auto Works Ltd filed Critical Kanto Jidosha Kogyo KK
Priority to JP2006312939A priority Critical patent/JP4592101B2/en
Publication of JP2008129779A publication Critical patent/JP2008129779A/en
Application granted granted Critical
Publication of JP4592101B2 publication Critical patent/JP4592101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for automatically converting mesh data of finite element analysis, in which triangular mesh data of a shape model to be analyzed are automatically converted into quadrilateral mesh data without moving the nodes of the triangle mesh data. <P>SOLUTION: Each triangular element of triangular mesh data obtained by dividing a shape model into meshes of triangular elements and its adjacent triangular element sharing the side of the original triangular element are used for temporarily forming a quadrilateral and the temporary quadrilateral wherein each of four internal angles is included within a conversion allowable range larger than a prescribed minimum angle and smaller than a prescribed maximum angle, a warp angle between two triangular elements forming the temporary quadrilateral is included within the conversion allowable range and any of the inner angles, the warp angle and an aspect ratio of the temporary quadrilateral is included in the conversion allowable range is determined as a quadrilateral element and substituted for the triangular elements in the triangular mesh data. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、形状モデルを三角形要素のメッシュに分割した三角形メッシュデータを四角形メッシュデータに自動変換する有限要素解析のメッシュデータ変換方法及び装置に関するものである。   The present invention relates to a finite element analysis mesh data conversion method and apparatus for automatically converting triangular mesh data obtained by dividing a shape model into triangular element meshes into quadrilateral mesh data.

有限要素法によるメッシュモデルを用いてCAE解析に際して、例えば射出成形時の樹脂原料の流動距離に応じた樹脂成形品の密度分布を解析する場合、FEMプログラムのアルゴリズム作成が容易な三角形メッシュの形状モデルによる解析が通常行われているが、その樹脂成形品につき構造解析として変形もしくは歪等を解析する場合、変形挙動を高精度に予測可能な四角形メッシュの方が精度上好ましく、適用分野も広いことが知られている。そこで、射出成形解析時の応力、熱等の節点の情報を残すために、画面上で、図7に示すように、隣合う2個の三角形要素の節点をそのまま利用して四角形要素に手動操作で変換して四角形メッシュデータを作成することは可能であるが、その作業に当然長時間を要することになる。   When performing CAE analysis using a mesh model based on the finite element method, for example, when analyzing the density distribution of a resin molded product according to the flow distance of the resin raw material during injection molding, a triangular mesh shape model that makes it easy to create an FEM program algorithm However, when analyzing deformation or distortion as a structural analysis for the resin molded product, a quadrilateral mesh that can predict the deformation behavior with high accuracy is preferable in terms of accuracy, and the field of application is wide. It has been known. Therefore, in order to leave information on the stress, heat, and other nodes at the time of injection molding analysis, as shown in FIG. 7, on the screen, the nodes of two adjacent triangular elements are used as they are, and the square elements are manually operated. Although it is possible to create quadrilateral mesh data by converting with the above, it naturally takes a long time for the work.

一方、特許文献1により、三角形メッシュにサーフェスを作成する段階と、三角形メッシュの節点を削除する段階と、作成されたサーフェスの内、隣接するサーフェス同士をつないで1つのサーフェスにする段階と、サーフェスに四角形メッシュを作成するためのメッシュ作成定義を行う段階と、メッシュ作成定義を行ったサーフェスに対してメッシュを作成する段階を有する三角形メッシュを四角形メッシュに自動変換する方法が周知である。
特開2001−14494号公報
On the other hand, according to Patent Document 1, a step of creating a surface on a triangular mesh, a step of deleting nodes of the triangular mesh, a step of connecting adjacent surfaces to one surface among the created surfaces, and a surface A method of automatically converting a triangular mesh into a quadrilateral mesh having a step of defining a mesh for creating a quadrilateral mesh and a step of creating a mesh with respect to the surface for which the mesh creation definition has been performed is well known.
JP 2001-14494 A

しかしながら、この自動変換方法によれば三角形要素の節点の削除を前提にするために、三角形メッシュを前提にしたCAE段階での圧力分布、温度分布等の解析結果を四角形メッシュに基づく有限要素法による構造解析の解析条件として流用できない問題がある。   However, according to this automatic conversion method, since it is assumed that the nodes of the triangular element are deleted, the analysis results such as pressure distribution and temperature distribution at the CAE stage assuming the triangular mesh are obtained by the finite element method based on the quadrilateral mesh. There is a problem that cannot be used as analysis conditions for structural analysis.

本発明は、このような点に鑑みて、解析対象の形状モデルの三角形メッシュデータをその節点を移動させることなく四角形メッシュデータに自動変換する有限要素解析のメッシュ自動変換方法及び装置を提供することを目的とする。   In view of these points, the present invention provides a mesh automatic conversion method and apparatus for finite element analysis that automatically converts triangular mesh data of a geometric model to be analyzed into quadrilateral mesh data without moving the nodes. With the goal.

本発明は、この目的を達成するために、請求項1により、形状モデルを三角形要素のメッシュに分割した三角形メッシュデータを四角形メッシュデータに自動変換する有限要素解析のメッシュデータ変換方法において、各三角形要素につき、その辺を共通にする隣接の三角形要素とで暫定的に四角形を形成し、この暫定四角形につき、その4個所の内角がいずれも所定の最小角よりも大きく、かつ所定の最大角よりも小さな変換許容範囲内であるか否かと、暫定四角形を形成する2個の三角形要素間のそり角が変換許容範囲内であるか否かと、暫定四角形の内角、そり角及びアスペクト比のいずれも変換許容範囲内である暫定四角形を四角形要素として三角形メッシュデータ中の三角形要素と置換することを特徴とする。内角、そり角及びアスペクト比の変換許容範囲は、三角形要素の節点を流用した四角形要素へ変換が三角形要素のままよりも有効であり、かつ四角形要素を前提にした解析が実行され得る範囲で設定されることにより、少なくとも部分的に四角形要素に置換された四角形メッシュデータが得られる。   In order to achieve this object, the present invention provides a mesh data conversion method for finite element analysis in which triangular mesh data obtained by dividing a shape model into triangular element meshes is automatically converted into quadrilateral mesh data. For each element, a quadrangle is temporarily formed with an adjacent triangular element having a common side, and for each of the provisional quadrilaterals, the four interior angles are all larger than a predetermined minimum angle and larger than a predetermined maximum angle. Are within a small allowable conversion range, whether the bend angle between the two triangular elements forming the provisional rectangle is within the allowable conversion range, and any of the interior angle, the bend angle, and the aspect ratio of the temporary rectangle. The provisional quadrangle within the conversion allowable range is replaced with a triangular element in the triangular mesh data as a quadrilateral element. The conversion allowable range of interior angle, warp angle, and aspect ratio is set within a range where conversion to a quadrilateral element using the nodes of the triangular element is more effective than a triangular element, and analysis based on the quadrilateral element can be executed. As a result, quadrilateral mesh data at least partially replaced with quadrilateral elements is obtained.

請求項1による方法を実施する装置としては、請求項3により、形状モデルを三角形要素のメッシュに分割した三角形メッシュデータを四角形メッシュデータに自動変換する有限要素解析のメッシュデータ変換装置において、形状モデルをメッシュに分割したメッシュデータを格納する記憶装置と、この記憶装置に格納されている三角形メッシュデータに対して処理対象の三角形要素を順に指定する処理要素指定手段と、三角形要素の置換を許容し得るか否かを判断させるために、四角形要素の所定の最小角よりも大きく、かつ所定の最大角よりも小さな内角の変換許容範囲データ、暫定四角形を形成する2個の三角形要素間のそり角の変換許容範囲データ及び暫定四角形のアスペクト比の所定値よりも小さな変換許容範囲データを保持する変換許容データ保持手段と、指定された三角形要素につき、その辺を共通にする隣接の三角形要素との2個の三角形要素により暫定的に四角形を形成する四角形データ作成手段と、この四角形データ作成手段で作成された暫定四角形の内角、そり角及びアスペクト比を算出する算出手段と、暫定四角形につき、その4個所の内角、そり角が及びアスペクト比がいずれも変換許容範囲内であるか否かを判断し、三角形メッシュデータ中の変換許容範囲内である暫定四角形を四角形要素として記憶装置に格納されている三角形要素と置換する変換判断手段とを備えることを特徴とする。   According to a third aspect of the present invention, there is provided an apparatus for carrying out the method according to the first aspect of the present invention, in the mesh data conversion apparatus for finite element analysis according to claim 3, wherein the triangular mesh data obtained by dividing the geometric model into triangular element meshes is automatically converted into quadrilateral mesh data. A storage device for storing mesh data obtained by dividing the mesh into meshes, processing element specifying means for sequentially specifying triangle elements to be processed with respect to the triangular mesh data stored in the storage device, and replacement of the triangular elements is allowed. In order to determine whether or not to obtain, conversion tolerance range data of an inner angle that is larger than a predetermined minimum angle of the quadrilateral element and smaller than the predetermined maximum angle, the warp angle between two triangular elements forming the provisional quadrangle Conversion allowable range data and conversion allowable range data smaller than a predetermined value of the aspect ratio of the provisional rectangle are held. Rectangle data creation means for temporarily forming a rectangle by two triangle elements, that is, a permissible data holding means and an adjacent triangle element having a common side for a designated triangle element, and the rectangle data creation means The calculation means for calculating the interior angle, the warp angle, and the aspect ratio of the provisional quadrangle created in step 4, and whether the four internal angles, warp angles, and aspect ratios of the provisional quadrilateral are within the allowable conversion range. Conversion judgment means for judging and replacing a provisional quadrangle within the allowable conversion range in the triangular mesh data with a triangular element stored in the storage device as a quadrilateral element.

