JP2008127667A5 - - Google Patents

Download PDF

Info

Publication number
JP2008127667A5
JP2008127667A5 JP2006316860A JP2006316860A JP2008127667A5 JP 2008127667 A5 JP2008127667 A5 JP 2008127667A5 JP 2006316860 A JP2006316860 A JP 2006316860A JP 2006316860 A JP2006316860 A JP 2006316860A JP 2008127667 A5 JP2008127667 A5 JP 2008127667A5
Authority
JP
Japan
Prior art keywords
mass
titanium alloy
less
cold workability
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006316860A
Other languages
Japanese (ja)
Other versions
JP2008127667A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006316860A priority Critical patent/JP2008127667A/en
Priority claimed from JP2006316860A external-priority patent/JP2008127667A/en
Publication of JP2008127667A publication Critical patent/JP2008127667A/en
Publication of JP2008127667A5 publication Critical patent/JP2008127667A5/ja
Pending legal-status Critical Current

Links

Description

冷間加工性に優れたゲルマニウム含有高強度チタン合金および該合金からなる装飾・装身具Germanium-containing high-strength titanium alloy having excellent cold workability, and decoration / jewelry made of the alloy

本発明は、優れた冷間加工性と装飾・装身機能を有するゲルマニウム(Ge)を含有する高強度チタン合金および該合金を用いた装飾・装身具に関する。   The present invention relates to a high-strength titanium alloy containing germanium (Ge) having excellent cold workability and a decoration / dressing function, and a decoration / jewelery using the alloy.

チタン合金からなる装飾・装身具の素材となる薄板や線材を製造する場合には、冷間圧延や冷間引き抜きなどの冷間(塑性)加工を必要とするが、多くのチタン合金は冷間加工性が悪いという欠点を有している。また、チタンまたはチタン合金にGeを含有させると、Ge含有量の増加に伴い強度は上昇するが、冷間加工性の指標である絞りは低下する。このことはチタン合金にGeを含有させることによって、冷間加工性を劣化させることを示唆するものである。
因みに、特許文献1には、1〜30質量%のGeを含有させたチタン合金の試材を用いた塑性加工性(冷間加工性)確認の実施例において、冷間加工率50%を付与した圧延で、Ge含有量10質量%を超えると冷間圧延が困難であることが開示されている。
When manufacturing thin plates and wire rods that are used as decoration and jewelry materials made of titanium alloys, cold (plastic) processing such as cold rolling and cold drawing is required, but many titanium alloys are cold processed. It has the disadvantage of poor properties. Further, when Ge is contained in titanium or a titanium alloy, the strength increases as the Ge content increases, but the drawing, which is an index of cold workability, decreases. This suggests that the cold workability is deteriorated by including Ge in the titanium alloy.
Incidentally, Patent Document 1 gives a cold work rate of 50% in an example of confirmation of plastic workability (cold workability) using a sample of a titanium alloy containing 1 to 30% by mass of Ge. It is disclosed that cold rolling is difficult when the Ge content exceeds 10% by mass.

また、特許文献2には、その特許請求の範囲において、
請求項1に、Ti−1〜15質量%Ge
請求項2に、Ti−2〜15質量%Sn−1〜15質量%Ge
請求項3に、Ti−3〜20質量%Nb−1〜15質量%Ge
Ti−2〜15質量%Sn−3〜20質量%Nb−1〜15質量%Ge
請求項4に、Ti−1〜5質量%Zr−1〜15質量%Ge
Ti−2〜15質量%Sn−1〜5質量%Zr−1〜15質量%Ge
Ti−3〜20質量%Nb−1〜5質量%Zr−1〜15質量%Ge
Ti−2〜15質量%Sn−3〜20質量%Nb−1〜5質量%Zr−1 〜15質量%Ge
の組成からなる装身具用のチタン合金が開示されている。そして、このように1〜15質量%のGeを含有させることにより、装飾機能に優れるとともに、遠赤外線にもとづく健康増進あるいは治療・治癒効果(装身機能)が期待できるとしている。
Moreover, in patent document 2, in the claim,
In claim 1, Ti-1-15 mass% Ge
In claim 2, Ti-2-15 mass% Sn-1-15 mass% Ge
In claim 3, Ti-3-20 mass% Nb-1-15 mass% Ge
Ti-2-15% by mass Sn-3-20% by mass Nb-1-15% by mass Ge
In claim 4, Ti-1 to 5 mass% Zr-1 to 15 mass% Ge
Ti-2-15 mass% Sn-1-5 mass% Zr-1-15 mass% Ge
Ti-3-20 mass% Nb-1-5 mass% Zr-1-15 mass% Ge
Ti-2 to 15% by mass Sn-3 to 20% by mass Nb-1 to 5% by mass Zr-1 to 15% by mass Ge
A titanium alloy for jewelry having the following composition is disclosed. And by containing 1-15 mass% Ge in this way, while being excellent in a decoration function, the health promotion based on a far-infrared ray, or the treatment / healing effect (trimming function) can be anticipated.

なお、たとえば、上記の装身機能を備えた従来のGe含有チタン合金を用いて製作されている眼鏡フレームでは、使用中に容易に折損したり、変形を生じたりして、極めて、使い勝手がよくないという問題を抱えている。
こうした問題の解消や軽量化のために、単にチタン合金のGe含有量を増して強度アップを図ろうとすれば、上述したように冷間加工性が劣化して眼鏡フレームの圧延加工が困難になる。つまり、Ge含有のチタン合金において、強度と冷間加工性という互いに相反する機械的性質を同時に向上させていくことが当面の課題として提起される。
特開2005−200760号公報 特開2005−240169号公報
For example, a spectacle frame manufactured using a conventional Ge-containing titanium alloy having the above-mentioned body-building function can be easily broken or deformed during use, and is extremely convenient to use. Have no problem.
In order to solve these problems and reduce the weight, simply increasing the Ge content of the titanium alloy to increase the strength deteriorates the cold workability and makes it difficult to roll the spectacle frame as described above. . That is, for the time being, it is proposed to simultaneously improve mutually contradicting mechanical properties such as strength and cold workability in a Ge-containing titanium alloy.
JP 2005-200760 A JP-A-2005-240169

本発明は、上述した背景技術に鑑みてなされたものである。すなわちチタン合金において、強度アップおよび装飾機能と健康増進あるいは治療・治癒の機能(装身機能)を付与するために添加されたGeによって、冷間加工性が劣化するという課題を解消して、従来のGe含有チタン合金よりも高強度で優れた冷間加工性を有し、かつ装飾・装身具に適した新規なGe含有の高強度チタン合金を提供することを目的とする。   The present invention has been made in view of the background art described above. In other words, in the titanium alloy, the problem that cold workability deteriorates due to Ge added to increase strength and enhance the decorative function and health promotion or treatment / healing function (dressing function) has been solved. An object of the present invention is to provide a novel Ge-containing high-strength titanium alloy having higher strength and superior cold workability than that of the Ge-containing titanium alloy and suitable for decoration and accessories.

本発明は上記目的を達成するために為されたもので、その基本的な技術思想は、Ge添加によって冷間加工性が劣化したチタン合金にβ相形成・安定化元素を添加することによって高強度でかつ良好な冷間加工性を有するβ相からなるβ型チタン合金にすることにある。   The present invention has been made to achieve the above-mentioned object, and its basic technical idea is that it is enhanced by adding a β-phase forming / stabilizing element to a titanium alloy whose cold workability has deteriorated due to the addition of Ge. The object is to make a β-type titanium alloy composed of a β-phase having high strength and good cold workability.

請求項記載の発明は、質量%でNb20%を超え40%以下、Ge0.2%〜4.0%を含有し、さらにTa、W、V、Cr、Ni、Mn、Co、Fe、Cu、Siの1種以上を合計で15%以下含有し、残部がTiおよび不可避不純物からなる冷間加工性に優れたことを特徴とするGe含有の高強度チタン合金である。 The invention according to claim 1 contains Nb in excess of 20% by mass and 40% or less, Ge 0.2% to 4.0% , and Ta, W, V, Cr, Ni, Mn, Co, Fe, A Ge-containing high-strength titanium alloy characterized in that it contains one or more of Cu and Si in a total amount of 15% or less, and the balance is excellent in cold workability consisting of Ti and inevitable impurities.

請求項記載の発明は、質量%でNb20%を超え40%以下、Ge0.2%〜4.0%を含有し、さらにW、V、Cr、Ni、Mn、Co、Fe、Cu1種以上を合計で15%以下と、Zr10%以下とを含有し、残部がTiおよび不可避不純物からなる冷間加工性に優れたことを特徴とするGe含有の高強度チタン合金である。 The invention according to claim 2 contains Nb in excess of 20% by mass and 40% or less, Ge 0.2% to 4.0% , and W, V, Cr, Ni, Mn, Co, Fe, Cu . It is a Ge-containing high-strength titanium alloy characterized in that it contains one or more types in a total of 15% or less and Zr 10% or less, and the balance is excellent in cold workability consisting of Ti and inevitable impurities.

請求項記載の発明は、質量%でNb20%以下、Ge0.2%〜4.0%を含有し、さらにTa、W、V、Cr、Ni、Mn、Co、Fe、Cu、Siの1種以上を合計で30%以下含有し、残部がTiおよび不可避不純物からなる冷間加工性に優れたことを特徴とするGe含有の高強度チタン合金である。 The invention according to claim 3 contains Nb 20% or less and Ge 0.2% to 4.0% by mass%, and further includes Ta, W, V, Cr, Ni, Mn, Co, Fe, Cu, and Si. A Ge-containing high-strength titanium alloy characterized in that it contains at least 30% in total and the balance is excellent in cold workability consisting of Ti and inevitable impurities.

請求項記載の発明は、質量%でNb20%以下、Ge0.2%〜4.0%を含有し、さらにW、V、Cr、Ni、Mn、Co、Fe、Cu1種以上を合計で30%以下と、Zr10%以下とを含有し、残部がTiおよび不可避不純物からなる冷間加工性に優れたことを特徴とするGe含有の高強度チタン合金である。 Invention of claim 4, below NB 20% by mass%, contains Ge0.2% to 4.0%, further, W, V, Cr, Ni , Mn, Co, Fe, one or more Cu A Ge-containing high-strength titanium alloy containing 30% or less in total and 10% or less Zr and the balance being excellent in cold workability comprising Ti and inevitable impurities.

請求項記載の発明は、質量%でGe0.2%〜4.0%を含有し、さらにW、V、Cr、Ni、Mn、Co、Fe、Cu、Siの1種以上を合計で30%以下含有し、残部がTiおよび不可避不純物からなる冷間加工性に優れたことを特徴とするGe含有の高強度チタン合金ある。 The invention according to claim 5 contains 0.2% to 4.0% Ge by mass%, and further includes at least one of W, V, Cr, Ni, Mn, Co, Fe, Cu, and Si in total. A Ge-containing high-strength titanium alloy characterized by being excellent in cold workability containing 30% or less and the balance being Ti and inevitable impurities.

請求項記載の発明は、質量%でGe0.2%〜4.0%を含有し、さらにMoW、V、Cr、Ni、Mn、Co、Fe、Cu、Siの1種以上を合計で30%以下と、ZrSnの1種以上を合計で10%以下とを含有し、残部がTiおよび不可避不純物からなる冷間加工性に優れたことを特徴とするGe含有の高強度チタン合金である。 The invention according to claim 6 contains Ge 0.2% to 4.0% by mass, and further includes at least one of Mo , W, V, Cr, Ni, Mn, Co, Fe, Cu, and Si. High-strength titanium containing Ge, characterized by being excellent in cold workability comprising at least 30% or less and a total of 10% or less of one or more of Zr and Sn, the balance being Ti and inevitable impurities It is an alloy.

請求項記載の発明は、請求項1〜記載のGe含有の高強度チタン合金で構成された装飾・装身具である。 A seventh aspect of the present invention is a decoration / jewelry made of the Ge-containing high-strength titanium alloy according to the first to sixth aspects.

ここで、本発明について、さらに詳細に説明する。まず、本発明合金の組成を上記のように成分限定した理由について説明する
本発明合金において、Geの含有量が0.2質量%未満では、強度アップはほとんど期待できず、また、装飾機能と遠赤外線にもとづく健康増進あるいは治療・治癒の機能は発揮されない。一方、図1に示すようにGeの含有量が4.0質量%を超えると、冷間加工性の指標である絞りが急激に低下することから、冷間加工性が劣化することが想定される。したがって、Geの含有量を0.2〜4.0質量%に限定した。
Here, the present invention will be described in more detail. First, the reason why the composition of the alloy of the present invention is limited as described above will be described. In the alloy of the present invention, if the Ge content is less than 0.2% by mass, almost no increase in strength can be expected. The function of health promotion or treatment / healing based on far-infrared rays is not exhibited. On the other hand, as shown in FIG. 1, when the Ge content exceeds 4.0% by mass, the drawing, which is an index of cold workability, rapidly decreases, and it is assumed that cold workability deteriorates. The Therefore, the content of Ge is limited to 0.2 to 4.0% by mass.

Tiに40質量%を超えてNbを添加すると、両元素の比重、融点などの相違により溶解に難点を生じ、成分組成の均一な鋳塊が極めて得難いことから本発明のチタン合金の
Nb含有量の上限を40質量%とした。なお、Nb自体、β相形成・安定化元素であって、チタンあるいはチタン合金へのNb含有量が増すに伴い、より安定なβ相からなるβ型チタン合金を得ることができる。しかし、Nbは極めて高価な合金元素であることから本発明では、Nbに代替するβ相形成・安定化元素としてMo、Ta、W、V、Cr、Ni、Mn、Co、Fe、Cu、Siなどを選定し、上記のようにこれらの合金元素を組み合わせ、適量含有させることによって、冷間加工性にすぐれたGe含有の高強度β型チタン合金を得ようとするものである。
If Nb is added in excess of 40% by mass to Ti, it will be difficult to dissolve due to differences in specific gravity, melting point, etc. of both elements, and it will be extremely difficult to obtain an ingot with a uniform composition. The upper limit of 40 mass%. Nb itself is a β-phase forming / stabilizing element, and a β-type titanium alloy composed of a more stable β-phase can be obtained as the Nb content in titanium or titanium alloy increases. However, since Nb is an extremely expensive alloy element, Mo, Ta, W, V, Cr, Ni, Mn, Co, Fe, Cu, Si are used as β-phase forming / stabilizing elements instead of Nb in the present invention. By combining these alloying elements as described above and containing them in appropriate amounts, a Ge-containing high-strength β-type titanium alloy excellent in cold workability is obtained.

具体的には、Nb含有量が40質量%以下で本発明のチタン合金の組織をより安定なβ相とするためには、20質量%<Nb含有量≦40質量%の範囲では、β相形成・安定化元素であるMo、Ta、W、V、Cr、Ni、Mn、Co、Fe、Cu、Siを単味または複合で、15質量%以下含有させる必要がある。またNb含有量が0〜20質量%の範囲では、前記β相形成・安定化元素を単味または複合で30質量%以下含有させる必要がある。さらに好ましくは、Nb含有量0〜40質量%の全範囲において、β相形成・安定化元素の機能を示す指標であるモリブデン当量(Moeq=Mo+Nb/3.5+Ta/5+V/1.5+1.25Cr+1.25Ni+1.7Mn+1.7Co+2.5Fe)を9質量%以上とすることが望ましい
さらに、必要に応じて、マトリックス強化元素であるZr、Al、Snを単味または複合で含有させることにより、素地が強化され高強度化を図ることができる。しかし、これら成分を単味または複合で10質量%を超えて含有させると延性が低下して、冷間加工性も劣化することから10質量%をその上限とした。
Specifically, in order to make the structure of the titanium alloy of the present invention having a Nb content of 40% by mass or less and a more stable β phase, in the range of 20% by mass <Nb content ≦ 40% by mass, the β phase The formation / stabilizing elements Mo, Ta, W, V, Cr, Ni, Mn, Co, Fe, Cu, and Si need to be contained in an amount of 15% by mass or less in a simple or composite manner. When the Nb content is in the range of 0 to 20% by mass, the β-phase forming / stabilizing element needs to be contained in an amount of 30% by mass or less in a simple or complex manner. More preferably, the molybdenum equivalent (Moeq = Mo + Nb / 3.5 + Ta / 5 + V / 1.5 + 1.25Cr + 1.5) which is an index indicating the function of the β-phase formation / stabilizing element in the entire range of Nb content of 0 to 40% by mass. 25Ni + 1.7Mn + 1.7Co + 2.5Fe) is preferably 9 mass% or more .
Furthermore, by adding Zr, Al, and Sn, which are matrix reinforcing elements, as simple or complex as required, the substrate is strengthened and high strength can be achieved. However, if these components are contained in a simple or composite amount exceeding 10% by mass, the ductility decreases and the cold workability deteriorates, so 10% by mass was made the upper limit.

本発明によれば、チタン合金にGeを含有させることによって、強度アップによる本発明合金からなる製品の軽量化が図られるとともに装飾機能と健康増進あるいは治療・治癒の機能(装身機能)が付与され、さらに、β相形成・安定化元素を含有させてβ型チタン合金とすることによって、冷間加工性が改善されるため、装飾・装身具に適し、かつ優れた冷間加工性を有するGe含有の高強度β型チタン合金を提供することが可能となる。   According to the present invention, by including Ge in the titanium alloy, the weight of the product made of the alloy of the present invention can be reduced by increasing the strength, and the decorative function and the health promotion or treatment / healing function can be provided. In addition, since the β-type titanium alloy containing a β-phase forming / stabilizing element improves the cold workability, Ge is suitable for decoration and accessories and has excellent cold workability. It becomes possible to provide a high-strength β-type titanium alloy.

ついで、本発明合金の製造方法について説明する。
まず、本発明のチタン合金に限らず、純チタンあるいはチタン合金は、真空高周波溶解炉、真空プラズマ溶解炉、電子ビーム溶解炉(EB炉)、真空アーク溶解炉(VA炉)、スカル溶解炉などにより溶解され、所望の合金組成に成分調整した後、鋳塊(インゴット)とする。必要に応じて、このインゴットに溶体化処理を施して内部組織の均一化を図る。
ついで、熱間加工により、所望形状のビレットとする。さらに、このビレットを熱間加工あるいは冷間加工により、板材や線材に成形して、装飾・装身具などの素材として提供される。たとえば、図2に示すような眼鏡フレーム1を製作する場合、前記線材を用いて眼鏡フレーム1を構成するリム2、ブリッジ3およびテンプル4が冷間加工によって最終形状に成形される。
Subsequently, the manufacturing method of this invention alloy is demonstrated.
First, not limited to the titanium alloy of the present invention, pure titanium or titanium alloy may be a vacuum high-frequency melting furnace, a vacuum plasma melting furnace, an electron beam melting furnace (EB furnace), a vacuum arc melting furnace (VA furnace), a skull melting furnace, etc. Then, the components are adjusted to a desired alloy composition, and then an ingot is formed. If necessary, the ingot is subjected to a solution treatment to make the internal structure uniform.
Next, a billet having a desired shape is obtained by hot working. Furthermore, the billet is formed into a plate material or wire by hot working or cold working, and provided as a material for decorations and accessories. For example, when the spectacle frame 1 as shown in FIG. 2 is manufactured, the rim 2, the bridge 3 and the temple 4 constituting the spectacle frame 1 are formed into a final shape by cold working using the wire rod.

本発明合金の装飾・装身機能について詳述するならば、本発明のチタン合金にGeを含有させることにより、その地肌の色調である白色の鮮やかさが一段と増すといった装飾機能が発揮されるとともに、半導体元素であるGeから放射される遠赤外線の人体への熱作用と非熱作用により、本発明合金に接触することで、健康増進あるいは治癒の効果がもたらされるといった装身機能が発揮される。   If the details of the decoration and decoration function of the alloy of the present invention are described, by adding Ge to the titanium alloy of the present invention, the decoration function that the vividness of the white color of the background is further enhanced is exhibited. In addition, the thermal function and the non-thermal action of the far-infrared radiation emitted from the semiconductor element Ge exerts a body-building function such as bringing about health promotion or healing effect by contacting the alloy of the present invention. .

したがって、本発明のGe含有の高強度チタン合金で構成される装飾・装身具としては、使用者の肌に常時接触して用いられるものであることが望ましく、たとえば、ネックレス、
ネックチェーン、ペンダンット、アンクレット、イヤリング、ピアスなどの装飾・装身具;時計側ケース、時計裏蓋、バンド駒、バックルなどの腕時計外装部品;眼鏡フレーム等々が挙げられる。好ましくは、これらの中でも、過酷な冷間加工の伴う眼鏡フレーム、腕時計外装部品に本発明のGe含有の高強度チタン合金を適用することが望ましい。
なお、本発明のチタン合金の用途としては、上記のような装飾・装身具に限定されるものではなく、たとえば、Geを含有する本発明のチタン合金は、従来のチタン合金よりも高い強度(硬度)と延性を有することからゴルフクラブのヘッドなどにも利用可能である。
Therefore, it is desirable that the decoration / jewelry made of the Ge-containing high-strength titanium alloy of the present invention is used in constant contact with the user's skin, for example, a necklace,
Examples include ornaments and accessories such as neck chains, pendants, anklets, earrings, and earrings; watch exterior parts such as watch cases, watch case covers, band pieces, and buckles; and eyeglass frames. Preferably, among these, it is desirable to apply the Ge-containing high-strength titanium alloy of the present invention to a spectacle frame and a wristwatch exterior part accompanied by severe cold working.
The use of the titanium alloy of the present invention is not limited to the decoration / jewelry as described above. For example, the titanium alloy of the present invention containing Ge has higher strength (hardness) than conventional titanium alloys. ) And ductility, it can also be used for golf club heads.

(実施例1)
Ti−28Nb−4FeのGe含有量を変えた本発明のチタン合金(請求項2相当材)と純チタンのGe含有量を変えた比較材を30mmφインゴットにそれぞれ真空アーク溶解炉を用いて溶製し、これらのインゴットを熱間鍛造後スェージング加工にて3mmφの丸棒に成形し、引き続き溶体化処理を施した後、引張り試験に供試した。これらの引張り試験結果を図1に図示する。同図から明らかなように、本発明のチタン合金は、いずれのGe含有量においても比較材より高強度・高延性である。しかし、Ge含有量が4質量%を超えると本発明のチタン合金の絞り(延性)が急激に低下していることから、同様に冷間加工性も劣化することが想定される。
(Example 1)
The titanium alloy of the present invention (material equivalent to claim 2) in which the Ge content of Ti-28Nb-4Fe was changed and the comparative material in which the Ge content of pure titanium was changed were made into 30 mmφ ingots using a vacuum arc melting furnace. These ingots were formed into 3 mmφ round bars by swaging after hot forging and subsequently subjected to solution treatment, and then subjected to a tensile test. The results of these tensile tests are illustrated in FIG. As is clear from the figure, the titanium alloy of the present invention has higher strength and higher ductility than the comparative material at any Ge content. However, when the Ge content exceeds 4% by mass, the drawing (ductility) of the titanium alloy of the present invention is drastically reduced, so that it is assumed that the cold workability is similarly deteriorated.

(実施例2)
表1に示す9種類の本発明のチタン合金と3種類(No.23〜No.25)のチタン合金からなる比較材を30mmφインゴットにそれぞれ真空アーク溶解炉を用いて溶製し、これ等のインゴットを熱間鍛造して18mmφの丸棒に成形した。その一部を機削りして15mmφのテストピースとし、引き続き溶体化処理を施した後、冷間圧延テストに供試した。供試された15mmφのテストピースにV溝冷間圧延機を用いて加工率78%の冷間加工を付加して7mm×7mm断面に圧延加工した後、冷間圧延加工後の表面肌の状態と割れ発生の有無を確認した。そのテスト結果は表1に示すように、本発明材にはいずれも割れの発生は認められず、良好な表面肌を呈していた。
(Example 2)
Comparative materials made of nine types of titanium alloys of the present invention and three types (No. 23 to No. 25) shown in Table 1 were melted in 30 mmφ ingots using a vacuum arc melting furnace. The ingot was hot forged and formed into a 18 mmφ round bar. A part thereof was machined to obtain a 15 mmφ test piece, which was subsequently subjected to a solution treatment and then subjected to a cold rolling test. After rolling to 7 mm × 7 mm cross section by adding a cold working processing rate of 78% using V-groove cold rolling mill in the test piece of the test have been having a diameter of 15 mm, the surface texture after cold rolling condition The presence or absence of cracks was confirmed. As a result of the test, as shown in Table 1, no cracking was observed in the material of the present invention, and a good surface skin was exhibited.

Figure 2008127667
Figure 2008127667

(実施例3)
実施例2に供試したNo.7の本発明のチタン合金を用いて、図2示す眼鏡フレーム1の構成部材であるリム(線)2、ブリッジ3、テンプル4を試作した。
実施例2で熱間鍛造によって鍛伸成形された18mmφ丸棒を一部流用し、これら18mmφ丸棒に冷間スェージング加工を施して3mmφのコイルに加工し、さらに、これらコイルの一部にプレス加工を付加してブリッジ3またはテンプル4に成形した。また、残りの前記3mmφのコイルをV溝冷間圧延機によって図3に示す断面形状のV溝リム線2に成形した。試作品は、いずれも精度よく成形加工され、良好な地肌を呈していた。
(Example 3)
No. 2 used in Example 2 . A rim (wire) 2, a bridge 3, and a temple 4 which are constituent members of the spectacle frame 1 shown in FIG.
A part of the 18 mmφ round bars forged and formed by hot forging in Example 2 was used, and the 18 mmφ round bars were subjected to cold swaging to be processed into 3 mmφ coils, and a press was applied to some of these coils. Processing was added to form the bridge 3 or the temple 4. The remaining 3 mmφ coil was formed into a V-groove rim wire 2 having a cross-sectional shape shown in FIG. 3 by a V-groove cold rolling mill. All of the prototypes were molded with high accuracy and exhibited a good background.

(実施例4)
実施例3と同様にして、実施例2に供試したNo.7の本発明チタン合金の18mmφ鍛造丸棒を一部流用して、腕時計外装部品である時計側ケースを試作した。
前記18mmφ鍛造丸棒をセンタレスグラインダーにて16mmφ丸棒に加工し、これを輪切りにして6mm厚×16mmφのビレットを製作した。ついで、このビレットを冷間プレスにて所定形状に成形後、切削および研磨による仕上げ加工を施して所望の時計側ケースを試作した。試作品はいずれも軽く、しかも鮮やかな白色の色調を呈し、優れた装飾・装身機能を発揮していた。
Example 4
In the same manner as in Example 3, the No. 2 used in Example 2 was tested . A watch-side case, which is a wristwatch exterior part, was prototyped by diverting a portion of No. 7 18-mmφ forged round bar of the titanium alloy of the present invention.
The 18 mmφ forged round bar was processed into a 16 mmφ round bar with a centerless grinder, and this was cut into a 6 mm thick × 16 mmφ billet. Next, the billet was formed into a predetermined shape by a cold press, and then finished by cutting and polishing to produce a desired watch side case. All of the prototypes were light and had a vibrant white color, and exhibited an excellent decoration and decoration function.

引張り強さおよび絞りに及ぼすGe含有量の影響を示す図である。It is a figure which shows the influence of Ge content which acts on tensile strength and a drawing. 眼鏡フレームの概観斜視図である。It is a general-view perspective view of a spectacles frame. リム線の断面図である。It is sectional drawing of a rim line.

符号の説明Explanation of symbols

1 眼鏡フレーム
2 リム
3 ブリッジ
4 テンプル
1 eyeglass frame 2 rim 3 bridge 4 temple

Claims (7)

質量%でNb20%を超え40%以下、Ge0.2%〜4.0%を含有し、さらにTa、W、V、Cr、Ni、Mn、Co、Fe、Cu、Siの1種以上を合計で15%以下含有し、残部がTiおよび不可避不純物からなることを特徴とする冷間加工性に優れたゲルマニウム含有高強度チタン合金。 40% greater than the NB 20% in mass% or less, containing Ge0.2% to 4.0%, further, Ta, W, V, Cr , Ni, Mn, Co, Fe, Cu, at least one of Si A germanium-containing high-strength titanium alloy excellent in cold workability, characterized by containing 15% or less in total and the balance being made of Ti and inevitable impurities. 質量%でNb20%を超え40%以下、Ge0.2%〜4.0%を含有し、さらにW、V、Cr、Ni、Mn、Co、Fe、Cu1種以上を合計で15%以下と、Zr10%以下とを含有し、残部がTiおよび不可避不純物からなることを特徴とする冷間加工性に優れたゲルマニウム含有高強度チタン合金。 40% greater than the NB 20% or less by mass%, contains Ge0.2% to 4.0%, further, W, V, Cr, Ni , Mn, Co, Fe, 15% in total of one or more Cu A germanium-containing high-strength titanium alloy excellent in cold workability, characterized in that it contains: Zr 10% or less, and the balance is Ti and inevitable impurities. 質量%でNb20%以下、Ge0.2%〜4.0%を含有し、さらにTa、W、V、Cr、Ni、Mn、Co、Fe、Cu、Siの1種以上を合計で30%以下含有し、残部がTiおよび不可避不純物からなることを特徴とする冷間加工性に優れたゲルマニウム含有高強度チタン合金。 NB 20% in mass%, Ge0.2% contained to 4.0%, further 30% in total Ta, W, V, Cr, Ni, Mn, Co, Fe, Cu, at least one of Si A germanium-containing high-strength titanium alloy excellent in cold workability, characterized in that it is contained below and the balance is made of Ti and inevitable impurities. 質量%でNb20%以下、Ge0.2%〜4.0%を含有し、さらにW、V、Cr、Ni、Mn、Co、Fe、Cu1種以上を合計で30%以下と、Zr10%以下とを含有し、残部がTiおよび不可避不純物からなることを特徴とする冷間加工性に優れたゲルマニウム含有高強度チタン合金。 NB 20% in mass% or less, containing Ge0.2% to 4.0%, further, W, V, Cr, Ni , Mn, Co, Fe, and 30% or less of one or more in total of Cu, Zr A germanium-containing high-strength titanium alloy excellent in cold workability, characterized in that it contains 10% or less and the balance consists of Ti and inevitable impurities. 質量%でGe0.2%〜4.0%を含有し、さらにW、V、Cr、Ni、Mn、Co、Fe、Cu、Siの1種以上を合計で30%以下含有し、残部がTiおよび不可避不純物からなることを特徴とする冷間加工性に優れたゲルマニウム含有高強度チタン合金。 Containing Ge0.2% to 4.0% in mass%, further, W, V, Cr, Ni , Mn, Co, Fe, Cu, containing 30% or less in total of one or more Si, is the balance A germanium-containing high-strength titanium alloy having excellent cold workability, characterized by comprising Ti and inevitable impurities. 質量%でGe0.2%〜4.0%を含有し、さらにMoW、V、Cr、Ni、Mn、Co、Fe、Cu、Siの1種以上を合計で30%以下と、ZrSnの1種以上を合計で10%以下とを含有し、残部がTiおよび不可避不純物からなることを特徴とする冷間加工性に優れたゲルマニウム含有高強度チタン合金。 Containing 0.2% to 4.0% Ge by mass%, and further containing at least 30% in total of at least one of Mo 2 , W, V, Cr, Ni, Mn, Co, Fe, Cu and Si, Zr , A germanium-containing high-strength titanium alloy excellent in cold workability, characterized by containing one or more of Sn in a total of 10% or less and the balance being made of Ti and inevitable impurities. 請求項1〜記載のゲルマニウム含有高強度チタン合金で構成されたことを特徴とする装飾・装身具。 Decoration, ornament, characterized in that it consists of claims 1-6 germanium-containing high-strength titanium alloy according.
JP2006316860A 2006-11-24 2006-11-24 Germanium-containing high strength titanium alloy having excellent cold workability, and ornament or accessory made of the alloy Pending JP2008127667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006316860A JP2008127667A (en) 2006-11-24 2006-11-24 Germanium-containing high strength titanium alloy having excellent cold workability, and ornament or accessory made of the alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006316860A JP2008127667A (en) 2006-11-24 2006-11-24 Germanium-containing high strength titanium alloy having excellent cold workability, and ornament or accessory made of the alloy

Publications (2)

Publication Number Publication Date
JP2008127667A JP2008127667A (en) 2008-06-05
JP2008127667A5 true JP2008127667A5 (en) 2008-10-09

Family

ID=39553806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316860A Pending JP2008127667A (en) 2006-11-24 2006-11-24 Germanium-containing high strength titanium alloy having excellent cold workability, and ornament or accessory made of the alloy

Country Status (1)

Country Link
JP (1) JP2008127667A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6739735B2 (en) 2016-04-14 2020-08-12 国立研究開発法人物質・材料研究機構 Method for manufacturing materials for watch exterior parts

Similar Documents

Publication Publication Date Title
US7410546B2 (en) Platinum alloy and method of production thereof
WO1997037049A1 (en) High strength titanium alloy, product made therefrom and method for producing the same
EP1913168B1 (en) Platinum alloy and method of production thereof
EP0819773B1 (en) Process for the manufacture of a pure gold alloy
JPH0770671A (en) Gold ornament material hardened by alloying with small amount of component
JP2008127667A5 (en)
JP2008127667A (en) Germanium-containing high strength titanium alloy having excellent cold workability, and ornament or accessory made of the alloy
EP1913167A1 (en) Platinum alloy and method of production thereof
JP2005060821A (en) beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY
JP2886818B2 (en) Method of manufacturing copper alloy for decoration
JP4412174B2 (en) Low rigidity and high strength titanium alloy with excellent cold workability, glasses frame and golf club head
JPH0770670A (en) Gold ornament material hardened by alloying with small amount of component
JPH0820830A (en) Production of pure platinum for ornament, having high hardness
JPWO2004042096A1 (en) Low rigidity and high strength titanium alloy with excellent cold workability, glasses frame and golf club head
JP4281995B2 (en) Biological ornament and method for producing the same
JPH0770672A (en) Gold ornament material hardened by alloying with small amount of component
JP4006939B2 (en) High strength titanium alloy
JP2000019461A (en) Frame of spectacles
US20080298997A1 (en) Platinum Alloy and Method of Production Thereof
JP3158853B2 (en) Gold decorative materials and metal fittings
JP2005248202A (en) Method for producing superelastic titanium alloy and spectacle frame
WO2005005677A1 (en) Titanium alloy and eyeglass frame excelling in spring characteristic
JPH0135911B2 (en)
JPS62103330A (en) High-strength titanium alloy excellent in cold workability
JP2013028829A (en) Titanium alloy material for spectacle frame