JP2008127704A - Method for producing recycled particle aggregate - Google Patents

Method for producing recycled particle aggregate Download PDF

Info

Publication number
JP2008127704A
JP2008127704A JP2006313496A JP2006313496A JP2008127704A JP 2008127704 A JP2008127704 A JP 2008127704A JP 2006313496 A JP2006313496 A JP 2006313496A JP 2006313496 A JP2006313496 A JP 2006313496A JP 2008127704 A JP2008127704 A JP 2008127704A
Authority
JP
Japan
Prior art keywords
combustion
furnace
drying
particle aggregate
combustion furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006313496A
Other languages
Japanese (ja)
Other versions
JP4783715B2 (en
Inventor
Naoki Yamauchi
直樹 山内
Yoshiki Kumamoto
吉喜 熊本
Masae Shigetomi
正栄 重冨
Yuji Mizukoshi
裕治 水越
Tsutomu Tanaka
努 田中
Yohei Matsuoka
洋平 松岡
Megumi Masui
芽 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
ACTREE Corp
Original Assignee
Daio Paper Corp
ACTREE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp, ACTREE Corp filed Critical Daio Paper Corp
Priority to JP2006313496A priority Critical patent/JP4783715B2/en
Publication of JP2008127704A publication Critical patent/JP2008127704A/en
Application granted granted Critical
Publication of JP4783715B2 publication Critical patent/JP4783715B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stably produce a recycled particle aggregate having necessary properties especially as a papermaking filler or a coating pigment. <P>SOLUTION: The method for producing the recycled particle aggregate includes using a deinked floss as a main raw material separated from a pulp fiber in the deinking process of wastepaper treatment facilities for producing a wastepaper pulp, and obtaining the recycled particle aggregate from the main raw material through a dehydration, a drying, a burning and a grinding operations. The drying and the burning operations have at least two stages of burning operations with a previous first combustion furnace 14 for carrying out the drying and burning in series of the raw material after the dehydration and a subsequent second combustion furnace 32 for re-burning the deinked floss burned in the first combustion furnace 14 and then grinding the re-burned product to obtain the recycled particle aggregate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脱墨フロスを主原料として再生粒子凝集体を得る再生粒子凝集体の製造方法に関するものである。   The present invention relates to a method for producing a regenerated particle aggregate that obtains a regenerated particle aggregate using deinked floss as a main raw material.

紙パルプ工場の各種工程から排出される製紙スラッジは、無機充填剤及び無機顔料粒子をかなりの割合で含み、これらの製紙スラッジは、回収され、流動床炉やストーカー炉などの焼却炉で製紙スラッジ中の有機物を燃焼して製紙スラッジの減容化を図るとともに、エネルギーとして回収されている。
しかしながら、製紙スラッジには、多量の無機物が含有されているため、燃焼しても多量の焼却灰(無機物)が残り、減容化にも限度がある。そこで、この焼却灰をセメント原料の助剤として活用することや、土壌改良剤として活用すること等の努力もなされている。しかし、これらセメント原料や土壌改良剤の助剤としての焼却灰の使用量はわずかなものであり、結局、大部分の焼却灰は埋立て処分されているのが実情である。
そこで、焼却によって熱エネルギーとして回収するだけでなく、製紙スラッジ中の無機物を製紙用填料、顔料、プラスチック用充填剤等として再利用することは、製紙業界において古紙利用率の向上とともに環境問題に関わる重要な改善課題である。
しかしながら、製紙スラッジの焼却灰には燃焼されずに残った有機物がカーボンとして含まれるため白色度が低く、あるいは、無機物の焼結が進み、粒子径が不揃いで大きくなっており、そのままの状態では製紙用の填料や塗工用顔料、プラスチック用の充填剤等として使用するのに適さない。
Paper sludge discharged from various processes in a pulp and paper mill contains a large proportion of inorganic fillers and inorganic pigment particles. These paper sludge is collected and recovered in incinerators such as fluidized bed furnaces and stalker furnaces. The organic matter inside is burned to reduce the volume of papermaking sludge and is recovered as energy.
However, since papermaking sludge contains a large amount of inorganic substances, a large amount of incinerated ash (inorganic substances) remains even after combustion, and there is a limit to volume reduction. Therefore, efforts have been made to use this incinerated ash as an auxiliary agent for cement raw materials and as a soil conditioner. However, the amount of incineration ash used as an auxiliary to these cement raw materials and soil conditioners is very small, and in the end, most of the incineration ash is landfilled.
Therefore, not only recovering as thermal energy by incineration, but also reusing inorganic substances in paper sludge as paper fillers, pigments, plastic fillers, etc. is related to environmental problems as well as improving the waste paper utilization rate in the paper industry. This is an important improvement issue.
However, the incineration ash of papermaking sludge contains organic matter that remains without being burned as carbon, so the whiteness is low, or the sintering of inorganic matter proceeds, the particle size is uneven and large, and as it is It is not suitable for use as a filler for papermaking, a pigment for coating, or a filler for plastics.

そこで、特許文献1は焼却灰を再燃焼し、白色度を向上させてから使用する方法を開示している。
しかしながら、特許文献1の焼却灰を再燃焼する方法の場合、未燃焼カーボンを完全に燃焼させるため再燃焼温度を500〜900℃に設定する必要があり、焼却灰の白色度は50%程度にまでしか向上せず、製紙用の填料や塗工用顔料として使用するに適するものとはならないことが知見された。また、再燃焼温度を900℃超に設定すると、焼却灰(無機物)が焼結、溶融し、極めて硬くなることが知見された。また、再焼却灰を填料として使用すると、この再焼却灰は非常に硬い性質をもつため、抄紙ワイヤーの摩耗進行が早く、抄紙ワイヤーの寿命が非常に短くなるため、実操業には使用できるものではなかった。また、この再焼却灰を塗工用顔料として使用すると、再焼却灰が非常に硬い性質であるため、摩耗による塗工設備の毀損が生じると共に、カレンダー処理を行ってもその塗工層表面の平滑性が劣るという問題が生じる。
この点、再焼却灰を粉砕し、その粒子径を小さくして、摩耗の低減、平滑性の向上を図ることも考えられるが、内添填料として使用する場合には、抄紙時における歩留りが低いものになり、焼却灰自体がきわめて硬いため、粉砕のためのエネルギーコストが極めて高いものとなる。
Therefore, Patent Document 1 discloses a method of using after incineration ash is reburned to improve whiteness.
However, in the method of recombusting the incinerated ash of Patent Document 1, it is necessary to set the recombustion temperature to 500 to 900 ° C. in order to completely burn the unburned carbon, and the whiteness of the incinerated ash is about 50%. It has been found that it is not suitable for use as a filler for papermaking or as a pigment for coating. It was also found that when the re-combustion temperature was set to over 900 ° C., the incineration ash (inorganic material) was sintered and melted and became extremely hard. In addition, when reincinerated ash is used as a filler, this reincinerated ash has very hard properties, so the progress of wear of the papermaking wire is fast and the life of the papermaking wire is very short. It wasn't. In addition, when this re-incinerated ash is used as a coating pigment, the re-incinerated ash is very hard, which causes damage to the coating equipment due to wear. The problem of poor smoothness arises.
In this regard, it may be possible to pulverize the re-incinerated ash and reduce its particle size to reduce wear and improve smoothness. However, when used as an internal filler, the yield during papermaking is low. Since the incinerated ash itself is extremely hard, the energy cost for pulverization becomes extremely high.

特許文献2では、製紙スラッジを、酸素含有ガスを注入した反応器内に供給し、250〜300℃、3000psig程度の加温加圧下で0.25〜5時間酸化して、製紙スラッジ中の無機物を製紙用の顔料として再生化する方法が提案されている。
しかし、この方法は、製紙スラッジを液相のままで湿式空気酸化処理によるものであるため、有機物除去が十分でなく、また、得られた顔料の白色度が低く、粒子径も不揃いで、製紙用の填料や顔料として使用するには不適であり、しかも反応操作が複雑でコストが高いという問題がある。
In Patent Document 2, papermaking sludge is supplied into a reactor into which an oxygen-containing gas has been injected, and is oxidized at 250 to 300 ° C. under a heating and pressurization of about 3000 psig for 0.25 to 5 hours. Has been proposed to recycle as a pigment for papermaking.
However, since this method is based on wet air oxidation treatment with the paper sludge remaining in the liquid phase, organic matter removal is not sufficient, and the resulting pigment has low whiteness and uneven particle size, making papermaking This is unsuitable for use as a filler or pigment, and has a problem that the reaction operation is complicated and expensive.

一方、特許文献3には、製紙スラッジをいぶし焼きしてPS炭とした後、さらにこれを内熱キルン炉で焼却して製紙用原料となる白土を生成させる方法が提案されている。しかし、この方法は製紙スラッジをいぶし焼きするため、製紙スラッジからエネルギーを有効に取り出すことができないばかりか、逆に投入エネルギーが必要になるという大きなデメリットがある。また、いぶし焼きにより、揮発分が除去され有機物が燃焼(酸化)し難い所謂「残カーボン」とよばれる状態となり、後工程での燃焼が困難になるとともに、残カーボンのために長い燃焼時間を掛けなければ高い白色度を得がたく、さらに、生成した白土も粒子径が不揃いで大きくなっており、又、内熱キルンで使用される重油バーナーからのカーボンやイオウ酸化物による汚染が生じ、製紙用顔料としては使用できないという問題がある。   On the other hand, Patent Document 3 proposes a method in which after making papermaking sludge into PS charcoal, it is further incinerated in an internal heat kiln furnace to produce white clay as a papermaking raw material. However, this method has a great demerit that not only energy cannot be effectively extracted from the papermaking sludge but also input energy is required because the papermaking sludge is fried. In addition, by smoldering, the volatile matter is removed and the organic matter is difficult to burn (oxidize), so-called “residual carbon”, which makes it difficult to burn in the post-process and has a long combustion time due to the residual carbon. It is difficult to obtain high whiteness unless it is applied, and the generated clay is also large due to irregular particle sizes. Also, contamination from carbon and sulfur oxides from heavy oil burners used in internal heat kilns occurs. There is a problem that it cannot be used as a papermaking pigment.

特許文献4のように、排水処理汚泥をロータリーキルン炉内で連続して乾燥・炭化・燃焼する方法が知られている。この方法において使用される排水処理汚泥は、種々の発生源を有する汚泥で構成されているため、発生源や発生量の変動により、得られる造粒・成形物質においても変動が生じる問題を有し、当該特許文献においては、燃焼に先立って、造粒・成形するのは、燃焼を均一に行うためであると考えられるものの、実施の形態に記載されている固形分濃度40〜60%(換言すれば水分率60〜40%)の状態でロータリーキルン炉内で連続して乾燥・炭化・燃焼する場合、汚泥の乾燥状態、炭化状態のいかんに係らず、キルン炉の回転によって汚泥粒子は強制的に処理が進行してしまう。従って、乾燥が不十分であると粒子内部に未燃分が多く残留しその結果燃焼が不完全となって白色度の低下を生じ、逆に過乾燥になると燃焼は完全となるが過燃焼を招き、得られた再生粒子凝集体の硬度が高くなり、この再生粒子凝集体を使用すると抄紙機でのワイヤー摩耗や紙を断裁する場合のカッター刃摩耗が生じやすくなるという問題を引き起こす。   As disclosed in Patent Document 4, a method is known in which wastewater treatment sludge is continuously dried, carbonized, and burned in a rotary kiln furnace. Since the wastewater treatment sludge used in this method is composed of sludge having various sources, there is a problem that the resulting granulated / molded material also fluctuates due to fluctuations in the source and amount generated. In this patent document, granulation and shaping prior to combustion are considered to be performed for uniform combustion, but the solid content concentration described in the embodiment is 40 to 60% (in other words, If the moisture content is 60-40%), the sludge particles are forced by the rotation of the kiln regardless of the dry or carbonized state of the sludge. The process will continue. Therefore, if the drying is insufficient, a large amount of unburned matter remains inside the particles, resulting in incomplete combustion and a decrease in whiteness.On the other hand, overdrying results in complete combustion but overburning. As a result, the hardness of the obtained regenerated particle aggregate increases, and when this regenerated particle aggregate is used, there is a problem that wire wear in a paper machine and cutter blade wear when cutting paper are likely to occur.

先行する特許文献1〜4に記載の製紙スラッジを原料とする場合における最も大きな問題点は、原料とする製紙スラッジが、抄紙工程でワイヤーを通過して流出したもの、パルプ化工程での洗浄過程で発生した固形分を含む排水から回収したもの、排水処理工程において、沈殿あるいは浮上などを利用した固形分分離装置によりその固形分を分離、回収したもの、古紙処理工程での混入異物除去したもの等の各種スラッジが混在している点である。
これらの製紙スラッジのうち、例えば、抄紙工程でワイヤーを通過して流出したものは、紙力剤等が混入しており、また、抄紙工程における抄造物の変更によって品質に変動が生じる。また、排水処理工程から回収した製紙スラッジには凝集剤が混入する他、工場全体の抄造物、生産量の変動、あるいは生産設備の工程内洗浄などにより大きな変動が生じる。
パルプ化工程での洗浄過程から生じる製紙スラッジにおいては、チップ水分やパルプ製造条件で変動が生じる他、さまざまな填料、顔料とすることができない物質が混入し、品質変動が生じる。従って、全ての製紙スラッジを無選別に用いようとすると、製紙用の填料や塗工用顔料としての品質が大きく低下し、しかも品質の変動が極めて大きく、不安定なものとなる。
すなわち、従来公知の方法で得られる再生粒子は、製紙用の填料や塗工用顔料、プラスチック用等の充填剤として使用するには品質が適さず、品質安定性に欠けるものであった。
特開平11−310732号公報 特公昭56−27638号公報 特開昭54−14367号公報 登録3812900号公報
The biggest problem when using papermaking sludge described in the preceding Patent Documents 1 to 4 as a raw material is that the papermaking sludge used as a raw material flows out through the wire in the papermaking process, and the washing process in the pulping process Collected from wastewater containing solids generated in wastewater, separated and recovered by solids separation equipment using sedimentation or flotation, etc. in wastewater treatment process, removed foreign matter in wastepaper treatment process It is a point where various sludges such as are mixed.
Among these papermaking sludges, for example, those that flow out through the wire in the papermaking process are mixed with a paper strength agent and the quality varies due to changes in the papermaking product in the papermaking process. In addition, the papermaking sludge collected from the wastewater treatment process is mixed with a flocculant, and a large fluctuation occurs due to papermaking products in the whole factory, fluctuations in production volume, or in-process washing of production facilities.
In the papermaking sludge generated from the washing process in the pulping process, fluctuations occur in chip moisture and pulp production conditions, and various fillers and substances that cannot be made into pigments are mixed, resulting in quality fluctuations. Therefore, if all the papermaking sludge is used without selection, the quality as a papermaking filler or coating pigment is greatly reduced, and the quality fluctuation is extremely large and unstable.
That is, the regenerated particles obtained by a conventionally known method are not suitable for use as fillers for papermaking, pigments for coating, plastics, etc., and lack quality stability.
JP-A-11-310732 Japanese Examined Patent Publication No. 56-27638 Japanese Patent Laid-Open No. 54-14367 Registration No. 3812900

本発明が解決しようとする主たる課題は、特に製紙用の填料または塗工用顔料として必要な特性を備えた再生粒子凝集体を、安定して製造することにある。   A main problem to be solved by the present invention is to stably produce a regenerated particle aggregate having characteristics necessary particularly as a filler for papermaking or a pigment for coating.

この課題を解決した本発明は、次のとおりである。
〔請求項1記載の発明〕
古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料として、前記主原料を脱水、乾燥、燃焼及び粉砕操作を経て、再生粒子凝集体を得る再生粒子凝集体の製造方法であって、
前記乾燥と燃焼操作が、前記脱水後の原料の乾燥と燃焼を一連で行う先の第1燃焼炉と、第1燃焼炉にて燃焼された脱墨フロスを再度燃焼する、後の第2燃焼炉を有する、少なくとも2段階の乾燥・燃焼操作を有し、
その後に粉砕し、再生粒子凝集体を得ることを特徴とする再生粒子凝集体の製造方法。
The present invention that has solved this problem is as follows.
[Invention of Claim 1]
Using the deinked floss separated from the pulp fiber in the deinking process of the used paper processing equipment for manufacturing used paper pulp, the main material is subjected to dehydration, drying, combustion and pulverization operations to obtain recycled particle aggregates. A method for producing an aggregate, comprising:
The drying and combustion operation re-combusts the first combustion furnace that performs a series of drying and combustion of the material after dehydration, and the deinking floss burned in the first combustion furnace, and the second combustion after the second. Having a furnace, having at least two stages of drying and burning operations;
A method for producing a regenerated particle aggregate, which is then pulverized to obtain a regenerated particle aggregate.

〔請求項2記載の発明〕
第1燃焼炉が、本体が横置きで中心軸周りに回転する内熱キルン炉であり、内熱キルン炉に投入する前記脱水後の原料の水分率は50%未満である請求項1記載の再生粒子凝集体の製造方法。
[Invention of Claim 2]
The first combustion furnace is an internal heat kiln furnace in which a main body is placed horizontally and rotates around a central axis, and a moisture content of the raw material after dehydration to be input into the internal heat kiln furnace is less than 50%. A method for producing regenerated particle aggregates.

〔請求項3記載の発明〕
内熱キルン炉内の酸素濃度が0.2〜20%となるように、500℃〜650℃の熱風を吹き込む請求項1または2記載の再生粒子凝集体の製造方法。
[Invention of Claim 3]
The method for producing a regenerated particle aggregate according to claim 1 or 2, wherein hot air of 500 ° C to 650 ° C is blown so that the oxygen concentration in the internal heat kiln furnace is 0.2 to 20%.

〔請求項4記載の発明〕
第2燃焼炉が、本体が横置きで中心軸周りに回転する外熱キルン炉であり、前記外熱キルン炉において、前記内熱キルン炉からの燃焼物を、550℃〜750℃の温度で燃焼する請求項1〜3のいずれか1項に記載の再生粒子凝集体の製造方法。
[Invention of Claim 4]
The second combustion furnace is an external heat kiln furnace in which the main body is placed horizontally and rotates around a central axis. In the external heat kiln furnace, the combustion product from the internal heat kiln furnace is at a temperature of 550 ° C. to 750 ° C. The manufacturing method of the regenerated particle aggregate of any one of Claims 1-3 which burn.

本発明によれば、特に製紙用の填料または塗工用顔料として必要な特性を備えた再生粒子凝集体を、安定して製造することができる。   According to the present invention, it is possible to stably produce a regenerated particle agglomerate having characteristics necessary as a filler for papermaking or a pigment for coating.

次に、本発明の実施の形態の説明に先立ち、本発明の位置づけについて説明する。
たとえば、製紙用スラッジを燃焼する場合、(1)特開2003−119695号公報記載の発明では、乾燥物を炉内の酸素濃度が0.1体積%以下となる実質的に酸素が存在しない貧酸素状態で、具体的には間接加熱炉(外熱燃焼炉)によって乾燥及び炭化処理する。次に炭化物に含まれる有機物由来の炭素を酸化させて脱炭素する、具体的には間接加熱炉によって白化処理する方法が提案されている。また、同発明は、後者の白化処理については内熱ロータリーキルン炉を使用することも教示している。
他方、本出願人は、(2)特開2002−275785号として、炭化後に再燃焼のためにロータリーキルン炉を使用することも教示している。
さらに、本出願人は、(3)特許3808852号として、「原料スラッジとして脱墨スラッジを用い、これを乾燥させる乾燥工程と、前記乾燥させた脱墨スラッジをサイクロン型燃焼炉の炉上部から炉内に供給し、旋回下降させつつ燃焼させ未燃分を含む一次燃焼物を得る一次燃焼工程と、前記サイクロン型燃焼炉に連通し、その下端からの未燃分を含む一次燃焼物を受けて、機械的な攪拌により酸素との接触を促進させながら、前記一次燃焼工程の燃焼熱を利用して所定の白色度となるまで燃焼させる二次燃焼工程とを含む、ことを特徴とする脱墨スラッジからの白色顔料又は白色填料の製造方法。」を提案した。
また、(4)特開2004−176208号においては、「塗工紙製造工程の排水処理汚泥」から填料を製造するに際し、成形汚泥を「一つのロータリーキルン炉内で乾燥、炭化、燃焼」を行うことを提案している。
Next, prior to the description of the embodiments of the present invention, the positioning of the present invention will be described.
For example, when papermaking sludge is combusted, (1) in the invention described in Japanese Patent Application Laid-Open No. 2003-119695, the dried product is poor in that oxygen is not substantially present so that the oxygen concentration in the furnace is 0.1% by volume or less. In an oxygen state, specifically, drying and carbonization are performed by an indirect heating furnace (external heat combustion furnace). Next, a method has been proposed in which carbon derived from an organic substance contained in a carbide is oxidized and decarbonized, specifically, a whitening treatment is performed using an indirect heating furnace. The invention also teaches the use of an internal heat rotary kiln furnace for the latter whitening treatment.
On the other hand, the present applicant also teaches (2) JP 2002-275785 to use a rotary kiln furnace for recombustion after carbonization.
Further, the present applicant, as (3) Patent No. 3808852, “Deinking sludge is used as raw material sludge and dried, and the dried deinking sludge is removed from the upper part of the cyclone combustion furnace. A primary combustion step of obtaining a primary combustion product containing unburned content by being supplied to the inside and swirling and descending, and a primary combustion product communicating with the cyclone-type combustion furnace and containing unburned content from the lower end thereof And a secondary combustion step of burning until a predetermined whiteness is obtained using the heat of combustion of the primary combustion step while promoting contact with oxygen by mechanical stirring. A method for producing a white pigment or a white filler from sludge "was proposed.
In addition, in (4) Japanese Patent Application Laid-Open No. 2004-176208, when the filler is produced from “the wastewater treatment sludge in the coated paper manufacturing process”, the formed sludge is “dried, carbonized and burned in one rotary kiln furnace”. Propose that.

上記(1)(2)及び(4)は、古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料とするものではなく、前述の製紙スラッジを主原料とするものである。そして、得られる再生粒子は、本発明のような、再生粒子「凝集体」とは異なるものと考えられる。
一方、(3)の方法によれば、本発明によって得られるものと同様な再生粒子凝集体を得ることができる。しかし、同方法ではサイクロン式流動燃焼炉を使用し、乾燥物を燃焼し、次いで二次燃焼を行っている。
しかし、これでは、乾燥と燃焼を別の装置で行っており、設備費が嵩むばかりでなく、サイクロン式流動燃焼炉自体の形式に由来するものと考えられるが、サイクロン式は数十〜数百ミクロンの原料と空気を旋廻流として供給口から供給し、空気の旋廻作用により空気と効果的に混合されながら燃焼させるため、原料に含有される微粒子が、排ガスとともに系外に排出され製品歩留りが低下する問題、主原料である脱墨フロスの燃焼時間(加熱時間)が短時間であることにより未燃焼分が生じやすい問題、最終的に得られる燃焼物の品質(特に形状)が一定でなく、燃焼物の白色度もバラツキが生じる場合があることが知見された。
The above (1), (2) and (4) do not use deinking floss separated from pulp fibers in the deinking process of the used paper processing equipment for producing used paper pulp, but mainly use the above-mentioned papermaking sludge. It is a raw material. The obtained regenerated particles are considered to be different from the regenerated particles “aggregates” as in the present invention.
On the other hand, according to the method (3), regenerated particle aggregates similar to those obtained by the present invention can be obtained. However, in this method, a cyclone fluidized combustion furnace is used to burn dry matter, followed by secondary combustion.
However, in this case, drying and combustion are performed by separate apparatuses, which not only increases the equipment cost, but is considered to be derived from the form of the cyclonic fluidized combustion furnace itself. Micron raw material and air are supplied from the supply port as a swirling flow and burned while being effectively mixed with air by the swirling action of the air, so that the fine particles contained in the raw material are discharged out of the system together with the exhaust gas, and the product yield is increased. Decreased problem, deinking floss that is the main raw material has a short combustion time (heating time), and unburned matter is likely to occur, and the quality (particularly shape) of the final combustion product is not constant It has been found that the whiteness of the combustion product may also vary.

そこで、本発明は、脱水後の原料の乾燥と燃焼が一連で行われ、第1次燃焼炉における燃焼時間(滞留時間)が30分を超える第1燃焼炉を用い、好ましくは本体が横置きで中心軸周りに回転する内熱(直接加熱)キルン炉により、前記脱水後の原料の乾燥及び燃焼を行い、次に、第1燃焼炉から得られる燃焼物を再度燃焼する燃焼時間(滞留時間)が10分以上の第2燃焼炉を用い、好ましくは本体が横置きで中心軸周りに回転する外熱(間接加熱)キルン炉、特に燃焼温度を容易に調整可能な外熱電気炉により、燃焼する方法を採用するものである。
また、本図面においては第1燃焼炉を内熱キルン炉、第2燃焼炉を外熱キルン炉を選択し詳説をおこなうが、好適には先の第1燃焼炉を内熱で行い、後の第2燃焼炉を外熱で行う少なくとも2段階の燃焼炉であれば公知の燃焼炉を使用できる。更に先に述べたように、第1次燃焼炉における燃焼時間(滞留時間)が30分以上の内熱燃焼炉、第2燃焼炉における燃焼時間(滞留時間)が10分を超える外熱燃焼炉であればより好適であり、内熱燃焼炉として流動床焼却炉、外熱燃焼炉として重油等を熱源にした間接加熱方式の燃焼炉等の公知の燃焼方法が採用される。
第1燃焼炉として好適に用いられる内熱キルン炉によれば、乾燥及び燃焼を一つの炉で行うことができ、供給口から排出口に至るまで、緩やかに安定的に乾燥及び燃焼が進行し、かつ燃焼物の微粉化が抑制される。また、第2燃焼炉として好適に用いられる外熱キルン炉により燃焼すると、その端部から燃焼物を一定の滞留時間をもって、他端部の排出口から排出でき、さらに外熱により燃焼物に均一な熱が加わるので、燃焼が均一なものとなり、燃焼のバラツキを生じさせないものとなる。さらに、キルン炉内壁の回転による摩擦によって燃焼物が緩やかに攪拌されるため、微粉化を生じにくい。その結果、最終的な燃焼物の品質及び形状が安定したものとなるのである。
上記のとおり、乾燥、燃焼の操作を、先の第1燃焼炉と後の第2燃焼炉にて行う、好適には内熱キルン炉と外熱キルン炉にて、少なくとも2段階の燃焼炉により行うことで、均一で安定的な再生粒子凝集体が得られる。
好適な燃焼炉として用いられる内熱又は外熱キルン炉は、内部耐火物を円周状でなく、六角形や八角形とすることで燃焼物を滑らす事無く持ち上げて攪拌することができ、燃焼物攪拌用のリフターを設けないことで、粉塵の発生を抑制し排ガスへの粉塵混入を抑えることができ、製品歩留りを向上させることができる。
Therefore, the present invention uses a first combustion furnace in which the raw material after dehydration is dried and burned in series and the combustion time (residence time) in the primary combustion furnace exceeds 30 minutes, preferably the main body is placed horizontally. The combustion time (residence time) in which the raw material after dehydration is dried and burned by an internal heat (direct heating) kiln furnace that rotates around the central axis in the above, and then the combustion product obtained from the first combustion furnace is burned again. ) Using a second combustion furnace of 10 minutes or more, preferably an externally heated (indirect heating) kiln furnace in which the main body is placed horizontally and rotates around the central axis, particularly an externally heated electric furnace whose combustion temperature can be easily adjusted, The method of burning is adopted.
Further, in this drawing, the first combustion furnace is selected as an internal heat kiln furnace, and the second combustion furnace is selected as an external heat kiln furnace. However, the first combustion furnace is preferably performed with internal heat, A known combustion furnace can be used as long as the second combustion furnace is an at least two-stage combustion furnace that performs external heat. Further, as described above, the internal combustion furnace in which the combustion time (residence time) in the primary combustion furnace is 30 minutes or more, and the external heat combustion furnace in which the combustion time (residence time) in the second combustion furnace exceeds 10 minutes. If so, a known combustion method such as a fluidized bed incinerator as an internal heat combustion furnace and an indirect heating type combustion furnace using heavy oil as a heat source as an external heat combustion furnace is employed.
According to the internal heat kiln furnace suitably used as the first combustion furnace, drying and combustion can be performed in one furnace, and the drying and combustion proceed slowly and stably from the supply port to the discharge port. And the pulverization of the combustion product is suppressed. Moreover, when combusted in an external heat kiln furnace that is suitably used as the second combustion furnace, the combusted material can be discharged from the end of the combusted material with a constant residence time through the discharge port of the other end, and further uniformed by the external heat. Since the heat is applied, the combustion becomes uniform and the combustion does not vary. Furthermore, the combustion product is gently agitated by friction caused by the rotation of the inner wall of the kiln furnace, so that it is difficult to produce fine powder. As a result, the quality and shape of the final combustion product become stable.
As described above, the drying and combustion operations are performed in the first combustion furnace and the second combustion furnace, preferably in the internal heat kiln furnace and the external heat kiln furnace, using at least two stages of combustion furnaces. By carrying out, uniform and stable regenerated particle aggregates can be obtained.
The internal heat or external heat kiln furnace used as a suitable combustion furnace can lift and agitate the combusted material without slipping by making the internal refractory into a hexagonal or octagonal shape instead of a circumferential shape. By not providing a lifter for stirring a product, generation of dust can be suppressed, dust can be prevented from being mixed into exhaust gas, and product yield can be improved.

ここで、本件発明者等が好適な再生粒子凝集体を得るに当り、最も注力した燃焼炉の選択について説明する。
従来から慣用的に用いられてきた燃焼炉は、ストーカー炉(固定床)、流動床炉、サイクロン炉、キルン炉の4種に大別でき、本発明者等は、それぞれの焼却炉で再生粒子凝集体の製造の検討を重ねたところ、
・ストーカー炉(固定床)については、脱墨フロスの燃焼度合い調整が困難であり、燃焼物が不均一である上に、灰分の多い脱墨フロスの燃焼では火格子間のクリアランスから落塵を生じるため適さない。火格子を通し燃焼物の下に空気を吹上げ燃焼させるため、炭酸カルシウムなどが飛灰となり排ガスとともに排ガス設備へ送られるため、歩留の低下が問題となる。
・流動床炉については、炉内の流動媒体に珪砂のような粒子状の流動媒体を使用するため、珪砂が再生填料へ混入し品質の低下を招く問題を有する。均一な攪拌ができない。硅砂を流動層混合して燃焼させた後、硅砂と燃焼物を分離し、硅砂は燃焼炉へ戻し燃焼物のみを取り出すが、燃焼物も硅砂と同程度の粒径が生じるため分離できない。硅砂と浮遊した状態で燃焼させているため、燃焼の度合い調整が困難であり、品質のばらつきが発生する。燃焼炉のストーカ(階段状)を、所定幅で、燃焼物が通過しながら燃焼するため灰の攪拌が不十分で幅方向で燃焼にバラツキが発生する。
又、硬度の高い珪砂との摩擦、衝突により燃焼物が微粉化され飛灰となって系外へ排出され歩留りが低下する。
・サイクロン炉については、炉内を一瞬で通過するため燃焼物中の固定炭素を十分に燃焼できず白色度の低下に繋がる、更に、風送により細かい粒子はサイクロンで分離されず排ガスと一緒に排ガス処理工程に回るため歩留が低下する。
前記諸問題について鋭意検討を重ねた結果、燃焼炉としてはキルン炉にて燃焼させることが最も好適な燃焼手段として選択され、更に以下の理由から先の第1燃焼炉を内熱キルン、後の第2燃焼炉を外熱キルンとすることが好適であることを見出している。
外熱キルン炉は、キルン炉の外側に加熱設備を設けた構成となるため、キルン炉の構造が複雑になるとともに、燃焼物を間接的に乾燥、燃焼させるゆえに多量の熱源が必要になるため、本発明に係る、脱水後の水分率が高い原料の乾燥、燃焼処理に外熱キルン炉を先の第1燃焼炉として使用した場合には、乾燥・燃焼効率が低くなり、生産性が悪く、温度の制御が困難になるとともに多大なエネルギーコストを必要とし、費用対効果が極めて低くなる。
又、内熱キルン炉を2次燃焼炉に使用した場合には、残カーボンを燃焼するにおいて、炉内温度の調整に多量の希釈空気が必要であり、又、多量の空気を投入しないと燃焼熱を内熱キルン炉内に均一に伝えることが困難であり、更に炉内温度の変動を抑えることが困難であるため、燃焼物の過燃焼や燃焼ムラが生じやすい問題を呈する。
更に、通常加熱に使用される重油バーナーからの重油燃焼残カーボンやイオウ酸化物等による汚染が発生し、製品段階で白色度の低下やバラツキが生じ、得られる燃焼物の品質の均一化が困難な問題が生じる。
発明者等は、前記問題を知見し、問題を解決する手段について鋭意検討を重ねた結果、本発明を完成させたものである。
Here, the selection of the combustion furnace most focused on when the present inventors obtain a suitable regenerated particle aggregate will be described.
Conventionally used combustion furnaces can be broadly divided into four types: stalker furnaces (fixed bed), fluidized bed furnaces, cyclone furnaces, and kiln furnaces. After repeated examination of the production of aggregates,
・ For the stalker furnace (fixed bed), it is difficult to adjust the degree of combustion of the deinking floss, the combustion products are not uniform, and combustion of the deinked floss with a lot of ash causes dust to fall from the clearance between the grate. Therefore it is not suitable. Since air is blown up and burned under the combustion material through the grate, calcium carbonate or the like becomes fly ash and is sent to the exhaust gas facility together with the exhaust gas.
-As for the fluidized bed furnace, since a particulate fluid medium such as silica sand is used as the fluid medium in the furnace, there is a problem that the silica sand is mixed into the recycled filler and the quality is deteriorated. Uniform stirring is not possible. After the cinnabar sand is mixed in a fluidized bed and combusted, the cinnabar sand and the burned material are separated, and the cinnabar sand is returned to the combustion furnace, and only the burned material is taken out. Since combustion is performed in a floating state with dredged sand, it is difficult to adjust the degree of combustion, resulting in variations in quality. Since the combustion furnace is burned while passing through the stoker (stepped shape) of the combustion furnace with a predetermined width, the ash is not sufficiently stirred and the combustion varies in the width direction.
In addition, the combustibles are pulverized by friction and collision with high hardness silica sand and are discharged as fly ash, which decreases the yield.
・ As for the cyclone furnace, the fixed carbon in the combusted material cannot be burned sufficiently because it passes through the furnace in an instant, leading to a decrease in whiteness.Further, fine particles are not separated by the cyclone and are combined with exhaust gas. Since the process goes to the exhaust gas treatment process, the yield decreases.
As a result of intensive studies on the above problems, the combustion furnace is selected as the most suitable combustion means for combustion in the kiln furnace. Further, the first combustion furnace is the internal heat kiln, and the subsequent combustion furnace for the following reasons. It has been found that the second combustion furnace is preferably an external heat kiln.
Since the external heat kiln furnace has a configuration in which heating equipment is provided outside the kiln furnace, the structure of the kiln furnace becomes complicated, and a large amount of heat source is required because the combustion products are dried and burned indirectly. When the external heat kiln furnace is used as the first combustion furnace for the drying and combustion treatment of the raw material having a high water content after dehydration according to the present invention, the drying / combustion efficiency is lowered and the productivity is poor. The temperature control becomes difficult and requires a large energy cost, and the cost effectiveness is extremely low.
In addition, when the internal heat kiln furnace is used as a secondary combustion furnace, a large amount of diluted air is required to adjust the furnace temperature when the remaining carbon is burned. Since it is difficult to uniformly transmit heat into the internal heat kiln furnace, and furthermore, it is difficult to suppress fluctuations in the furnace temperature, there is a problem in that overburning of combustion products and uneven combustion are likely to occur.
In addition, heavy oil combustion residual carbon and sulfur oxides from heavy oil burners used for normal heating cause contamination, resulting in a decrease in whiteness and variability at the product stage, making it difficult to equalize the quality of the resulting combustion products. Problems arise.
The inventors have completed the present invention as a result of finding out the above problems and intensively studying means for solving the problems.

次に、本発明の実施の形態の一例を、図面を参照しながら説明する。
〔概要〕
本形態の再生粒子凝集体の製造設備フローは、脱水工程、乾燥・燃焼工程、粉砕工程を有するが、更に、脱墨フロスの凝集工程または造粒工程や、各工程間に分級工程等を設けてもよい。
図1に、再生粒子凝集体の製造設備フローの一部構成例(乾燥・燃焼工程、及び燃焼工程を含む設備例)を示した。本設備には、各種センサーが備わっており、被燃焼物や設備の状態、処理速度のコントロール等を行っている。
図示しない、古紙パルプを製造する脱墨工程においてパルプ繊維から分離された脱墨フロスは、種々の操作を経て、同じく図示しない脱水設備により脱水される。脱水後の原料は、水分率が50%未満、特に25〜45%とすることが望ましい。
かかる脱水後の原料10は、望ましくは、粉砕機(又は解砕機)により40mm以下の粒子径に粉砕しておく。かかる原料10が貯槽12から切り出されて、第1燃焼炉14の一方側から装入機15により装入される。第1燃焼炉14の一方側には、排ガスチャンバー16が、他方側には排出チャンバー18が設けられている。排出チャンバー18を貫通して、熱風が第1燃焼炉14の他方側から吹き込まれ、前記一方側から装入され、第1燃焼炉14の回転に伴って前記他方側に順次移送される原料の乾燥及び燃焼を行うようになっている。
ここで、第1燃焼炉14内に吹き込む熱風は、酸素濃度が0.2〜20%となるようにするのが望ましい。温度としては、500℃〜650℃が望ましい。熱風は、バーナー20Aを備える熱風発生炉20から吹き込まれる。
排ガスチャンバー16からは、乾燥・燃焼に供した排ガスが再燃焼室22に送り込まれる。排ガス中に含まれる燃焼物の微粉末は、排ガスチャンバー16の下部から排出され、再利用される。排ガスは、再燃焼室22でバーナーにより再燃焼が行われ、予冷器24により予冷された後、熱交換器26を通し、誘引ファン28により煙突30から排出される。ここで、熱交換器26は外気を昇温した後に、熱風発生炉20に送られ、第1燃焼炉14から吹き込まれる熱風の用に供せられ、排ガスチャンバー16からの排ガスの熱を回収するようにしてある。排ガスの処理は、排ガス中に含まれる有害物質の除去に有効である。
第1燃焼炉14において乾燥及び燃焼処理を経た燃焼物は、第2燃焼炉32に装入される。この装入される燃焼物の粒径としては、20mm以下が好適である。第2燃焼炉32での熱源としては、第2燃焼炉32内の温度コントロールが容易で長手方向の温度制御が容易な電気による調整が好適であり、したがって、電気ヒーターにより間接的に第1燃焼炉から得られる燃焼物を再び燃焼させる外熱式の第2燃焼炉32であることが望ましい。
第2燃焼炉32においては、酸素濃度が5〜20%となるように燃焼するのが望ましい。温度としては、550℃〜750℃が望ましい。また、第2燃焼炉内での滞留時間は10分〜60分が、残カーボンを完全に燃焼させるに望ましい。
燃焼が終了した再生粒子凝集体は、冷却機34により冷却された後、振動篩機などの粒径選別機36により選別され、湿式粉砕機等を用いた粉砕工程で目的の粒子径に調整された燃焼物が燃焼品サイロ38に一時貯留され、顔料や填料の用途先に仕向けられる。
なお、脱墨フロスを原料として用いた場合を例示したが、脱墨フロスを主原料に、抄紙工程における製紙スラッジ等の他製紙スラッジを適宜混入させたものを原料とした燃焼物であってもよい。
Next, an example of an embodiment of the present invention will be described with reference to the drawings.
〔Overview〕
The production facility flow of the regenerated particle aggregate of this embodiment has a dehydration process, a drying / combustion process, and a pulverization process. In addition, a deinking floss agglomeration process or granulation process and a classification process are provided between the processes. May be.
FIG. 1 shows a partial configuration example (an example of equipment including a drying / combustion process and a combustion process) of a production facility flow of regenerated particle aggregates. This equipment is equipped with various sensors, and controls the state of combustibles, equipment, and processing speed.
The deinking floss separated from the pulp fiber in the deinking process for producing waste paper pulp (not shown) is dehydrated by a dehydration facility (not shown) through various operations. The material after dehydration preferably has a moisture content of less than 50%, particularly 25 to 45%.
The material 10 after such dehydration is desirably pulverized to a particle size of 40 mm or less by a pulverizer (or pulverizer). The raw material 10 is cut out from the storage tank 12 and charged by a charging machine 15 from one side of the first combustion furnace 14. An exhaust gas chamber 16 is provided on one side of the first combustion furnace 14, and an exhaust chamber 18 is provided on the other side. Hot air is blown from the other side of the first combustion furnace 14 through the discharge chamber 18, charged from the one side, and sequentially transferred to the other side as the first combustion furnace 14 rotates. It is designed to dry and burn.
Here, it is desirable that the hot air blown into the first combustion furnace 14 has an oxygen concentration of 0.2 to 20%. As temperature, 500 to 650 degreeC is desirable. Hot air is blown from a hot air generating furnace 20 provided with a burner 20A.
From the exhaust gas chamber 16, exhaust gas subjected to drying and combustion is sent into the recombustion chamber 22. The fine powder of the combustion material contained in the exhaust gas is discharged from the lower part of the exhaust gas chamber 16 and reused. The exhaust gas is recombusted by the burner in the recombustion chamber 22, precooled by the precooler 24, passed through the heat exchanger 26, and discharged from the chimney 30 by the induction fan 28. Here, after raising the temperature of the outside air, the heat exchanger 26 is sent to the hot air generating furnace 20 and used for the hot air blown from the first combustion furnace 14 to recover the heat of the exhaust gas from the exhaust gas chamber 16. It is like that. The treatment of exhaust gas is effective for removing harmful substances contained in the exhaust gas.
Combustion products that have been dried and burned in the first combustion furnace 14 are charged into the second combustion furnace 32. The particle size of the combusted material to be charged is preferably 20 mm or less. As a heat source in the second combustion furnace 32, it is preferable to use an electric adjustment that allows easy temperature control in the second combustion furnace 32 and easy temperature control in the longitudinal direction. Therefore, the first combustion is indirectly performed by an electric heater. It is desirable that the second combustion furnace 32 be of an external heating type in which the combustion product obtained from the furnace is burned again.
In the second combustion furnace 32, it is desirable to burn so that the oxygen concentration is 5 to 20%. As temperature, 550 degreeC-750 degreeC are desirable. Further, the residence time in the second combustion furnace is preferably 10 minutes to 60 minutes in order to completely burn the remaining carbon.
The regenerated particle aggregate after the completion of combustion is cooled by a cooler 34, and then sorted by a particle size sorter 36 such as a vibration sieve, and adjusted to a target particle size in a pulverization process using a wet pulverizer or the like. The burned product is temporarily stored in the combustion product silo 38 and is sent to the application destination of the pigment and filler.
In addition, although the case where deinking floss was used as a raw material was illustrated, even if it is a combustion thing which used as a raw material what mixed other papermaking sludges, such as papermaking sludge in a papermaking process, with deinking floss as a main raw material Good.

以上、概要を説明したが、その詳細及び応用例などを以下に説明する。
〔原料〕
古紙パルプ製造工程では、安定した品質の古紙パルプを連続的に生産する目的から、使用する古紙の選定、選別を行い、一定品質の古紙を使用する。
そのため、古紙パルプ製造工程に持ち込まれる無機物の種類やその比率、量が基本的に一定になる。しかも、再生粒子凝集体の製造方法において未燃物の変動要因となるビニールやフィルムなどのプラスチック類が古紙中に含まれていた場合においても、これらの異物は脱墨フロスを得る脱墨工程に至る前段階で除去することができる。従って、脱墨フロスは、工場排水工程や製紙原料調整工程等、他の工程で発生する製紙スラッジと比べ、極めて安定した品質の再生粒子凝集体を製造するための原料となる。
本発明で云う脱墨フロスとは、古紙パルプを製造する古紙処理工程において、主に、古紙に付着したインクを取り除く脱墨工程で、パルプ繊維から分離されるものをいう。
Although the outline has been described above, details and application examples thereof will be described below.
〔material〕
In the used paper pulp manufacturing process, for the purpose of continuously producing used paper pulp with stable quality, used paper is selected and selected and used with a certain quality.
For this reason, the types, ratios, and amounts of inorganic substances brought into the used paper pulp manufacturing process are basically constant. Moreover, even when plastics such as vinyl and film, which cause unburned substances in the recycled particle agglomerate production method, are contained in the waste paper, these foreign substances are used in the deinking process to obtain deinking floss. It can be removed at the previous stage. Accordingly, the deinking floss is a raw material for producing regenerated particle aggregates having extremely stable quality as compared with papermaking sludge generated in other processes such as a factory drainage process and a papermaking raw material adjustment process.
The deinking floss referred to in the present invention refers to what is separated from the pulp fiber in the deinking process for removing ink adhering to the used paper in the used paper processing process for producing the used paper pulp.

〔脱水工程〕
脱墨フロスの更なる脱水は、公知の脱水手段を適宜に使用できる。本形態における一例では、脱墨フロスは、脱水手段たる例えばスクリーンによって、脱墨フロスから水を分離して脱水する。スクリーンにおいて、水分を90%〜97%に脱水した脱墨フロスは、例えばスクリュープレスに送り、更に水分を50%以下に脱水することが好適である。
水分率が50%を超えると、第1燃焼炉における乾燥・燃焼処理温度の低下を招き、加熱のためのエネルギーロスが多大になるとともに、原料の燃焼ムラが生じやすくなり均一な燃焼を進めがたくなる。さらに、排出される排ガス中の水分が多くなり、ダイオキシン対策における再燃焼処理効率の低下と、排ガス処理設備の負荷が大きくなる問題を有する。また、原料の水分率を低くすることで、均一な燃焼を進め易くなるものの、原料の水分率を25%未満まで脱水を行うことは、脱水設備が大型化すると共に、脱水処理エネルギーが多大になる問題を有する。
以上のように、脱墨フロスの脱水を多段工程で行い急激な脱水を避けると、無機物の流出が抑制でき脱墨フロスのフロックが硬くなりすぎるおそれがない。脱水処理においては、脱墨フロスを凝集させる凝集剤等の脱水効率を向上させる助剤を添加しても良いが、凝集剤には、鉄分を含まないものを使用することが好ましい。鉄分が含有されると、鉄分の酸化により再生粒子凝集体の白色度を下げる問題を引き起こす。
脱墨フロスの脱水工程は、本発明における再生粒子凝集体の製造工程に隣接することが生産効率の面で好ましいが、予め古紙パルプ製造工程に隣接して設備を設け、脱水を行った物を搬送することも可能であり、トラックやベルトコンベア等の搬送手段によって定量供給機まで搬送し、この定量供給機から乾燥・燃焼工程に供給する。
かかる脱水後の原料10は、第1燃焼炉に供給する操作において、望ましくは、粉砕機(又は解砕機)により平均粒子径40mm以下の粒子径に揃えることが好ましく、より好ましくは平均粒子径が3〜30mm、更に好ましくは平均粒子径が5〜25mmの範囲に成るように調整することが好ましく、好適には粒子径が50mm以下の割合が、70重量%以上に成るように粉砕しておく事がより好ましい。脱墨フロス中に含まれる炭酸カルシウムの熱変化を来たさない燃焼処理を図るため、原料の粒子径は均一であることが好ましいところ、平均粒子径が3mm未満では過燃焼になりやすく、40mmを超える平均粒子径では、原料芯部まで均一に燃焼を図る事が困難な問題を有するためである。
本発明における平均粒子径と粒子径の割合は、攪拌式の分散機で充分分散させた試料溶液を用いて測定した。
各燃焼行程における粒子径は、JIS Z 8801−2:2000に基づき、金属製の板ふるいにて測定した。
[Dehydration process]
For further dehydration of the deinking floss, known dehydration means can be used as appropriate. In one example of the present embodiment, the deinking floss is dehydrated by separating water from the deinking floss by a screen serving as a dewatering unit. In the screen, it is preferable that the deinking floss dehydrated to 90% to 97% is sent to, for example, a screw press and further dehydrated to 50% or less.
If the moisture content exceeds 50%, the temperature of the drying / combustion process in the first combustion furnace is lowered, energy loss due to heating increases, and uneven combustion of the raw material is likely to occur, thereby promoting uniform combustion. I want to. Further, there are problems that the moisture in the exhaust gas to be discharged increases, the recombustion treatment efficiency is reduced in dioxin countermeasures, and the load on the exhaust gas treatment facility is increased. In addition, although lowering the moisture content of the raw material facilitates uniform combustion, dehydrating the moisture content of the raw material to less than 25% increases the size of the dehydration equipment and significantly increases the energy of dehydration treatment. Have the problem.
As described above, if the deinking floss is dehydrated in a multi-stage process and abrupt dehydration is avoided, the outflow of the inorganic substance can be suppressed and there is no possibility that the deinking floss floc becomes too hard. In the dehydration treatment, an auxiliary agent for improving the dehydration efficiency such as an aggregating agent for aggregating the deinking floss may be added, but it is preferable to use an aggregating agent that does not contain iron. When iron is contained, it causes a problem of lowering the whiteness of the regenerated particle aggregate due to oxidation of iron.
The deinking process of deinking floss is preferably adjacent to the production process of the regenerated particle aggregate in the present invention in terms of production efficiency. It can also be transported, and it is transported to a fixed amount feeder by a transport means such as a truck or a belt conveyor, and supplied to the drying / combustion process from this constant amount feeder.
In the operation of supplying the raw material 10 after dehydration to the first combustion furnace, it is desirable that the average particle size is preferably adjusted to a particle size of 40 mm or less by a pulverizer (or a pulverizer), more preferably the average particle size. It is preferable to adjust so that the average particle diameter is in the range of 3 to 30 mm, and more preferably in the range of 5 to 25 mm, and it is preferably pulverized so that the ratio of the particle diameter is 50 mm or less is 70% by weight or more. Things are more preferable. In order to achieve a combustion treatment that does not cause a heat change of the calcium carbonate contained in the deinking floss, it is preferable that the particle diameter of the raw material is uniform. However, if the average particle diameter is less than 3 mm, overcombustion tends to occur. This is because an average particle size exceeding 50 has a problem that it is difficult to uniformly burn the raw material core.
In the present invention, the ratio between the average particle size and the particle size was measured using a sample solution sufficiently dispersed by a stirring type disperser.
The particle diameter in each combustion stroke was measured with a metal plate sieve based on JIS Z8801-2: 2000.

〔第1燃焼工程〕(乾燥、燃焼工程)
かかる原料10が貯槽12から切り出されて、第1燃焼炉に供給される。第1燃焼炉は本体が横置きで中心軸周りに回転する内熱キルン炉方式からなり、内熱キルン炉14の一方側から装入機15により装入される。内熱キルン炉加熱手段は、熱風発生炉にて生成された熱風を内熱キルン炉の排出口側から、脱水物の流れと向流する様に送り込まれる。内熱キルン炉14の一方側には、排ガスチャンバー16が、他方側には排出チャンバー18が設けられている。排出チャンバー18を貫通して、熱風が内熱キルン炉14の他方側から吹き込まれ、前記一方側から装入され、内熱キルン炉14の回転に伴って前記他方側に順次移送される原料の乾燥及び燃焼を行うようになっている。
すなわち、本乾燥・燃焼工程は、脱水物を、本体が横置きで中心軸周りに回転する、内熱キルン炉という有形的な手段によって、乾燥・燃焼することにより、供給口から排出口に至るまで、緩やかに乾燥と有機分の燃焼が行え、燃焼物の微粉化が抑制され、硬い・柔らかい等さまざまな性質を有する脱水物の燃焼度合いの制御と粒揃えを安定的に行うことができる。また、乾燥を別工程に分割し吹き上げ式の乾燥機を入れることも出来る。
ここで、内熱キルン炉14内に吹き込む熱風は、酸素濃度が0.2〜20%が好ましく、より好ましくは1〜15%、最も好ましくは5〜12%となるようにするのが望ましい。
酸素濃度は、原料の燃焼(酸化)により消費されるため、燃焼の状況により酸素濃度に変動を生じる。酸素濃度が0.2%未満では、十分な燃焼を図る事が困難である。燃焼炉内の酸素は、原料の燃焼等によって消費され酸素濃度が低下するが、燃焼させるための熱風発生装置等により、空気などの酸素含有ガスを送風し、あるいは排気することで、酸素濃度を維持、調節可能であり、さらに酸素含有ガスを送風し、あるいは排気することで、燃焼炉内の温度を細かく調節可能になり、原料をムラなく万遍に燃焼することができる。
第1燃焼炉の温度としては、500℃〜650℃、より好ましくは510℃〜620℃、特に好ましくは、530℃〜600℃が望ましい。第1燃焼炉においては、容易に燃焼可能な有機物を緩やかに燃焼させ、燃焼しがたい残カーボンの生成を抑える目的から燃焼温度500℃〜650℃の温度範囲で燃焼する事が好ましく、500℃未満では有機物の燃焼が不十分であり、650℃を超えると過燃焼が生じ、炭酸カルシウムの分解による酸化カルシウムが生成し易くなる。更に、熱風の温度が650℃を超える場合は、硬い・柔らかい等さまざまな性質を有する燃焼物の粒揃えが進行するよりも早く乾燥・燃焼が局部的に進むため、粒子表面と内部の未燃率の差を少なく均一にすることが困難になる。
熱風は、バーナー20Aを備える熱風発生炉20から吹き込まれる。
排ガスチャンバー16からは、乾燥・燃焼に供した排ガスが再燃焼室22に送り込まれる。微粉末は、排ガスチャンバー16の下部から排出され、再び原料に配合され再利用される。
排ガスは、再燃焼室22でバーナーにより再燃焼が行われ、予冷器24により予冷された後、熱交換器26を通し、誘引ファン28により煙突30から排出される。ここで、熱交換器26は外気を昇温した後に、熱風発生炉20に送られ、内熱キルン炉14から吹き込まれる熱風の用に供せられ、排ガスチャンバー16からの排ガスの熱を回収するようにしてある。
第1燃焼炉は、脱墨フロス中に含有される燃焼容易な有機物を緩慢に燃焼させ、残カーボンの生成を抑制するため、好適には前記条件で30分から90分の滞留時間で燃焼させることが好ましい。より好ましくは、40分から80分が有機物の燃焼と生産効率の面で好ましい。最も好ましくは、50分から70分の範囲が恒常的な品質を確保するために好ましい。燃焼時間が30分未満では、十分な燃焼が行われず残カーボンの割合が多くなる。燃焼時間が90分を超えると、原料の過燃焼による炭酸カルシウムの熱分解が生じ、得られる再生粒子凝集体が極めて硬くなる。
特に、次工程の第2燃焼工程内に供給する燃焼物の未燃率を、2〜20質量%に乾燥・燃焼することが好ましく、より好ましくは未燃率を、2〜15質量%、特に好ましくは未燃率を、2〜10質量%にすることが望ましい。
未燃率を、2〜20質量%にすることで、第2燃焼工程での燃焼を短時間に効率よく行うことができるとともに、外熱炉における安定した加熱により、硬度が低く白色度が80%以上、少なくとも70%以上の高白色度の燃焼物を得ることができる。未燃物が2質量%未満では、先の第1次燃焼炉におけるエネルギーコストが高いものとなるとともに、燃焼物の硬度が比較的高くなっている場合があり、第2燃焼炉出口における白色度の低下等の品質低下を来たす場合がある。
[First combustion process] (Drying and combustion process)
The raw material 10 is cut out from the storage tank 12 and supplied to the first combustion furnace. The first combustion furnace has an internal heat kiln furnace system in which a main body is placed horizontally and rotates around a central axis, and is charged from one side of the internal heat kiln furnace 14 by a charging machine 15. The internal heat kiln furnace heating means feeds hot air generated in the hot air generation furnace from the discharge port side of the internal heat kiln furnace so as to counter-flow with the flow of the dehydrated product. An exhaust gas chamber 16 is provided on one side of the internal heat kiln furnace 14, and an exhaust chamber 18 is provided on the other side. Hot air is blown from the other side of the internal heat kiln furnace 14 through the discharge chamber 18, charged from the one side, and sequentially transferred to the other side as the internal heat kiln furnace 14 rotates. It is designed to dry and burn.
That is, in this drying / combustion process, the dehydrated product is dried and burned by a tangible means such as an internal heat kiln furnace in which the main body is placed horizontally and rotates around the central axis, thereby reaching the discharge port from the supply port. Until then, drying and combustion of organic components can be performed gently, pulverization of the combusted matter can be suppressed, and the degree of combustion and particle size of the dehydrated product having various properties such as hard and soft can be controlled stably. Further, the drying can be divided into separate steps and a blow-up type dryer can be inserted.
Here, the hot air blown into the internal heat kiln furnace 14 preferably has an oxygen concentration of 0.2 to 20%, more preferably 1 to 15%, and most preferably 5 to 12%.
Since the oxygen concentration is consumed by the combustion (oxidation) of the raw material, the oxygen concentration varies depending on the state of combustion. If the oxygen concentration is less than 0.2%, it is difficult to achieve sufficient combustion. Oxygen in the combustion furnace is consumed due to the combustion of raw materials and the like, and the oxygen concentration decreases.However, the oxygen concentration is reduced by blowing or exhausting oxygen-containing gas such as air by a hot air generator for combustion. Further, the temperature in the combustion furnace can be finely adjusted by blowing or exhausting the oxygen-containing gas, and the raw material can be burned uniformly without unevenness.
As temperature of a 1st combustion furnace, 500 to 650 degreeC, More preferably, 510 to 620 degreeC, Especially preferably, 530 to 600 degreeC is desirable. In the first combustion furnace, it is preferable to combust at a combustion temperature range of 500 ° C. to 650 ° C. for the purpose of gradually burning easily combustible organic substances and suppressing generation of residual carbon that is difficult to burn, If the temperature is less than 650 ° C., the combustion of the organic matter is insufficient. If the temperature exceeds 650 ° C., overcombustion occurs, and calcium oxide is easily generated due to decomposition of calcium carbonate. Further, when the temperature of the hot air exceeds 650 ° C., the drying and combustion progress locally faster than the particle alignment of the burned material having various properties such as hard and soft, so that the unburned particles on the particle surface and inside are not burned. It becomes difficult to make the difference in rate small and uniform.
Hot air is blown from a hot air generating furnace 20 provided with a burner 20A.
From the exhaust gas chamber 16, exhaust gas subjected to drying and combustion is sent into the recombustion chamber 22. The fine powder is discharged from the lower part of the exhaust gas chamber 16 and is mixed with the raw material and reused.
The exhaust gas is recombusted by the burner in the recombustion chamber 22, precooled by the precooler 24, passed through the heat exchanger 26, and discharged from the chimney 30 by the induction fan 28. Here, after raising the temperature of the outside air, the heat exchanger 26 is sent to the hot air generating furnace 20 and is used for hot air blown from the internal heat kiln furnace 14 to recover the heat of the exhaust gas from the exhaust gas chamber 16. It is like that.
The first combustion furnace preferably burns with a residence time of 30 to 90 minutes under the above conditions in order to slowly burn the easily combusted organic substances contained in the deinking floss and suppress the formation of residual carbon. Is preferred. More preferably, 40 minutes to 80 minutes is preferable in terms of combustion of organic matter and production efficiency. Most preferably, a range of 50 minutes to 70 minutes is preferred in order to ensure constant quality. If the combustion time is less than 30 minutes, sufficient combustion is not performed and the proportion of remaining carbon increases. When the burning time exceeds 90 minutes, thermal decomposition of calcium carbonate occurs due to overburning of the raw material, and the resulting regenerated particle aggregate becomes extremely hard.
In particular, it is preferable to dry and burn the unburned rate of the combustion product supplied in the second combustion step of the next step to 2 to 20% by mass, more preferably the unburned rate is set to 2 to 15% by mass. Preferably, the unburned rate is 2 to 10% by mass.
By setting the unburned rate to 2 to 20% by mass, the combustion in the second combustion step can be efficiently performed in a short time, and the hardness is low and the whiteness is 80 by stable heating in the external heating furnace. %, At least 70% or more of high whiteness combustion products can be obtained. If the unburned material is less than 2% by mass, the energy cost in the first primary combustion furnace is high, and the hardness of the combustion product may be relatively high. In some cases, the quality may be degraded.

〔第2燃焼工程〕
内熱キルン炉14において乾燥及び燃焼処理を経た燃焼物は、移送流路を通して、本体が横置きで中心軸周りに回転する外熱ジャケット31を有する第2燃焼炉にあたる外熱キルン炉32に装入される。
この燃焼炉では、燃焼物を、外熱で加温しながらキルン炉内壁の回転による摩擦によって緩やかに攪拌させることで粒子の微細化を抑制し、また、更に均一に未燃分を燃焼する。
第2燃焼炉における燃焼においては、第1燃焼炉で燃焼しきれなかった残留有機物、例えば残カーボンを燃焼させるため、第1燃焼炉において供給される原料の粒子径よりも小さい粒子径に調整された燃焼物を用いることが好ましい。乾燥・燃焼工程後の燃焼物の粒揃えは、平均粒子径が5〜30mmとなるように調整するのが好ましく、更に好適には平均粒子径5〜18mmとなるように調整するのがより好ましく、平均粒子径を8〜15mmとなるように調整するのが特に好ましい。
第2燃焼炉入り口での平均粒子径が5mm未満では、過燃焼の危惧があり、平均粒子径が30mmを超える粒子径では、残カーボンの燃焼が困難であり、芯部まで燃焼が進まず得られる再生粒子凝集体の白色度が低下する問題を引き起こす。第2燃焼炉での安定生産を確保するためには、平均粒子径が5〜30mmの燃焼物が70%以上に成るように粒子径を調整することが好ましい。従って、得られる再生粒子凝集体の品質を均一にするという観点における実用化可能性に、有益である。更に、本形態のように、分級を乾燥後とすると、小径な粒子の燃焼物を確実に除去することができ、また、処理効率も向上する。
外熱キルン炉32での外熱源としては、外熱キルン炉32内の温度コントロールが容易で長手方向の温度制御が容易な電気加熱方式の電気炉が好適であり、したがって、電気ヒーターによる外熱キルン炉32であることが望ましい。
外熱に電気を使用することにより、温度の調整を細かくかつ内部の温度を均一にコントロール可能になり、硬い・柔らかい等さまざまな性質を有する脱水物の燃焼度合いの制御と粒揃えを安定的に行うことができる。
さらに電気炉は、電気ヒーターを炉の流れ方向に複数設けることで、任意に温度勾配を設ける事が可能であると共に、燃焼物の温度を一定時間、一定温度保持することが可能であり、第1燃焼炉を経た燃焼物中の残留有機分、特に残カーボンを第2燃焼炉で炭酸カルシウムの分解を来たすことなく未燃分を限りなくゼロに近づけることができ、低いワイヤー摩耗度で、高白色度の再生粒子凝集体を得ることができる。
外熱キルン炉32においては、酸素濃度が5〜21%、より好ましくは10〜21%、最も好ましくは、15〜21%となるようにするのが望ましい。
外熱キルン炉内の酸素濃度が、5%未満では、燃焼困難な残カーボンの燃焼が進まない問題を生じる。
温度としては、550℃〜750℃、より好ましくは600℃〜725℃、特に好ましくは650〜710℃が望ましい。
第2燃焼炉は先に述べたように、第1燃焼炉で燃焼しきれなかった残留有機物、特に残カーボンを燃焼させる必要があるため、第1燃焼炉よりも高温で燃焼させることが好ましく、燃焼温度が550℃未満では、十分に残留有機物の燃焼を図ることが困難であり、燃焼温度が750℃を超える場合は、燃焼物中の炭酸カルシウムの酸化が進行し、粒子が硬くなる問題が生じる。
また、滞留時間は10〜60分、より好ましくは15〜45分、特に好ましく20〜40分が望ましい。特に残カーボンの燃焼は炭酸カルシウムの分解を出来る限り生じさせない高温で、緩慢に燃焼させる必要があり、滞留時間が10分未満では、残カーボンの燃焼には短時間で不十分であり、60分を超えると、炭酸カルシウムが分解する問題が生じる。
更に、燃焼物の安定生産を行うにおいて滞留時間を10分以上、過燃焼の防止、生産性の確保のため60分以下で燃焼させることが好適である。
この外熱キルン炉32から排出される燃焼物の粒子径としては、20mm以下、より望ましくは平均粒子径が5〜18mm以下、最も好ましくは平均粒子径が8〜15mmに調整することが好適である。
燃焼が終了した再生粒子凝集体は、冷却機34により冷却された後、振動篩機などの粒径選別機36により目的の粒子径のものが燃焼品サイロ38に一時貯留され、顔料や填料の用途先に仕向けられる。
なお、脱墨フロスを原料として用いた場合を例示したが、脱墨フロスを主原料に、抄紙工程における製紙スラッジ等の他製紙スラッジを適宜混入させたものの燃焼品であってもよい。
[Second combustion process]
Combustion products that have undergone drying and combustion treatment in the internal heat kiln furnace 14 are loaded into an external heat kiln furnace 32 that corresponds to a second combustion furnace having an external heat jacket 31 that rotates horizontally about the central axis through a transfer channel. Entered.
In this combustion furnace, the combustion product is gently stirred by friction caused by rotation of the inner wall of the kiln furnace while being heated by external heat, thereby suppressing particle refinement and further burning the unburned matter more uniformly.
In the combustion in the second combustion furnace, the residual organic matter that could not be combusted in the first combustion furnace, such as residual carbon, is burned, so that the particle diameter is adjusted to be smaller than the particle diameter of the raw material supplied in the first combustion furnace. It is preferable to use a combustion product. The particle size of the burned product after the drying / combustion step is preferably adjusted so that the average particle size is 5 to 30 mm, more preferably adjusted so that the average particle size is 5 to 18 mm. The average particle diameter is particularly preferably adjusted to 8 to 15 mm.
If the average particle diameter at the inlet of the second combustion furnace is less than 5 mm, there is a risk of overcombustion, and if the average particle diameter exceeds 30 mm, it is difficult to burn the remaining carbon and combustion does not proceed to the core. This causes a problem that the whiteness of the regenerated particle aggregate is reduced. In order to ensure stable production in the second combustion furnace, it is preferable to adjust the particle size so that the combustion product having an average particle size of 5 to 30 mm is 70% or more. Therefore, it is beneficial to the possibility of practical use in terms of making the quality of the regenerated particle aggregate obtained uniform. Furthermore, when the classification is performed after drying as in this embodiment, the combustion product of small-diameter particles can be surely removed, and the processing efficiency is improved.
As an external heat source in the external heat kiln furnace 32, an electric heating type electric furnace in which temperature control in the external heat kiln furnace 32 is easy and temperature control in the longitudinal direction is easy is preferable. A kiln furnace 32 is desirable.
By using electricity for external heat, the temperature can be finely adjusted and the internal temperature can be controlled uniformly, and the control of the degree of burning of dehydrated products with various properties, such as hard and soft, and stable particle alignment are possible. It can be carried out.
Furthermore, the electric furnace can be provided with a temperature gradient arbitrarily by providing a plurality of electric heaters in the flow direction of the furnace, and can maintain the temperature of the combustion product for a certain period of time. Residual organic content in the combustion product that has passed through one combustion furnace, especially residual carbon, can be brought to zero as much as possible without causing decomposition of calcium carbonate in the second combustion furnace. A whiteness regenerated particle aggregate can be obtained.
In the external heat kiln furnace 32, it is desirable that the oxygen concentration be 5 to 21%, more preferably 10 to 21%, and most preferably 15 to 21%.
When the oxygen concentration in the external heat kiln furnace is less than 5%, there arises a problem that the remaining carbon that is difficult to burn does not burn.
As temperature, 550 degreeC-750 degreeC, More preferably, 600 degreeC-725 degreeC, Especially preferably, 650-710 degreeC is desirable.
As described above, the second combustion furnace is preferably burnt at a higher temperature than the first combustion furnace because it is necessary to burn residual organic matter, particularly residual carbon, that could not be burned in the first combustion furnace. When the combustion temperature is less than 550 ° C., it is difficult to sufficiently burn the residual organic matter, and when the combustion temperature exceeds 750 ° C., the oxidation of calcium carbonate in the combustion product proceeds and the particles become hard. Arise.
The residence time is 10 to 60 minutes, more preferably 15 to 45 minutes, and particularly preferably 20 to 40 minutes. In particular, the remaining carbon must be burnt slowly at a high temperature that does not cause decomposition of calcium carbonate as much as possible. If the residence time is less than 10 minutes, the remaining carbon is burned in a short time and 60 minutes. If it exceeds 1, the problem of decomposition of calcium carbonate occurs.
Furthermore, it is preferable that combustion be performed in a residence time of 10 minutes or more in order to prevent overcombustion and secure productivity in order to ensure stable production of combusted materials.
The particle size of the combustion product discharged from the external heat kiln furnace 32 is preferably adjusted to 20 mm or less, more preferably the average particle size is 5 to 18 mm or less, and most preferably the average particle size is 8 to 15 mm. is there.
The regenerated particle agglomerated after the combustion is cooled by the cooler 34, and then a particle having a target particle size is temporarily stored in the combustion product silo 38 by a particle size sorter 36 such as a vibration sieve, so that the pigment and filler It is sent to the use destination.
In addition, although the case where deinking froth was used as a raw material was illustrated, it may be a combustible product obtained by appropriately mixing other papermaking sludge such as papermaking sludge in the papermaking process with deinking floss as the main raw material.

〔粉砕工程〕
本発明に基づく再生粒子凝集体の製造方法においては、必要に応じ、更に公知の分散・粉砕工程を設け、適宜必要な粒子径に微細粒化することで塗工用の顔料、内添用の填料として使用できる。
一例では、燃焼後、得られた粒子は、ジェットミルや高速回転式ミル等の乾式粉砕機、あるいは、アトライター、サンドグラインダー、ボールミル等の湿式粉砕機を用いて粉砕する。填料、顔料用途等への最適な粒子径については、本形態の再生粒子凝集体は、平均粒子径0.1〜10μmであるのが好ましい。
粉砕工程後における再生粒子凝集体の粒子径は、粒径分布測定装置(レーザー方式のマイクロトラック粒径分析計:日機装製)により体積平均粒子径を測定した。
[Crushing process]
In the method for producing a regenerated particle aggregate according to the present invention, a known dispersion / pulverization step is further provided as necessary, and the pigment for coating is used by appropriately finely pulverizing to a necessary particle size. Can be used as a filler.
In one example, after combustion, the obtained particles are pulverized using a dry pulverizer such as a jet mill or a high-speed rotary mill, or a wet pulverizer such as an attritor, a sand grinder, or a ball mill. Regarding the optimum particle size for fillers, pigment applications, etc., the regenerated particle aggregate of this embodiment preferably has an average particle size of 0.1 to 10 μm.
The particle diameter of the regenerated particle aggregate after the pulverization step was measured by a volume average particle diameter using a particle size distribution measuring device (laser type microtrack particle size analyzer: manufactured by Nikkiso).

〔付帯工程〕
本製造設備において、より品質の安定化を求めるためには、再生粒子凝集体の粒子径を、各工程で均一に揃えるための分級を行うことが好ましく、粗大や微小粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。
また、乾燥工程の前段階において、脱水処理を行った脱墨フロスを造粒することが好ましく、更には、造粒物の粒子径を均一に揃えるための分級を行うことがより好ましく、粗大や微小の造粒粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。造粒においては、公知の造粒設備を使用でき、回転式、攪拌式、押し出し式等の設備が好適である。
本製造方法の原料としては、再生粒子凝集体の原料と成り得るもの以外は予め除去しておくことが好ましく、例えば古紙パルプ製造工程の脱墨工程に至る前段階のパルパーやスクリーン、クリーナー等で砂、プラスチック異物、金属等を除去することが、除去効率の面で好ましい。特に鉄分の混入は、鉄分が酸化により微粒子の白色度低下の起因物質になるため、鉄分の混入を避け、選択的に取り除くことが推奨され、各工程を鉄以外の素材で設計又はライニングし、摩滅等により鉄分が系内に混入することを防止するとともに、更に、乾燥・分級設備内等に磁石等の高磁性体を設置し選択的に鉄分を除去することが好ましい。
更に、本発明に基づく再生粒子凝集体の製造方法による再生粒子凝集体は、X線マイクロアナライザーによる微細粒子の元素分析において、カルシウム、シリカ及びアルミニウムの比率が酸化物換算で30〜82:9〜35:9〜35の質量割合で含むことが好ましく、より好ましくは、40〜82:9〜30:9〜30の質量割合、更に好ましくは、60〜82:9〜20:9〜20の割合である。
カルシウム、シリカ及びアルミニウムを酸化物換算で30〜82:9〜35:9〜35の質量割合で含ませることで、比重が軽く、過度の水溶液吸収が抑えられるため、脱水工程のおける脱水性が良好であり、乾燥・燃焼工程における未燃物の割合や、燃焼工程における焼結による過度の硬さを生じる恐れを低減できる。
本発明の割合に調整するための方法としては、脱墨フロスにおける原料構成を調整することが本筋ではあるが、乾燥・燃焼工程、燃焼工程において、出所が明確な塗工フロスや調整工程フロスをスプレー等で工程内に含有させる手段や、焼却炉スクラバー石灰を含有させる手段にて調整することも可能である。
例えば、脱墨フロスを主原料に、再生粒子凝集体中のカルシウムの調整には、中性抄紙系の排水スラッジや、塗工紙製造工程の排水スラッジを用い、シリカの調整には、不透明度向上剤としてホワイトカーボンが多量添加されている新聞用紙製造系の排水スラッジを、アルミニウムの調整には酸性抄紙系等の硫酸バンドの使用がある抄紙系の排水スラッジや、タルク使用の多い上質紙抄造工程における排水スラッジを用いることができる。
また、本製造方法で得られる再生粒子凝集体は、示差熱熱重量同時測定装置による示差熱分析において、700℃近傍で生じる炭酸カルシウムの分解(酸化カルシウムへの変化)における減量(率)が50%以上と成るように、本発明に基づいて脱墨フロスを燃焼制御することで、より精確にカルシウム成分の酸化の進行を抑制し、粒子が硬くなることを防止することができるので好ましい。
[Attached process]
In this manufacturing facility, in order to obtain more stable quality, it is preferable to classify the particle size of the regenerated particle aggregates uniformly in each step, and feed back coarse and fine particles to the previous step. In this way, quality can be further stabilized.
In addition, it is preferable to granulate the deinked floss that has been subjected to dehydration in the previous stage of the drying process, and it is more preferable to classify the granulated product to make the particle diameter uniform, and the The quality can be further stabilized by feeding back the fine granulated particles to the previous process. In granulation, a known granulation facility can be used, and facilities such as a rotary type, a stirring type and an extrusion type are suitable.
As raw materials for this production method, it is preferable to remove in advance those that can be used as raw materials for the regenerated particle agglomerates. For example, with a pulper, screen, cleaner, etc. in the previous stage leading to the deinking process of the used paper pulp manufacturing process It is preferable in terms of removal efficiency to remove sand, plastic foreign matter, metal and the like. In particular, iron contamination is a substance that reduces the whiteness of fine particles due to oxidation, so it is recommended to avoid iron contamination and selectively remove it. Design or lining each process with materials other than iron, It is preferable to prevent iron from being mixed into the system due to abrasion or the like, and to further remove iron selectively by installing a high magnetic material such as a magnet in the drying / classifying equipment.
Furthermore, the regenerated particle aggregate produced by the method for producing a regenerated particle agglomerate according to the present invention has a ratio of calcium, silica, and aluminum of 30 to 82: 9 in terms of oxides in elemental analysis of fine particles using an X-ray microanalyzer. It is preferable to contain in the mass ratio of 35: 9-35, More preferably, the mass ratio of 40-82: 9-30: 9-30, More preferably, the ratio of 60-82: 9-20: 9-20 It is.
By including calcium, silica, and aluminum in a mass ratio of 30 to 82: 9 to 35: 9 to 35 in terms of oxides, the specific gravity is light and excessive aqueous solution absorption can be suppressed, so that the dehydrating ability in the dehydration process can be reduced. It is good and can reduce the proportion of unburned matter in the drying / combustion process and the risk of excessive hardness due to sintering in the combustion process.
As a method for adjusting the ratio of the present invention, the main ingredient is to adjust the raw material composition in the deinking floss, but in the drying / combustion process and the combustion process, a coating floss and an adjustment process floss with a clear origin are used. It is also possible to adjust by means of containing in the process by spray or the like, or means of containing incinerator scrubber lime.
For example, using deinked floss as the main raw material, neutral papermaking drainage sludge or drainage sludge from the coated paper manufacturing process is used to adjust calcium in the recycled particle aggregate, and opacity is used to adjust silica. Newspaper production wastewater sludge with a large amount of white carbon added as an improver, papermaking wastewater sludge that uses acid bands such as acidic papermaking to adjust aluminum, and high quality papermaking that uses talc Wastewater sludge in the process can be used.
Further, the regenerated particle aggregate obtained by the present production method has a weight loss (rate) of 50 in the decomposition (change to calcium oxide) of calcium carbonate occurring at around 700 ° C. in the differential thermal analysis using the differential thermothermal gravimetric simultaneous measurement apparatus. It is preferable to control the combustion of the deinking froth based on the present invention so as to be at least%, since the progress of oxidation of the calcium component can be suppressed more accurately and the particles can be prevented from becoming hard.

本発明の実施例及び比較例を示す。
各種要因を変化させて、得られた再生粒子凝集体の品質を調べたところ、表1及び表2に示す結果が得られた。結果によれば、本発明の方法が比較例に対し優れていることが判る。
品質の評価は次記のように行った。
(未燃率):電気マッフル炉を予め600℃に昇温後、ルツボに試料を入れ約3時間で完全燃焼させ、燃焼前後の重量変化から未燃分を算出した。
(ワイヤー摩耗度):プラスチックワイヤー摩耗度(日本フィルコン製 3時間)、スラリー濃度2重量%で測定した。
(生産性評価):原料の脱水効率、生産性、粉砕に必要な電力を4段階評価し、 最も効率の良かった条件を◎、良かったものを〇、水効率、生産性、粉砕のいずれかに問題を見出したものを△、実操業困難なものを×とした。
(品質安定性):所定の方法で得られた微粒子の、白色度、粒子径、一定時間間隔における生産量の各項目について、変動程度を測定し、変動が少ない順にランク付けを行い、上位9位までを◎、10位から20位を〇、21位から25位を△、それ以下を×とした。
(見た目):目視で再生粒子凝集体の色を比較判断し、白色と灰色に区分した。
The Example and comparative example of this invention are shown.
When the quality of the obtained regenerated particle aggregate was examined by changing various factors, the results shown in Table 1 and Table 2 were obtained. The results show that the method of the present invention is superior to the comparative example.
The quality was evaluated as follows.
(Unburnt rate): After heating the electric muffle furnace to 600 ° C. in advance, the sample was put in a crucible and completely burned in about 3 hours, and the unburned content was calculated from the change in weight before and after burning.
(Wire wear degree): Measured with a plastic wire wear degree (manufactured by Nippon Filcon, 3 hours) and a slurry concentration of 2% by weight.
(Productivity evaluation): Evaluate the dehydration efficiency of raw materials, productivity, and power required for pulverization in four stages. ◎ is the most efficient condition, ◯ is the best, water efficiency, productivity, pulverization The problem was found as △, and the actual operation difficult as x.
(Quality stability): For each item of whiteness, particle diameter, and production amount at a certain time interval of fine particles obtained by a predetermined method, the degree of fluctuation is measured and ranked in the order of the smallest fluctuation. ◎ from 10th to 20th, △ from 21st to 25th, and x from there.
(Appearance): The color of the regenerated particle aggregate was compared and judged visually, and was classified into white and gray.

Figure 2008127704
Figure 2008127704

Figure 2008127704
Figure 2008127704

本発明は、脱墨フロスを主原料として燃焼し、再生粒子凝集体を製造する方法として、適用可能である。   The present invention is applicable as a method for producing a regenerated particle aggregate by burning deinked floss as a main raw material.

本発明に係る製造設備の概要図である。It is a schematic diagram of the manufacturing equipment concerning the present invention.

符号の説明Explanation of symbols

10…原料、14…内熱キルン炉(第1燃焼炉)、32…外熱キルン炉(第2燃焼炉)。   10 ... Raw materials, 14 ... Internal heat kiln furnace (first combustion furnace), 32 ... External heat kiln furnace (second combustion furnace).

Claims (4)

古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料として、前記主原料を脱水、乾燥、燃焼及び粉砕操作を経て、再生粒子凝集体を得る再生粒子凝集体の製造方法であって、
前記乾燥と燃焼操作が、前記脱水後の原料の乾燥と燃焼を一連で行う先の第1燃焼炉と、第1燃焼炉にて燃焼された脱墨フロスを再度燃焼する、後の第2燃焼炉を有する、少なくとも2段階の燃焼操作を有し、
その後に粉砕し、再生粒子凝集体を得ることを特徴とする再生粒子凝集体の製造方法。
Using the deinked floss separated from the pulp fiber in the deinking process of the used paper processing equipment for manufacturing used paper pulp, the main material is subjected to dehydration, drying, combustion and pulverization operations to obtain recycled particle aggregates. A method for producing an aggregate, comprising:
The drying and combustion operation re-combusts the first combustion furnace that performs a series of drying and combustion of the material after dehydration, and the deinking floss burned in the first combustion furnace, and the second combustion after the second. Having a furnace, having at least a two-stage combustion operation;
A method for producing a regenerated particle aggregate, which is then pulverized to obtain a regenerated particle aggregate.
第1燃焼炉が、本体が横置きで中心軸周りに回転する内熱キルン炉であり、内熱キルン炉に投入する前記脱水後の原料の水分率は50%未満である請求項1記載の再生粒子凝集体の製造方法。   The first combustion furnace is an internal heat kiln furnace in which a main body is placed horizontally and rotates around a central axis, and a moisture content of the raw material after dehydration to be input into the internal heat kiln furnace is less than 50%. A method for producing regenerated particle aggregates. 内熱キルン炉内の酸素濃度が0.2〜20%となるように、500℃〜650℃の熱風を吹き込む請求項1または2記載の再生粒子凝集体の製造方法。   The method for producing a regenerated particle aggregate according to claim 1 or 2, wherein hot air of 500 ° C to 650 ° C is blown so that the oxygen concentration in the internal heat kiln furnace is 0.2 to 20%. 第2燃焼炉が、本体が横置きで中心軸周りに回転する外熱キルン炉であり、前記外熱キルン炉において、前記内熱キルン炉からの燃焼物を、550℃〜750℃の温度で燃焼する請求項1〜3のいずれか1項に記載の再生粒子凝集体の製造方法。   The second combustion furnace is an external heat kiln furnace in which the main body is placed horizontally and rotates around a central axis. In the external heat kiln furnace, the combustion product from the internal heat kiln furnace is at a temperature of 550 ° C. to 750 ° C. The method for producing a regenerated particle aggregate according to any one of claims 1 to 3, which burns.
JP2006313496A 2006-11-20 2006-11-20 Method for producing recycled particle aggregate Expired - Fee Related JP4783715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313496A JP4783715B2 (en) 2006-11-20 2006-11-20 Method for producing recycled particle aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006313496A JP4783715B2 (en) 2006-11-20 2006-11-20 Method for producing recycled particle aggregate

Publications (2)

Publication Number Publication Date
JP2008127704A true JP2008127704A (en) 2008-06-05
JP4783715B2 JP4783715B2 (en) 2011-09-28

Family

ID=39553840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313496A Expired - Fee Related JP4783715B2 (en) 2006-11-20 2006-11-20 Method for producing recycled particle aggregate

Country Status (1)

Country Link
JP (1) JP4783715B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047856A (en) * 2008-08-20 2010-03-04 Daio Paper Corp Method for producing recycled particle
JP2010090491A (en) * 2008-10-06 2010-04-22 Daio Paper Corp Method for producing recycled particle
JP2010196210A (en) * 2009-02-26 2010-09-09 Daio Paper Corp Paper for book
JP2010194486A (en) * 2009-02-26 2010-09-09 Daio Paper Corp Method for manufacturing regenerated particles
JP2010236156A (en) * 2009-03-31 2010-10-21 Daio Paper Corp Bookpaper
JP2011025135A (en) * 2009-07-23 2011-02-10 Daio Paper Corp Method for producing regenerated particle and regenerated particle
JP2011157652A (en) * 2010-02-01 2011-08-18 Daio Paper Corp Regenerated particle-manufacturing method and regenerated particle
JP2014014793A (en) * 2012-07-10 2014-01-30 Daio Paper Corp Method for producing inorganic particle, and inorganic particle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029818A (en) * 1996-03-29 1998-02-03 Ecc Internatl Ltd Treatment of solid-containing material derived form discharge matter
JP2001262002A (en) * 2000-03-23 2001-09-26 Nippon Kakoh Seishi Kk Method for producing white pigment by using ink-removed sludge of pigment-coated waste paper as raw material
JP2002275785A (en) * 2001-03-19 2002-09-25 Daio Paper Corp Method for producing paper
JP2004121936A (en) * 2002-09-30 2004-04-22 Tsukishima Kikai Co Ltd Treatment control method for papermaking sludge and treatment control equipment therefor
JP2005306969A (en) * 2004-04-20 2005-11-04 Kotobuki Sangyo Kk Method for carbonizing waste and method for utilizing carbonized matter produced by the method
JP2005319374A (en) * 2004-05-07 2005-11-17 Mitsubishi Heavy Ind Ltd Method and apparatus for converting sludge into fuel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029818A (en) * 1996-03-29 1998-02-03 Ecc Internatl Ltd Treatment of solid-containing material derived form discharge matter
JP2001262002A (en) * 2000-03-23 2001-09-26 Nippon Kakoh Seishi Kk Method for producing white pigment by using ink-removed sludge of pigment-coated waste paper as raw material
JP2002275785A (en) * 2001-03-19 2002-09-25 Daio Paper Corp Method for producing paper
JP2004121936A (en) * 2002-09-30 2004-04-22 Tsukishima Kikai Co Ltd Treatment control method for papermaking sludge and treatment control equipment therefor
JP2005306969A (en) * 2004-04-20 2005-11-04 Kotobuki Sangyo Kk Method for carbonizing waste and method for utilizing carbonized matter produced by the method
JP2005319374A (en) * 2004-05-07 2005-11-17 Mitsubishi Heavy Ind Ltd Method and apparatus for converting sludge into fuel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047856A (en) * 2008-08-20 2010-03-04 Daio Paper Corp Method for producing recycled particle
JP2010090491A (en) * 2008-10-06 2010-04-22 Daio Paper Corp Method for producing recycled particle
JP2010196210A (en) * 2009-02-26 2010-09-09 Daio Paper Corp Paper for book
JP2010194486A (en) * 2009-02-26 2010-09-09 Daio Paper Corp Method for manufacturing regenerated particles
JP2010236156A (en) * 2009-03-31 2010-10-21 Daio Paper Corp Bookpaper
JP2011025135A (en) * 2009-07-23 2011-02-10 Daio Paper Corp Method for producing regenerated particle and regenerated particle
JP2011157652A (en) * 2010-02-01 2011-08-18 Daio Paper Corp Regenerated particle-manufacturing method and regenerated particle
JP2014014793A (en) * 2012-07-10 2014-01-30 Daio Paper Corp Method for producing inorganic particle, and inorganic particle

Also Published As

Publication number Publication date
JP4783715B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4783715B2 (en) Method for producing recycled particle aggregate
JP4850082B2 (en) Method for producing recycled particle aggregate
JP5446284B2 (en) Method for producing inorganic particles
JP5468281B2 (en) Method for producing regenerated particles
JP4879213B2 (en) Method for producing regenerated particles
JP5049917B2 (en) Method for producing regenerated particles
JP3836493B1 (en) Method for producing inorganic particles
JP3999799B2 (en) Method for producing inorganic particles
JP4938743B2 (en) Method for producing regenerated particles
JP6173663B2 (en) Method for producing inorganic particles
JP4020955B2 (en) Method for producing inorganic particles
JP2011098277A (en) Regenerated particle production method and regenerated particle
JP2010194486A (en) Method for manufacturing regenerated particles
JP5596354B2 (en) Method for producing regenerated particles and regenerated particles
JP5184975B2 (en) Method for producing regenerated particles
JP4329865B1 (en) Method for producing inorganic particles
JP5483902B2 (en) Book paper and manufacturing method thereof
JP2011127256A (en) Method for producing regenerated particle, and regenerated particle
JP5351222B2 (en) Regenerated particle aggregate
JP5608380B2 (en) Method for producing regenerated particles and regenerated particles
JP5317875B2 (en) Method for producing regenerated particles
JP5580028B2 (en) Method for producing regenerated particles
JP5305775B2 (en) Non-coating type ink jet recording paper and method for producing the same
JP2011047090A (en) Silica composite reclaimed particle, method for producing silica composite reclaimed particle, and silica composite reclaimed particle-internally added paper
JP5566739B2 (en) Regenerated particle manufacturing method, regenerated particle and regenerated particle manufacturing facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4783715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees