JP2008128888A - Water quality meter - Google Patents

Water quality meter Download PDF

Info

Publication number
JP2008128888A
JP2008128888A JP2006315626A JP2006315626A JP2008128888A JP 2008128888 A JP2008128888 A JP 2008128888A JP 2006315626 A JP2006315626 A JP 2006315626A JP 2006315626 A JP2006315626 A JP 2006315626A JP 2008128888 A JP2008128888 A JP 2008128888A
Authority
JP
Japan
Prior art keywords
particle size
light
water quality
quality meter
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006315626A
Other languages
Japanese (ja)
Inventor
Hiroshi Kikuchi
宏 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006315626A priority Critical patent/JP2008128888A/en
Publication of JP2008128888A publication Critical patent/JP2008128888A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water quality meter which is adaptable to many applications. <P>SOLUTION: The water quality meter includes a data operator for converting the light intensity and the pulse counted value of the light interference fringe based on the transmitted light, scattered light and the light where the transmitted light and the scattered light are mixed, obtained by irradiating the particles in a measuring tank with the light beam from a light source into an electrical signal by a photodetector and calculating the particle size or the turbidity from the electrical signal and is also equipped with a particle size distribution forming device for calculating the particle size distribution, that shows the particle size, with respect to mass or individual ratio for each of many kinds of standard calibration liquids; and a calibration liquid determining device, capable of determining calibration liquid in the measuring tank, on the basis of the particle size distribution calculated by the particle size distribution forming device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、浄水場、水処理場設備等に使用する水質計器に関する。   The present invention relates to a water quality meter used in water purification plants, water treatment plant facilities, and the like.

従来の技術における、濁度検出計は光やレーザ光を使用し、成分に吸収されない光の透過光を測るもの(透過式)、成分から反射された散乱光を測るもの(散乱式)、混合形として透過光と散乱光を測るもの(混合式)、角度の異なる2種類の散乱光を測るもの(改良形散乱式)等がある。また、散乱式は水中に光を導入し成分から反射した、散乱光を受光するものや、水中ではなく水面上方から光を導入する、表面散乱光式等が存在する。さらに、特許文献1に記載されている技術は、計算のみによって濁度を求めるものが記載されている。
特開平10−311784 号公報 第49回全国水道研究発表会 平成10.5(8−16)ろ過水の濁度および微粒子数の相互関係
Conventional turbidity detectors use light or laser light to measure transmitted light that is not absorbed by the component (transmission type), to measure the scattered light reflected from the component (scattering type), or to mix There are types that measure transmitted light and scattered light (mixed type), and types that measure two types of scattered light at different angles (improved type). In addition, there are scattering types such as those that receive light scattered by introducing light into water and reflected from components, and surface scattering light types that introduce light from above the water surface instead of underwater. Furthermore, the technique described in Patent Document 1 describes a technique for obtaining turbidity only by calculation.
Japanese Patent Laid-Open No. 10-311784 49th National Waterworks Research Conference Heisei 10.5 (8-16) Correlation between turbidity and fine particle count of filtered water

2004年4月に厚生労働省から「水道法施行規則の一部を改正する省令」が施行された。この省令により、浄水場外の水道配水を測定する水質計器の標準の校正液はPSL標準液[数種の単一粒子径のPSL(ポリスチレンラテックス)をある指定された比率で混合した液体]と決められた。   In April 2004, the Ministry of Health, Labor and Welfare enforced the “Ministerial Ordinance for Revision of Part of the Water Supply Law Enforcement Rules”. According to this ministerial ordinance, the standard calibration solution for water quality meters that measure water distribution outside the water purification plant is determined to be a PSL standard solution [a mixture of several single-particle size PSL (polystyrene latex) at a specified ratio]. It was.

しかし、従来使用していた標準校正液は「カオリン」か「ホルマジン」であり、製造メーカおよびユーザにも大きな困惑と混乱が生じた。混乱の一つ目は、従来の校正液カオリンで校正したときに「試料液Aの測定値が1.0度」であったとしても、PSL標準液で校正したときには「試料液Aの測定値が1.0度にならない」ことである。この値の差は測定方式Aでは1.2倍程度であり、測定方式Bでは1.5倍程度になるという具合である。混乱が生じている二つ目は、省令において浄水場外の水質計器についてはPSLを使用しなくてはならないとしているが、浄水場内の水質計器については規定がなく、従来の「カオリン」か「ホルマジン」で問題ないとしているところである。これらのことから、どの校正液で校正したかが重要事項になった。 However, the standard calibration solution used in the past is “kaolin” or “formazin”, which causes great confusion and confusion for manufacturers and users. The first confusion is that even if the measured value of the sample solution A is 1.0 degree when calibrated with the conventional calibration solution Kaolin, the measured value of the sample solution A is calibrated with the PSL standard solution. Is not 1.0 degree ". This difference in value is about 1.2 times in measurement method A, and about 1.5 times in measurement method B. The second cause of confusion is that the Ministerial Ordinance states that PSL must be used for water quality meters outside the water treatment plant. It is said that there is no problem. From these facts, it became an important matter which calibration solution was used for calibration.

前述した特許文献1には、標準校正液変更による校正については、何等記載がなく実用化することは困難である。   In the above-mentioned Patent Document 1, there is no description about calibration by changing the standard calibration solution, and it is difficult to put it to practical use.

他の水質計器のニーズとして、厚生労働省のクリプトスポリジウム暫定対策指針においては(直接クリプトスポリジウムが直接測れないため、代替の指標として濁度を使用し、)浄水場ろ過池出口の水の濁度0.1度以下に維持することが規定されている。一般に、クリプトスポリジウムの粒子径は5μm程度であり、5μm程度の粒子に対し感度が高い水質計器の要望がある。水質計器は散乱式、レーザ式、積分球式等の方式がある。前述した非特許文献1中の図2には各方式による粒子径感度が示されている。この図から各種の測定方式により粒子径ごとの感度が異なることがわかる。この感度の違いはそれぞれの測定方式の間で相関関係がない結果となる。解決する課題としては、各測定方式の測定値を1台の計器で表示することである。   As another water quality meter's needs, the Ministry of Health, Labor and Welfare's provisional countermeasure guidelines for Cryptosporidium (Cryptospodium is not directly measured, so turbidity is used as an alternative indicator). .It is specified that the temperature is maintained at 1 degree or less. Generally, the particle diameter of Cryptosporidium is about 5 μm, and there is a demand for a water quality meter having high sensitivity for particles of about 5 μm. Water quality meters include scattering, laser, and integrating sphere methods. FIG. 2 in Non-Patent Document 1 described above shows the particle size sensitivity by each method. From this figure, it can be seen that the sensitivity for each particle size varies depending on various measurement methods. This difference in sensitivity results in no correlation between the measurement methods. The problem to be solved is to display the measurement values of each measurement method with one instrument.

そこで、以上述べた水質計器を実用化する上で、以下に述べる課題1、2、3がある。   Therefore, there are problems 1, 2, and 3 described below in putting the water quality meter described above into practical use.

(課題1)他の標準校正液で校正した計器の測定値になるように測定値を補正可能とした水質計器。   (Problem 1) A water quality meter capable of correcting a measured value so that it becomes a measured value of a meter calibrated with another standard calibration solution.

(課題2)1台の測定器で他方式の測定値がわかる水質計器。   (Problem 2) A water quality meter in which measurement values of other methods can be understood by one measuring device.

(課題3)微小粒子径(例1μm以下)側又は大粒子径側に感度がない水質計器。   (Problem 3) A water quality meter having no sensitivity on the side of a fine particle (eg, 1 μm or less) or on the side of a large particle.

本発明は、前記課題を解決できるとともに、結果として多用途に適用できる水質計器を提供することを目的とする。   An object of the present invention is to provide a water quality meter that can solve the above-described problems and can be applied to various uses as a result.

前記目的を達成するため、請求項1に対応する発明は、光源からの光ビームを、測定槽中の粒子に照射して得られる透過光、散乱光、透過光と散乱光を混合した光のいずれかに基づく光干渉縞の光強度、又は、パルスカウント値を受光素子により電気信号に変換し、この電気信号から粒径又は濁度を演算するデータ演算器を備えた水質計器において、
多種類の標準校正液毎の質量比又は個数比に対する粒径を示す粒径分布を求める粒径分布作成器と、
多種類の標準校正液のなかの一つを指定可能な入力器を付加し、前記入力器で標準校正液の一つを外部から指定することにより、その既知の標準校正液で校正を実施したように補正する補正手段と、
を具備したことを特徴とする水質計器である。
In order to achieve the above object, the invention corresponding to claim 1 is directed to transmitting light, scattered light, and light mixed with transmitted light and scattered light obtained by irradiating a particle in a measuring tank with a light beam from a light source. In the water quality meter equipped with a data calculator that converts the light intensity of the light interference fringes based on either, or the pulse count value into an electrical signal by the light receiving element, and calculates the particle size or turbidity from this electrical signal,
A particle size distribution generator for obtaining a particle size distribution indicating a particle size with respect to a mass ratio or a number ratio for each of various types of standard calibration solutions;
An input device that can specify one of many kinds of standard calibration solutions is added, and one of the standard calibration solutions is designated from the outside with the input device, and calibration is performed with the known standard calibration solution. Correction means for correcting
It is the water quality meter characterized by comprising.

本発明によれば、多用途に適用できる水質計器を提供することができ、次のような効果も得られる。   ADVANTAGE OF THE INVENTION According to this invention, the water quality meter applicable to many uses can be provided, and the following effects are also acquired.

1)1台の測定器で、前述した異なる複数の方式の測定値がわかる水質計器として使用できる。   1) A single measuring instrument can be used as a water quality meter that understands the measured values of a plurality of different methods described above.

2)どの校正液を使用すると現在の測定値はどのように変化するかということが1台の計器で確認できる。   2) It is possible to confirm with one instrument which calibration solution will change the current measured value.

3)どの標準校正液を用いても、指定した標準校正液で校正した計器の測定値になるように測定値を補正可能とした水質計器が実現できる。   3) Regardless of which standard calibration solution is used, it is possible to realize a water quality meter that can correct the measurement value so that it becomes the measurement value of the meter calibrated with the designated standard calibration solution.

以下、本発明の水質計器について、図面に示す実施形態を参照して説明するが、その前に本発明の概要について説明する。   Hereinafter, the water quality meter of the present invention will be described with reference to embodiments shown in the drawings, but before that, the outline of the present invention will be described.

上記「課題3」は従来の濁度計だけでは解決できないが、粒子径の状態を測定できる計器を用い、粒子状態の情報を入手し工夫することにより実現できる。粒子の状態とは、粒子径毎の分布における濃度、粒子数、粒子重量および粒子数の総数等である。これを測定する計器としては、主にレーザ方式が存在する。測定されている試料水のこれらの情報を入手しさらに、個々の粒子径分布における影響度をあらかじめ測定しておくことができる装置を構築すれば課題を解決し目的が達成できる。   The above "Problem 3" cannot be solved by a conventional turbidimeter alone, but can be realized by obtaining and devising information on the particle state using an instrument capable of measuring the particle size state. The state of the particles includes the concentration, the number of particles, the particle weight, and the total number of particles in the distribution for each particle diameter. As a measuring instrument for measuring this, there is mainly a laser system. The object can be solved and the object can be achieved by obtaining such information of the sample water being measured and further constructing an apparatus capable of measuring in advance the degree of influence on each particle size distribution.

上記「課題1、2」を解決するにはまず各種の測定方式による指示値が、「どうして異なるか、校正液の違いによりなぜ測定値が異なるか」の真因を追及する必要がある。この解決には、各粒子径分布の影響度を単一粒子からなる試料を実際に測定し濁度影響度を把握しない限り、各種の測定方式をもつ計器間の相関関係や各種の標準校正液で校正した計器間の相関関係はわからない。よって予め各種の測定方式別に各単一分布の粒子の濁度影響度を把握し、各種の標準校正液の粒子径状態を把握し、さらに現在測定している試料水の粒子径状態を把握できる装置を構築すれば課題を解決し目的が達成できる。   In order to solve the above “Problems 1 and 2”, it is first necessary to investigate the cause of the indication value by various measurement methods “why it is different or why the measurement value is different depending on the calibration solution”. In order to solve this problem, unless a sample consisting of a single particle is actually measured to determine the degree of influence of each particle size distribution and the degree of influence of turbidity is not grasped, the correlation between various measuring instruments and various standard calibration solutions The correlation between the calibrated instruments is not known. Therefore, it is possible to grasp the turbidity influence of each single-distributed particle for each measurement method in advance, grasp the particle diameter state of various standard calibration solutions, and grasp the particle diameter state of the sample water currently being measured. Building a device can solve the problem and achieve the goal.

(実施形態1)
図1は、実施形態1を説明するためのブロック図である。光源1は、ランプやレーザ光源からなり、光ビームを測定槽3に向けて照射する。レンズ類2は光源1から出た光ビームを集光して測定槽3に照射する。レンズ類4は測定槽3からの透過光、散乱光、透過光と散乱光の混合光のいずれかを平行光にして受光素子5に与える。測定槽3は、測定する試料水が通過する部分である。受光素子5は光信号(光情報)を電気信号に変換するものである。
(Embodiment 1)
FIG. 1 is a block diagram for explaining the first embodiment. The light source 1 includes a lamp and a laser light source, and irradiates a light beam toward the measurement tank 3. The lenses 2 collect the light beam emitted from the light source 1 and irradiate the measurement tank 3. The lenses 4 provide the light receiving element 5 with any of the transmitted light, scattered light, and mixed light of the transmitted light and scattered light from the measurement tank 3 as parallel light. The measurement tank 3 is a part through which sample water to be measured passes. The light receiving element 5 converts an optical signal (optical information) into an electric signal.

データ演算器(データ変換器)6は、主に受光素子5からきた電気信号を演算し、濁度や粒子径の測定値の演算するものであって、これには図示しないが例えば、設定値の入力器及び表示器等が接続されると共に、予め記録器8に記録されている設定値を取り込んでから検量線を作成し、また粒子径分布情報格納器9に読み出し可能に格納されている粒子径分布情報を読み出し、受光素子5の電気信号を濁度または粒子径として算出する。データ演算器6の演算には記録器に保持された設定値を取り込んでから検量線を作成し、濁度演算に粒子径の情報が必要な場合は粒子径分布の情報を入手し、その情報をもとに演算を実施し濁度値を算出する。   A data calculator (data converter) 6 mainly calculates an electrical signal from the light receiving element 5 and calculates a measured value of turbidity and particle diameter. Are connected to each other, and a calibration curve is created after fetching a set value recorded in advance in the recorder 8 and stored in the particle size distribution information storage 9 so as to be readable. The particle size distribution information is read, and the electrical signal of the light receiving element 5 is calculated as turbidity or particle size. For the calculation of the data calculator 6, a calibration curve is created after taking the set values held in the recorder, and when the particle size information is necessary for the turbidity calculation, the particle size distribution information is obtained, and the information Calculate the turbidity value based on the calculation.

校正液判別器7には、後述する出力器10と、入力器11と、制御器12が接続されている。入力器11は、測定に必要な設定値を入力したり、多種類の校正液の中の一つを指定することができるようになっている。   An output device 10, an input device 11, and a controller 12 described later are connected to the calibration liquid discriminator 7. The input device 11 can input a set value necessary for measurement and can designate one of many kinds of calibration solutions.

出力器10は、記録部と表示部を備え、この記録部は入力器11で入力された設定値や校正時に設定された値を保持し、またこの表示部はデータ演算器6で演算された値の表示、校正液判別器7で判別された値と同等な電気信号の出力、設定値を入力する際の数値表示、警報情報表示、エラー情報表示、単位表示、現在測定中なのか保守中なのかの表示・接点出力等を実施する。校正液判別器7は入力器11により校正液の一つを指定すると、その指定した校正液で校正を実施したように計器の測定値(ある校正液で計器による測定した値)を自動的に補正する機能を有している。制御器12は、レンズ類2、4の距離の調整や測定槽3の向きを変える等の作業が必要な場合はその信号を出しそれらを制御する。   The output unit 10 includes a recording unit and a display unit. The recording unit holds a set value input by the input unit 11 or a value set at the time of calibration. The display unit is calculated by the data calculator 6. Display of values, output of electrical signals equivalent to the values determined by the calibration liquid discriminator 7, numerical display when setting values are input, alarm information display, error information display, unit display, maintenance in progress The display of the inside, contact output, etc. are carried out. When the calibration liquid discriminator 7 designates one of the calibration liquids by the input unit 11, the measured value of the instrument (the value measured by the instrument with a certain calibration liquid) is automatically calculated as if calibration was performed with the designated calibration liquid. It has a function to correct. The controller 12 outputs a signal and controls them when operations such as adjusting the distance between the lenses 2 and 4 and changing the direction of the measuring tank 3 are necessary.

なお、粒子径分布情報格納器9の情報は、予め記憶しておくか、又は粒子径分布計13により計測してこれを粒子径分布情報格納器9に格納するようにしてもよい。   The information in the particle size distribution information storage 9 may be stored in advance, or may be measured by the particle size distribution meter 13 and stored in the particle size distribution information storage 9.

以上述べた図1の実施形態の作用効果について説明する。図1の実施形態において、重要なことは、粒子径分布情報格納器9に予め粒子径分布情報が格納されるか、又は粒子径分布計13により計測してこれを粒子径分布情報格納器9に格納されるようになっているので、この粒子径分布情報を使用して水質計器自体の補正ができるようになったことである。すなわち、前述したように濁度を測定する場合にはその校正液と実際の試料の粒子径分布が影響していると考えられる。まず水質計器自体がどの校正液を使用したかを認識できるようになっている。   The operational effects of the embodiment of FIG. 1 described above will be described. In the embodiment of FIG. 1, it is important that the particle size distribution information storage 9 stores the particle size distribution information in advance, or the particle size distribution meter 13 measures the particle size distribution information. Therefore, the water quality meter itself can be corrected using this particle size distribution information. That is, as described above, when measuring turbidity, it is considered that the particle size distribution of the calibration solution and the actual sample has an effect. First, the water quality meter itself can recognize which calibration solution was used.

なお、実施形態1における校正液判別器7の機能の一つである、入力器11により指定された校正液Xに対応した値に補正する機能は、データ演算器6に付加させるようにしたり、これ以外に水質計器のどこかに構成してもよい。   In addition, the function which correct | amends to the value corresponding to the calibration liquid X designated by the input device 11, which is one of the functions of the calibration liquid discriminator 7 in the first embodiment, can be added to the data calculator 6; In addition, you may comprise somewhere in a water quality meter.

(実施形態2)
図2は、校正液の粒子径分布状態を示すものであって、例えば日本国内で入手できる主な種類の校正液、すなわちA社製カオリン、B社製カオリン、C社製カオリン、ホルマジン、PSLの質量比又は個数比に対する粒径を示す粒子分布状態を示している。
(Embodiment 2)
FIG. 2 shows the particle size distribution state of the calibration solution. For example, main types of calibration solutions available in Japan, that is, Kaolin manufactured by Company A, Kaolin manufactured by Company B, Kaolin manufactured by Company C, formazin, PSL. The particle distribution state which shows the particle size with respect to mass ratio or number ratio of this is shown.

どの種類の校正液であるか判断する方法としては、例1として0.5〜1μm等一つの分布と全体比率で確定する。例2として0.5〜1μmと1〜3μm等複数または全部の分布について全体比率を比較し確定する。例3として0.5〜1μmと1〜3μm等の複数の分布の相互比で決定する等である。   As a method for determining which kind of calibration liquid is used, as Example 1, it is determined by one distribution such as 0.5 to 1 μm and the overall ratio. As Example 2, the overall ratio is compared and determined for a plurality of distributions such as 0.5 to 1 μm and 1 to 3 μm. As Example 3, it is determined by the mutual ratio of a plurality of distributions such as 0.5 to 1 μm and 1 to 3 μm.

これらの方法により校正液の確定を実施し、その情報は校正液判別器7に接続された出力器に有する記録部、あるいは校正液判別器7に接続された表示部により表示させるようにしてもよい。   The calibration solution is determined by these methods, and the information is displayed on the recording unit included in the output device connected to the calibration solution discriminator 7 or the display unit connected to the calibration solution discriminator 7. Good.

(実施形態3)
濁度の測定値は単位“度”“mg/L”等で表現される。しかし、“図2の校正液の粒子分布状態”における同濃度の“A社製カオリン”と“C社製カオリン”を同じ測定方式(例えば散乱光方式で)測定してもおなじ濁度にはならない。これは各粒子径における(粒子の大きさによる)影響度が異なるからである。ここで、各粒子径分布毎の粒子が濁度にどれだけ影響度があるか測定しておくとする。具体的には各粒子径の単一粒子径の同濃度試料を用意して、それぞれ濁度に対する影響度を予め測定する。この情報をもとに、図2の各粒子径(0.5〜1μm、1〜3μm、3〜7μm、7μm以上)におけるある水質計器の影響度の例を図3に示す。この各粒子径の影響度グラフの情報も、出力器10の記録部に記録させる。これらの情報があれば、前述した作用効果が実現できる。例えばA社製カオリンを通常使用して校正を実施していたとする。ある時A社製カオリンのロットが変わるとともにその質量比が通常
(0.5〜1μm):(1〜3μm)=約65:18
であったものが
(5〜1μm):(1〜3μm)=約75:8
に変化したとする。この場合実施形態2で示す機能があれば異常の表示・警報を出力することができる。
(Embodiment 3)
The measured value of turbidity is expressed in units of “degree”, “mg / L”, and the like. However, the same turbidity can be obtained by measuring the same concentration of “Kaolin manufactured by Company A” and “Kaolin manufactured by Company C” of the same concentration in “Particle distribution state of calibration solution in FIG. Don't be. This is because the degree of influence (depending on the size of the particles) at each particle size is different. Here, it is assumed that how much influence is exerted on the turbidity by the particles for each particle size distribution. Specifically, a sample having the same concentration of each particle size is prepared, and the degree of influence on turbidity is measured in advance. Based on this information, FIG. 3 shows an example of the influence degree of a certain water quality meter at each particle size (0.5 to 1 μm, 1 to 3 μm, 3 to 7 μm, 7 μm or more) in FIG. Information on the degree of influence graph of each particle size is also recorded in the recording unit of the output device 10. With these pieces of information, the above-described effects can be realized. For example, it is assumed that calibration is performed using Kaolin manufactured by Company A. At one time, the lot of kaolin manufactured by Company A changes and its mass ratio is usually (0.5-1 μm) :( 1-3 μm) = about 65:18
What was
(5-1 μm): (1-3 μm) = about 75: 8
Suppose that In this case, if there is a function shown in the second embodiment, an abnormality display / alarm can be output.

(実施形態4)
図1に、水質計器自体の測定方式以外の多種類の測定方式の測定値を表示することができる機能を付加したものである。水質計器にはレーザ式、散乱光方式、透過光方式、積分球方式等の測定方式がある。それぞれに測定値の差が現れるのは、各粒子径の大きさにより濁度への影響度が異なるからである。よって、粒子径分布の状態を測定する計器と予め図3や図4のように測定方式毎の各粒子分布の濁度影響度を測定しておき、そのデータを出力器10の記録部に記録しておけば異なる測定方式の水質計器の表示を示すことができる。例えばレーザ方式で濁度と粒子径の状態を測定し、その濁度値を元に、補正された積分球式の測定値を表示できる。(この場合レーザ式と積分球式の各粒子分布の濁度影響度を測定しておく必要がある。)
細かいやり方についてはいろいろあると考えられるが例えば、現試料の粒子径分布による粒子数から質量を求めその質量に影響度・試験でえられた係数を掛け算しその積算を求める等が考えられる。
(Embodiment 4)
In FIG. 1, a function capable of displaying the measurement values of various types of measurement methods other than the measurement method of the water quality meter itself is added. There are measuring methods such as a laser method, a scattered light method, a transmitted light method, and an integrating sphere method. The difference in measured value appears in each case because the degree of influence on turbidity varies depending on the size of each particle size. Therefore, an instrument for measuring the state of particle size distribution and the turbidity influence of each particle distribution for each measurement method as shown in FIGS. 3 and 4 are measured in advance, and the data is recorded in the recording unit of the output device 10. If it does, the display of the water quality meter of a different measurement system can be shown. For example, the state of turbidity and particle diameter can be measured by a laser method, and a corrected integrating sphere measurement value can be displayed based on the turbidity value. (In this case, it is necessary to measure the turbidity influence of each particle distribution of laser type and integrating sphere type.)
There may be various details of the method, but for example, the mass can be calculated from the number of particles based on the particle size distribution of the current sample, and the mass can be multiplied by the coefficient of influence and the coefficient obtained in the test.

粒子径分布が4つの場合の演算式例
k1*m1*e1+k2*m2*e2+k3*m3*e3+k4*m4*e4 …式1
ここで、
k1、k2、k3、k4:任意の補正係数
m1、m2、m3、m4:各粒子径分布の質量(または個数)
e1、e2、e3、e4:各粒子径分布の影響度(=実測値)、または理論的に求めた定数である。
Example of calculation formula when particle size distribution is four k1 * m1 * e1 + k2 * m2 * e2 + k3 * m3 * e3 + k4 * m4 * e4 Formula 1
here,
k1, k2, k3, k4: Arbitrary correction factors m1, m2, m3, m4: Mass (or number) of each particle size distribution
e1, e2, e3, e4: the degree of influence of each particle size distribution (= actual value), or a theoretically determined constant.

(実施形態5)
図1の出力器10の表示部に、ある粒子径分布の一部、小粒子径側をカット又は大粒子径側をカットして濁度の測定値を表示することができる機能を付加したものである。
(Embodiment 5)
The display unit of the output device 10 in FIG. 1 has a function of displaying a measured value of turbidity by cutting a part of a certain particle size distribution, cutting a small particle size side or cutting a large particle size side. It is.

本発明の水質計器の実施形態1を説明するためのブロック図。The block diagram for demonstrating Embodiment 1 of the water quality meter of this invention. 図1の記録器に記録されている質量比に対する粒径を示す校正液の粒子径分布を示す図。The figure which shows the particle size distribution of the calibration liquid which shows the particle size with respect to the mass ratio currently recorded on the recorder of FIG. 図1の水質計器具体的には濁度計に及ぼす各粒子径の影響度を説明するための図。The figure for demonstrating the influence degree of each particle diameter which has on the water quality meter of FIG. 1, specifically, a turbidimeter. 図1の水質計器具体的には濁度計に及ぼす各粒子径の影響度を説明するための図。The figure for demonstrating the influence degree of each particle diameter which has on the water quality meter of FIG. 1, specifically, a turbidimeter.

符号の説明Explanation of symbols

1…光源、2…レンズ類、3…測定槽、4…レンズ類、5…受光素子、6…データ演算器、7…校正液判別器、8…記録器、9…粒子径分布情報格納器、10…出力器、11…入力器、12…制御器。   DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Lenses, 3 ... Measuring tank, 4 ... Lenses, 5 ... Light receiving element, 6 ... Data calculator, 7 ... Calibration liquid discriminator, 8 ... Recorder, 9 ... Particle diameter distribution information storage DESCRIPTION OF SYMBOLS 10 ... Output device, 11 ... Input device, 12 ... Controller.

Claims (3)

光源からの光ビームを、測定槽中の粒子に照射して得られる透過光、散乱光、透過光と散乱光を混合した光のいずれかに基づく光干渉縞の光強度、又は、パルスカウント値を受光素子により電気信号に変換し、この電気信号から粒径又は濁度を演算するデータ演算器を備えた水質計器において、
多種類の標準校正液毎の質量比又は個数比に対する粒径を示す粒径分布を求める粒径分布作成器と、
多種類の標準校正液のなかの一つを指定可能な入力器を付加し、前記入力器で標準校正液の一つを外部から指定することにより、その既知の標準校正液で校正を実施したように補正する補正手段と、
を具備したことを特徴とする水質計器。
Light intensity of light interference fringes or pulse count value based on any of transmitted light, scattered light, light mixed with transmitted light and scattered light obtained by irradiating a particle in the measurement tank with a light beam from a light source In a water quality meter equipped with a data calculator that converts the particle size or turbidity from this electrical signal by converting the signal into an electrical signal by a light receiving element,
A particle size distribution generator for obtaining a particle size distribution indicating a particle size with respect to a mass ratio or a number ratio for each of various types of standard calibration solutions;
An input device that can specify one of many kinds of standard calibration solutions is added, and one of the standard calibration solutions is designated from the outside with the input device, and calibration is performed with the known standard calibration solution. Correction means for correcting
The water quality meter characterized by comprising.
水質計器自体の測定方式以外の多種類の測定方式の測定値を表示することができる機能を付加したことを特徴とする請求項1記載の水質計器。   The water quality meter according to claim 1, further comprising a function for displaying measured values of various types of measurement methods other than the measurement method of the water quality meter itself. ある粒子径分布の一部だけ小粒子径側をカット又は大粒子径側をカットして濁度の測定値を表示することができる機能を付加したことを特徴とする請求項1記載の水質計器。   2. The water quality meter according to claim 1, further comprising a function of displaying a measured value of turbidity by cutting a small particle diameter side or a large particle diameter side by a part of a certain particle size distribution. .
JP2006315626A 2006-11-22 2006-11-22 Water quality meter Pending JP2008128888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315626A JP2008128888A (en) 2006-11-22 2006-11-22 Water quality meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315626A JP2008128888A (en) 2006-11-22 2006-11-22 Water quality meter

Publications (1)

Publication Number Publication Date
JP2008128888A true JP2008128888A (en) 2008-06-05

Family

ID=39561712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315626A Pending JP2008128888A (en) 2006-11-22 2006-11-22 Water quality meter

Country Status (1)

Country Link
JP (1) JP2008128888A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516846B1 (en) * 2015-05-12 2016-09-15 Avl List Gmbh Apparatus and method for counting and / or measuring particles in a fluid stream
CN106323943A (en) * 2016-09-30 2017-01-11 天津市誉航润铭科技发展有限公司 Water quality detection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516846B1 (en) * 2015-05-12 2016-09-15 Avl List Gmbh Apparatus and method for counting and / or measuring particles in a fluid stream
AT516846A4 (en) * 2015-05-12 2016-09-15 Avl List Gmbh Apparatus and method for counting and / or measuring particles in a fluid stream
CN106323943A (en) * 2016-09-30 2017-01-11 天津市誉航润铭科技发展有限公司 Water quality detection system

Similar Documents

Publication Publication Date Title
CA1130604A (en) Oil-in-water method and detector
WO2014052293A1 (en) System and method for detection and system and method for water treatment
CN102890051B (en) Particle measurement method and device based on optical fiber type dynamic light scattering mutual correlation technology
CN106053391A (en) Turbidity measuring method, turbidity measuring device and turbidimeter
CN103528960A (en) Online monitoring system of sewage by spectral interference method
CN110736723B (en) Method and system for online simultaneous detection of low turbidity and high turbidity
Tassinari et al. Application of turbidity meters for the quantitative analysis of flocculation in a jar test apparatus
JP2008128888A (en) Water quality meter
JPS60100033A (en) Measurement of water quality using 3-wavelength based volume dissipation coefficient
Chen et al. High-Precision Monitoring System for Turbidity of Drinking Water by Using Scattering Method
CN102004067A (en) Detection system and method of particles in liquid
NO174866B (en) Fluid spreading cell
CN106769731B (en) Method and device for measuring concentration of particulate matter
Adzuan et al. Design and development of infrared turbidity sensor for Aluminium Sulfate coagulant process
CN115267753B (en) Underwater laser radar calibration method and device
US9182344B1 (en) Device for the detector of fouling on optical surfaces of a nephelometric turbidimeter submerged in a liquid
Ebie et al. New measurement principle and basic performance of high-sensitivity turbidimeter with two optical systems in series
CN109696423A (en) A kind of automatic switching range high-precision transmissometer
US5126581A (en) Particle measurement method and apparatus for determining corrected particle diameter
Nuzula et al. Manufacturing temperature and turbidity sensor based on ATMega 8535 microcontroller
Gu et al. Research on the fractal model and calibration of the aerosol mass concentration measurement based on the particle group light scattering
RU2356028C1 (en) Device for proximate analysis of fluid industrial-class purity
CN207528636U (en) A kind of whole blood CRP detection devices
Szymanski Aerosol concentration measurement with multiple light scattering system and laser aerosol spectrometer
JPH11230889A (en) Fine particle counter type turbidimeter