JP2008128542A - METHOD OF DETECTING NOx COMPOUND ACCUMULATED IN CRYOGENIC SEPARATION FACILITY - Google Patents

METHOD OF DETECTING NOx COMPOUND ACCUMULATED IN CRYOGENIC SEPARATION FACILITY Download PDF

Info

Publication number
JP2008128542A
JP2008128542A JP2006313047A JP2006313047A JP2008128542A JP 2008128542 A JP2008128542 A JP 2008128542A JP 2006313047 A JP2006313047 A JP 2006313047A JP 2006313047 A JP2006313047 A JP 2006313047A JP 2008128542 A JP2008128542 A JP 2008128542A
Authority
JP
Japan
Prior art keywords
flow path
nox
gas
cryogenic separation
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006313047A
Other languages
Japanese (ja)
Other versions
JP4624336B2 (en
Inventor
Tsutomu Nakamura
励 中村
Hidekazu Nagai
英一 永井
Masao Yasuda
匡男 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU COMBINAT KODO TOGO UNEI
Kashima Oil Co Ltd
Research Association of Refinery Integration for Group Operation
Original Assignee
SEKIYU COMBINAT KODO TOGO UNEI
Kashima Oil Co Ltd
Research Association of Refinery Integration for Group Operation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU COMBINAT KODO TOGO UNEI, Kashima Oil Co Ltd, Research Association of Refinery Integration for Group Operation filed Critical SEKIYU COMBINAT KODO TOGO UNEI
Priority to JP2006313047A priority Critical patent/JP4624336B2/en
Publication of JP2008128542A publication Critical patent/JP2008128542A/en
Application granted granted Critical
Publication of JP4624336B2 publication Critical patent/JP4624336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/062Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/064Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0655Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/066Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/14Coke-ovens gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/90Details about safety operation of the installation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of detecting a NOx compound accumulated in cryogenic separation facilities with high accuracy. <P>SOLUTION: In the cryogenic separation facilities 1 comprising a heat exchanger 2 with which one or more pairs of introduction flow channels 5, 7, 8, 11 and discharge flow channels 6, 9, 12, 13 are connected, and gas-liquid separation tanks 4, 5, pressures in one or more pairs of introduction flow channels 5, 7, 8, 11 and discharge flow channels 6, 9, 12, 13 of the heat exchanger 2 are respectively measured, and pressure loss between the introduction flow channels 5, 7, 8, 11 and the discharge flow channels 6, 9, 12, 13 is calculated to detect the NOx compound accumulated in the cryogenic separation facilities 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、深冷分離設備内に蓄積したNOx化合物の検出方法に関し、特に深冷分離設備内におけるNOx化合物の蓄積の有無を精度良く判断する方法、更には、深冷分離設備内におけるNOx化合物の蓄積量を精度良く測定する方法に関するものである。   The present invention relates to a method for detecting NOx compounds accumulated in a cryogenic separation facility, in particular, a method for accurately determining the presence or absence of accumulation of NOx compounds in the cryogenic separation facility, and further a NOx compound in the cryogenic separation facility. The present invention relates to a method for accurately measuring the amount of accumulation.

一般に、石油分解ガスやコークス炉ガスは、極微量のNOxを含有している。そのため、これら石油分解ガスやコークス炉ガス等の原料ガスを、深冷分離設備を用いて冷却し、気液分離操作を行う装置においては、原料ガス中に存在する極微量のNOxが深冷分離設備の熱交換器(冷却器)および配管類で凝縮し、共存する酸素、及び炭化水素、特にジエン類と反応して、爆発性のNOx化合物が生成することが知られている(非特許文献1及び2参照)。   Generally, petroleum cracking gas and coke oven gas contain a very small amount of NOx. Therefore, in a device that cools raw gas such as petroleum cracking gas and coke oven gas using a cryogenic separation facility and performs a gas-liquid separation operation, a very small amount of NOx present in the raw material gas is cryogenically separated. It is known that it condenses in the heat exchanger (cooler) and piping of the equipment and reacts with coexisting oxygen and hydrocarbons, particularly dienes, to generate explosive NOx compounds (Non-Patent Documents). 1 and 2).

そして、この爆発性のNOx化合物は、深冷分離設備のプロセス流路において徐々に蓄積し、相当量以上のNOx化合物が蓄積した場合には、熱衝撃・打撃・振動等の衝撃により分解して爆発を引き起こすことになる。   This explosive NOx compound gradually accumulates in the process flow path of the cryogenic separation facility, and when a considerable amount of NOx compound accumulates, it decomposes by impact such as thermal shock, impact, vibration, etc. It will cause an explosion.

このため、深冷分離設備を安全に運転するためには、深冷分離設備内に蓄積したNOx化合物量を測定し、一定量以上のNOx化合物が蓄積した場合は、アルカリ水溶液、メタノール等の極性溶媒を用いて、深冷分離設備の熱交換器(冷却器)および配管類を洗浄し、NOx化合物を除去する必要がある。   For this reason, in order to operate the cryogenic separation facility safely, the amount of NOx compound accumulated in the cryogenic separation facility is measured, and when a certain amount or more of NOx compound accumulates, the polarity of alkaline aqueous solution, methanol, etc. It is necessary to wash the heat exchanger (cooler) and piping of the cryogenic separation facility with a solvent to remove NOx compounds.

これに対して、深冷分離設備内に蓄積したNOx化合物量を測定する手段としては、従来、NOxについて深冷分離設備のIN/OUTの物質収支をとり、深冷分離設備内に蓄積したNOx化合物の量を推算する方法や、深冷分離設備の機器について圧力損失を測定する方法が採られている(非特許文献3)。   On the other hand, as a means for measuring the amount of NOx compound accumulated in the cryogenic separation facility, conventionally, the NOx accumulated in the cryogenic separation facility is obtained by taking the material balance of IN / OUT of the cryogenic separation facility for NOx. A method for estimating the amount of a compound and a method for measuring pressure loss for a device of a cryogenic separation facility have been adopted (Non-patent Document 3).

長谷場慈、外2名,「深冷ガス分離装置における酸化窒素の危険性」,安全工学,Vol.8,No.1,p.22−29(1969)Haseba, 2 others, “Danger of Nitric Oxide in Cryogenic Gas Separators”, Safety Engineering, Vol. 8, no. 1, p. 22-29 (1969) W. H. Henstock, "NOx in the Cryogenic Hydrogen Recovery Section of an Olefins Production Unit", Plant/Operations Progress, vol.5, No,4, p232-237 (1986)W. H. Henstock, "NOx in the Cryogenic Hydrogen Recovery Section of an Olefins Production Unit", Plant / Operations Progress, vol.5, No, 4, p232-237 (1986) W. H. Isalski and B. Pacalowska, "A novel process recovers olefins from cracker offgas", Chemical engineering, vol.103, p133-136 (1996)W. H. Isalski and B. Pacalowska, "A novel process recovers olefins from cracker offgas", Chemical engineering, vol.103, p133-136 (1996)

しかしながら、深冷分離設備のIN/OUTの物質収支をとり、蓄積したNOx化合物の量を推算する方法については、頻繁に(少なくとも1回/日)深冷分離設備のIN/OUTの分析を行う必要があり、分析の負荷が大きい。また、この方法では、分析誤差が大きく、更には、オンラインで分析できないため、NOx化合物蓄積量の推算結果の精度が低いという問題がある。   However, for the method of estimating the amount of accumulated NOx compounds by taking the IN / OUT mass balance of the cryogenic separation facility, the IN / OUT of the cryogenic separation facility is analyzed frequently (at least once / day). It is necessary and the load of analysis is large. In addition, this method has a problem that the analysis error is large and the analysis cannot be performed online, so that the accuracy of the estimation result of the NOx compound accumulation amount is low.

一方、深冷分離設備の機器について圧力損失を測定する方法については、深冷分離設備のプロセス流路には通常圧力及び/又は液面を制御する弁が設置されており、NOx化合物が相当量蓄積するまで圧力損失の増加として検出することが困難であった。   On the other hand, regarding the method of measuring the pressure loss for the equipment of the cryogenic separation facility, a valve for controlling the normal pressure and / or the liquid level is installed in the process flow path of the cryogenic separation facility, and a considerable amount of NOx compound is present. Until accumulation, it was difficult to detect as an increase in pressure loss.

そこで、本発明の目的は、上記従来技術の問題を解決し、深冷分離設備内に蓄積したNOx化合物を精度良く検出する方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems of the prior art and provide a method for accurately detecting NOx compounds accumulated in a cryogenic separation facility.

本発明者らは、上記目的を達成するために鋭意検討した結果、接触分解装置(FCC装置)から副生するエチレンおよびプロピレンなどのオレフィン類を含有する軽質オフガス(FCCオフガス)等を、深冷分離設備を用いて冷却し、オレフィン類等を濃縮する装置において、NOx化合物が蓄積する可能性がある−50℃以下となる深冷分離設備の熱交換器(冷却器)の導入流路と排出流路(IN/OUTのプロセス流路)に複数のノズルを設置し、このノズルに同一の圧力計を連結して導入流路と排出流路との間の圧力損失を測定することで、深冷分離設備のプロセス流路に蓄積したNOx化合物を精度良く検出できることを見出し、この知見を基に本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention conducted a deep cooling of light offgas (FCC offgas) containing olefins such as ethylene and propylene by-produced from a catalytic cracking apparatus (FCC apparatus). In an apparatus that cools using a separation facility and concentrates olefins, etc., there is a possibility of accumulation of NOx compounds. A plurality of nozzles are installed in the flow path (IN / OUT process flow path), and the same pressure gauge is connected to this nozzle to measure the pressure loss between the introduction flow path and the discharge flow path. The present inventors have found that NOx compounds accumulated in the process flow path of the cold separation facility can be detected with high accuracy, and have completed the present invention based on this knowledge.

即ち、本発明のNOx化合物の検出方法は、一対以上の導入流路と排出流路が連結された熱交換器と、気液分離槽とを具える深冷分離設備内に蓄積したNOx化合物の検出方法であって、
前記熱交換器の一対以上の導入流路と排出流路の圧力をそれぞれ測定し、導入流路と排出流路の間の圧力損失を計算して、深冷分離設備内に蓄積したNOx化合物を検出することを特徴とする。
That is, the NOx compound detection method of the present invention is a method of detecting NOx compounds accumulated in a cryogenic separation facility comprising a heat exchanger in which a pair of introduction flow paths and discharge flow paths are connected, and a gas-liquid separation tank. A detection method,
Measure the pressures of one or more inlet and outlet channels of the heat exchanger, calculate the pressure loss between the inlet and outlet channels, and store the NOx compounds accumulated in the cryogenic separation facility. It is characterized by detecting.

本発明のNOx化合物の検出方法において、前記圧力損失を計算する導入流路と排出流路の対は、導入流路と排出流路の少なくとも一方が−50℃以下であることが好ましい。   In the NOx compound detection method of the present invention, it is preferable that at least one of the introduction flow path and the discharge flow path is −50 ° C. or lower in the pair of the introduction flow path and the discharge flow path for calculating the pressure loss.

本発明のNOx化合物の検出方法の他の好適例においては、前記圧力損失を計算する導入流路と排出流路の対において導入流路の圧力の測定に使用する圧力計が、排出流路の圧力の測定に使用する圧力計と同一である。   In another preferred embodiment of the method for detecting a NOx compound of the present invention, a pressure gauge used for measuring the pressure of the introduction flow path in the pair of the introduction flow path and the discharge flow path for calculating the pressure loss is provided in the discharge flow path. It is the same as the pressure gauge used to measure pressure.

本発明によれは、深冷分離設備の熱交換器の導入流路と排出流路の間の圧力損失を測定することで、NOx化合物の蓄積の有無、更には、NOx化合物の蓄積箇所を直ちに特定することができる。また、圧力損失の値から、NOx化合物の蓄積量を求めることもできる。   According to the present invention, by measuring the pressure loss between the introduction flow path and the discharge flow path of the heat exchanger of the cryogenic separation facility, the presence or absence of NOx compound accumulation, and further the accumulation location of NOx compound can be immediately determined. Can be identified. Further, the accumulated amount of NOx compound can be obtained from the pressure loss value.

更に、同一の圧力計を使用することで、圧力損失の値の信頼性が向上し、圧力損失の値の増加から蓄積したNOx化合物を精度良く検出することができ、深冷分離設備を安全に運転することが可能となる。   In addition, by using the same pressure gauge, the reliability of the pressure loss value is improved, and the accumulated NOx compounds can be detected accurately from the increase in the pressure loss value, and the cryogenic separation equipment can be safely operated. It becomes possible to drive.

以下に、図を参照しながら、本発明を詳細に説明する。図1は、本発明のNOx化合物の検出方法を適用できる深冷分離設備の一例の概略図である。図1に示す深冷分離設備1は、熱交換器(冷却器)2と、第一気液分離槽3と、第二気液分離槽4とを具える。なお、図1に示す深冷分離設備1は、熱交換器を一つ、気液分離槽を二つ具えるが、本発明のNOx化合物の検出方法を適用する深冷分離設備の熱交換器及び気液分離槽の数は、これに限られるものではない。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view of an example of a cryogenic separation facility to which the NOx compound detection method of the present invention can be applied. A cryogenic separation facility 1 shown in FIG. 1 includes a heat exchanger (cooler) 2, a first gas-liquid separation tank 3, and a second gas-liquid separation tank 4. The cryogenic separation facility 1 shown in FIG. 1 has one heat exchanger and two gas-liquid separation tanks. The heat exchanger of the cryogenic separation facility to which the NOx compound detection method of the present invention is applied. The number of gas-liquid separation tanks is not limited to this.

また、図1に示す深冷分離設備1は、NOx含有ガスを熱交換器2に導入するための導入流路5と、熱交換器2で冷却されたNOx含有ガスを熱交換器2から排出するための排出流路6と、第一気液分離槽3で気液分離された液分を熱交換器2に導入するための導入流路7と、第一気液分離槽3で気液分離されたガス分を熱交換器2に再度導入するための導入流路8と、熱交換器2で再度冷却されたガス分を熱交換器2から排出するための排出流路9と、第二気液分離槽4で気液分離されたガス分を深冷分離設備1の外部に排出するための流路10と、第二気液分離槽4で気液分離された液分を熱交換器2に導入するための導入流路11と、導入流路7と対をなし、熱交換器2に冷熱を供給し常温となった気体を熱交換器2から排出するための排出流路12と、導入流路11と対をなし、熱交換器2に冷熱を供給し常温となった気体を熱交換器2から排出するための排出流路13とを具える。なお、排出流路12と排出流路13とは結合して、流路14に連結されている。   Further, the cryogenic separation facility 1 shown in FIG. 1 discharges the NOx-containing gas cooled by the heat exchanger 2 from the introduction channel 5 for introducing the NOx-containing gas into the heat exchanger 2 and the heat exchanger 2. A discharge passage 6 for introducing the liquid, and an introduction passage 7 for introducing the liquid component separated in the first gas-liquid separation tank 3 into the heat exchanger 2, and a gas-liquid in the first gas-liquid separation tank 3. An introduction flow path 8 for reintroducing the separated gas component into the heat exchanger 2, a discharge flow channel 9 for discharging the gas component cooled again by the heat exchanger 2 from the heat exchanger 2, and Heat exchange is performed between the liquid component separated in the second gas-liquid separation tank 4 and the flow path 10 for discharging the gas component separated in the second gas-liquid separation tank 4 to the outside of the cryogenic separation facility 1. In order to form a pair with the introduction flow path 11 and the introduction flow path 7 for introduction into the heat exchanger 2, to supply cold heat to the heat exchanger 2, and to discharge the gas at normal temperature from the heat exchanger 2. And the discharge passage 12, without the introduction passage 11 a pair, the gas became fed normal temperature cold heat to the heat exchanger 2 comprises a discharge channel 13 for discharging from the heat exchanger 2. Note that the discharge flow path 12 and the discharge flow path 13 are combined and connected to the flow path 14.

更に、図1に示す深冷分離設備1においては、第一気液分離槽3に液面計3Aが設置されており、導入流路7に配置されたバルブ7Aをコントロールして、第一気液分離槽3の液面レベルを制御することができる。また、第二気液分離槽4には液面計4Aが設置されており、導入流路11に配置されたバルブ11Aをコントロールして、第二気液分離槽4の液面レベルを制御することができる。   Further, in the cryogenic separation facility 1 shown in FIG. 1, a liquid level gauge 3A is installed in the first gas-liquid separation tank 3, and the valve 7A disposed in the introduction flow path 7 is controlled to control the first gas. The liquid level of the liquid separation tank 3 can be controlled. Further, a liquid level gauge 4A is installed in the second gas-liquid separation tank 4, and the liquid level of the second gas-liquid separation tank 4 is controlled by controlling the valve 11A disposed in the introduction flow path 11. be able to.

図1に示す深冷分離設備1においては、原料のNOx含有ガスを導入流路5を通じて熱交換器2に導入し、熱交換器2においてNOx含有ガスを冷却する。ここで、冷却温度は、目的に応じて適宜設定され、例えば、−10〜−65℃の範囲である。   In the cryogenic separation facility 1 shown in FIG. 1, the raw material NOx-containing gas is introduced into the heat exchanger 2 through the introduction flow path 5, and the NOx-containing gas is cooled in the heat exchanger 2. Here, the cooling temperature is appropriately set according to the purpose, and is in the range of −10 to −65 ° C., for example.

なお、原料のNOx含有ガスとしては、NOxを含有する石油分解ガス及びコークス炉ガスが好ましい。石油分解ガスとしては、例えば、FCC装置のオフガス、スチームリフォーミング法、部分酸化法による水素製造設備の熱分解ガス、及びビスブレーキング法、コーキング法による熱分解ガスなどがあげられる。また、深冷分離設備1に導入するNOx含有ガスの量は、深冷分離設備1の規模に応じて変化し、特に限定されるものではないが、一例として、処理能力が10,000Nm3/Hr程度の場合は、5,000Nm3/Hr〜11,000Nm3/Hrの範囲が好ましい。 As the raw material NOx-containing gas, petroleum cracking gas and coke oven gas containing NOx are preferable. Examples of petroleum cracking gas include off-gas of FCC equipment, steam reforming method, pyrolysis gas of hydrogen production facility by partial oxidation method, and pyrolysis gas of visbreaking method and coking method. Further, the amount of NOx-containing gas introduced into the cryogenic separation facility 1 varies depending on the scale of the cryogenic separation facility 1 and is not particularly limited. As an example, the processing capacity is 10,000 Nm 3 / for about Hr, preferably a range of 5,000Nm 3 / Hr~11,000Nm 3 / Hr.

熱交換器2で冷却されたNOx含有ガスは、排出流路6から熱交換器2の外部に排出されると共に、排出流路6を通じて第一気液分離槽3に送られ、第一気液分離槽3において、ガス分と液分に分離される。   The NOx-containing gas cooled by the heat exchanger 2 is discharged from the discharge flow path 6 to the outside of the heat exchanger 2 and sent to the first gas-liquid separation tank 3 through the discharge flow path 6. In the separation tank 3, it is separated into a gas component and a liquid component.

第一気液分離槽3で気液分離された液分は、導入流路7を通じて熱交換器2に導入され、原料のNOx含有ガスへ冷熱を供給することで、常温まで戻され、気体となり、排出流路12から熱交換器2の外部に排出される。   The liquid component separated in the first gas-liquid separation tank 3 is introduced into the heat exchanger 2 through the introduction flow path 7, and is returned to room temperature by supplying cold heat to the raw material NOx-containing gas to become a gas. Then, the heat is discharged from the discharge channel 12 to the outside of the heat exchanger 2.

一方、第一気液分離槽3で気液分離されたガス分は、導入流路8を通じて熱交換器2に再度導入され、熱交換器2において更に冷却される。ここで、冷却温度は、目的に応じて適宜設定され、例えば、−65〜−130℃の範囲である。   On the other hand, the gas component separated in the first gas-liquid separation tank 3 is reintroduced into the heat exchanger 2 through the introduction flow path 8 and further cooled in the heat exchanger 2. Here, the cooling temperature is appropriately set according to the purpose, and is, for example, in the range of −65 to −130 ° C.

熱交換器2で再度冷却されたガス分は、排出流路9から熱交換器2の外部に排出されると共に、排出流路9を通じて第二気液分離槽4に送られ、第二気液分離槽4において、ガス分と液分に再度分離される。   The gas component cooled again by the heat exchanger 2 is discharged from the discharge channel 9 to the outside of the heat exchanger 2 and is sent to the second gas-liquid separation tank 4 through the discharge channel 9, so that the second gas-liquid is discharged. In the separation tank 4, the gas and liquid are separated again.

第二気液分離槽4で気液分離されたガス分は、通常、メタン、窒素、水素等を含み、流路10を通じて深冷分離設備1の外部に排出される。   The gas component separated in the second gas-liquid separation tank 4 usually contains methane, nitrogen, hydrogen, etc., and is discharged to the outside of the cryogenic separation facility 1 through the flow path 10.

一方、第二気液分離槽4で気液分離された液分は、減圧され冷媒として導入流路11を通じて熱交換器2に導入され、常温まで戻され、気体となり、排出流路13から熱交換器2の外部に排出される。排出流路13から排出された気体は、排出流路12から排出された気体と合流し、流路14を通じて深冷分離設備1の外部に排出される。ここで、深冷分離設備1の外部に排出される気体は、エチレン、プロピレン、プロパン等を含み、例えば、図1中の槽15を経て、後段の精留装置に送られ、各成分に分離される。   On the other hand, the liquid component separated in the second gas-liquid separation tank 4 is decompressed and introduced as a refrigerant into the heat exchanger 2 through the introduction channel 11, is returned to room temperature, becomes a gas, and is heated from the discharge channel 13. It is discharged outside the exchanger 2. The gas discharged from the discharge flow path 13 merges with the gas discharged from the discharge flow path 12, and is discharged to the outside of the cryogenic separation facility 1 through the flow path 14. Here, the gas discharged to the outside of the cryogenic separation facility 1 includes ethylene, propylene, propane, and the like, and is sent to a rectifying apparatus at the subsequent stage via, for example, the tank 15 in FIG. 1 and separated into each component. Is done.

図1に示す深冷分離設備1において、導入流路5には、圧力計を連結するためのノズル5Bが設置されており、ノズル5Bに圧力計を連結することで、導入流路5の圧力を測定することができる。また、排出流路6には、圧力計を連結するためのノズル6Bが設置されており、導入流路7には、圧力計を連結するためのノズル7Bが設置されており、導入流路8には、圧力計を連結するためのノズル8Bが設置されており、排出流路9には、圧力計を連結するためのノズル9Bが設置されており、導入流路11には、圧力計を連結するためのノズル11Bが設置されており、排出流路12には、圧力計を連結するためのノズル12Bが設置されており、排出流路13には、圧力計を連結するためのノズル13Bが設置されており、流路14には、圧力計を連結するためのノズル14Bが設置されており、各ノズル6B,7B,8B,9B,11B,12B,13B,14Bに圧力計を連結することで、各流路6,7,8,9,11,12,13,14の圧力を測定することができる。なお、図1において、ノズル6B,7B,8B,9B,11B,12B,13Bの先端は、深冷分離設備1の外側に位置しているものとする。   In the cryogenic separation facility 1 shown in FIG. 1, a nozzle 5B for connecting a pressure gauge is installed in the introduction flow path 5, and the pressure in the introduction flow path 5 is obtained by connecting the pressure gauge to the nozzle 5B. Can be measured. The discharge channel 6 is provided with a nozzle 6B for connecting a pressure gauge. The introduction channel 7 is provided with a nozzle 7B for connecting a pressure gauge. The nozzle 8B for connecting the pressure gauge is installed, the nozzle 9B for connecting the pressure gauge is installed in the discharge channel 9, and the pressure gauge is installed in the introduction channel 11. A nozzle 11B for connection is installed, a nozzle 12B for connecting a pressure gauge is installed in the discharge flow path 12, and a nozzle 13B for connecting a pressure gauge is connected to the discharge flow path 13. In the flow path 14, a nozzle 14B for connecting a pressure gauge is installed, and a pressure gauge is connected to each nozzle 6B, 7B, 8B, 9B, 11B, 12B, 13B, 14B. Thus, each flow path 6, 7, 8, 9, 11, 12 Pressure 13, 14 can be measured. In FIG. 1, it is assumed that the tips of the nozzles 6B, 7B, 8B, 9B, 11B, 12B, and 13B are located outside the cryogenic separation facility 1.

図1に示す深冷分離設備1において、導入流路5と排出流路6とは熱交換器2を挟んで対をなしており、導入流路5と排出流路6の圧力をそれぞれ測定することで、導入流路5と排出流路6の間の圧力損失を測定することができる。また、導入流路7と排出流路12とは対をなし、導入流路7と排出流路12の圧力をそれぞれ測定することで、導入流路7と排出流路12の間の圧力損失を測定することができる。更に、導入流路8と排出流路9も対をなしており、導入流路8と排出流路9の圧力をそれぞれ測定することで、導入流路8と排出流路9の間の圧力損失を測定することができる。また更に、導入流路11と排出流路13も対をなし、導入流路11と排出流路13の圧力をそれぞれ測定することで、導入流路11と排出流路13の間の圧力損失を測定することができる。   In the cryogenic separation facility 1 shown in FIG. 1, the introduction flow path 5 and the discharge flow path 6 are paired with the heat exchanger 2 interposed therebetween, and the pressures of the introduction flow path 5 and the discharge flow path 6 are measured. Thereby, the pressure loss between the introduction flow path 5 and the discharge flow path 6 can be measured. In addition, the introduction flow path 7 and the discharge flow path 12 are paired, and the pressure loss between the introduction flow path 7 and the discharge flow path 12 is reduced by measuring the pressure of the introduction flow path 7 and the discharge flow path 12 respectively. Can be measured. Furthermore, the introduction flow path 8 and the discharge flow path 9 also form a pair, and the pressure loss between the introduction flow path 8 and the discharge flow path 9 is measured by measuring the pressures of the introduction flow path 8 and the discharge flow path 9 respectively. Can be measured. Furthermore, the inlet channel 11 and the outlet channel 13 are also paired, and the pressure loss between the inlet channel 11 and the outlet channel 13 is reduced by measuring the pressure of the inlet channel 11 and the outlet channel 13 respectively. Can be measured.

図1に示す深冷分離設備1においては、本発明に従い、導入流路5と排出流路6のそれぞれの圧力、導入流路7と排出流路12のそれぞれの圧力、導入流路8と排出流路9のそれぞれの圧力、導入流路11と排出流路13のそれぞれの圧力を測定することで、導入流路5,7,8,11と排出流路6,12,9,13との間の圧力損失をそれぞれ計算して、NOx化合物の蓄積の有無及び蓄積箇所を判断することができる。また、圧力損失の大きさから、NOx化合物の蓄積量を判断することもできる。   In the cryogenic separation facility 1 shown in FIG. 1, according to the present invention, the pressures of the introduction channel 5 and the discharge channel 6, the pressures of the introduction channel 7 and the discharge channel 12, the introduction channel 8 and the discharge, respectively. By measuring the respective pressures in the flow channel 9 and the respective pressures in the introduction flow channel 11 and the discharge flow channel 13, the introduction flow channels 5, 7, 8, 11 and the discharge flow channels 6, 12, 9, 13 are It is possible to determine the presence or absence and accumulation location of NOx compounds by respectively calculating the pressure loss between them. Further, the accumulated amount of NOx compound can also be determined from the magnitude of pressure loss.

本発明においては、熱交換器2の導入流路及び排出流路の少なくとも一方が−50℃以下となる導入流路と排出流路の対の圧力をそれぞれ測定し、導入流路と排出流路の間の圧力損失をモニタリングして、NOx化合物の蓄積の有無及びNOx化合物の蓄積量を判断することが好ましい。例えば、図1においては、導入流路11の温度が特に低くなるため、導入流路11と排出流路13の対の圧力を測定することが好ましい。NOx化合物は、−50℃以下となる流路に蓄積する可能性が高いため、−50℃以下となる流路の圧力損失をモニタリングすることで、NOx化合物の蓄積の有無及びNOx化合物の蓄積量を早期に判断することができる。また、蓄積したNOx化合物を適切に除去することで、深冷分離設備1を安全に運転することが可能となる。   In the present invention, the pressure of the pair of the introduction flow path and the discharge flow path at which at least one of the introduction flow path and the discharge flow path of the heat exchanger 2 is −50 ° C. or less is measured, respectively. It is preferable to determine the presence or absence of NOx compound accumulation and the amount of NOx compound accumulation by monitoring the pressure loss during the period. For example, in FIG. 1, since the temperature of the introduction flow path 11 is particularly low, it is preferable to measure the pressure of the pair of the introduction flow path 11 and the discharge flow path 13. Since there is a high possibility that NOx compounds will accumulate in channels that are below -50 ° C, the presence or absence of NOx compounds and the amount of NOx compounds accumulated can be monitored by monitoring the pressure loss in channels that are below -50 ° C. Can be determined early. Further, the cryogenic separation facility 1 can be safely operated by appropriately removing the accumulated NOx compound.

本発明においては、圧力損失を計算する導入流路と排出流路の対において、導入流路の圧力の測定に使用する圧力計が、排出流路の圧力の測定に使用する圧力計と同一であることが好ましい。この場合、圧力計に起因する誤差を排除することができ、対をなす導入流路と排出流路の間の圧力損失を精度良く求めることが可能となる。また、使用する圧力計は、その指示値について精度を確認したものを使用する必要がある。   In the present invention, the pressure gauge used for measuring the pressure of the introduction flow path in the pair of the introduction flow path and the discharge flow path for calculating the pressure loss is the same as the pressure gauge used for measuring the pressure of the discharge flow path. Preferably there is. In this case, an error due to the pressure gauge can be eliminated, and the pressure loss between the paired introduction flow path and discharge flow path can be obtained with high accuracy. Moreover, it is necessary to use the pressure gauge to check the accuracy of the indicated value.

本発明において、圧力計を連結するためのノズルは、多い方が好ましいが、ノズルの数が多いと熱交換器2の冷熱を失う機会が多くなるため、熱交換器2の導入流路5,7,8,11及び排出流路6,12,9,13の圧力を測定できる部分のみ設置することが好ましい。   In the present invention, the number of nozzles for connecting the pressure gauges is preferably large. However, if the number of nozzles is large, the chance of losing the cold heat of the heat exchanger 2 increases. It is preferable to install only portions where pressures of 7, 8, 11 and the discharge channels 6, 12, 9, 13 can be measured.

また、圧力計を取り付けるノズルは、外気と触れるため、熱交換器2の冷熱を失う部分でもある。そのため、ノズルの長さは、必要最小限とすることが好ましい。更に、圧力計を取り付けるノズルは、圧力損失の測定を短時間とするために、レイアウトを工夫して設置場所を集約することが好ましい。   Moreover, since the nozzle which attaches a pressure gauge contacts external air, it is also a part which loses the cold heat of the heat exchanger 2. FIG. For this reason, it is preferable to minimize the length of the nozzle. Furthermore, it is preferable that the nozzle to which the pressure gauge is attached collects the installation place by devising the layout in order to make the pressure loss measurement short.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
表1に示す組成を有するFCC装置から副生するエチレンおよびプロピレンなどのオレフィン類を含有する軽質オフガス(FCCオフガス, 10,000Nm3/Hr)を、アミン洗浄装置およびソーダ洗浄装置等で含有するH2S、CO2等を除去した後、図1に示すような熱交換器2の導入流路5,7,8,11及び排出流路6,9,12,13の圧力測定用ノズル5B,6B,7B,8B,9B,11B,12B,13Bを備えた深冷分離設備1に導入した。
(Example 1)
H containing light offgas (FCC offgas, 10,000 Nm 3 / Hr) containing olefins such as ethylene and propylene by-produced from the FCC apparatus having the composition shown in Table 1 in an amine cleaning apparatus and a soda cleaning apparatus After removing 2 S, CO 2 and the like, the pressure measuring nozzles 5B of the introduction flow paths 5, 7, 8, 11 and the discharge flow paths 6, 9, 12, 13 of the heat exchanger 2 as shown in FIG. It introduced into the cryogenic separation equipment 1 provided with 6B, 7B, 8B, 9B, 11B, 12B, 13B.

Figure 2008128542
Figure 2008128542

深冷分離設備をプロセス条件で連続運転し、熱交換器2の導入流路5,7,8,11及び排出流路6,9,12,13の圧力を測定し、圧力損失を計算した。結果を表2及び表3に示す。   The cryogenic separation facility was continuously operated under process conditions, the pressures of the introduction flow paths 5, 7, 8, 11 and the discharge flow paths 6, 9, 12, 13 of the heat exchanger 2 were measured, and the pressure loss was calculated. The results are shown in Tables 2 and 3.

Figure 2008128542
Figure 2008128542

Figure 2008128542
Figure 2008128542

表3の結果から、3ヶ月運転した後、図1の導入流路11(ノズル11Bにて測定)と排出流路13(ノズル13Bにて測定)の間の差圧の増加が観測されたことから、導入流路11及び排出流路13並びにその間をメタノールで洗浄し、洗浄液を図1の槽15にて回収した。回収した洗浄メタノールを濾過して固形物を除いた後、JIS B 7953に規定する分析法に準拠して、メタノール中のNO2量を算出した。その結果、洗浄メタノール50L中にNO2が160ppmwの濃度で溶解しており、導入流路11及び排出流路13並びにその間のいずれかにNOx化合物が蓄積していることを確認した。 From the results in Table 3, an increase in the differential pressure between the introduction flow path 11 (measured at the nozzle 11B) and the discharge flow path 13 (measured at the nozzle 13B) in FIG. 1 was observed after operating for 3 months. Then, the introduction flow path 11 and the discharge flow path 13 and the space between them were washed with methanol, and the washing liquid was collected in the tank 15 of FIG. The recovered washing methanol was filtered to remove solids, and then the amount of NO 2 in methanol was calculated according to the analysis method specified in JIS B 7953. As a result, it was confirmed that NO 2 was dissolved at a concentration of 160 ppmw in 50 L of washing methanol, and NOx compounds were accumulated in the introduction flow path 11 and the discharge flow path 13 and any of them.

(比較例1)
比較例として、深冷分離設備1全体での差圧(図1のノズル5Bとノズル14Bで測定した圧力の差)の経時変化を表4に示す。
(Comparative Example 1)
As a comparative example, Table 4 shows changes over time in the differential pressure (the difference in pressure measured by the nozzle 5B and the nozzle 14B in FIG. 1) in the entire cryogenic separation facility 1.

Figure 2008128542
Figure 2008128542

深冷分離設備1全体での差圧の変化は、熱交換器2の導入流路11と排出流路13の間の差圧よりも小さいことから、深冷分離設備1全体での差圧の測定からは、NOx化合物の蓄積の有無を判断することが難しいことが分かる。また、当然のことながら、深冷分離設備1全体での差圧の測定からは、熱交換器2内に複数の流路が存在する場合、いずれの流路にNOx化合物が蓄積しているかは判断できない。   Since the change in the differential pressure in the entire cryogenic separation facility 1 is smaller than the differential pressure between the introduction flow path 11 and the discharge flow path 13 of the heat exchanger 2, From the measurement, it can be seen that it is difficult to determine whether or not NOx compounds are accumulated. In addition, as a matter of course, from the measurement of the differential pressure in the entire cryogenic separation facility 1, when there are a plurality of flow paths in the heat exchanger 2, it is determined which of the flow paths contains NOx compounds. I can't judge.

本発明のNOx化合物の検出方法を適用できる深冷分離設備の一例の概略図である。It is the schematic of an example of the cryogenic separation equipment which can apply the detection method of the NOx compound of this invention.

符号の説明Explanation of symbols

1 深冷分離設備
2 熱交換器(冷却器)
3 第一気液分離槽
4 第二気液分離槽
5,7,8,11 導入流路
6,9,12,13 排出流路
10,14 流路
3A,4A 液面計
7A,11A バルブ
5B,6B,7B,8B,9B,11B,12B,13B,14B ノズル
15 槽
1 Cryogenic separation equipment 2 Heat exchanger (cooler)
3 First gas-liquid separation tank 4 Second gas-liquid separation tank 5, 7, 8, 11 Introduction flow path 6, 9, 12, 13 Discharge flow path 10, 14 flow path 3A, 4A Level gauge 7A, 11A Valve 5B , 6B, 7B, 8B, 9B, 11B, 12B, 13B, 14B Nozzle 15 tank

Claims (3)

一対以上の導入流路と排出流路が連結された熱交換器と、気液分離槽とを具える深冷分離設備内に蓄積したNOx化合物の検出方法であって、
前記熱交換器の一対以上の導入流路と排出流路の圧力をそれぞれ測定し、導入流路と排出流路の間の圧力損失を計算して、深冷分離設備内に蓄積したNOx化合物を検出することを特徴とするNOx化合物の検出方法。
A method for detecting NOx compounds accumulated in a cryogenic separation facility comprising a heat exchanger in which a pair of introduction flow paths and discharge flow paths are connected, and a gas-liquid separation tank,
Measure the pressures of one or more inlet and outlet channels of the heat exchanger, calculate the pressure loss between the inlet and outlet channels, and store the NOx compounds accumulated in the cryogenic separation facility. A method for detecting a NOx compound, comprising detecting the NOx compound.
前記圧力損失を計算する導入流路と排出流路の対は、導入流路と排出流路の少なくとも一方が−50℃以下であることを特徴とする請求項1に記載のNOx化合物の検出方法。   2. The method for detecting a NOx compound according to claim 1, wherein the pair of the introduction flow path and the discharge flow path for calculating the pressure loss is such that at least one of the introduction flow path and the discharge flow path is −50 ° C. or lower. . 前記圧力損失を計算する導入流路と排出流路の対において、導入流路の圧力の測定に使用する圧力計が、排出流路の圧力の測定に使用する圧力計と同一であることを特徴とする請求項1に記載のNOx化合物の検出方法。   The pressure gauge used for measuring the pressure of the introduction flow path in the pair of the introduction flow path and the discharge flow path for calculating the pressure loss is the same as the pressure gauge used for measuring the pressure of the discharge flow path. The method for detecting a NOx compound according to claim 1.
JP2006313047A 2006-11-20 2006-11-20 Method for detecting NOx compounds accumulated in a cryogenic separation facility Active JP4624336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313047A JP4624336B2 (en) 2006-11-20 2006-11-20 Method for detecting NOx compounds accumulated in a cryogenic separation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006313047A JP4624336B2 (en) 2006-11-20 2006-11-20 Method for detecting NOx compounds accumulated in a cryogenic separation facility

Publications (2)

Publication Number Publication Date
JP2008128542A true JP2008128542A (en) 2008-06-05
JP4624336B2 JP4624336B2 (en) 2011-02-02

Family

ID=39554552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313047A Active JP4624336B2 (en) 2006-11-20 2006-11-20 Method for detecting NOx compounds accumulated in a cryogenic separation facility

Country Status (1)

Country Link
JP (1) JP4624336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680128A (en) * 2016-12-27 2017-05-17 无锡宏盛换热器制造股份有限公司 Thermal shock test system for detecting service life of air intercooler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103738920B (en) * 2013-10-21 2016-03-30 江苏中核华纬工程设计研究有限公司 Utilize the coke-oven gas low temperature process for making hydrogen of LNG cold energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689055A (en) * 1979-11-16 1981-07-20 Siemens Ag Method and device for monitoring gaseous harmful material
JPH03294790A (en) * 1990-04-12 1991-12-25 Nippon Steel Corp Operation of heat accumulation type heat exchanger for hot heating gas containing hydrocarbon
JPH08254388A (en) * 1996-02-06 1996-10-01 Iwatani Internatl Corp Simplified device for producing liquid nitrogen
JPH08303947A (en) * 1995-02-07 1996-11-22 L'air Liquide Method and equipment for monitoring operation of air separation plant
JP2004218871A (en) * 2003-01-10 2004-08-05 Hitachi Ltd Cryogenic air separation plant
JP2006307134A (en) * 2005-03-31 2006-11-09 Mitsubishi Chemicals Corp METHOD FOR SEPARATING C2+ FRACTION FROM NOx-CONTAINING LIGHT GAS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689055A (en) * 1979-11-16 1981-07-20 Siemens Ag Method and device for monitoring gaseous harmful material
JPH03294790A (en) * 1990-04-12 1991-12-25 Nippon Steel Corp Operation of heat accumulation type heat exchanger for hot heating gas containing hydrocarbon
JPH08303947A (en) * 1995-02-07 1996-11-22 L'air Liquide Method and equipment for monitoring operation of air separation plant
JPH08254388A (en) * 1996-02-06 1996-10-01 Iwatani Internatl Corp Simplified device for producing liquid nitrogen
JP2004218871A (en) * 2003-01-10 2004-08-05 Hitachi Ltd Cryogenic air separation plant
JP2006307134A (en) * 2005-03-31 2006-11-09 Mitsubishi Chemicals Corp METHOD FOR SEPARATING C2+ FRACTION FROM NOx-CONTAINING LIGHT GAS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680128A (en) * 2016-12-27 2017-05-17 无锡宏盛换热器制造股份有限公司 Thermal shock test system for detecting service life of air intercooler
CN106680128B (en) * 2016-12-27 2023-06-16 无锡宏盛换热系统有限公司 Cold and hot impact testing system for detecting service life of air intercooler

Also Published As

Publication number Publication date
JP4624336B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US7525000B2 (en) Acetylene removal methods and apparatus
JP5010032B2 (en) Online diagnosis method for geothermal power generation facilities
CN101611293A (en) Vibration monitoring
CN106198886B (en) Gas on-line analysis system and operating method for coal underground gasifying technology
JP4624336B2 (en) Method for detecting NOx compounds accumulated in a cryogenic separation facility
EP3373001B1 (en) System for analyzing carbon dioxide concentration of amine-based absorbing solution, carbon dioxide recovery system, and method of operating the same
US5126274A (en) Method and apparatus for measuring diamondoid compound concentration in hydrocarbonaceous gas streams
CN108713052A (en) Exhaust gas and C in dehydrogenating propane method3The separation of hydrocarbon
JP7129323B2 (en) Hydrogen production device, hydrogen production method, compressor life monitoring control program
US11731929B2 (en) Methods and systems of monitoring flammability of various streams during vinyl acetate production
JP2005521021A5 (en)
CN109429489B (en) Method for producing reaction product gas and fluidized bed gas phase reaction apparatus
JP5386038B2 (en) Method for measuring water ingress into phosgene treatment plants
JP4613156B2 (en) Method for removing NOx compounds accumulated in a cryogenic separation facility
Pradittiamphon et al. Fault detection and isolation of acid gas removal units in a gas separation process using PLS
Darvishi et al. Failure analysis of syngas bypass line rupture in an industrial ammonia plant
EP3773989B1 (en) Temperature swing adsorption process with purification
US20230194162A1 (en) Dynamic leak detection system in propane heat exchangers
CN217180571U (en) Oil gas monitoring system
EP3432998B1 (en) Gas foaming monitoring device
CN110308073B (en) Purification column monitoring method of inert gas purification system and intelligent regeneration reminding system thereof
JPWO2018235323A1 (en) Method for producing reaction product gas and fluidized bed gas phase reactor
CN108369162A (en) Method and apparatus for catalyst sampling
KR20180042849A (en) Composition, method and application thereof
Britton Loss case histories in pressurized ethylene systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4624336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250