JP2008127650A - Austenitic stainless steel sheet having excellent descaling property, and its production method - Google Patents

Austenitic stainless steel sheet having excellent descaling property, and its production method Download PDF

Info

Publication number
JP2008127650A
JP2008127650A JP2006315806A JP2006315806A JP2008127650A JP 2008127650 A JP2008127650 A JP 2008127650A JP 2006315806 A JP2006315806 A JP 2006315806A JP 2006315806 A JP2006315806 A JP 2006315806A JP 2008127650 A JP2008127650 A JP 2008127650A
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
stainless steel
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006315806A
Other languages
Japanese (ja)
Inventor
Satoshi Suzuki
聡 鈴木
Hideki Tanaka
秀記 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2006315806A priority Critical patent/JP2008127650A/en
Publication of JP2008127650A publication Critical patent/JP2008127650A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an austenitic stainless steel sheet having excellent descaling properties upon pickling. <P>SOLUTION: The cold rolled steel sheet of steel having a componential composition regulated in such a manner that a martensitic transformation point Ms(°C) defined by formula (1) is controlled to ≤-100°C is subjected to finish annealing under the temperature condition of ≤1,100°C with no soaking in an air atmosphere so as to obtain an austenitic stainless steel sheet in which, regarding the crystal structure of base phase metal in the surface of the steel sheet after annealing-pickling, provided that the X-ray diffraction intensity of an austenitic phase is defined as Iγ(111) and the X-ray diffraction intensity of a martensitic phase is defined as Im(110), an X-ray diffraction intensity ratio expressed by Im(110)/Iγ(111) is ≤1.5: Ms=ä3000[0.068-(C+N)]+50(0.47-Si)+60(1.33-Mn)+110(8.9-Ni)+75(14.6-Cr)-32}×5/9 ...(1). Since the martensitic phase easy to appear on the surface is less, remaining of scale having no regularity can be evaded after the pickling, and a finely finished annealed-pickled austenitic stainless steel sheet can be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、焼鈍酸洗時の脱スケール性に優れたオーステナイト系ステンレス鋼板及びその製造方法に関する。   The present invention relates to an austenitic stainless steel sheet having excellent descalability during annealing pickling and a method for producing the same.

オーステナイト系ステンレス鋼板は、耐食性,耐酸性,耐熱性,高強度,意匠性等、普通鋼にはない種々の材料機能を生かし、あらゆる産業分野で広範囲に使用されている。近年では、高機能化,高寿命化,低コスト化,環境負荷低減の気運が高まり、高度の加工性が要求される分野でもステンレス鋼板を使用する局面が増加している。このため、現行材に対するコストメリットを有することの他に、より軟質な素材の提供が求められている。
このような要求を満たすために、高価なNiの代わりにMnやCuを添加する技術(例えば特許文献1,2参照)や研磨後の肌荒れを抑制するために細粒化しても、軟質化が図れる技術(例えば特許文献3参照)が提案されているが、この特許文献3記載の従来技術からは、結晶粒を粗大化することが軟質化の常套手段であることが逆にわかるのである。
特開平4−72038号公報 特開平9−263905号公報 特開平10−158792号公報
Austenitic stainless steel sheets are widely used in various industrial fields, taking advantage of various material functions not found in ordinary steel, such as corrosion resistance, acid resistance, heat resistance, high strength, and designability. In recent years, the trend of using high-functionality, long life, low cost, and reduced environmental impact has increased, and the use of stainless steel sheets is increasing in fields where high workability is required. For this reason, in addition to having the cost merit with respect to the current material, provision of a softer material is demanded.
In order to satisfy such a requirement, softening is achieved even if the technology for adding Mn or Cu instead of expensive Ni (see, for example, Patent Documents 1 and 2) or fine graining to suppress rough skin after polishing is used. A technique that can be achieved (see, for example, Patent Document 3) has been proposed. However, from the conventional technique described in Patent Document 3, it is understood that the coarsening of crystal grains is a conventional means of softening.
Japanese Patent Laid-Open No. 4-72038 JP 9-263905 A Japanese Patent Laid-Open No. 10-158792

しかしながら、Ni含有量を低減させたオーステナイト系ステンレス鋼板を高温で焼鈍すると、表面に生成されるマルテンサイト相に起因して酸洗後に規則性のないスケールが残存し、仕上げ外観上、美麗さに欠けることがある。
そこで、本発明は、焼鈍時に生成されるマルテンサイト相を低減して製造上問題となるスケールの残存を回避し、酸洗時の脱スケール性に優れたオーステナイト系ステンレス鋼板を提供することを目的とする。
However, when an austenitic stainless steel sheet with a reduced Ni content is annealed at a high temperature, a non-regular scale remains after pickling due to the martensite phase formed on the surface, and the finished appearance is beautiful. It may be missing.
Therefore, the present invention aims to provide an austenitic stainless steel sheet that reduces the martensite phase generated during annealing and avoids the remaining scale, which is a problem in manufacturing, and has excellent descaling properties during pickling. And

本発明のオーステナイト系ステンレス鋼板は、下記式(1)で定義されるマルテンサイト変態点Ms(℃)が−100℃以下になるように調整された成分組成を有する鋼板であって、焼鈍酸洗後の鋼板表面における母相金属の結晶構造が、オーステナイト相のX線回折強度をIγ(111),マルテンサイト相のX線回折強度をIm(110)としたとき、Im(110)/Iγ(111)で表されるX線回折強度比が1.5以下であることを特徴とする。
Ms={3000[0.068-(C+N)]+50(0.47-Si)+60(1.33-Mn)
+110(8.9-Ni)+75(14.6-Cr)-32}×5/9 ・・・(1)
The austenitic stainless steel sheet of the present invention is a steel sheet having a component composition adjusted such that the martensitic transformation point Ms (° C.) defined by the following formula (1) is −100 ° C. or less, and is annealed pickled The crystal structure of the matrix metal on the surface of the later steel sheet is Im (110) / Iγ (when the X-ray diffraction intensity of the austenite phase is Iγ (111) and the X-ray diffraction intensity of the martensite phase is Im (110). 111), the X-ray diffraction intensity ratio is 1.5 or less.
Ms = {3000 [0.068- (C + N)] + 50 (0.47-Si) +60 (1.33-Mn)
+110 (8.9-Ni) +75 (14.6-Cr) -32} × 5/9 (1)

このようなオーステナイト系ステンレス鋼板としては、C+N:0.06質量%以下,Si:1.0質量%以下,Mn:5.0質量%以下,Cr:15〜20質量%,Ni:5〜15質量%,Cu:0.5〜5.0質量%を含み、残部がFe及び不可避的不純物からなる成分組成を有するものが好ましい。さらに必要に応じて、Ti:0.5質量%以下,Nb:0.5質量%以下,Zr:0.5質量%以下,V:0.5質量%以下,Mo:3.0質量%以下,B:0.03質量%以下,REM(希土類金属):0.02質量%以下,Ca:0.03質量%以下の1種又は2種以上を含ませても良い。
そして、このようなオーステナイト系ステンレス鋼板は、上記の成分組成をもつステンレス鋼の冷延鋼板に、大気雰囲気中、1100℃以下の温度条件下で均熱0秒の仕上げ焼鈍を施すことにより製造される。
As such an austenitic stainless steel plate, C + N: 0.06 mass% or less, Si: 1.0 mass% or less, Mn: 5.0 mass% or less, Cr: 15-20 mass%, Ni: 5-15 It is preferable to have a component composition that includes mass%, Cu: 0.5 to 5.0 mass%, with the balance being Fe and inevitable impurities. Further, if necessary, Ti: 0.5 mass% or less, Nb: 0.5 mass% or less, Zr: 0.5 mass% or less, V: 0.5 mass% or less, Mo: 3.0 mass% or less , B: 0.03 mass% or less, REM (rare earth metal): 0.02 mass% or less, Ca: 0.03 mass% or less may be included.
Such an austenitic stainless steel sheet is manufactured by subjecting a stainless steel cold-rolled steel sheet having the above-described composition to a finish annealing at a temperature of 1100 ° C. or less in a soaking atmosphere for 0 seconds. The

本発明により、表面にマルテンサイト相の少ない焼鈍オーステナイト系ステンレス鋼板が得られるため、実ライン製造工程において、酸洗後に規則性のないスケールの残存が回避され、美麗な仕上げ焼鈍酸洗オーステナイト系ステンレス鋼板を安定して製造することが可能になる。   According to the present invention, an annealed austenitic stainless steel sheet having a low martensite phase on the surface is obtained, so that in the actual line production process, non-regular scale remains after pickling, and a beautiful finish annealed pickled austenitic stainless steel is obtained. It becomes possible to manufacture a steel plate stably.

本発明者等は、オーステナイト系ステンレス鋼板を実ラインで製造する際に発生しやすい規則性のない脱スケール不良の発生原因とその対策について、種々検討を重ねてきた。
まず、実ライン製造工程における脱スケール不良の発生状況を観察すると、圧延油が付着している部位と付着していない部位とでの脱スケール性の差が顕著である。
そこで、圧延油が付着している部位と付着していない部位とでの鋼板表面の性状変化について検討した。
The inventors of the present invention have made various studies on the cause of non-regular descaling defects that are likely to occur when manufacturing an austenitic stainless steel sheet on an actual line and countermeasures thereof.
First, when the occurrence state of descaling failure in the actual line manufacturing process is observed, the difference in descaling property between the portion where the rolling oil is attached and the portion where the rolling oil is not attached is remarkable.
Then, the property change of the steel plate surface in the site | part which the rolling oil has adhered and the site | part which has not adhered was examined.

圧延油が付着している部位では、焼鈍炉内への挿入時に圧延油が燃焼し、組成中のCが鋼板表面に残存する。このCが表面から内方に浸炭し、Cr236が生成する。Cr236が生成した鋼板表面では、母相中のCrが貧化することと生成したCr236により焼鈍時の熱吸収率が上昇することにより、スケール生成量が増加するとともに脱Cr現象が促進される。このため、該当部位では母相表面でMs点が上昇し、焼鈍後の冷却過程で相変態が起こってマルテンサイト相が生成される。
生成したマルテンサイト相は、含有するCr量の差から母相のオーステナイト相と比較して耐食性に劣り、脱スケール性としては結果的ではあるが良好となる。
In the portion where the rolling oil is adhered, the rolling oil burns when inserted into the annealing furnace, and C in the composition remains on the steel sheet surface. This C is carburized inward from the surface to produce Cr 23 C 6 . On the steel sheet surface where Cr 23 C 6 is generated, the Cr generation rate is increased while the heat absorption rate during annealing is increased due to the deterioration of Cr in the parent phase and the generated Cr 23 C 6. The phenomenon is promoted. For this reason, the Ms point rises on the surface of the parent phase at the corresponding portion, and a phase transformation occurs in the cooling process after annealing to generate a martensite phase.
The produced martensite phase is inferior in corrosion resistance as compared with the austenite phase of the parent phase due to the difference in the amount of Cr contained, and as a result, the descalability is good.

一方、圧延油が付着していない部位では、圧延油が付着している部位と比較して鋼板表面における脱Cr現象が抑制されるために耐酸性が維持される。すなわち脱スケール性が不良となって、圧延油が付着している部位と付着していない部位とで脱スケール性に差が生じることとなる。この結果、実ライン製造工程において、規則性のないスケールが残存することになる。
このように、実ライン製造工程の仕上げ焼鈍時、鋼板表面にマルテンサイト相が不規則に生成し、マルテンサイト相が残存する部位とオーステナイト相が残存する部位とで酸洗時の酸洗性に局部的な差異が生じ、その酸洗状況の差異が仕上げ鋼板の表面に脱スケール不良として現れたものと推測できる。
On the other hand, the acid resistance is maintained in the portion where the rolling oil is not attached because the de-Cr phenomenon on the steel sheet surface is suppressed as compared with the portion where the rolling oil is attached. That is, the descalability becomes poor, and a difference occurs in the descalability between a portion where the rolling oil is attached and a portion where the rolling oil is not attached. As a result, a scale having no regularity remains in the actual line manufacturing process.
Thus, at the time of finish annealing in the actual line manufacturing process, the martensite phase is irregularly formed on the steel sheet surface, and the pickling property at the time of pickling at the part where the martensite phase remains and the part where the austenite phase remains A local difference arises, and it can be inferred that the difference in the pickling situation appeared as a descaling defect on the surface of the finished steel sheet.

上記のように推測すると、残存マルテンサイト相を少なくすることで脱スケール不良の発生を抑制することができることになる。本発明者等はさらに検討を重ね、脱スケール不良に及ぼすマルテンサイト相の残存限界を探索した。
ステンレス鋼板表面のマルテンサイト相及びオーステナイト相の存在割合は、酸洗後の鋼板表面のX線回折強度を測定することにより知りえる。そこで、焼鈍酸洗板の表面におけるマルテンサイト(m)相のX線回折強度Im(110)とオーステナイト(γ)相のX線回折強度Iγ(111)を測定し、両者の比Im(110)/Iγ(111)と脱スケール性の関係を調査した。
Assuming as described above, the occurrence of descaling failure can be suppressed by reducing the remaining martensite phase. The inventors of the present invention further studied and searched for the remaining limit of the martensite phase on the descaling failure.
The abundance ratio of the martensite phase and the austenite phase on the stainless steel plate surface can be known by measuring the X-ray diffraction intensity on the steel plate surface after pickling. Therefore, the X-ray diffraction intensity Im (110) of the martensite (m) phase and the X-ray diffraction intensity Iγ (111) of the austenite (γ) phase on the surface of the annealed pickling plate are measured, and the ratio Im (110) of the two is measured. The relationship between / Iγ (111) and descalability was investigated.

なお、X線回折強度は、X線回折装置(リガク社製RINT1500)により、Co管球,管電圧40KV,管電流120mA,走査軸2θ,θ固定角度5.000°,走査速度1.000°/min,サンプル幅0.010°の条件を採用し、X線回折薄膜法で測定した。そして、γ相(111),m相(110)面の各積分強度をそれぞれIγ(111),Im(110)とした。
調査の結果、詳細は実施例で示すが、X線回折強度比Im(110)/Iγ(111)を1.5以下にすれば、脱スケール不良の発生を回避できることがわかった。
X-ray diffraction intensity was measured using an X-ray diffractometer (RINT1500, manufactured by Rigaku Corporation). Co tube, tube voltage 40 KV, tube current 120 mA, scanning axis 2θ, θ fixed angle 5.000 °, scanning speed 1.000 ° / min, sample The measurement was performed by the X-ray diffraction thin film method under the condition of a width of 0.010 °. The integrated intensities of the γ phase (111) and m phase (110) planes were Iγ (111) and Im (110), respectively.
As a result of the investigation, the details will be shown in Examples, but it was found that if the X-ray diffraction intensity ratio Im (110) / Iγ (111) is 1.5 or less, the occurrence of descaling failure can be avoided.

ところで、マルテンサイト相は圧延油が付着していない部分でもMs点の上昇とともに生成しやすくなる。Ms点が高いためにマルテンサイト相の生成域が広がると、表面全体の酸洗性がよくなって脱スケール性は均一化されるが、同時に酸化スケールが増加して焼鈍による重量ロスが多くなり、製造コスト的には好ましくない。また、Ms点の上昇により焼鈍後に母材全体でのマルテンサイト変態が進行し、母材全体が硬質化してしまうため、本来のオーステナイト系ステンレス鋼としての用途に適さなくなる。
この傾向は、Ms点(℃)が−100℃を上回ると顕著になることから、Ms点の上限値を−100℃とした。したがって、本発明のオーステナイト系ステンレス鋼板は、Ms点に関する要件を満たすことが前提となっている。
なお、本明細書内では、Ms点は前掲の式(1)で定義している。
By the way, the martensite phase is easily generated as the Ms point increases even in a portion where the rolling oil is not attached. If the Ms point is high and the martensite phase formation region is widened, the pickling property of the entire surface is improved and the descaling property becomes uniform, but at the same time the oxide scale increases and the weight loss due to annealing increases. This is not preferable in terms of manufacturing cost. Moreover, since the martensitic transformation of the whole base material progresses after annealing due to the rise of the Ms point and the whole base material becomes hard, it becomes unsuitable for use as an original austenitic stainless steel.
Since this tendency becomes remarkable when the Ms point (° C.) exceeds −100 ° C., the upper limit value of the Ms point is set to −100 ° C. Therefore, the austenitic stainless steel sheet of the present invention is premised on satisfying the requirements regarding the Ms point.
In the present specification, the Ms point is defined by the above formula (1).

次に、通常のラインでオーステナイト系ステンレス鋼板を製造する際の、脱スケール不良の発生抑制策について説明する。
本発明が対象とするオーステナイト系ステンレス鋼としては、好ましくは、C+N:0.06質量%以下,Si:1.0質量%以下,Mn:5.0質量%以下,Cr:15〜20質量%,Ni:5〜15質量%,Cu:0.5〜5.0質量%を含み、残部がFe及び不可避的不純物からなる成分組成を有するものが良い。さらに必要に応じて、Ti:0.5質量%以下,Nb:0.5質量%以下,Zr:0.5質量%以下,V:0.5質量%以下,Mo:3.0質量%以下,B:0.03質量%以下,REM(希土類金属):0.02質量%以下,Ca:0.03質量%以下の1種又は2種以上を含ませても良い。
上記範囲内で、前掲のMs点が式(1)を満たすように調整する。
Next, a description will be given of a measure for suppressing the occurrence of a descaling failure when an austenitic stainless steel sheet is produced on a normal line.
The austenitic stainless steel targeted by the present invention is preferably C + N: 0.06 mass% or less, Si: 1.0 mass% or less, Mn: 5.0 mass% or less, Cr: 15-20 mass% , Ni: 5 to 15% by mass, Cu: 0.5 to 5.0% by mass, with the balance being composed of Fe and inevitable impurities. Further, if necessary, Ti: 0.5 mass% or less, Nb: 0.5 mass% or less, Zr: 0.5 mass% or less, V: 0.5 mass% or less, Mo: 3.0 mass% or less , B: 0.03 mass% or less, REM (rare earth metal): 0.02 mass% or less, Ca: 0.03 mass% or less may be included.
Within the said range, it adjusts so that Ms point mentioned above may satisfy | fill Formula (1).

ここで、本発明が対象とするオーステナイト系ステンレス鋼板に含まれる合金成分,含有量等を説明する。
C+N:0.06質量%以下
C,Nは多量に含まれると固溶強化により0.2%耐力や硬さが上昇するとともに、加工誘起マルテンサイト相が硬質化するため、加工硬化が大きくなり、延いては、曲げ稜線の鮮明性が低下する。このため(C+N)含有量は0.06質量%以下に制限する。
Here, the alloy component, content, etc. contained in the austenitic stainless steel sheet which this invention makes object are demonstrated.
C + N: 0.06% by mass or less If a large amount of C and N is contained, 0.2% yield strength and hardness increase due to solid solution strengthening, and the work-induced martensite phase hardens, so work hardening increases. As a result, the sharpness of the bending ridge line is lowered. For this reason, the (C + N) content is limited to 0.06% by mass or less.

Si:1.0質量%以下
Siは溶製時、脱酸剤として有効な元素であるが、1.0質量%を超えると硬質化するとともに、加工硬化が大きくなり曲げ稜線の鮮明性が低下する。そこで、Si含有量は1.0質量%以下に制限する。
Si: 1.0% by mass or less Si is an element that is effective as a deoxidizing agent during melting, but if it exceeds 1.0% by mass, it hardens and work hardening increases and the sharpness of the bending ridge line decreases. To do. Therefore, the Si content is limited to 1.0% by mass or less.

Mn:5.0質量%以下
Mnは含有量の増加とともに0.2%耐力が低下して軟質化するとともに、加工硬化が低下する。しかし、多量に含有すると製鋼時の耐火物損傷を招くばかりでなく、介在物が増加して加工割れを起こしやすくする。したがって、Mn含有量は、軟質化の効果が飽和する5.0質量%を上限とする。
Mn: 5.0% by mass or less Mn is softened by decreasing 0.2% proof stress as the content increases, and work hardening decreases. However, if it is contained in a large amount, it not only causes damage to the refractory during steelmaking, but also increases the number of inclusions and easily causes work cracks. Therefore, the upper limit of the Mn content is 5.0 mass% at which the softening effect is saturated.

Cr:15〜20質量%
Crは耐食性の観点からは多い方が好ましく、本発明では15質量%以上とする。しかし、過剰に含有させると硬さが増し、硬質化が著しくなる。そこで、本発明では20質量%を上限とする。
Cr: 15-20% by mass
A larger amount of Cr is preferable from the viewpoint of corrosion resistance. In the present invention, the Cr content is 15% by mass or more. However, when it contains excessively, hardness will increase and hardening will become remarkable. Therefore, in the present invention, the upper limit is 20% by mass.

Ni:5〜15質量%
Niはオーステナイト系ステンレス鋼には必要不可欠な元素であり、少なくとも5%は必要である。その含有量の増加とともに軟質化し、加工硬化も低減される。しかし、Niは高価な元素であり、経済的な点を考慮してNi含有量の上限は15質量%とする。12.0質量%以下の含有で軟質化の目的は達成できるので、12質量%以下とすることが好ましい。
Ni: 5 to 15% by mass
Ni is an indispensable element for austenitic stainless steel, and at least 5% is necessary. As the content increases, the material softens and work hardening is reduced. However, Ni is an expensive element, and considering the economical point, the upper limit of the Ni content is 15% by mass. Since the purpose of softening can be achieved with a content of 12.0% by mass or less, it is preferably 12% by mass or less.

Cu:0.5〜5.0質量%
Cuは加工硬化の抑制に寄与し、軟質化に有用な元素である。その効果は0.5質量%以上の含有によって発現する。多いほど軟質化に有効であり、2.0質量%を超えるほどの含有量とするとNi含有量の自由度が拡大し、Ni含有量をその下限値である5質量%近くまで低減することが容易になって、コスト低減に寄与できる。このため、Cu含有量の下限は0.5質量%であるが、より軟質化したステンレス鋼を得るためには2.0質量%以上含有させることが好ましい。しかし、過剰な含有は熱間加工性に悪影響を及ぼすので上限は5.0質量%とする。
Cu: 0.5-5.0 mass%
Cu contributes to suppression of work hardening and is an element useful for softening. The effect is manifested by inclusion of 0.5% by mass or more. The more it is, the more effective it is for softening. If the content exceeds 2.0% by mass, the degree of freedom of Ni content increases, and the Ni content can be reduced to its lower limit of nearly 5% by mass. It becomes easy and can contribute to cost reduction. For this reason, although the minimum of Cu content is 0.5 mass%, in order to obtain the softened stainless steel, it is preferable to make it contain 2.0 mass% or more. However, excessive content adversely affects hot workability, so the upper limit is made 5.0 mass%.

P:0.045質量%以下
不純物として含まれるPの量が多くなると、硬質化されるばかりでなく耐食性を阻害することになる。その有害性を顕在化させないためにも不純物としてのPは0.045質量%以下に制限することが好ましい。
P: 0.045% by mass or less When the amount of P contained as an impurity is increased, not only is it hardened but also corrosion resistance is impaired. In order not to reveal the harmfulness, P as an impurity is preferably limited to 0.045% by mass or less.

S:0.010質量%以下
S含有量の増加とともに曲げ加工性が低下し、極端な場合には曲げ部に割れが生じる。また、Sは鋼板製造の際に熱間加工性を低下するので、極力少なくすることが好ましい。0.010質量%以下に規制すれば、上記弊害の顕在化は抑制されるが、より一層の熱間加工性向上を目的とする場合には、0.003質量%以下とすることが好ましい。
S: 0.010 mass% or less Bending workability decreases with an increase in the S content, and in extreme cases, cracks occur in the bent portion. Moreover, since S reduces the hot workability during the production of the steel sheet, it is preferable to reduce it as much as possible. If the content is restricted to 0.010% by mass or less, the manifestation of the above-described adverse effects is suppressed, but when the purpose is to further improve the hot workability, the content is preferably 0.003% by mass or less.

Ti,Nb,Zr,V:それぞれ0.5質量%以下
必要に応じて添加される合金元素であり、固溶強化元素を固定するために鋼材の硬さを低減し、結果的に加工性向上作用を呈する。これらの元素の効果は0.5質量%で飽和し、これ以上添加しても、増量に見合う効果は期待できない。したがって、添加する場合はそれぞれ0.5質量%を上限とする。
Ti, Nb, Zr, V: 0.5% by mass or less, each of which is an alloy element added as necessary. In order to fix the solid solution strengthening element, the hardness of the steel material is reduced, resulting in improved workability. Has an effect. The effect of these elements is saturated at 0.5% by mass, and even if added more than this, an effect commensurate with the increase cannot be expected. Accordingly, when added, the upper limit is 0.5% by mass.

Mo:3.0質量%以下
本発明においては必須添加元素ではないが、Moは耐食性向上に有用な元素である。ただし、3.0質量%を超えると硬さの上昇を招くので、Moを添加する場合は3.0質量%を上限とする。
Mo: 3.0% by mass or less Mo is not an essential additive element in the present invention, but Mo is an element useful for improving corrosion resistance. However, if it exceeds 3.0% by mass, the hardness is increased, so when Mo is added, the upper limit is 3.0% by mass.

B:0.03質量%以下
必要に応じて添加される合金元素であり、熱間加工性を向上させ、熱延時の割れ防止に有効な元素である。しかし、多量に含有させるとかえって熱間加工性が劣化するため、添加する場合は0.03質量%を上限とする。
B: 0.03 mass% or less An alloying element added as necessary, improving hot workability and effective in preventing cracking during hot rolling. However, since hot workability deteriorates when contained in a large amount, when added, the upper limit is 0.03 mass%.

REM(希土類金属):0.02質量%以下
必要に応じて添加される合金元素であり、Bと同様に熱間加工性の改善に有効である。しかし、過度に添加すると効果が飽和することに加え、硬質化を招き成形加工性が低下する。このため、添加する場合は0.02質量%を上限とする。
REM (rare earth metal): 0.02 mass% or less An alloying element added as necessary, and is effective for improving hot workability in the same manner as B. However, if it is added excessively, the effect is saturated, and it is hardened and the moldability is lowered. For this reason, when adding, upper limit is 0.02 mass%.

Ca:0.03質量%以下
必要に応じて添加される合金元素であり、製鋼時の脱酸及び熱間加工性の改善に有効である。しかし、0.03質量%を超えてCaを添加しても、増量に見合った効果が得られない。このため、添加する場合は0.03質量%を上限とする。
Ca: 0.03 mass% or less An alloying element added as necessary, and is effective in improving deoxidation and hot workability during steelmaking. However, even if Ca is added in excess of 0.03 mass%, an effect commensurate with the increase cannot be obtained. For this reason, when adding, upper limit is 0.03 mass%.

次に、本発明のオーステナイト系ステンレス鋼板の製造方法について説明する。
本発明のオーステナイト系ステンレス鋼板を製造する際には、Ms点を満たすように成分組成を厳格に調整すれば、溶製工程,鋳造工程,熱延工程及び冷延工程において特に細かい条件を付す必要はない。オーステナイト系ステンレス鋼板を製造する際に一般的に採用されている条件下で各処理を行なえば十分である。
ただし、仕上げ冷延の後、仕上げ焼鈍を行なう際に圧延油が付着したまま焼鈍しようとすると、前記したように、部分的にマルテンサイト相が出現して酸洗時に脱スケール不良を起こすことがある。
Next, the manufacturing method of the austenitic stainless steel plate of this invention is demonstrated.
When manufacturing the austenitic stainless steel sheet of the present invention, if the composition of the components is strictly adjusted so as to satisfy the Ms point, it is necessary to apply particularly fine conditions in the melting process, casting process, hot rolling process and cold rolling process. There is no. It is sufficient to perform each treatment under the conditions generally employed when producing an austenitic stainless steel sheet.
However, after the finish cold rolling, if the annealing is performed with the rolling oil adhered when performing the finish annealing, as described above, a martensite phase may partially appear and cause descaling failure during pickling. is there.

そこで、冷延鋼板を仕上げ焼鈍する際の、マルテンサイト相の出現に及ぼす焼鈍条件の影響を、焼鈍温度を種々変更した焼鈍試験を行なうことで確認した。
その結果、詳細は実施例で示すが、1100℃以下の温度条件下で仕上げ焼鈍を施せば、圧延油の付着に関係なく、マルテンサイト相の出現を抑制できることがわかった。
なお、仕上げ冷延鋼板の仕上げ焼鈍は、通常、所定の温度に調整された焼鈍炉に大気雰囲気下で冷延鋼板を通板することにより行なわれる。
このため、本発明のオーステナイト系ステンレス鋼板は、通常の手段で作りこまれた仕上げ冷延板を、大気雰囲気中、1100℃以下の温度条件下で連続仕上げ焼鈍を施すことにより製造されることになる。
すなわち、Ms点が調整されたオーステナイト系ステンレス鋼板の仕上げ冷延板に、大気雰囲気中、1100℃以下の温度条件下で均熱0秒の仕上げ焼鈍を施せば、酸洗時に脱スケール不良を発生することのないオーステナイト系ステンレス鋼板が得られる。
Therefore, the influence of the annealing conditions on the appearance of the martensite phase during finish annealing of the cold-rolled steel sheet was confirmed by performing annealing tests with various annealing temperatures.
As a result, although details are shown in the Examples, it has been found that if finish annealing is performed at a temperature of 1100 ° C. or lower, the appearance of the martensite phase can be suppressed regardless of the adhesion of the rolling oil.
The finish annealing of the finished cold-rolled steel sheet is usually performed by passing the cold-rolled steel sheet through an annealing furnace adjusted to a predetermined temperature in an air atmosphere.
For this reason, the austenitic stainless steel sheet of the present invention is manufactured by subjecting a finish cold-rolled sheet made by ordinary means to continuous finish annealing in an air atmosphere at a temperature of 1100 ° C. or lower. Become.
That is, if the finish cold-rolled sheet of an austenitic stainless steel sheet with an adjusted Ms point is subjected to a finish annealing of 0 seconds under a temperature condition of 1100 ° C. or less in an air atmosphere, descaling failure occurs during pickling. An austenitic stainless steel sheet that does not occur is obtained.

実施例1:
供試材として、表1に示した組成の鋼A〜Hを用いた。各種ステンレス鋼を溶製し、連鋳後、仕上げ温度1000℃,巻取り温度900℃で板厚3.0mmに熱間圧延した。その後、熱延鋼帯を1100℃×均熱1分で焼鈍し、酸洗した後、冷間圧延,焼鈍,酸洗を繰り返し、板厚0.7mm,板幅1200mmの冷延コイルを作製した。
この冷延コイルを、1100℃の温度に調整した連続焼鈍炉で、大気雰囲気中、均熱0秒の連続焼鈍を行なった。
この際、焼鈍前に圧延油が付着していなかった部分をマーキングし、圧延油無し部とした。また圧延油が付着していた部分を圧延油付着部とした。以後、「圧延油無し部」,「圧延油付着部」と記す。
引き続き、液温60℃の弗硝酸(3%HF+10%HNO3+87%H2O)液中で浸漬時間20秒の連続酸洗を実施した。
Example 1:
As test materials, steels A to H having the compositions shown in Table 1 were used. Various stainless steels were melted and, after continuous casting, hot rolled to a plate thickness of 3.0 mm at a finishing temperature of 1000 ° C. and a winding temperature of 900 ° C. Thereafter, the hot-rolled steel strip was annealed at 1100 ° C. × soaking for 1 minute and pickled, and then cold rolling, annealing, and pickling were repeated to produce a cold-rolled coil having a thickness of 0.7 mm and a width of 1200 mm. .
This cold-rolled coil was subjected to continuous annealing with a soaking time of 0 seconds in an air atmosphere in a continuous annealing furnace adjusted to a temperature of 1100 ° C.
At this time, a portion where the rolling oil was not attached before the annealing was marked to make a portion without the rolling oil. Moreover, the part which the rolling oil adhered was made into the rolling oil adhesion part. Hereinafter, they are referred to as “rolling oil-free portion” and “rolling oil adhering portion”.
Subsequently, continuous pickling was performed in a hydrofluoric acid (3% HF + 10% HNO 3 + 87% H 2 O) solution at a liquid temperature of 60 ° C. for an immersion time of 20 seconds.

Figure 2008127650
Figure 2008127650

酸洗後の各鋼板に対して、X線回折強度測定と表面硬さ測定を行なった。
X線回折強度は、X線回折装置(リガク社製RINT1500)により、Co管球,管電圧40KV,管電流120mA,走査軸2θ,θ固定角度5.000°,走査速度1.000°/min,サンプル幅0.010°の条件を採用し、X線回折薄膜法でオーステナイト相(111)面,マルテンサイト相(110)面の回折強度を測定し、積分強度比Im(110)/Iγ(111)を算出した。
また、鋼板の表面硬さを、JIS Z2244に規定されている方法で、試験荷重49.03Nにてビッカース硬さ試験機により測定した。さらに、脱スケール性を、上述した酸洗処理後、水洗、乾燥を施し、直ちに鋼板表面における、焼鈍前鋼板の冷延油付着部と非付着部とでの両者の表面状態の差異を目視観察し、差異が認められる場合を脱スケール性が不良×、認められない場合を脱スケール性良好○と判定した。
その結果を表2に示す。
X-ray diffraction intensity measurement and surface hardness measurement were performed on each steel plate after pickling.
X-ray diffraction intensity was measured using an X-ray diffractometer (RINT1500, manufactured by Rigaku Corporation). Co tube, tube voltage 40 KV, tube current 120 mA, scan axis 2θ, θ fixed angle 5.000 °, scan speed 1.000 ° / min, sample width 0.010 The diffraction intensity of the austenite phase (111) plane and martensite phase (110) plane was measured by the X-ray diffraction thin film method using the condition of ° C, and the integral intensity ratio Im (110) / Iγ (111) was calculated.
Further, the surface hardness of the steel sheet was measured with a Vickers hardness tester at a test load of 49.03 N by the method specified in JIS Z2244. Furthermore, after the pickling treatment described above, the descaling property is washed with water, dried, and immediately observed on the surface of the steel sheet between the cold rolled oil adhering part and the non-adhering part of the steel sheet before annealing. When the difference was recognized, the descalability was judged as poor, and when the difference was not recognized, the descalability was judged as good.
The results are shown in Table 2.

Figure 2008127650
Figure 2008127650

1100℃で焼鈍した本発明鋼D〜Hでは、圧延油が付着していた部分でも良好な脱スケール性を示し、表面硬さにおいても、121〜181HVの軟質な硬さを呈していた。これに対して比較鋼B,Cでは一部スケールが残存していた。また比較鋼Aは良好な脱スケール性を示していたが、これはMs点が非常に高いために鋼板全体がマルテンサイト変態していたために耐食性が低下した結果、外観的に脱スケール性に優れるように見えたに過ぎない。鋼板全体がマルテンサイト変態していたことは、その表面硬さが310HVであったことからもわかる。ちなみに比較鋼B,CもMs点が規定値を超えるため部分的にマルテンサイト変態が進行し、それに伴って280HV,242HVと硬くなっている。   Invented steels D to H annealed at 1100 ° C. exhibited good descaling properties even at the part where the rolling oil was adhered, and also exhibited a soft hardness of 121 to 181 HV in surface hardness. On the other hand, some scales remained in the comparative steels B and C. Comparative steel A also showed good descaling properties, but because this had a very high Ms point, the entire steel sheet had undergone martensitic transformation, resulting in a decrease in corrosion resistance. It just seemed like this. It can be seen from the fact that the surface hardness was 310 HV that the entire steel sheet had undergone martensitic transformation. By the way, the comparative steels B and C also have a martensitic transformation partly because the Ms point exceeds the specified value, and are accordingly hardened to 280HV and 242HV.

ところで、表2で示した圧延油付着部分と圧延油無し部とにおけるIm(110)/γ(111)とMs点との関係をグラフ上でみると、図1に示す通りとなる。
Ms点が−100℃を超える比較鋼A〜Cでは、圧延油付着部に表層マルテンサイト相が増加する傾向を呈している。これに対して、Ms点が−100℃以下である本発明鋼C〜Hでは、圧延無し部に対する圧延油付着部の表層マルテンサイト相の増加は少なく、Ms点が−102℃である鋼Dにおいて、オーステナイト相に対するマルテンサイト相のX線回折強度比は1.5以下となっている。
この結果から、X線回折強度比Im(110)/γ(111)が1.5以下であれば、満足できる脱スケール性を呈するといえる。
By the way, when the relationship between Im (110) / γ (111) and Ms point in the rolling oil adhering portion and the rolling oil-free portion shown in Table 2 is seen on the graph, it is as shown in FIG.
In comparative steels A to C having Ms points exceeding −100 ° C., the surface martensite phase tends to increase in the rolling oil adhering portion. On the other hand, in the steels C to H of the present invention having an Ms point of −100 ° C. or lower, the increase in the surface martensite phase of the rolling oil adhesion portion relative to the non-rolled portion is small, and the steel D having an Ms point of −102 ° C. , The X-ray diffraction intensity ratio of the martensite phase to the austenite phase is 1.5 or less.
From this result, it can be said that when the X-ray diffraction intensity ratio Im (110) / γ (111) is 1.5 or less, satisfactory descaling property is exhibited.

実施例2:
表1中のMs点が−122℃の鋼Eを供試材とし、実施例1と同様に、温度を1000〜1150℃の範囲で種々変えた焼鈍を施した。
そして、実施例1と同様のX線回折強度測定と脱スケール性の評価を行なった。
その結果を表3及び図2に示す。
Example 2:
Steel E having a Ms point in Table 1 of −122 ° C. was used as a test material, and in the same manner as in Example 1, annealing was performed with various changes in the temperature range of 1000 to 1150 ° C.
Then, the same X-ray diffraction intensity measurement and descalability as in Example 1 were performed.
The results are shown in Table 3 and FIG.

Figure 2008127650
Figure 2008127650

表3及び図2に示した結果からもわかるように、Ms点が−122℃の鋼Eであっても、焼鈍温度が1100〜1150℃にもなると圧延油付着部の表層マルテンサイト相が増加する傾向を示す。
焼鈍温度が1100℃以下であれば、圧延油付着部においてもオーステナイト相に対するマルテンサイト相のX線回折強度比Im(110)/Iγ(111)は1.5以下になって所望の脱スケール性を呈している。
As can be seen from the results shown in Table 3 and FIG. 2, even when the steel E has an Ms point of −122 ° C., when the annealing temperature reaches 1100 to 1150 ° C., the surface martensite phase of the rolling oil adhesion portion increases. Show a tendency to
If the annealing temperature is 1100 ° C. or less, the X-ray diffraction intensity ratio Im (110) / Iγ (111) of the martensite phase to the austenite phase is 1.5 or less even at the rolling oil adhering portion, and the desired descaling property is achieved. Presents.

実施例1,2の結果から、Ms点を調整したオーステナイト系ステンレス鋼の仕上げ冷延板に所定条件の仕上げ焼鈍を施せば、冷延時の圧延油が残存していても、鋼板表面に形成される表層マルテンサイト相が増加することなく、その後の酸洗においても脱スケール不良を発生することのないオーステナイト系ステンレス鋼板が得られる。
したがって、本発明を適用すれば、実ライン製造工程においても酸洗後に規則性のないスケール残存が回避され、脱スケール性に優れたオーステナイト系ステンレス鋼板を低コストで安定して製造することが可能になる。
From the results of Examples 1 and 2, if the finish cold-rolled sheet of austenitic stainless steel with an adjusted Ms point is subjected to finish annealing under predetermined conditions, even if the rolling oil at the time of cold rolling remains, it is formed on the surface of the steel sheet. An austenitic stainless steel sheet that does not cause descaling failure even in subsequent pickling is obtained without increasing the surface martensite phase.
Therefore, if the present invention is applied, scale residue with no regularity can be avoided after pickling even in the actual line manufacturing process, and austenitic stainless steel sheets with excellent descaling properties can be stably manufactured at low cost. become.

圧延油付着部分と圧延油無し部とにおけるMs点とIm(110)/Iγ(111)との関係を示すグラフThe graph which shows the relationship between Ms point and Im (110) / Iγ (111) in a rolling oil adhesion part and a rolling oil no part 圧延油付着部分と圧延油無し部とにおける焼鈍温度とIm(110)/Iγ(111)との関係を示すグラフThe graph which shows the relationship between the annealing temperature in a rolling oil adhesion part and a rolling oil no part, and Im (110) / Iγ (111)

Claims (4)

下記式(1)で定義されるマルテンサイト変態点Ms(℃)が−100℃以下になるように調整された成分組成を有する鋼板であって、焼鈍酸洗後の鋼板表面における母相金属の結晶構造が、オーステナイト相のX線回折強度をIγ(111),マルテンサイト相のX線回折強度をIm(110)としたとき、Im(110)/Iγ(111)で表されるX線回折強度比が1.5以下であることを特徴とする脱スケール性に優れたオーステナイト系ステンレス鋼板。
Ms={3000[0.068-(C+N)]+50(0.47-Si)+60(1.33-Mn)
+110(8.9-Ni)+75(14.6-Cr)-32}×5/9 ・・・(1)
A steel plate having a component composition adjusted so that the martensite transformation point Ms (° C.) defined by the following formula (1) is −100 ° C. or less, and the matrix metal on the steel plate surface after annealing pickling X-ray diffraction expressed as Im (110) / Iγ (111) when the crystal structure is Iγ (111) for the X-ray diffraction intensity of the austenite phase and Im (110) for the X-ray diffraction intensity of the martensite phase An austenitic stainless steel sheet excellent in descaling characteristics, characterized in that the strength ratio is 1.5 or less.
Ms = {3000 [0.068- (C + N)] + 50 (0.47-Si) +60 (1.33-Mn)
+110 (8.9-Ni) +75 (14.6-Cr) -32} × 5/9 (1)
成分組成が、C+N:0.06質量%以下,Si:1.0質量%以下,Mn:5.0質量%以下,Cr:15〜20質量%,Ni:5〜15質量%,Cu:0.5〜5.0質量%を含み、残部がFe及び不可避的不純物からなるものである請求項1に記載の脱スケール性に優れたオーステナイト系ステンレス鋼板。   Component composition is C + N: 0.06 mass% or less, Si: 1.0 mass% or less, Mn: 5.0 mass% or less, Cr: 15-20 mass%, Ni: 5-15 mass%, Cu: 0 The austenitic stainless steel sheet excellent in descaling properties according to claim 1, comprising 0.5 to 5.0% by mass, the balance being made of Fe and inevitable impurities. 成分組成が、さらに、Ti:0.5質量%以下,Nb:0.5質量%以下,Zr:0.5質量%以下,V:0.5質量%以下,Mo:3.0質量%以下,B:0.03質量%以下,REM(希土類金属):0.02質量%以下,Ca:0.03質量%以下の1種又は2種以上を含むものである請求項2に記載の脱スケール性に優れたオーステナイト系ステンレス鋼板。   Component composition is further Ti: 0.5 mass% or less, Nb: 0.5 mass% or less, Zr: 0.5 mass% or less, V: 0.5 mass% or less, Mo: 3.0 mass% or less B: 0.03 mass% or less, REM (rare earth metal): 0.02 mass% or less, Ca: 0.03 mass% or less. Austenitic stainless steel plate with excellent resistance. 請求項1〜3のいずれかに記載の成分組成を有するステンレス鋼の冷延鋼板に、大気雰囲気中、1100℃以下の温度条件下で均熱0秒の仕上げ焼鈍を施すことを特徴とする脱スケール性に優れたオーステナイト系ステンレス鋼板の製造方法。   A stainless steel cold-rolled steel sheet having the component composition according to any one of claims 1 to 3 is subjected to a finish annealing at a temperature of 1100 ° C. or less in a soaking atmosphere for 0 seconds. A method for producing an austenitic stainless steel sheet having excellent scale properties.
JP2006315806A 2006-11-22 2006-11-22 Austenitic stainless steel sheet having excellent descaling property, and its production method Withdrawn JP2008127650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315806A JP2008127650A (en) 2006-11-22 2006-11-22 Austenitic stainless steel sheet having excellent descaling property, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315806A JP2008127650A (en) 2006-11-22 2006-11-22 Austenitic stainless steel sheet having excellent descaling property, and its production method

Publications (1)

Publication Number Publication Date
JP2008127650A true JP2008127650A (en) 2008-06-05

Family

ID=39553788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315806A Withdrawn JP2008127650A (en) 2006-11-22 2006-11-22 Austenitic stainless steel sheet having excellent descaling property, and its production method

Country Status (1)

Country Link
JP (1) JP2008127650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071534A1 (en) * 2018-10-04 2020-04-09 日本製鉄株式会社 Austenitic stainless steel sheet and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071534A1 (en) * 2018-10-04 2020-04-09 日本製鉄株式会社 Austenitic stainless steel sheet and method for producing same
CN112789362A (en) * 2018-10-04 2021-05-11 日本制铁株式会社 Austenitic stainless steel sheet and method for producing same
JPWO2020071534A1 (en) * 2018-10-04 2021-09-02 日本製鉄株式会社 Austenitic stainless steel sheet and its manufacturing method
JP7165202B2 (en) 2018-10-04 2022-11-02 日本製鉄株式会社 Austenitic stainless steel sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5960809B2 (en) Stainless steel sheet for precision machining and manufacturing method thereof
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
EP2548988A1 (en) Ferrite-based stainless steel for use in components of automobile exhaust system
EP2540854A1 (en) Super-high strength cold-rolled steel sheet having excellent bending properties
JP2007162078A (en) High strength steel sheet and production method
WO2019221286A1 (en) Steel plate and enameled product
JP2015113504A (en) High strength hot-dip galvanized steel sheet excellent in processability and method for manufacturing the same
JP4252893B2 (en) Duplex stainless steel strip for steel belt
JP2011006792A (en) Fabrication of bake hardened steel strip, and steel strip and component obtainable therefrom
WO2020039697A1 (en) High-strength steel sheet and production method therefor
JP5777283B2 (en) High strength stainless steel material and manufacturing method thereof
WO2020039696A1 (en) High strength steel sheet and production method therefor
JP2009068057A (en) Steel sheet for nitrocarburizing treatment and manufacturing method therefor
JP5151354B2 (en) High tensile cold-rolled steel sheet and method for producing high-tensile cold-rolled steel sheet
JP5124865B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
KR101735003B1 (en) Lean duplex stainless steel with improved corrosion resistance and method of manufacturing the same
JP4606113B2 (en) Austenitic stainless steel with high proportional limit stress and manufacturing method
JP2001140041A (en) Chromium stainless steel with double layer structure for spring and producing method therefor
JP2008127650A (en) Austenitic stainless steel sheet having excellent descaling property, and its production method
JP2018145484A (en) High strength diplophase stainless steel material excellent in corrosion resistance and flexure processability
JP2007146220A (en) Method for producing thick steel plate excellent in toughness
JPH07216510A (en) High strength lead frame material and its production
JP4493447B2 (en) Manufacturing method of automobile frame material made of high-strength ERW steel pipe with excellent tapping properties
JP7462439B2 (en) Austenitic stainless steel and calculation method for upper limit of N

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202