変換された四角形メッシュに基づく構造解析の精度を一層向上させるには、請求項2により、内角、そり角及びアスペクト比の少なくともいずれかの変換許容範囲を広くした複数段階に異なる変換許容範囲を基に、直前の処理段階で四角形要素に変換されなかった各三角形要素につき、順に複数の処理段階にわたり所属の変換許容範囲内であるか否かを判断し、所属の許容内角範囲内である暫定四角形を四角形要素として三角形要素と置換するか、或は請求項4により、変換許容データ保持手段が、内角、そり角及びアスペクト比の少なくともいずれかの変換許容範囲を広くした複数段階に異なる変換許容範囲データを保持し、処理要素指定手段が、変換判断手段に対して直前の処理段階で四角形要素に変換されなかった各三角形要素につき、順に複数の処理段階にわたり所属の変換許容範囲内であるか否かを判断させる。   In order to further improve the accuracy of the structural analysis based on the converted quadrilateral mesh, according to claim 2, different conversion allowable ranges are set in a plurality of stages in which the conversion allowable range of at least one of the inner angle, the warp angle, and the aspect ratio is widened. In addition, for each triangular element that has not been converted to a quadrilateral element in the immediately preceding processing stage, it is determined whether or not it is within the conversion tolerance range of the belonging over a plurality of processing stages in order, and the provisional rectangle that is within the allowable internal angle range of the belonging Is replaced with a triangular element as a quadrilateral element, or according to claim 4, the conversion allowable data holding means has different conversion allowable ranges in a plurality of stages in which at least one of the internal allowable angle, the warp angle and the aspect ratio is widened. For each triangular element that holds data and the processing element designating means has not been converted to a quadrilateral element in the immediately preceding processing stage with respect to the conversion judging means. Order to determine whether it is within the conversion tolerance belongs over a plurality of processing stages.

請求項1又は請求項3の発明によれば、四角形変換が有効な2個の三角形要素を四角形要素に自動変換することにより、三角形メッシュデータが少なくとも部分的に四角形要素に置換されることにより、節点に付随する情報を共有して、変形、歪等の有限要素法による構造解析が高精度に行われ得ると共に、四角形メッシュによる解析に際して、必要により三角形メッシュデータによる解析結果を流用できるようになる。四角形の内角、そり角及びアスペクト比を変換の許容条件とすることにより、四角形要素特有の利点を生かせる範囲で解析結果の収束不能を回避した状態で自動変換が可能になる。つまり、平坦な四角形要素で構成される本来のメッシュデータを作成することなく、アルゴリズム作成の容易な三角形メッシュデータを基に要素品質を確保した四角形要素を少なくとも部分的に含む四角形メッシュデータが作成可能となる。   According to the invention of claim 1 or claim 3, by automatically converting two triangular elements that are effective in quadrilateral transformation into quadrilateral elements, the triangular mesh data is at least partially replaced with quadrilateral elements, By sharing the information associated with the nodes, structural analysis by finite element methods such as deformation and strain can be performed with high accuracy, and the analysis results by triangular mesh data can be diverted if necessary when analyzing by quadrilateral mesh . By making the internal angle, the warp angle, and the aspect ratio of the quadrangle acceptable conditions for conversion, automatic conversion can be performed in a state where the convergence of the analysis result is avoided so long as the advantage unique to the quadrilateral element can be utilized. In other words, without creating original mesh data consisting of flat quadrilateral elements, quadrilateral mesh data that at least partially contains quadrilateral elements that ensure element quality can be created based on triangular mesh data that is easy to create algorithms. It becomes.

請求項2又は4の発明によれば、処理対象の三角形要素につき、隣接する変換候補の三角形要素のうち相対的に解析精度等上で有利なものとの合成が優先的に行われ、四角形メッシュデータへの変換効果を向上させることができる。   According to the invention of claim 2 or 4, the triangular elements to be processed are preferentially synthesized with the triangular elements of the adjacent conversion candidates that are relatively advantageous in terms of analysis accuracy, etc. The conversion effect to data can be improved.

図1乃至図6を基に本発明の実施の形態による有限要素解析のメッシュ自動変換方法をコンピュータを用いて実施する装置を説明する。この装置は、図2に示すように、コンピュータ10に、三次元形状の形状モデルを三角形要素のメッシュに分割した三角形メッシュデータが格納されたメモリ17a及び変換された四角形要素を含むメッシュデータが格納されるメモリ17bを有する記憶装置17、変換するための種々の入力操作を行うキーボード等の入力手段18、メッシュデータ等を画像表示するためのディスプレイ部19等を付属させて構成される。   An apparatus for implementing a finite element analysis mesh automatic conversion method according to an embodiment of the present invention using a computer will be described with reference to FIGS. In this apparatus, as shown in FIG. 2, a computer 10 stores a memory 17a in which triangular mesh data obtained by dividing a three-dimensional shape model into triangular element meshes and mesh data including converted quadrilateral elements. A storage device 17 having a memory 17b, an input means 18 such as a keyboard for performing various input operations for conversion, a display unit 19 for displaying mesh data and the like, and the like.

このコンピュータは、ロードされている所定のプログラムに従いCPU、メモリ等を作動させることにより、下記の各部を構成するように機能させる。即ち、メモリ17bに取込んだ三角形メッシュデータに対して処理対象の三角形要素を順に指定する処理要素指定手段11と、三角形要素の置換を許容し得るか否かを判断させるために、四角形要素の内角の変換許容最小角及び最大角を規定する変換許容範囲データ、正規の変換に際して暫定四角形を形成する2個の三角形要素間のそり角の許容最大角で規定される変換許容範囲データ及び暫定四角形のアスペクト比の許容最大値で規定される変換許容範囲データを保持する変換許容データ保持手段15と、指定された三角形要素につき、その辺を共通にする隣接の三角形要素との2個の三角形要素により暫定的な四角形要素としての暫定四角形を形成する四角形データ作成手段12と、その形状データを基に暫定四角形の4個所の内角をそれぞれ算出する内角算出手段と13と、暫定四角形を構成するそれぞれ平坦状の2個の三角形要素間のそり角を算出するそり角算出手段13aと、暫定四角形の4辺についてのアスペクト比を算出するアスペクト比算出手段と13bと、暫定四角形につき、その4個所の内角がいずれも許容内角範囲内であるか否か、暫定四角形の2個の三角形要素間のそり角が変換許容範囲内にあるか否か及び暫定四角形のアスペクト比が変換許容範囲内であるか否かを判断し、これら3種の判断基準パラメータがいずれも変換許容範囲内の暫定四角形を四角形要素として予めメモリ17bに取込まれている三角形メッシュデータ中の所属の2個の三角形要素と置換する変換判断手段14とを構成する。   This computer functions to configure the following units by operating a CPU, a memory, and the like in accordance with a predetermined program loaded. That is, the processing element designating means 11 for designating the triangular elements to be processed in order with respect to the triangular mesh data fetched into the memory 17b and the determination of whether or not the replacement of the triangular elements can be permitted. Conversion allowable range data defining the minimum allowable conversion angle and maximum angle of the interior angle, conversion allowable range data defined by the maximum allowable angle of the bend angle between two triangular elements that form the temporary rectangle for normal conversion, and provisional rectangle Two triangular elements, that is, conversion allowable data holding means 15 for holding conversion allowable range data defined by the maximum allowable aspect ratio, and adjacent triangular elements having the same side for the designated triangular element The quadrilateral data creating means 12 for forming a provisional quadrangle as a provisional quadrilateral element, and the four interior angles of the provisional quadrilateral based on the shape data. An internal angle calculation means 13 for calculating each of the angles, a bend angle calculation means 13a for calculating a bend angle between two flat triangular elements constituting the provisional rectangle, and an aspect ratio for the four sides of the provisional rectangle. The aspect ratio calculation means 13b and the provisional quadrilateral, the four interior angles are all within the allowable internal angle range, and the warp angle between the two triangular elements of the provisional quadrilateral is within the conversion allowable range. Whether or not the aspect ratio of the provisional quadrangle is within the allowable conversion range, and these three kinds of criteria parameters are preloaded into the memory 17b with the provisional quadrangle within the conversion allowable range as a quadrilateral element in advance. The conversion judging means 14 is configured to replace two triangular elements belonging to the existing triangle mesh data.

このメッシュ自動変換装置は、例えば図6に示すPP樹脂で射出成形されたインストルメントパネルの三次元形状モデルの三角形メッシュデータを変換対象とするもので、変換許容データ保持手段15は、最小内角60°及び最大内角110°の第1の変換許容範囲データ及び第2の処理段階用として最小内角30°及び最大内角140°の第2の変換許容範囲データを保持している。また、指定された三角形要素に対して合成される2個の三角形要素間のそれぞれの法線ベクトルのなす角であるそり角10°の第1の変換許容範囲データ及びそり角30°の第2の変換許容範囲データ並びに暫定四角形の最短辺長aと最大辺長bの比であるアスペクト比r=b/aの許容最大値で規定されるr=5の第1の変換許容範囲データ及びr=10の第2の変換許容範囲を保持する。   This automatic mesh conversion device is intended to convert triangular mesh data of a three-dimensional shape model of an instrument panel injection-molded with, for example, PP resin shown in FIG. The first conversion allowable range data of ° and the maximum internal angle 110 ° and the second conversion allowable range data of the minimum internal angle 30 ° and the maximum internal angle 140 ° are held for the second processing stage. In addition, the first conversion allowable range data with a warp angle of 10 ° and the second with a warp angle of 30 °, which are angles formed by the respective normal vectors between two triangular elements synthesized with respect to the designated triangle element. Conversion allowable range data, r = 5 first conversion allowable range data defined by the allowable maximum value of the aspect ratio r = b / a, which is the ratio of the shortest side length a and the maximum side length b of the provisional rectangle, and r = 10 holds the second conversion tolerance.

三角形メッシュデータの作成時に三角形要素は3個の節点で平坦面として規定されるが、隣同士は同一面状であるとは限らない。その際、2個の互いの三角形要素間のワープエッジもしくは曲げ角、即ちそり角が大きくなると、本発明の変換方法に依らない本来の四角形メッシュと異なり、初期状態から相応の歪を伴う四角形要素とるためにそれ以上の計算が困難で、解析精度が逆に低下する問題がある。したがって、そり角10°以内を優先的に選択させ、むしろ三角形のままでの解析の方が精度上好ましい例えば30°以上については変換を行わせないようにする。   At the time of creating the triangular mesh data, the triangular element is defined as a flat surface by three nodes, but the neighbors are not necessarily the same surface. In this case, when the warp edge or bending angle between two triangular elements increases, that is, the warp angle increases, unlike the original quadrilateral mesh that does not depend on the conversion method of the present invention, the quadrilateral element with a corresponding distortion from the initial state. Therefore, there is a problem that further calculation is difficult and the analysis accuracy is lowered. Therefore, a warp angle of 10 ° or less is selected preferentially, and rather, conversion is not performed for, for example, 30 ° or more, in which the analysis with a triangle is preferable in terms of accuracy.

また、内角が変換許容範囲を外れると暫定四角形の互いに対向する節点同士が相応に接近することになり、またアスペクト比が変換許容範囲を外れると隣合う節点同士が接近することになり、いずれの場合も接近した2個の節点の物理量の計算結果が急変する可能性があり、連続性が損なわれて解析精度が三角形要素よりもむしろ低下し、加えて解析結果が収束しなくなる可能性も生じる。したがって、内角及びアスペクト比の第2の変換許容範囲がこれらを勘案して設定されることにより、平坦正方形から許容できない程度にずれて要素品質が低下して物理量分布関数で異常値が計算されたり、また収束性も悪化するのを回避するように、要素品質を確保した四角形要素を作成するようになっている。   In addition, when the inner angle is outside the conversion allowable range, the nodes of the provisional quadrangle that are facing each other will be appropriately approached, and when the aspect ratio is outside the conversion allowable range, the adjacent nodes will be close to each other. In some cases, the calculation results of the physical quantities of the two close nodes may change suddenly, and the analysis accuracy may be lowered rather than the triangular element due to the loss of continuity. In addition, the analysis results may not converge. . Therefore, the second conversion allowable range of the inner angle and the aspect ratio is set in consideration of these factors, so that the element quality is deteriorated to an unacceptable degree from the flat square, and an abnormal value is calculated by the physical quantity distribution function. In addition, in order to avoid deterioration of convergence, a quadrilateral element that ensures element quality is created.

処理要素指定手段11は、メモリ17aから取込んだメモリ17bの三角形メッシュデータの三角形要素を順に指定して、四角形データ作成手段12に対して指定された三角形要素について暫定四角形を形成させ、その暫定四角形の内角を内角算出手段13に算出させ、それぞれ平坦状の2個の三角形要素間のそり角をそり角算出手段13aに算出させ、4辺についてのアスペクト比をアスペクト比算出手段13bに算出させる。変換判断手段14は、内角、そり角及びアスペクト比がいずれも許容内角範囲内の暫定四角形を検知した時点で、所属の2個の三角形要素を四角形要素に置換・記憶させる。   The processing element designating unit 11 sequentially designates the triangular elements of the triangular mesh data in the memory 17b fetched from the memory 17a, and forms a provisional rectangle for the designated triangular element with respect to the quadrilateral data creation unit 12, and the provisional quadrature. The interior angle calculation means 13 calculates the interior angle of the quadrangle, the curvature angle between two flat triangular elements is calculated by the curvature angle calculation means 13a, and the aspect ratio for the four sides is calculated by the aspect ratio calculation means 13b. . The conversion determination unit 14 replaces and stores the two triangular elements belonging to the quadrilateral element when a provisional quadrilateral whose inside angle, warp angle, and aspect ratio are all within the allowable internal angle range is detected.

さらに、変換判断手段14は、このような合成情報の格納に際して、四角形要素への置換により削除された三角形要素の番号をメモリ17bに格納しておくことにより、第2の処理段階でのその三角形要素の指定を解除しておくと共に、変換された四角形要素の番号を付して、その指定された三角形要素に隣接している要素数及びその各要素番号、四角形要素の節点に隣接している要素数及び要素数を新たなメッシュ情報としてメモリ17bに格納しておく。   Further, when storing such composite information, the conversion determination means 14 stores the triangle element number deleted by the replacement with the quadrilateral element in the memory 17b, so that the triangle in the second processing stage is stored. The element designation is canceled and the number of the converted quadrilateral element is added, and the number of elements adjacent to the designated triangular element and each element number are adjacent to the node of the quadrilateral element. The number of elements and the number of elements are stored in the memory 17b as new mesh information.

処理要素指定手段11は、第1の処理段階の終了時点で変換されなかった三角形要素がメモリ17bに残っていると、変換許容データ保持手段15の出力する判断基準が第2の変換許容範囲に切換わることにより、再度その残りの要素を順に指定して暫定四角形を形成させ、第2の処理段階の判断処理を行わせる。   The processing element designating unit 11 determines that the judgment criterion output from the conversion permissible data holding unit 15 is within the second conversion allowable range when the triangular elements that have not been converted remain at the end of the first processing stage in the memory 17b. By switching, the remaining elements are sequentially specified again to form a provisional rectangle, and the determination process in the second processing stage is performed.

このように構成された有限要素解析のメッシュ自動変換装置の動作を図1のフローチャートを基に説明する。図6に示す変換対象のイントルメントパネルの例えば側部1のメッシュモデル(図4A)について、その領域の三角メッシュデータの各要素が順に指定されることにより(S1)、その指定された三角形の三辺につき順に暫定四角形を作成し(S2)、次いでその4個所の内角、そり角及びアスペクト比を算出して第1の変換許容範囲内である否かを判断する(S3)。   The operation of the finite element analysis automatic mesh conversion apparatus configured as described above will be described with reference to the flowchart of FIG. For example, the mesh model (FIG. 4A) of the side portion 1 of the instrument panel to be converted shown in FIG. 6 is designated in order for each element of the triangular mesh data in that region (S1). A provisional quadrilateral is created in order for each of the three sides (S2), and then the interior angle, the warp angle, and the aspect ratio of the four locations are calculated to determine whether or not they are within the first conversion allowable range (S3).

例えば図3に示すように、三角形要素5につき、三角形要素5aとで合成される暫定四角形は内角が第1許容内角範囲外であると判断され、次に三角形要素5bとで合成される暫定四角形(太線で示す)が第1許容内角範囲内であると判断され、さらにそり角及びアスペクト比も第1の変換許容範囲内と判断されると、その時点で三角メッシュデータ中の指定の三角形要素5が、隣接する1個の三角形要素5bとで構成される実質上本来の四角形要素と見なされる四角形要素に置換される(S4)と共に、これらの三角形要素は変換済みデータとして前述の関連情報と共に格納される。全ての三角形要素につき判断が終了した時点で、三角メッシュデータ(図4A)は、第1の処理段階の四角メッシュデータ(図4B)に変換された状態になる。   For example, as shown in FIG. 3, for the triangular element 5, the provisional quadrature synthesized with the triangular element 5 a is determined to have an interior angle outside the first allowable interior angle range, and then the provisional square synthesized with the triangular element 5 b. When it is determined that (indicated by a bold line) is within the first allowable internal angle range, and the warp angle and aspect ratio are also determined to be within the first conversion allowable range, the designated triangular element in the triangular mesh data at that time 5 is replaced with a square element which is regarded as a substantially original square element composed of one adjacent triangular element 5b (S4), and these triangle elements are converted into converted data together with the related information described above. Stored. When the determination is completed for all the triangular elements, the triangular mesh data (FIG. 4A) is converted into the square mesh data (FIG. 4B) in the first processing stage.

続いて、変換されなかった三角形要素が残っていると(S5、S6)、その残りの要素が順に指定されて、切換られた第2の許容変換範囲データを基に第2の処理段階の判断が行われる。これにより、図4Cに示すように、四角形要素に変換される領域が、曲率が相対的に小さくなる曲面状、板厚が増す領域等にも広がると共に、四角形要素による構造解析の精度が有効に確保され、かつ解析結果が収束しなくなる可能性のある四角形要素への変換が回避されて四角形混在のメッシュデータが作成される。場合により、非変換の三角形要素が残らない場合、2要素の合成を前提にした完全な四角形メッシュデータに変換されることになる。   Subsequently, when there are remaining unconverted triangular elements (S5, S6), the remaining elements are designated in order, and the second processing stage is determined based on the switched second allowable conversion range data. Is done. As a result, as shown in FIG. 4C, the area to be converted into a quadrilateral element extends to a curved surface having a relatively small curvature, an area in which the plate thickness is increased, and the like, and the accuracy of the structural analysis by the quadrilateral element is effective. Conversion to quadrilateral elements that are ensured and the analysis result may not converge is avoided, and quadrilateral mixed mesh data is created. In some cases, if no non-converted triangular element remains, it is converted into complete quadrilateral mesh data on the premise that two elements are combined.

また、図4Aではアスペクト比は全体的に大きくならないが、図5に示すように、インパネ側部1において、その裏面の狭い範囲T1で例えば一般面よりも急にステップ状に厚みが増加するリブが形成されて、相対的に極端に小さな三角形が隣接して、暫定四角形の最短辺長aが最大辺長bに対して極端に短くなってアスペクト比が5より大きくなると、第1の許容変換範囲外となり、第2の許容変換範囲による判断が行われる。   4A, the aspect ratio does not increase as a whole. However, as shown in FIG. 5, in the instrument panel side portion 1, a rib whose thickness increases more abruptly in a stepped manner than the general surface, for example, in a narrow range T1 on the back surface thereof. Are formed, and a relatively extremely small triangle is adjacent to each other, and the shortest side length a of the provisional quadrangle becomes extremely short with respect to the maximum side length b, so that the aspect ratio is greater than 5. The determination is made based on the second allowable conversion range.

また、前述の実施の形態では2段階の処理を行ったが、変換判断手段14は、第2の処理段階で例えばそり角のみの変換許容範囲を広くして第2の処理段階とし、さらにアスペクト比のみの変換許容範囲を広くして第3の処理段階とする等、2段階もしくはそれ以上の複数段階に広くなる内角、そり角及びアスペクト比の組合わせによる複数段階に異なる変換許容範囲データを基に、直前の処理段階で四角形要素に変換されなかった各三角形要素につき、順に複数の処理段階にわたり所属の変換許容範囲内であるか否かを判断し、所属の許容内角範囲内である暫定四角形を四角形要素として三角形要素と置換するすることもできる。   In the above-described embodiment, the two-stage processing is performed. However, the conversion determining unit 14 widens the conversion allowable range of, for example, only the bend angle in the second processing stage, and sets the second processing stage. The conversion tolerance range data that is different in multiple stages by a combination of interior angle, warp angle, and aspect ratio, which is widened in two or more stages, such as the third processing stage by widening the conversion tolerance range of only the ratio, etc. Based on each triangle element that has not been converted to a quadrilateral element in the immediately preceding processing stage, it is determined whether or not it is within the permissible conversion allowable range over a plurality of processing stages in order, and is temporarily within the permissible internal angle range of the belonging It is also possible to replace a quadrangle with a triangular element as a quadrilateral element.

本発明の実施の形態による有限要素解析のメッシュ自動変換装置の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the mesh automatic conversion apparatus of the finite element analysis by embodiment of this invention. 同装置の構成を説明する図である。It is a figure explaining the structure of the same apparatus. 同装置の動作を説明する図である。It is a figure explaining operation | movement of the apparatus. 同装置によるメッシュの変換過程を説明する図である。It is a figure explaining the conversion process of the mesh by the same apparatus. 同装置のアスペクト比の判断動作を説明する図である。It is a figure explaining the judgment operation | movement of the aspect-ratio of the apparatus. 本発明の変換対象となるメッシュモデルの前提になるインストルメントパネルを部分的に示す斜視図である。It is a perspective view which shows partially the instrument panel used as the premise of the mesh model used as the conversion object of this invention. 従来の三角形メッシュデータの四角形メッシュデータへの手動操作による変換方法を説明する図である。It is a figure explaining the conversion method by the manual operation to the square mesh data of the conventional triangle mesh data.

符号の説明Explanation of symbols

1 イントルメントパネルの側部
5、5a、5b 三角形要素
1 Side of the instrument panel
5, 5a, 5b Triangular element

Claims (4)

形状モデルを三角形要素のメッシュに分割した三角形メッシュデータを四角形メッシュデータに自動変換する有限要素解析のメッシュデータ変換方法において、
各三角形要素につき、その辺を共通にする隣接の三角形要素とで暫定的に四角形を形成し、
この暫定四角形につき、その4個所の内角がいずれも所定の最小角よりも大きく、かつ所定の最大角よりも小さな変換許容範囲内であるか否かと、前記暫定四角形を形成する2個の前記三角形要素間のそり角が変換許容範囲内であるか否かと、前記暫定四角形のアスペクト比が所定値よりも小さな変換許容範囲内であるか否かとを判断し、
前記内角、前記そり角及び前記アスペクト比のいずれも前記変換許容範囲内である前記暫定四角形を四角形要素として三角形メッシュデータ中の前記三角形要素と置換することを特徴とする有限要素解析のメッシュデータ変換方法。
In the mesh data conversion method of finite element analysis that automatically converts triangle mesh data obtained by dividing the shape model into meshes of triangular elements to quadrilateral mesh data,
For each triangular element, temporarily form a quadrangle with adjacent triangular elements that share the same side,
Regarding the provisional quadrangle, whether the four interior angles are larger than a predetermined minimum angle and within a conversion allowable range smaller than the predetermined maximum angle, and the two triangles forming the provisional quadrangle Determining whether the warp angle between the elements is within a conversion allowable range, and whether the aspect ratio of the provisional rectangle is within a conversion allowable range smaller than a predetermined value;
Mesh data conversion of finite element analysis, wherein the provisional quadrangle whose all of the interior angle, the warp angle, and the aspect ratio are within the allowable conversion range is replaced with the triangular element in triangular mesh data as a quadrilateral element Method.
内角、そり角及びアスペクト比の少なくともいずれかの変換許容範囲を広くした複数段階に異なる変換許容範囲を基に、直前の処理段階で四角形要素に変換されなかった各三角形要素につき、順に複数の処理段階にわたり所属の前記変換許容範囲内であるか否かを判断し、所属の前記許容内角範囲内である暫定四角形を四角形要素として前記三角形要素と置換することを特徴とする請求項1記載の有限要素解析のメッシュデータ変換方法。   Based on multiple conversion tolerances that have widened the conversion tolerance range of at least one of interior angle, warp angle, and aspect ratio, each triangle element that has not been converted to a quadrilateral element in the immediately preceding processing stage is subjected to multiple processes in order. 2. The finite state according to claim 1, wherein it is determined whether or not it is within the permissible conversion range belonging to each step, and the provisional quadrangle within the permissible internal angle range of the belonging is replaced with the triangular element as a quadrilateral element. Mesh data conversion method for element analysis. 形状モデルを三角形要素のメッシュに分割した三角形メッシュデータを四角形メッシュデータに自動変換する有限要素解析のメッシュデータ変換装置において、
形状モデルをメッシュに分割したメッシュデータを格納する記憶装置と、この記憶装置に格納されている三角形メッシュデータに対して処理対象の三角形要素を順に指定する処理要素指定手段と、前記三角形要素の置換を許容し得るか否かを判断させるために、四角形要素の所定の最小角よりも大きく、かつ所定の最大角よりも小さな内角の変換許容範囲データ、暫定四角形を形成する2個の前記三角形要素間のそり角の変換許容範囲データ及び暫定四角形のアスペクト比の所定値よりも小さな変換許容範囲データを保持する変換許容データ保持手段と、指定された前記三角形要素につき、その辺を共通にする隣接の前記三角形要素との2個の前記三角形要素により前記暫定四角形を形成する四角形データ作成手段と、この四角形データ作成手段で作成された前記暫定四角形の内角、そり角及びアスペクト比を算出する算出手段と、前記暫定四角形につき、その4個所の前記内角、前記そり角及び前記アスペクト比がいずれも前記変換許容範囲内であるか否かを判断し、前記三角形メッシュデータ中の前記変換許容範囲内である前記暫定四角形を四角形要素として前記記憶装置に格納されている前記三角形要素と置換する変換判断手段と、を備えたことを特徴とする有限要素解析のメッシュデータ変換装置。
In a mesh data conversion device for finite element analysis that automatically converts triangle mesh data obtained by dividing a shape model into meshes of triangular elements to quadrilateral mesh data,
A storage device that stores mesh data obtained by dividing a shape model into meshes, a processing element specifying unit that sequentially specifies triangle elements to be processed with respect to the triangular mesh data stored in the storage device, and replacement of the triangle elements In order to determine whether or not the two can be allowed, conversion tolerance range data of an inner angle that is larger than the predetermined minimum angle of the quadrilateral element and smaller than the predetermined maximum angle, the two triangular elements forming the provisional quadrangle Conversion allowable data holding means for holding conversion allowable range data of the bend angle between and a conversion rectangle data smaller than a predetermined value of the aspect ratio of the provisional quadrangle, and the adjacent triangle elements that share the same side A quadrilateral data creating means for forming the provisional quadrilateral by two triangular elements together with the triangular element, and the quadrilateral data creation Calculating means for calculating an interior angle, a warp angle, and an aspect ratio of the provisional quadrilateral created in steps, and for the provisional quadrilateral, the four internal angles, the warp angle, and the aspect ratio are all within the conversion allowable range. Conversion judging means for judging whether or not the temporary quadrangle within the conversion allowable range in the triangle mesh data is replaced with the triangular element stored in the storage device as a quadrilateral element. A mesh data converter for finite element analysis characterized by the above.
変換許容データ保持手段が、内角、そり角及びアスペクト比の少なくともいずれかの変換許容範囲を広くした複数段階に異なる変換許容範囲データを保持し、
処理要素指定手段が、変換判断手段に対して直前の処理段階で四角形要素に変換されなかった各三角形要素につき、順に複数の処理段階にわたり所属の前記変換許容範囲内であるか否かを判断させることを特徴とする請求項3記載の有限要素解析のメッシュデータ変換装置。
The conversion allowable data holding means holds different conversion allowable range data in a plurality of stages in which the conversion allowable range of at least one of the internal angle, the warp angle and the aspect ratio is widened,
The processing element designating unit causes the conversion determining unit to determine whether or not each triangular element that has not been converted to the quadrilateral element in the immediately preceding processing step is within the conversion allowable range to which it belongs over a plurality of processing steps in order. The mesh data conversion apparatus for finite element analysis according to claim 3.
JP2006312939A 2006-11-20 2006-11-20 Automatic mesh data converter for finite element analysis Expired - Fee Related JP4592101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312939A JP4592101B2 (en) 2006-11-20 2006-11-20 Automatic mesh data converter for finite element analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312939A JP4592101B2 (en) 2006-11-20 2006-11-20 Automatic mesh data converter for finite element analysis

Publications (2)

Publication Number Publication Date
JP2008129779A true JP2008129779A (en) 2008-06-05
JP4592101B2 JP4592101B2 (en) 2010-12-01

Family

ID=39555542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312939A Expired - Fee Related JP4592101B2 (en) 2006-11-20 2006-11-20 Automatic mesh data converter for finite element analysis

Country Status (1)

Country Link
JP (1) JP4592101B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7314341B1 (en) 2022-03-02 2023-07-25 アルム株式会社 Shape analysis device, shape analysis method and shape analysis program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138082A (en) * 1994-11-07 1996-05-31 Internatl Business Mach Corp <Ibm> Method and system for generation of square mesh
JP2003030255A (en) * 2001-07-17 2003-01-31 Toyota Motor Corp Method and device for adjusting analytic model
JP2004013672A (en) * 2002-06-10 2004-01-15 Rikogaku Shinkokai Three-dimensional mesh generation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138082A (en) * 1994-11-07 1996-05-31 Internatl Business Mach Corp <Ibm> Method and system for generation of square mesh
JP2003030255A (en) * 2001-07-17 2003-01-31 Toyota Motor Corp Method and device for adjusting analytic model
JP2004013672A (en) * 2002-06-10 2004-01-15 Rikogaku Shinkokai Three-dimensional mesh generation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7314341B1 (en) 2022-03-02 2023-07-25 アルム株式会社 Shape analysis device, shape analysis method and shape analysis program
JP2023127610A (en) * 2022-03-02 2023-09-14 アルム株式会社 Shape analysis apparatus, shape analysis method, and shape analysis program

Also Published As

Publication number Publication date
JP4592101B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
KR102060839B1 (en) Designing a 3d modeled object
EP2383669B1 (en) Design of a part modeled by parallel geodesic curves
JP2010176347A (en) Shortest path retrieval method and device
JP4592471B2 (en) Shape prediction method, shape prediction apparatus, shape prediction program, and storage medium for injection molded product
US20060235653A1 (en) Analysis model producing system
WO2021044891A1 (en) Curved surface fitting processing method, fitting processing device, fitting processing program, and computer-readable storage medium in which fitting processing program is stored
JP4829674B2 (en) Molding condition setting method, program, and injection molding machine
US11715021B2 (en) Variable embedding method and processing system
JP5241310B2 (en) Method and apparatus for predicting deformed shape of molded product, program for predicting deformed shape and storage medium thereof
JP4592101B2 (en) Automatic mesh data converter for finite element analysis
CN115577447B (en) Unmanned aerial vehicle structure optimization method based on double-scale parallel topology optimization
US20090327967A1 (en) Engineering tool
CN115048900A (en) Corner filling method and device for integrated circuit layout and computer equipment
JP6185732B2 (en) Image processing device
JPH08287119A (en) Method for relation of size display to structure of cad system
JP4747632B2 (en) 3D CAD modeling method, program and apparatus for mixing feature-based parametric modeling and direct modeling
JP2000113229A (en) Method for re-dividing element of finite element analytic model
JP5961525B2 (en) Pipe network calculator
Dokken et al. Requirements from isogeometric analysis for changes in product design ontologies
JP2003345837A (en) Method and apparatus for generating analytic model
JP4979257B2 (en) Mesh coarse / fine control device, mesh coarse / fine control method, and program
US20050001363A1 (en) Design data generating apparatus and design data generating method
WO2012114388A1 (en) Gui screen reconfiguration device and program for same
JP4851542B2 (en) Route curve generation system, method, and program
JP2001290847A (en) Generating method for cracking drawing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees