JP4613156B2 - Method for removing NOx compounds accumulated in a cryogenic separation facility - Google Patents
Method for removing NOx compounds accumulated in a cryogenic separation facility Download PDFInfo
- Publication number
- JP4613156B2 JP4613156B2 JP2006312981A JP2006312981A JP4613156B2 JP 4613156 B2 JP4613156 B2 JP 4613156B2 JP 2006312981 A JP2006312981 A JP 2006312981A JP 2006312981 A JP2006312981 A JP 2006312981A JP 4613156 B2 JP4613156 B2 JP 4613156B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- nox
- heat exchanger
- flow path
- liquid separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000926 separation method Methods 0.000 title claims description 138
- 150000001875 compounds Chemical class 0.000 title claims description 46
- 238000000034 method Methods 0.000 title claims description 39
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 132
- 239000007788 liquid Substances 0.000 claims description 71
- 239000002798 polar solvent Substances 0.000 claims description 52
- 239000000571 coke Substances 0.000 claims description 5
- 239000003208 petroleum Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 68
- 238000002347 injection Methods 0.000 description 22
- 239000007924 injection Substances 0.000 description 22
- 238000004140 cleaning Methods 0.000 description 11
- 238000005406 washing Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 150000001336 alkenes Chemical class 0.000 description 5
- 239000002360 explosive Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005120 petroleum cracking Methods 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- -1 dienes Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000769 gas chromatography-flame ionisation detection Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Separation By Low-Temperature Treatments (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、深冷分離設備内に蓄積したNOx化合物の除去方法に関し、特に深冷分離設備を運転しながら、深冷分離設備内に蓄積したNOx化合物を除去する方法に関するものである。 The present invention relates to a method for removing NOx compounds accumulated in a cryogenic separation facility, and more particularly to a method for removing NOx compounds accumulated in a cryogenic separation facility while operating the cryogenic separation facility.
一般に、石油分解ガスやコークス炉ガスは、極微量のNOxを含有している。そのため、これら石油分解ガスやコークス炉ガス等の原料ガスを、深冷分離設備を用いて冷却し、気液分離操作を行う装置においては、原料ガス中に存在する極微量のNOxが深冷分離設備の熱交換器(冷却器)および配管類で凝縮し、共存する酸素、及び炭化水素、特にジエン類と反応して、爆発性のNOx化合物が生成することが知られている(非特許文献1及び2参照)。 Generally, petroleum cracking gas and coke oven gas contain a very small amount of NOx. Therefore, in a device that cools raw gas such as petroleum cracking gas and coke oven gas using a cryogenic separation facility and performs a gas-liquid separation operation, a very small amount of NOx present in the raw material gas is cryogenically separated. It is known that it condenses in the heat exchanger (cooler) and piping of the equipment and reacts with coexisting oxygen and hydrocarbons, particularly dienes, to generate explosive NOx compounds (Non-Patent Documents). 1 and 2).
そして、この爆発性のNOx化合物は、深冷分離設備のプロセス流路において徐々に蓄積し、相当量以上のNOx化合物が蓄積した場合には、熱衝撃・打撃・振動等の衝撃により分解して爆発を引き起こすことになる。 This explosive NOx compound gradually accumulates in the process flow path of the cryogenic separation facility, and when a considerable amount of NOx compound accumulates, it decomposes by impact such as thermal shock, impact, vibration, etc. It will cause an explosion.
このため、深冷分離設備のプロセス流路でNOx化合物が蓄積した場合には、深冷分離設備の運転、更には深冷分離設備を含むプロセス全体の運転を一時停止し、アルカリ水溶液、メタノール等の極性溶媒を用いて、深冷分離設備の熱交換器(冷却器)および配管類を洗浄し、NOx化合物を除去する必要がある。 For this reason, when NOx compounds accumulate in the process flow path of the cryogenic separation facility, the operation of the cryogenic separation facility and further the operation of the entire process including the cryogenic separation facility are temporarily stopped, and an alkaline aqueous solution, methanol, etc. It is necessary to clean the heat exchanger (cooler) and piping of the cryogenic separation facility and remove the NOx compound using the polar solvent.
上述のように、深冷分離設備のプロセス流路に蓄積したNOx化合物の除去を行う場合、深冷分離設備、更には該深冷分離設備を含む装置全体を一時停止する必要がある。しかしながら、通常、1年以上の連続運転を行うことが前提である石油精製や石油化学などの装置産業にとって、装置の運転停止は大きな損失に繋がるという問題がある。そのため、深冷分離設備に蓄積した爆発性のNOx化合物の除去に関し、装置の運転を停止することなく、効率よく除去する方法が求められている。 As described above, when removing NOx compounds accumulated in the process flow path of the cryogenic separation facility, it is necessary to temporarily stop the cryogenic separation facility and the entire apparatus including the cryogenic separation facility. However, there is a problem that, for equipment industries such as petroleum refining and petrochemical, which are normally premised on continuous operation for one year or more, the shutdown of the equipment leads to a large loss. Therefore, regarding the removal of explosive NOx compounds accumulated in the cryogenic separation facility, there is a demand for a method for removing them efficiently without stopping the operation of the apparatus.
このような状況下、本発明の目的は、上記従来技術の問題を解決し、深冷分離設備を運転しながら、深冷分離設備内に蓄積したNOx化合物を除去する方法を提供することにある。 Under such circumstances, an object of the present invention is to solve the above-described problems of the prior art and provide a method for removing NOx compounds accumulated in the cryogenic separation facility while operating the cryogenic separation facility. .
本発明者らは、上記目的を達成するために鋭意検討した結果、接触分解装置(FCC装置)から副生するエチレンおよびプロピレンなどのオレフィン類を含有する軽質オフガス(FCCオフガス)等を、深冷分離設備を用いて冷却し、オレフィン類等を濃縮する装置において、深冷分離設備の熱交換器(冷却器)のプロセス流路の上流側および下流側の配管にメタノール等の極性溶剤の注入口および排出口を設け、更に、極性溶剤貯槽および注入ポンプからなる注入設備を深冷分離設備に配設し、この注入設備を用いて注入量を制御しながら、極性溶剤を連続的あるいは間欠的に注入し且つ排出口より排出することで、装置を停止することなく、深冷分離設備に蓄積した爆発性のNOx化合物を除去できることを見出し、この知見を基に本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the inventors of the present invention conducted a deep cooling of light offgas (FCC offgas) containing olefins such as ethylene and propylene by-produced from a catalytic cracking apparatus (FCC apparatus). In an apparatus that cools using a separation facility and concentrates olefins, etc., an inlet for polar solvents such as methanol in the upstream and downstream piping of the process flow path of the heat exchanger (cooler) of the cryogenic separation facility In addition, an injection facility comprising a polar solvent storage tank and an injection pump is disposed in the cryogenic separation facility, and the polar solvent is continuously or intermittently controlled while controlling the injection amount using this injection facility. We found that explosive NOx compounds accumulated in the cryogenic separation facility can be removed by injecting and discharging from the discharge port without stopping the system. Was able to complete.
即ち、本発明のNOx化合物の除去方法は、熱交換器と、気液分離槽と、複数の流路と、該流路の少なくとも一つに極性溶剤を注入するための流路とを具える深冷分離設備を用い、
NOx含有ガスを深冷分離設備の熱交換器に導入して冷却し、気液分離槽でガス分と液分に分離して深冷分離設備を運転しながら、前記流路の少なくとも一つに極性溶剤を注入して、深冷分離設備内に蓄積したNOx化合物を除去することを特徴とし、ここで、前記極性溶剤は、濃度が99.5質量%以上のメタノールである。
That is, the NOx compound removal method of the present invention includes a heat exchanger, a gas-liquid separation tank, a plurality of flow paths, and a flow path for injecting a polar solvent into at least one of the flow paths. Using a cryogenic separation facility,
The NOx-containing gas is introduced into the heat exchanger of the cryogenic separation facility, cooled, and separated into a gas component and a liquid component in the gas-liquid separation tank, and the cryogenic separation facility is operated. A polar solvent is injected to remove NOx compounds accumulated in the cryogenic separation facility , wherein the polar solvent is methanol having a concentration of 99.5% by mass or more .
本発明のNOx化合物の除去方法の第一の好適例においては、熱交換器と、気液分離槽と、熱交換器と気液分離槽とを連結する流路と、NOx含有ガスを熱交換器に導入するための流路と、NOx含有ガスを熱交換器に導入するための流路に極性溶剤を注入するための流路とを具える深冷分離設備を用い、
NOx含有ガスを深冷分離設備の熱交換器に導入して冷却し、気液分離槽でガス分と液分に分離して深冷分離設備を運転しながら、NOx含有ガスを熱交換器に導入するための流路に極性溶剤を注入して、深冷分離設備内に蓄積したNOx化合物を除去し、ここで、前記極性溶剤は、濃度が99.5質量%以上のメタノールである。
In the first preferred embodiment of the NOx compound removal method of the present invention, heat exchange is performed between the heat exchanger, the gas-liquid separation tank, the flow path connecting the heat exchanger and the gas-liquid separation tank, and the NOx-containing gas. Using a cryogenic separation facility comprising a flow path for introducing the gas into the vessel and a flow path for injecting the polar solvent into the flow path for introducing the NOx-containing gas into the heat exchanger,
The NOx-containing gas is introduced into the heat exchanger of the cryogenic separation facility, cooled, and separated into a gas component and a liquid component in the gas-liquid separation tank, and the NOx-containing gas is operated into the heat exchanger while operating the cryogenic separation facility. A polar solvent is injected into the flow path for introduction to remove NOx compounds accumulated in the cryogenic separation facility, and the polar solvent is methanol having a concentration of 99.5% by mass or more .
本発明のNOx化合物の除去方法の第二の好適例においては、熱交換器と、第一気液分離槽と、第二気液分離槽と、NOx含有ガスを熱交換器に導入するための流路と、熱交換器で冷却されたNOx含有ガスを第一気液分離槽に送るための流路と、第一気液分離槽で分離されたガス分を熱交換器に再度導入するための流路と、熱交換器で再度冷却されたガス分を第二気液分離槽に送るための流路と、第一気液分離槽で分離されたガス分を熱交換器に再度導入するための流路と熱交換器で再度冷却されたガス分を第二気液分離槽に送るための流路とを連結するバイパスラインと、前記流路の少なくとも一つに極性溶剤を注入するための流路とを具える深冷分離設備を用い、
NOx含有ガスを深冷分離設備の熱交換器に導入して冷却し、第一気液分離槽でガス分と液分に分離し、バイパスラインを通じて第一気液分離槽で分離されたガス分の少なくとも一部を熱交換器を介さずに第二気液分離槽に送って熱交換器の温度をコントロールし、第二気液分離槽でガス分と液分に分離して深冷分離設備を運転しながら、前記流路の少なくとも一つに極性溶剤を注入して、深冷分離設備内に蓄積したNOx化合物を除去し、ここで、前記極性溶剤は、濃度が99.5質量%以上のメタノールである。
In the second preferred embodiment of the method for removing NOx compounds of the present invention, a heat exchanger, a first gas-liquid separation tank, a second gas-liquid separation tank, and a NOx-containing gas are introduced into the heat exchanger. A flow path, a flow path for sending the NOx-containing gas cooled in the heat exchanger to the first gas-liquid separation tank, and a gas component separated in the first gas-liquid separation tank for reintroducing the heat exchanger , The flow path for sending the gas component cooled again in the heat exchanger to the second gas-liquid separation tank, and the gas component separated in the first gas-liquid separation tank are reintroduced into the heat exchanger A bypass line for connecting a flow path for use with the flow path for sending the gas component cooled again in the heat exchanger to the second gas-liquid separation tank, and for injecting a polar solvent into at least one of the flow paths Using a cryogenic separation facility with
The NOx-containing gas is introduced into the heat exchanger of the cryogenic separation facility, cooled, separated into gas and liquid in the first gas-liquid separation tank, and gas separated in the first gas-liquid separation tank through the bypass line At least a part of this is sent to the second gas-liquid separation tank without going through the heat exchanger, and the temperature of the heat exchanger is controlled. In operation, a polar solvent is injected into at least one of the flow paths to remove NOx compounds accumulated in the cryogenic separation facility , wherein the polar solvent has a concentration of 99.5% by mass or more. Of methanol .
本発明のNOx化合物の除去方法の他の好適例においては、前記NOxを含むガスが、石油分解ガス又はコークス炉ガスである。 In another preferred embodiment of the method for removing NOx compounds of the present invention, the gas containing NOx is petroleum cracked gas or coke oven gas.
本発明のNOx化合物の除去方法において、前記極性溶剤としては、取り扱い容易性の観点から、メタノールを用いる。また、該メタノールの濃度は、通常メタノールに含有される水分が深冷分離設備の熱交換器で固化するのを避ける観点から、99.5質量%以上である。 In the NOx compound removal method of the present invention, methanol is used as the polar solvent from the viewpoint of ease of handling. The concentration of the methanol is usually in terms of avoiding to solidify in heat exchanger moisture cryogenic separation facility contained in the methanol, 99.5% by mass or more.
本発明のNOx化合物の除去方法の他の好適例においては、前記極性溶剤の注入を、0.5〜1時間の間隔をおいて間欠的に行う。この場合、NOx化合物の除去効果を容易に確認することができる。 In another preferred embodiment of the method for removing NOx compounds of the present invention, the polar solvent is injected intermittently at intervals of 0.5 to 1 hour. In this case, the NOx compound removal effect can be easily confirmed.
本発明によれば、装置の運転を停止することなく、深冷分離設備のプロセス流路に蓄積した爆発性のNOx化合物を除去することが可能となるため、設備の運転停止及び運転開始に要する時間と手間並びに熱エネルギーのロスを削減でき、ひいては運転費の削減を図ることができる。 According to the present invention, it is possible to remove explosive NOx compounds accumulated in the process flow path of the cryogenic separation facility without stopping the operation of the apparatus, so that it is necessary to stop and start the facility. Loss of time, labor, and heat energy can be reduced, and as a result, operating costs can be reduced.
また、深冷分離設備に極性溶剤の注入設備を設けることで、NOx化合物の洗浄除去を短時間で実施することが可能となる。そのため、NOx化合物が短時間で蓄積した場合などの緊急時にも、迅速な対応をとることが可能となる。 Further, by providing a polar solvent injection facility in the cryogenic separation facility, the NOx compound can be cleaned and removed in a short time. Therefore, it is possible to take a quick response even in an emergency such as when NOx compounds accumulate in a short time.
更に、配管などを開放することなく密閉した状態で極性溶剤の注入が可能であるため、天候に左右されずに極性溶剤による洗浄が可能となる。 Furthermore, since it is possible to inject the polar solvent in a sealed state without opening the piping or the like, cleaning with the polar solvent can be performed regardless of the weather.
以下に、図を参照しながら、本発明を詳細に説明する。図1は、本発明のNOx化合物の除去方法の実施に利用できる深冷分離設備の一例の概略図である。図1に示す深冷分離設備1は、熱交換器(冷却器)2と、第一気液分離槽3と、第二気液分離槽4とを具える。なお、図1に示す深冷分離設備1は、熱交換器を一つ、気液分離槽を二つ具えるが、本発明のNOx化合物の除去方法を適用する深冷分離設備の熱交換器及び気液分離槽の数は、これに限られるものではない。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view of an example of a cryogenic separation facility that can be used for carrying out the NOx compound removal method of the present invention. A cryogenic separation facility 1 shown in FIG. 1 includes a heat exchanger (cooler) 2, a first gas-liquid separation tank 3, and a second gas-liquid separation tank 4. The cryogenic separation facility 1 shown in FIG. 1 has one heat exchanger and two gas-liquid separation tanks, but the heat exchanger of the cryogenic separation facility to which the NOx compound removal method of the present invention is applied. The number of gas-liquid separation tanks is not limited to this.
また、図1に示す深冷分離設備1は、NOx含有ガスを熱交換器2に導入するための流路5と、熱交換器2で冷却されたNOx含有ガスを第一気液分離槽3に送るための流路6と、第一気液分離槽3で気液分離された液分を熱交換器2に送るための流路7と、第一気液分離槽3で気液分離されたガス分を熱交換器2に再度導入するための流路8と、熱交換器2で再度冷却されたガス分を第二気液分離槽4に送るための流路9と、第二気液分離槽4で気液分離されたガス分を深冷分離設備1の外部に排出するための流路10と、第二気液分離槽4で気液分離された液分を熱交換器2に送るための流路11と、熱交換器2に冷熱を供給し常温となった気体を深冷分離設備1の外部に排出すための流路12,13とを具える。
Further, the cryogenic separation facility 1 shown in FIG. 1 includes a flow path 5 for introducing the NOx-containing gas into the heat exchanger 2, and the NOx-containing gas cooled by the heat exchanger 2 in the first gas-liquid separation tank 3. The flow path 6 for sending to the heat exchanger, the
図1に示す深冷分離設備1においては、原料のNOx含有ガスを流路5を通じて熱交換器2に導入し、熱交換器2においてNOx含有ガスを冷却する。ここで、冷却温度は、目的に応じて適宜設定され、例えば、−10〜−65℃の範囲が好ましい。 In the cryogenic separation facility 1 shown in FIG. 1, the raw material NOx-containing gas is introduced into the heat exchanger 2 through the flow path 5, and the NOx-containing gas is cooled in the heat exchanger 2. Here, the cooling temperature is appropriately set according to the purpose, and for example, a range of −10 to −65 ° C. is preferable.
なお、本発明の方法で用いる原料のNOx含有ガスとしては、NOxを含有する石油分解ガス及びコークス炉ガスが好ましい。石油分解ガスとしては、例えば、FCC装置のオフガス、スチームリフォーミング法、部分酸化法による水素製造設備の熱分解ガス、及びビスブレーキング法、コーキング法による熱分解ガスなどがあげられる。ここで、深冷分離設備1に導入するNOx含有ガスの量は、深冷分離設備1の規模に応じて変化し、特に限定されるものではないが、一例として、処理能力が10,000Nm3/Hr程度の場合は、5,000Nm3/Hr〜11,000Nm3/Hrの範囲が好ましい。 In addition, as the raw material NOx-containing gas used in the method of the present invention, petroleum cracked gas and coke oven gas containing NOx are preferable. Examples of petroleum cracking gas include off-gas of FCC equipment, steam reforming method, pyrolysis gas of hydrogen production facility by partial oxidation method, and pyrolysis gas of visbreaking method and coking method. Here, the amount of the NOx-containing gas introduced into the cryogenic separation facility 1 varies depending on the scale of the cryogenic separation facility 1 and is not particularly limited. As an example, the processing capacity is 10,000 Nm 3. / for about Hr, preferably a range of 5,000Nm 3 / Hr~11,000Nm 3 / Hr.
熱交換器2で冷却されたNOx含有ガスは、流路6を通じて第一気液分離槽3に送られ、第一気液分離槽3において、ガス分と液分に分離される。 The NOx-containing gas cooled by the heat exchanger 2 is sent to the first gas-liquid separation tank 3 through the flow path 6, and is separated into a gas component and a liquid component in the first gas-liquid separation tank 3.
第一気液分離槽3で気液分離された液分は、流路7を通じて熱交換器2に送られ、原料のNOx含有ガスへ冷熱を供給することで、常温まで戻され、気体となる。
The liquid component separated in the first gas-liquid separation tank 3 is sent to the heat exchanger 2 through the
一方、第一気液分離槽3で気液分離されたガス分は、流路8を通じて熱交換器2に再度導入され、熱交換器2において更に冷却される。ここで、冷却温度は、目的に応じて適宜設定され、例えば、−65〜−130℃の範囲が好ましい。
On the other hand, the gas component separated in the first gas-liquid separation tank 3 is reintroduced into the heat exchanger 2 through the
熱交換器2で再度冷却されたガス分は、流路9を通じて第二気液分離槽4に送られ、第二気液分離槽4において、ガス分と液分に再度分離される。
The gas component cooled again by the heat exchanger 2 is sent to the second gas-liquid separation tank 4 through the
第二気液分離槽4で気液分離されたガス分は、通常、メタン、窒素、水素等を含み、流路10を通じて深冷分離設備1の外部に排出される。
The gas component separated in the second gas-liquid separation tank 4 usually contains methane, nitrogen, hydrogen, etc., and is discharged to the outside of the cryogenic separation facility 1 through the
一方、第二気液分離槽4で気液分離された液分は、減圧され冷媒として流路11を通じて熱交換器2に送られ、常温まで戻され、気体となる。該気体は、流路7、熱交換器2及び流路12を通じて流れる気体と合流し、流路13を通じて深冷分離設備1の外部に排出される。ここで、深冷分離設備1の外部に排出される気体は、エチレン、プロピレン、プロパン等を含み、例えば、図1中の槽14を経て、後段の精留装置に送られ、各成分に分離される。
On the other hand, the liquid component separated in the second gas-liquid separation tank 4 is depressurized and sent as a refrigerant to the heat exchanger 2 through the
図1に示す深冷分離設備1においては、NOx含有ガスを熱交換器2に導入するための流路5に、極性溶剤を注入するための別の流路15が連結されている。また、流路15には、ブロー用の更に別の流路16が連結されており、ブローにより極性溶剤の注入を補助することができる。
In the cryogenic separation facility 1 shown in FIG. 1, another
ここで、図1中の極性溶剤貯槽17に貯蔵されている極性溶剤を、注入ポンプ18により流路15を通じて流路5に注入することで、NOx含有ガスに極性溶剤を添加することができる。なお、極性溶剤貯槽17は、極性溶剤を乾燥状態に保つために、純度99.99体積%以上の窒素でシールされていることが好ましい。
Here, the polar solvent stored in the polar solvent storage tank 17 in FIG. 1 is injected into the flow path 5 through the
図1に示す深冷分離設備1においては、NOx含有ガスを流路5を通じて深冷分離設備1の熱交換器2に導入して冷却し、気液分離槽3,4で気体と液体に分離して、深冷分離設備1を運転しながら、NOx含有ガスを熱交換器2に導入するための流路5に、流路15を通じて極性溶剤を注入し、NOx含有ガスと極性溶剤の混合物が深冷分離設備1の熱交換器2、気液分離槽3及び流路6,7,8,9,11,12,13を流れることで、深冷分離設備1内に蓄積したNOx化合物を除去する。
In the cryogenic separation facility 1 shown in FIG. 1, NOx-containing gas is introduced into the heat exchanger 2 of the cryogenic separation facility 1 through the flow path 5 and cooled, and separated into gas and liquid in the gas-liquid separation tanks 3 and 4. Then, while operating the cryogenic separation facility 1, the polar solvent is injected through the
なお、図1に示す深冷分離設備1においては、NOx含有ガスを熱交換器2に導入するための流路5に、極性溶剤を注入するための流路15が連結されているが、本発明で使用する深冷分離設備は、複数の流路の少なくとも一つに極性溶剤を注入するための流路が連結されていればよく、他の流路に連結されていてもよい。ここで、極性溶剤を注入するための流路は、NOx化合物が蓄積する可能性のある、運転温度が−50℃以下となる流路に連結されることが好ましい。
In the cryogenic separation facility 1 shown in FIG. 1, a
本発明のNOx化合物の除去方法において、NOx化合物を洗浄除去するために用いる極性溶剤は、取り扱いが容易な点で、メタノールである。 In the method of removing the NOx compounds of the present invention, the polar solvent used to wash removing NOx compounds, from the viewpoint of easy handling, it is methanol.
なお、使用するメタノールの濃度は、99.5質量%以上である。使用するメタノールの濃度が99.5質量%未満では、メタノールに通常含有される水分が深冷分離設備1の熱交換器2で固化し、トラブルを引き起こす。 The concentration of methanol to be used is at least 99.5 wt%. If the concentration of methanol used is less than 99.5% by mass, the water normally contained in methanol solidifies in the heat exchanger 2 of the cryogenic separation facility 1 and causes trouble.
極性溶剤の注入速度は、深冷分離設備1の規模に応じて変化し、特に限定されるものではないが、一例として、処理能力が10,000Nm3/Hrの場合は、50〜600L/Hrの速度で極性溶剤を注入することが好ましい。極性溶剤の注入量が多いと、洗浄後の極性溶剤に含まれるNOx化合物の濃度が低下して、極性溶剤による洗浄の終了の判断が難しくなる。また、極性溶剤の注入量が極端に多いと、深冷分離設備1の熱交換器2の熱バランスに影響を及ぼし、深冷分離設備1の運転が困難になる。 The injection rate of the polar solvent varies depending on the scale of the cryogenic separation facility 1 and is not particularly limited. As an example, when the processing capacity is 10,000 Nm 3 / Hr, 50 to 600 L / Hr It is preferable to inject the polar solvent at a rate of When the amount of the polar solvent injected is large, the concentration of the NOx compound contained in the cleaned polar solvent is lowered, and it is difficult to determine the end of the cleaning with the polar solvent. Moreover, when the injection amount of the polar solvent is extremely large, the heat balance of the heat exchanger 2 of the cryogenic separation facility 1 is affected, and the operation of the cryogenic separation facility 1 becomes difficult.
本発明のNOx化合物の除去方法においては、極性溶剤を間欠的注入しても、連続的に注入してもよいが、NOx化合物除去効果を確認するためには、0.5〜1時間の間隔をおいて間欠的に極性溶剤を注入することが好ましい。 In the NOx compound removal method of the present invention, the polar solvent may be injected intermittently or continuously, but in order to confirm the NOx compound removal effect, an interval of 0.5 to 1 hour is used. It is preferable to inject the polar solvent intermittently.
なお、本発明のNOx化合物の除去方法は、装置の運転中に極性溶剤による洗浄を行うため、図1に示す深冷分離設備1においては、流路8と流路9を連結する熱交換器2のバイパスライン19を設けることが好ましい。そして、流路8及びバイパスライン19通じて第一気液分離槽3で分離されたガス分の少なくとも一部を熱交換器2を介さずに流路9に導入し、その流量をコントロール弁等で制御することで運転条件を調整し、熱交換器2および流路の運転温度を−20〜−80℃にコントロールすることが好ましい。この場合、第二気液分離槽4や、流路9,11において注入した極性溶剤が固まるのを防止することができる。
Since the NOx compound removal method of the present invention performs cleaning with a polar solvent during operation of the apparatus, in the cryogenic separation facility 1 shown in FIG. 1, a heat exchanger that connects the
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(実施例1)
表1に示す組成を有するFCC装置から副生するエチレンおよびプロピレンなどのオレフィン類を含有する軽質オフガス(FCCオフガス, 10,000Nm3/Hr)を、アミン洗浄装置およびソーダ洗浄装置等で含有するH2S、CO2等を除去した後、図1に示すようなメタノール貯槽17および注入ポンプ18からなる注入設備を備えた深冷分離設備1に導入した。
Example 1
H containing light offgas (FCC offgas, 10,000 Nm 3 / Hr) containing olefins such as ethylene and propylene by-produced from the FCC apparatus having the composition shown in Table 1 in an amine cleaning apparatus and a soda cleaning apparatus After removing 2 S, CO 2 and the like, it was introduced into a cryogenic separation facility 1 equipped with an injection facility comprising a methanol storage tank 17 and an
深冷分離設備1を運転しながら、メタノール注入ポンプ18を用いて、流路15を通じてメタノールを500L/Hrの速度で0.5Hr連続注入した。深冷分離設備1のプロセス流路を洗浄した後のメタノールを図1中の槽14で回収した。回収した洗浄メタノールを濾過して固形物を除いた後、JIS B 7953に規定する分析法に準拠して、メタノール中のNO2量を算出した。
While operating the cryogenic separation facility 1, methanol was continuously injected through the
更に、上記のメタノール注入、洗浄を2回繰り返した(合計0.5Hr注入×3回となる)。表2に洗浄メタノール中のNO2量を示す。表2の結果から、メタノール洗浄により深冷分離設備1内に蓄積したNOx化合物を除去出来ることが分かる。 Further, the above methanol injection and washing were repeated twice (total 0.5 Hr injection x 3 times). It shows the NO 2 amount of washing in methanol in Table 2. From the results in Table 2, it can be seen that NOx compounds accumulated in the cryogenic separation facility 1 can be removed by washing with methanol.
また、図1の槽14のプロセスガスを吸収液に通気後、GC−FIDにて分析し、メタノールの注入を停止してから80分後にメタノールが検出されなくなったことを確認した(1ppmw以下)。メタノール注入開始後、槽14のプロセスガスにメタノールが検出されなくなった時間をもってメタノール洗浄に係わる一連の作業時間とした。作業時間を表2に示す。 Further, after the process gas in the tank 14 of FIG. 1 was passed through the absorption liquid, it was analyzed by GC-FID, and it was confirmed that methanol was not detected 80 minutes after the methanol injection was stopped (1 ppmw or less). . After the start of methanol injection, the time during which methanol was no longer detected in the process gas in the tank 14 was taken as a series of working hours for methanol cleaning. Table 2 shows the working time.
(比較例1)
表1に示す組成を有するFCC装置から副生するエチレンおよびプロピレンなどのオレフィン類を含有する軽質オフガス(FCCオフガス, 10,000Nm3/Hr)を、アミン洗浄装置およびソーダ洗浄装置等で含有するH2S、CO2等を除去した後、図1に示す深冷分離設備に導入した。
(Comparative Example 1)
H containing light offgas (FCC offgas, 10,000 Nm 3 / Hr) containing olefins such as ethylene and propylene by-produced from the FCC apparatus having the composition shown in Table 1 in an amine cleaning apparatus and a soda cleaning apparatus After removing 2 S, CO 2 and the like, it was introduced into the cryogenic separation facility shown in FIG.
深冷分離設備1を停止した後、図1中のブロー用の流路16を通じてメタノールを250L注入した後、純度99.99体積%以上の窒素を、流路16を通じて200Nm3/Hrの流速で流し、図1の槽14までメタノールを流した。また、深冷分離設備1のプロセス流路を洗浄した後のメタノールを図1の槽14にて回収し、含有するNO2量を実施例1と同様にして測定した。
After stopping the cryogenic separation facility 1, methanol through
更に、上記のメタノール注入、洗浄を2回繰り返した(合計250L注入×3回とし、総注入量を実施例1と同じとした)。回収したメタノール中のNO2量を表2に示す。表2の結果から、メタノール洗浄により深冷分離設備1内に蓄積したNOx化合物を除去出来ることが分かる。 Furthermore, the above methanol injection and washing were repeated twice (total 250 L injection × 3 times, and the total injection amount was the same as in Example 1). Table 2 shows the amount of NO 2 in the recovered methanol. From the results in Table 2, it can be seen that NOx compounds accumulated in the cryogenic separation facility 1 can be removed by washing with methanol.
回収したメタノール中にNO2が検出されなくなった後に、深冷分離設備1を再起動した。 After NO 2 was no longer detected in the recovered methanol, the cryogenic separation facility 1 was restarted.
図1の槽14のプロセスガスを吸収液に通気後、GC−FIDにて分析し、80分後にメタノールが検出されなくなったことを確認した(1ppmw以下)。メタノール注入開始後、槽14のプロセスガスにメタノールが検出されなくなった時間をもってメタノール洗浄に係わる一連の作業時間とした。作業時間を表2に示す。 The process gas in the tank 14 of FIG. 1 was passed through the absorption liquid and analyzed by GC-FID, and it was confirmed that methanol was not detected after 80 minutes (1 ppmw or less). After the start of methanol injection, the time during which methanol was no longer detected in the process gas in the tank 14 was taken as a series of working hours for methanol cleaning. Table 2 shows the working time.
表2から、実施例1のように、メタノール注入設備を使用し、装置を運転停止することなくメタノール洗浄を行うことで、装置を運転停止してメタノール洗浄を行う場合(比較例1)よりも、メタノール洗浄に要する時間を26時間短縮できることが判った。 From Table 2, using methanol injection equipment as in Example 1 and performing methanol cleaning without shutting down the apparatus, the apparatus is shut down and performing methanol cleaning (Comparative Example 1). It was found that the time required for methanol washing can be shortened by 26 hours.
1 深冷分離設備
2 熱交換器(冷却器)
3 第一気液分離槽
4 第二気液分離槽
5,6,7,8,9,10,11,12,13,15,16 流路
14 槽
17 極性溶剤貯槽
18 注入ポンプ
19 バイパスライン
1 Cryogenic separation equipment 2 Heat exchanger (cooler)
3 First Gas-Liquid Separation Tank 4 Second Gas-
Claims (5)
NOx含有ガスを深冷分離設備の熱交換器に導入して冷却し、気液分離槽でガス分と液分に分離して深冷分離設備を運転しながら、前記流路の少なくとも一つに極性溶剤を注入して、深冷分離設備内に蓄積したNOx化合物を除去することを特徴とし、
前記極性溶剤は、濃度が99.5質量%以上のメタノールである、NOx化合物の除去方法。 Using a cryogenic separation facility comprising a heat exchanger, a gas-liquid separation tank, a plurality of flow paths, and a flow path for injecting a polar solvent into at least one of the flow paths,
The NOx-containing gas is introduced into the heat exchanger of the cryogenic separation facility, cooled, and separated into a gas component and a liquid component in the gas-liquid separation tank, and the cryogenic separation facility is operated. Injecting a polar solvent to remove NOx compounds accumulated in the cryogenic separation facility ,
The method for removing a NOx compound , wherein the polar solvent is methanol having a concentration of 99.5% by mass or more .
NOx含有ガスを深冷分離設備の熱交換器に導入して冷却し、気液分離槽でガス分と液分に分離して深冷分離設備を運転しながら、NOx含有ガスを熱交換器に導入するための流路に極性溶剤を注入して、深冷分離設備内に蓄積したNOx化合物を除去することを特徴とし、
前記極性溶剤は、濃度が99.5質量%以上のメタノールである、請求項1に記載のNOx化合物の除去方法。 A heat exchanger, a gas-liquid separation tank, a flow path connecting the heat exchanger and the gas-liquid separation tank, a flow path for introducing NOx-containing gas into the heat exchanger, and a NOx-containing gas heat exchanger Using a cryogenic separation facility comprising a flow path for injecting a polar solvent into a flow path for introduction into
The NOx-containing gas is introduced into the heat exchanger of the cryogenic separation facility, cooled, and separated into a gas component and a liquid component in the gas-liquid separation tank, and the NOx-containing gas is operated into the heat exchanger while operating the cryogenic separation facility. It is characterized by injecting a polar solvent into the flow path for introduction and removing NOx compounds accumulated in the cryogenic separation facility ,
The method for removing a NOx compound according to claim 1, wherein the polar solvent is methanol having a concentration of 99.5% by mass or more .
NOx含有ガスを深冷分離設備の熱交換器に導入して冷却し、第一気液分離槽でガス分と液分に分離し、バイパスラインを通じて第一気液分離槽で分離されたガス分の少なくとも一部を熱交換器を介さずに第二気液分離槽に送って熱交換器の温度をコントロールし、第二気液分離槽でガス分と液分に分離して深冷分離設備を運転しながら、前記流路の少なくとも一つに極性溶剤を注入して、深冷分離設備内に蓄積したNOx化合物を除去することを特徴とし、
前記極性溶剤は、濃度が99.5質量%以上のメタノールである、請求項1に記載のNOx化合物の除去方法。 The heat exchanger, the first gas-liquid separation tank, the second gas-liquid separation tank, the flow path for introducing the NOx-containing gas into the heat exchanger, and the NOx-containing gas cooled by the heat exchanger are the first A flow path for sending to the gas-liquid separation tank, a flow path for reintroducing the gas component separated in the first gas-liquid separation tank, and the gas content re-cooled in the heat exchanger The flow path for sending to the second gas-liquid separation tank, the flow path for re-introducing the gas component separated in the first gas-liquid separation tank and the gas component cooled again by the heat exchanger into the first Using a cryogenic separation facility comprising a bypass line connecting a flow path for sending to a two-gas liquid separation tank and a flow path for injecting a polar solvent into at least one of the flow paths,
The NOx-containing gas is introduced into the heat exchanger of the cryogenic separation facility, cooled, separated into gas and liquid in the first gas-liquid separation tank, and gas separated in the first gas-liquid separation tank through the bypass line At least a part of this is sent to the second gas-liquid separation tank without going through the heat exchanger, and the temperature of the heat exchanger is controlled. In operation, the polar solvent is injected into at least one of the flow paths to remove NOx compounds accumulated in the cryogenic separation facility ,
The method for removing a NOx compound according to claim 1, wherein the polar solvent is methanol having a concentration of 99.5% by mass or more .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006312981A JP4613156B2 (en) | 2006-11-20 | 2006-11-20 | Method for removing NOx compounds accumulated in a cryogenic separation facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006312981A JP4613156B2 (en) | 2006-11-20 | 2006-11-20 | Method for removing NOx compounds accumulated in a cryogenic separation facility |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008128541A JP2008128541A (en) | 2008-06-05 |
JP4613156B2 true JP4613156B2 (en) | 2011-01-12 |
Family
ID=39554551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006312981A Active JP4613156B2 (en) | 2006-11-20 | 2006-11-20 | Method for removing NOx compounds accumulated in a cryogenic separation facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4613156B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307133A (en) * | 2005-03-31 | 2006-11-09 | Mitsubishi Chemicals Corp | METHOD FOR SEPARATING C2+ FRACTION FROM NOx-CONTAINING LIGHT GAS |
-
2006
- 2006-11-20 JP JP2006312981A patent/JP4613156B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307133A (en) * | 2005-03-31 | 2006-11-09 | Mitsubishi Chemicals Corp | METHOD FOR SEPARATING C2+ FRACTION FROM NOx-CONTAINING LIGHT GAS |
Also Published As
Publication number | Publication date |
---|---|
JP2008128541A (en) | 2008-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6881389B2 (en) | Removal of H2S and CO2 from a hydrocarbon fluid stream | |
KR101501815B1 (en) | Method and apparatus for separating blast furnace gas | |
CA2701667C (en) | Method and system for regenerating an amine-containing wash solution obtained during gas purification | |
EP3476462B1 (en) | Exhaust gas treatment device and co2 recovery device using same | |
WO2013136310A1 (en) | Hydrocarbon gas treatment | |
US20110146489A1 (en) | Ammonia removal, following removal of co2, from a gas stream | |
JP4851679B2 (en) | Deoxidation of hydrocarbon fluid streams. | |
CN110960959B (en) | Method for purifying raw synthesis gas to produce acid gas and acid gas separator | |
JP6297006B2 (en) | Carbon dioxide production facility and carbon dioxide production method | |
AU2019226763B2 (en) | CO2 recovery device, and CO2 recovery method | |
JP4613156B2 (en) | Method for removing NOx compounds accumulated in a cryogenic separation facility | |
KR20170075008A (en) | Reduction of naphthalene in coke oven gas | |
WO2016190977A1 (en) | Method for safely and quickly shutting down and cleaning a hydroprocessing reactor of spent catalyst via a water flooding technique | |
AU2012280728B2 (en) | Method and device for obtaining gas products | |
JP4624336B2 (en) | Method for detecting NOx compounds accumulated in a cryogenic separation facility | |
JP2016187796A (en) | Carbon dioxide manufacturing facility and carbon dioxide manufacturing method | |
NL2014034B1 (en) | Method of operating a gas scrub and gas scrub. | |
EP3362165B1 (en) | Regenerating sieve material used for processing natural gas | |
EP3773989B1 (en) | Temperature swing adsorption process with purification | |
KR102416312B1 (en) | Tail-gas treatment apparatus and method from Claus process | |
KR101998929B1 (en) | Furnace gas refining process simultaneously producing formic acid | |
JPS58199702A (en) | Method for purifying synthesis gas | |
US10221369B2 (en) | Process for desulphurizing a gas mixture | |
McIntush et al. | AM-16-44 Alternatives to Flare Gas Recovery for Sour Gas | |
CA3192577A1 (en) | Plant and method for carrying out an endothermic chemical process and for separating carbon dioxide from flue gas produced in the process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100921 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101018 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4613156 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |