JP2008127632A - Low core loss grain-oriented magnetic steel sheet - Google Patents

Low core loss grain-oriented magnetic steel sheet Download PDF

Info

Publication number
JP2008127632A
JP2008127632A JP2006314323A JP2006314323A JP2008127632A JP 2008127632 A JP2008127632 A JP 2008127632A JP 2006314323 A JP2006314323 A JP 2006314323A JP 2006314323 A JP2006314323 A JP 2006314323A JP 2008127632 A JP2008127632 A JP 2008127632A
Authority
JP
Japan
Prior art keywords
steel sheet
stress
iron loss
tensile stress
rolling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006314323A
Other languages
Japanese (ja)
Other versions
JP5241095B2 (en
Inventor
Keiji Iwata
圭司 岩田
Hideyuki Hamamura
秀行 濱村
Masao Kimura
正雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39553771&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2008127632(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006314323A priority Critical patent/JP5241095B2/en
Publication of JP2008127632A publication Critical patent/JP2008127632A/en
Application granted granted Critical
Publication of JP5241095B2 publication Critical patent/JP5241095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low core loss grain-oriented magnetic steel sheet excellent in lower core loss in comparison with the conventional magnetic steel sheet by controlling the stress-condition in the inner part of the grain-oriented magnetic steel sheet into an adequate condition. <P>SOLUTION: The low core loss grain-oriented magnetic steel sheet is characterized in that in one or the plurality of positions in the inner part of the sheet thickness of the steel sheet, the stress in the sheet thickness direction is a tensile stress and the maximum value thereof is 40 MPa or more and not more than the yield stress value of the steel sheet blank. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、トランスの鉄心等に利用され、一方向性電磁鋼板の性能、特に低鉄損性に優れた一方向性電磁鋼板に関するものである。   The present invention relates to a unidirectional electrical steel sheet that is used for a transformer core and the like, and is excellent in performance of the unidirectional electrical steel sheet, particularly in low iron loss.

近年、鋼板の圧延方向に磁化容易軸をもつ一方向性電磁鋼板は、主に変圧器やその他の電力変換器の鉄心に用いられ、エネルギー変換時に生じる損失を小さくするために、鉄心の材料には、低い鉄損特性が強く要求されている。   In recent years, unidirectional electrical steel sheets with an easy axis in the rolling direction of steel sheets are mainly used in the iron cores of transformers and other power converters. Are strongly required to have low iron loss characteristics.

電磁鋼板の鉄損には、大別して、ヒステリシス損と渦電流損からなっている。ヒステリシス損は、結晶方位、欠陥、粒界等により影響を受け、渦電流損は、材料の板厚、電気抵抗および180°磁区幅等により決まる。   The iron loss of electrical steel sheets is roughly divided into hysteresis loss and eddy current loss. Hysteresis loss is affected by crystal orientation, defects, grain boundaries, and the like, and eddy current loss is determined by the plate thickness, electrical resistance, 180 ° magnetic domain width, and the like of the material.

従って、これまでは、ヒステリシス損低減の観点から結晶粒組織を(110)[001]方位に高度に揃え、結晶の欠陥を少なくするなどの方法が用いられ、渦電流損低減の観点から板厚を薄くし、Si含有量の増加などにより材料の抵抗値を高めたり、張力被膜の鋼板表面への塗布などにより180°磁区幅を細分化するなどの方法が用いられ、電磁鋼板の低損失化が試みられてきた。   Therefore, until now, from the viewpoint of reducing hysteresis loss, a method of highly aligning the grain structure in the (110) [001] orientation and reducing crystal defects has been used. From the viewpoint of reducing eddy current loss, Reduce the loss of electrical steel sheets by reducing the thickness of the magnetic steel sheet, increasing the resistance value of the material by increasing the Si content, etc., or subdividing the 180 ° magnetic domain width by applying a tensile coating to the steel sheet surface, etc. Has been tried.

また、近年、鉄損を飛躍的に減少させるために、鉄損の大部分を占める渦電流損低減の観点から、上記の鋼板表面への張力付与以外の手段を用いて、人為的に鋼板に磁区細分化の芽を発生させ、180°磁区を細分化させる方法が提案されている。   In recent years, in order to dramatically reduce iron loss, from the viewpoint of reducing eddy current loss, which accounts for the majority of iron loss, using means other than the application of tension to the steel sheet surface, artificially applied to the steel sheet. A method has been proposed in which buds of magnetic domain subdivision are generated and a 180 ° magnetic domain is subdivided.

例えば、特許文献1には、鉄損の改善を目的とし、一方向性鋼板表面の圧延方向と直角方向に対して、レーザーを、所定のビーム幅、エネルギー密度、照射間隔で照射することにより、鋼板表面に局部的な高転位密度領域、すなわち微小塑性歪を加えることで、磁区細分化を行い、鉄損を低減する一方向性電磁鋼板の製造方法が開示されている。   For example, in Patent Document 1, for the purpose of improving iron loss, by irradiating a laser at a predetermined beam width, energy density, and irradiation interval with respect to a direction perpendicular to the rolling direction of the unidirectional steel sheet surface, A method for producing a unidirectional electrical steel sheet is disclosed in which a local high dislocation density region, that is, a micro plastic strain is applied to the steel sheet surface, thereby performing magnetic domain subdivision and reducing iron loss.

上記特許文献1の方法は、一方向性電磁鋼鈑表面に局部的な高転位密度領域(塑性歪領域)を生成させ、磁区の芽を生成して磁区の細分化を行なうことを技術思想とする技術であるが、これらの塑性歪を付与する方法で得られる鋼板の鉄損(W17/50)は0.80〜0.78 W/Kg 程度が限界であった。なお、前記W17/50は磁束密度1.7T、周波数50Hzにおける鉄損を示す。   The method of the above-mentioned patent document 1 has a technical idea that a local high dislocation density region (plastic strain region) is generated on the surface of a unidirectional electromagnetic steel sheet, and magnetic domain buds are generated to subdivide the magnetic domain. However, the iron loss (W17 / 50) of the steel sheet obtained by applying these plastic strains was limited to about 0.80 to 0.78 W / Kg. W17 / 50 indicates the iron loss at a magnetic flux density of 1.7 T and a frequency of 50 Hz.

上記鉄損が不十分となる原因は、上記技術が、所定のビーム幅、エネルギー密度、照射間隔等のレーザの照射条件に基づき鉄損特性を規定したものであり、磁区幅低減(磁区細分化)による渦電流損低減の物理現象を、歪量あるいは歪から変換される応力値などの基本物理量に基づいて特性について検討がなされていないことと考えられる。後述するように本発明者らの検討によれば、塑性歪あるいは塑性域の応力が付与されると、磁区が細分化による渦電流損の低減はあるものの、逆にヒステリシス損が増加する結果、鉄損が低減しないことを確認している。   The reason why the iron loss becomes insufficient is that the above technique defines the iron loss characteristics based on laser irradiation conditions such as a predetermined beam width, energy density, and irradiation interval, and reduces the magnetic domain width (magnetic domain fragmentation). It is considered that the physical phenomenon of eddy current loss reduction due to) has not been studied on the basis of the basic physical quantity such as the strain amount or the stress value converted from the strain. As will be described later, according to the study by the present inventors, when plastic strain or stress in the plastic region is applied, although there is a reduction in eddy current loss due to subdivision of the magnetic domain, conversely, the hysteresis loss increases, It has been confirmed that iron loss is not reduced.

一方、特許文献2は、鋼板表面の圧延方向に対する弾性引張り応力値と塑性歪の範囲を規定することにより、鉄損を低減する一方向性電磁鋼板が提案されている。一般に応力は、圧延方向、板厚方向、板幅方向を基準にした値であり、素材の表面、内部、各点において値を持つものである。しかしながら、特許文献2の技術は、鋼板表面の歪や引張り応力だけに着目し、鉄損特性を制御することを技術思想としている。これは、鋼板表面に張力皮膜を塗布することにより、表面内に引張り応力を発生させ、180度磁区内に発生したランセット磁区を消滅し(図1参照)、磁区の再構成を促し、180度磁区幅を細分化(渦損低減)する現象を利用した技術思想と同じである。また、特許文献2の技術は、本来あるべき板厚内部の歪あるいは応力状態の鉄損特性への効果については、全く言及しておらず、そのため、特許文献2の技術だけでは、更なる飛躍的な鉄損の低減は、十分ではなかった。   On the other hand, Patent Document 2 proposes a unidirectional electrical steel sheet that reduces iron loss by defining an elastic tensile stress value and a plastic strain range with respect to the rolling direction of the steel sheet surface. In general, the stress is a value based on the rolling direction, the plate thickness direction, and the plate width direction, and has a value at the surface, inside, and each point of the material. However, the technology of Patent Document 2 focuses on only the strain and tensile stress on the surface of the steel sheet and controls the iron loss characteristics as a technical idea. This is because a tensile film is applied to the surface of the steel sheet to generate a tensile stress in the surface, the lancet magnetic domain generated in the 180-degree magnetic domain disappears (see FIG. 1), and the reconfiguration of the magnetic domain is promoted. This is the same as the technical idea using the phenomenon of subdividing the magnetic domain width (reducing eddy loss). In addition, the technique of Patent Document 2 does not mention any effect on the iron loss characteristics of the internal strain or stress state within the plate thickness, and therefore, the technique of Patent Document 2 alone makes a further leap forward. The reduction in iron loss was not sufficient.

特開昭55−18566号公報JP-A-55-18586 特開2005−248291号公報JP 2005-248291 A 特開平7−320921号公報Japanese Patent Laid-Open No. 7-320921

本発明は、一方向性電磁鋼板の鉄損をヒステリシス損と渦電流損に分けて、特に磁区細分化による渦電流損の観点から、歪および応力分布を表面内だけでなく、板厚内部も含めて定量的に適正な条件下で制御することにより、従来に比べて優れた一方向性電磁鋼板を提供するものである。   The present invention divides the iron loss of a unidirectional electrical steel sheet into hysteresis loss and eddy current loss. In particular, from the viewpoint of eddy current loss due to magnetic domain subdivision, strain and stress distributions are not only within the surface but also within the plate thickness. In addition, the present invention provides a unidirectional electrical steel sheet that is superior to conventional ones by controlling under quantitatively appropriate conditions.

本発明は、上記課題を解決するものであり、その発明の要旨は次の通りである。
(1)鋼板の板厚内部における1箇所又は複数箇所に、板厚方向に対する応力が引っ張り応力であり、かつその最大値が40MPa以上で鋼板素材の降伏応力値以下であることを特徴とする請求項1に記載の低鉄損一方向性電磁鋼板。
(2)前記引張り応力が存在する領域の圧延方向の分布幅が0.8mm以下であり、かつ板厚方向の分布幅が板厚の80%以下の大きさを持つことを特徴とする(1)に記載の低鉄損一方向性電磁鋼板。
(3)前記引張り応力が存在する領域が、鋼板の圧延方向に7.0mm以下の間隔で有することを特徴とする(1)または(2)に記載の低鉄損一方向性電磁鋼板。
(4)前記引張り応力が存在する領域が、鋼板の圧延方向に対して60〜120°の方向に連続的または所定間隔で形成されていることを特徴とする(1)〜(3)のいずれかに記載の低鉄損一方向性電磁鋼板。
The present invention solves the above problems, and the gist of the invention is as follows.
(1) The stress in the plate thickness direction is tensile stress at one or a plurality of locations inside the plate thickness of the steel plate, and the maximum value is 40 MPa or more and below the yield stress value of the steel plate material. Item 1. The low iron loss unidirectional electrical steel sheet according to Item 1.
(2) The distribution width in the rolling direction in the region where the tensile stress exists is 0.8 mm or less, and the distribution width in the plate thickness direction is 80% or less of the plate thickness (1). ) Low iron loss unidirectional electrical steel sheet.
(3) The low iron loss unidirectional electrical steel sheet according to (1) or (2), wherein the region where the tensile stress exists has an interval of 7.0 mm or less in the rolling direction of the steel sheet.
(4) The region where the tensile stress exists is formed continuously or at a predetermined interval in a direction of 60 to 120 ° with respect to the rolling direction of the steel sheet. A low iron loss unidirectional electrical steel sheet according to claim 1.

本発明によれば、鉄損特性が非常に優れた一方向性電磁鋼板を提供でき、トランスのエネルギー損失が非常に小さくなる等、工業的効果および地球環境問題改善への効果が極めて大きい。   According to the present invention, it is possible to provide a unidirectional electrical steel sheet with very excellent iron loss characteristics, and the effects on industrial effects and improvement of global environmental problems are extremely large, such as the energy loss of the transformer being extremely small.

以下に、本発明について詳細に説明する。   The present invention is described in detail below.

本発明者らは、一方向性電磁鋼鈑の板厚内部に局所的な歪を形成し、歪から変換される応力値と鉄損の相関を調べる試験を実施し、板厚内部の応力状態が鉄損改善に及ぼす効果を詳細に検討した。その結果、180度磁区細分化の促進、すなわち渦損の低減に飛躍的に効果を持つ歪あるいは応力状態は、特許文献2で提案された鋼板表面の応力や歪でなく、鋼板の板厚内部の応力状態、特に板厚方向に対する引張り応力こそが、還流磁区を発生させる芽であり、180度磁区細分化を促進させることを見出した。また、その引張り応力の値が塑性域の応力、すなわち降伏応力以上になると、板厚内部の塑性域が磁壁のピンニングサイトとして働き、鉄損の一部であるヒステリシス損が増加することも見出した。   The present inventors formed a local strain inside the thickness of the unidirectional electromagnetic steel sheet, and conducted a test to investigate the correlation between the stress value converted from the strain and the iron loss, and the stress state inside the thickness The effect of iron on iron loss improvement was examined in detail. As a result, the strain or stress state that has a dramatic effect on the promotion of 180 degree magnetic domain subdivision, that is, the reduction of vortex loss, is not the stress or strain on the steel sheet surface proposed in Patent Document 2, but the thickness of the steel sheet. It was found that the stress state, particularly the tensile stress in the thickness direction, is the bud that generates the reflux magnetic domain, and promotes 180-degree magnetic domain subdivision. It was also found that when the value of the tensile stress exceeds the stress in the plastic region, that is, the yield stress, the plastic region inside the plate thickness acts as a pinning site for the domain wall, and the hysteresis loss, which is part of the iron loss, increases. .

本発明は、一方向性電磁鋼板の板厚内部に形成される歪あるいは歪から変換される応力が、板厚方向に対して引張り応力が導入されるよう制御して、還流磁区を効果的に発生させ、180度磁区の細分化を促し、渦電流損を低減させ、さらに、板厚内部の応力値を降伏応力以下に定量的に制限することにより、ヒステリシス損の増加を抑え、従来の一方向性電磁鋼板に比べて大幅に鉄損を低減させることを技術思想とするものである。   The present invention effectively controls the reflux magnetic domain by controlling the strain formed in the thickness of the unidirectional electrical steel sheet or the stress converted from the strain so that a tensile stress is introduced in the thickness direction. To reduce the eddy current loss and to quantitatively limit the stress value inside the plate thickness to below the yield stress, thereby suppressing the increase in hysteresis loss. The technical idea is to significantly reduce iron loss compared to grain-oriented electrical steel sheets.

先ず、本発明の技術思想について説明する。   First, the technical idea of the present invention will be described.

図2の概念図に示すように、一般に、一方向性電磁鋼板の磁化容易軸は圧延方向に向いているため、磁区は圧延方向に平行および反平行な磁化で構成され180°磁区幅を形成する。特許文献2で提案されているように、この状態において、鋼板の表面に圧延方向に引張り応力を付与するだけでは、磁区を構成する磁化は、圧延方向に平行および反平行の方向に向く方がエネルギー的により安定となるので、磁区構造は図2の状態のままで、180度磁区幅の低減はあまり期待できない。   As shown in the conceptual diagram of FIG. 2, since the easy magnetization axis of the unidirectional electrical steel sheet is generally oriented in the rolling direction, the magnetic domain is composed of magnetization parallel and antiparallel to the rolling direction and forms a 180 ° magnetic domain width. To do. As proposed in Patent Document 2, in this state, simply by applying a tensile stress to the surface of the steel sheet in the rolling direction, the magnetization constituting the magnetic domain should be oriented in a direction parallel and antiparallel to the rolling direction. Since it becomes more stable in terms of energy, the magnetic domain structure remains in the state shown in FIG.

圧延方向に引張り応力が加わった場合、磁化が圧延方向に向く方がエネルギー的に安定であるのは次の理由からである。一般に、磁化と応力が存在すると、電磁鋼板の磁化と応力の相互作用エネルギー=−C×M×σ×cos2θ (ここで、C:正の定数、M:磁化の大きさ、σ:応力の大きさ、θ:磁化と応力のなす角度)を生じる。特許文献2が提案するように、圧延方向に引張り応力が存在しても、磁化の向きは、応力とのなす角θ=0または180度の場合が最もエネルギーが低くなる。つまり、応力と磁化は、平行あるいは反平行の場合がエネルギー的に安定になる。従って、図2の状態に、鋼板表面の圧延方向に引張り応力が導入されても、現状の磁区構造に大きな変化を与えることはできず、180度磁区幅の低減もあまり期待できない。 When tensile stress is applied in the rolling direction, the magnetization is more stable in the rolling direction for the following reason. In general, when magnetization and stress are present, the interaction energy of magnetization and stress of the electrical steel sheet = −C × M × σ × cos 2 θ (where C: positive constant, M: magnitude of magnetization, σ: stress) , Θ: angle between magnetization and stress). As proposed in Patent Document 2, even when a tensile stress is present in the rolling direction, the magnetization has the lowest energy when the angle formed by the stress is θ = 0 or 180 degrees. That is, the stress and magnetization are stable in terms of energy when they are parallel or antiparallel. Therefore, even if a tensile stress is introduced in the rolling direction of the steel sheet surface in the state of FIG. 2, a large change cannot be given to the current magnetic domain structure, and a reduction in the 180-degree magnetic domain width cannot be expected so much.

一方、本発明では、図3の概念図に示すように、板厚の内部の板厚方向に対して引張り応力あるいはそれに相当する歪を局所的に導入している。その結果、上述の電磁鋼板の磁化と応力の相互作用エネルギーは、応力σは張力なので正となり、磁化は、応力の向き、すなわち板厚方向に向く方がエネルギー的に安定となる。その結果、得られる磁区構造は、図4に示すように、圧延方向に対して垂直向きの磁化分布、すなわち、還流磁区が形成され、その結果鋼板全体の磁区の再構成が促進され、180度磁区幅の細分化、すなわち渦電流損が低減する。本発明は、上記の磁区解析結果を踏まえ、鋼板の板厚内部の板厚方向に対して引張り応力あるいはそれに相当する歪を局所的に導入することにより、一方向性電磁鋼板の鉄損を飛躍的に低減するものであり、従来とは異なる技術思想に基づいている。   On the other hand, in the present invention, as shown in the conceptual diagram of FIG. 3, a tensile stress or a strain corresponding thereto is locally introduced into the thickness direction inside the thickness. As a result, the interaction energy between magnetization and stress of the above-described electrical steel sheet is positive because the stress σ is tension, and the magnetization is more stable in the direction of the stress, that is, in the thickness direction. As a result, as shown in FIG. 4, the magnetic domain structure obtained has a magnetization distribution perpendicular to the rolling direction, that is, a reflux magnetic domain is formed, and as a result, reconfiguration of the magnetic domain of the entire steel sheet is promoted, and 180 degrees Magnetic domain width subdivision, that is, eddy current loss is reduced. Based on the magnetic domain analysis results described above, the present invention significantly increases the iron loss of a unidirectional electrical steel sheet by locally introducing a tensile stress or a strain corresponding to the thickness direction inside the sheet thickness of the steel sheet. It is based on a technical idea different from the conventional one.

すなわち、特許文献2で提案されている鋼板表面内の応力量を規定し鉄損を改善させる技術思想は、鋼板表面への張力皮膜の塗布により、鉄損特性を良くする技術思想に基づくものである。一方、本発明は、鋼板の各点に発生してい応力、すなわち、圧延方向、板厚方向、板幅方向それぞれに対して定義される応力の中で、板厚内部の板厚方向に対する応力こそが、磁区細分化発生の芽であることに着目し、その応力の最大値を制御することにより、磁区細分化をより効率良く促進させ、一方向性電磁鋼板の鉄損を低減する技術思想に基づくものである。本発明は、鉄損を低減させる技術思想が従来とは全く異なるものである。   In other words, the technical idea proposed in Patent Document 2 for regulating the amount of stress in the steel sheet surface and improving iron loss is based on the technical idea of improving iron loss characteristics by applying a tension film to the steel sheet surface. is there. On the other hand, in the present invention, the stress generated at each point of the steel sheet, that is, the stress in the plate thickness direction inside the plate thickness among the stresses defined for the rolling direction, the plate thickness direction, and the plate width direction. However, by controlling the maximum value of the stress by focusing on the buds of the occurrence of magnetic domain fragmentation, the technical idea of promoting the magnetic domain fragmentation more efficiently and reducing the iron loss of the unidirectional electrical steel sheet Is based. In the present invention, the technical idea of reducing iron loss is completely different from the conventional one.

本発明の低鉄損一方向性電磁鋼板は、第1に、板厚方向に対する応力が引張り応力であり、かつその最大値が40MPa以上で素材の降伏応力値以下であるであることを特徴とする。   The low iron loss unidirectional electrical steel sheet of the present invention is characterized in that, firstly, the stress in the thickness direction is a tensile stress, and the maximum value is 40 MPa or more and less than the yield stress value of the material. To do.

本発明において、一方向性電磁鋼板の板厚内部に板厚方向に対する引張応力を導入する方法は特に限定するものではないが、例えば、レーザー照射法、ショットピーニング、超音波振動法、鋼板表面をナイフ等の金属やセラミック片等で罫書く機械加工法、鋼板表面へのイオン注入法、ドーピング法、放電加工法、メッキと熱処理を組み合わせた方法等があるがいずれの手法でも良い。   In the present invention, the method for introducing tensile stress in the thickness direction into the thickness of the unidirectional electrical steel sheet is not particularly limited, but for example, laser irradiation method, shot peening, ultrasonic vibration method, steel sheet surface There are a machining method for marking with a metal such as a knife or a ceramic piece, an ion implantation method for a steel sheet surface, a doping method, an electric discharge machining method, a method in which plating and heat treatment are combined, and any method may be used.

図5は、一方向性電磁鋼板の表面にレーザーを照射し、鋼板の板厚内部に応力を発生させた試料を作成し、発生した応力の中で、板厚方向に対する引張り応力の最大値と鉄損(W17/50)との相関を示したグラフである。ここで、W17/50は単板磁気測定装置を用いて周波数50Hzで励磁した時の磁束密度(B)1.7Tの条件で測定した鉄損値を示す。また、一方向性電磁鋼板の板厚は約0.23mmであり、レーザーは照射ビーム径150μmのパルスYAGレーザーを使用した。照射条件は、鋼板を水中に置き、図6のように、鋼板の圧延方向に5.0mmの照射間隔(ピッチ)で、鋼板の圧延方向に対して直角方向に照射パルスが重なるように照射した。   FIG. 5 shows a sample in which the surface of a unidirectional electrical steel sheet is irradiated with a laser to generate stress in the thickness of the steel sheet. Among the generated stress, the maximum value of tensile stress in the thickness direction It is the graph which showed the correlation with an iron loss (W17 / 50). Here, W17 / 50 represents an iron loss value measured under the condition of magnetic flux density (B) 1.7T when excited at a frequency of 50 Hz using a single plate magnetometer. The thickness of the unidirectional electrical steel sheet was about 0.23 mm, and a pulse YAG laser with an irradiation beam diameter of 150 μm was used as the laser. Irradiation conditions were as follows: a steel plate was placed in water, and irradiation pulses (pitch) of 5.0 mm in the rolling direction of the steel plate were irradiated so that the irradiation pulse overlapped in a direction perpendicular to the rolling direction of the steel plate, as shown in FIG. .

板厚内部の応力値は、X線回折法により、3方向の結晶格子の歪みを測定し、弾性率等の材料物性値を用いて、圧延方向、板厚方向、板幅方向、それぞれに対する応力値を求めた。3方向の結晶歪は、図6に示すように、X線を鋼板に照射することにより求めることができる。また、歪から応力値への変換は、例えば、弾性率やポアソン比を利用した歪みスキャンニング法(文献:日本機械学会論文集(A編)71巻711号2005年、pp.1530)を利用することにより可能である。   The stress value inside the plate thickness is the stress in each of the rolling direction, plate thickness direction, plate width direction by measuring the distortion of the crystal lattice in three directions by X-ray diffraction method and using the material property values such as elastic modulus. The value was determined. The crystal strain in the three directions can be obtained by irradiating the steel sheet with X-rays as shown in FIG. For the conversion from strain to stress value, for example, the strain scanning method using the elastic modulus and Poisson's ratio is used (reference: The Japan Society of Mechanical Engineers, Vol. 71, No. 711, 2005, pp. 1530). Is possible.

鋼板内部に形成される板厚方向に対する引張り応力の最大値は、例えば、集光レンズの焦点距離などの光学条件を変えずにレーザー出力を調整することにより制御でき、レーザー出力の増加により板厚方向に対する引っ張り応力の最大値は増大する。   The maximum value of tensile stress in the thickness direction formed inside the steel plate can be controlled by adjusting the laser output without changing the optical conditions such as the focal length of the condenser lens. The maximum value of tensile stress with respect to the direction increases.

本試験では、レーザー吸収層として水を選択したが、プラスチックテープ、ブラックペイント、金属箔などのいずれを利用しても良い。なお、本試験で使用した水中でのレーザー照射法は、レーザーピーニングと呼ばれ、橋梁の橋桁、自動車の足回り部品などの溶接構造物などの疲労特性を改善する方法として知られている。しかし、この場合のレーザー照射条件は、鋼板表面の全面に照射するのが特徴である。一方、本試験では、図7のように、鋼板の圧延方向に5.0mmの照射間隔(ピッチ)で、鋼板の圧延方向に対して直角方向に照射パルスが重なるように照射しており、疲労特性改善で使用されている照射条件とは異なる。   In this test, water was selected as the laser absorption layer, but any of plastic tape, black paint, metal foil, etc. may be used. The underwater laser irradiation method used in this test is called laser peening and is known as a method for improving fatigue characteristics of welded structures such as bridge girders and undercarriage parts of automobiles. However, the laser irradiation condition in this case is characterized in that the entire surface of the steel sheet is irradiated. On the other hand, in this test, as shown in FIG. 7, irradiation is performed so that irradiation pulses overlap in a direction perpendicular to the rolling direction of the steel sheet at an irradiation interval (pitch) of 5.0 mm in the rolling direction of the steel sheet. It is different from the irradiation conditions used for improving the characteristics.

図5から明らかなように、鉄損値(W17/50)が優れた一方向性電磁鋼鈑を得るためには、鋼板内部における板厚方向の引張り応力の最大値は40MPa以上必要であることが分かる。ここで、圧延方向の応力や板幅方向の応力は、数Mpa程度であり、板厚方向の引張り応力に比べて小さい値であり、鉄損特性との相関は得られなかった。   As is clear from FIG. 5, in order to obtain a unidirectional electromagnetic steel sheet having an excellent iron loss value (W17 / 50), the maximum value of the tensile stress in the thickness direction in the steel sheet must be 40 MPa or more. I understand. Here, the stress in the rolling direction and the stress in the sheet width direction are about several Mpa, which is smaller than the tensile stress in the sheet thickness direction, and no correlation with the iron loss characteristics was obtained.

図5の△値は、従来のレーザー照射条件、すなわち、パルスレーザーを空気中で照射し、鋼板の圧延方向に5.0mm、鋼板の圧延方向に対して直角方向に、パルス間隔が0.3mmピッチの条件で照射した鋼板の鉄損値を示す。このとき、鋼板内部の板厚方向の引張り応力値は、6Mpa程度であり、本発明に従い導入された鋼板内部における板厚方向の引張り応力値に比べて小さく、鉄損との相関はなかった。また、圧延方向の応力は、圧縮となり、その大きさは35MPa、板幅方向の応力は数MPaであり、本発明と従来の鋼板内部の応力状態は異なるものである。   The Δ values in FIG. 5 indicate the conventional laser irradiation conditions, that is, pulse laser is irradiated in the air, the pulse interval is 0.3 mm in the rolling direction of the steel plate, 5.0 mm in the direction perpendicular to the rolling direction of the steel plate. The iron loss value of the steel plate irradiated on pitch conditions is shown. At this time, the tensile stress value in the plate thickness direction inside the steel plate was about 6 Mpa, which was smaller than the tensile stress value in the plate thickness direction inside the steel plate introduced according to the present invention, and there was no correlation with iron loss. Further, the stress in the rolling direction is compression, the magnitude is 35 MPa, the stress in the sheet width direction is several MPa, and the stress state in the present invention and the conventional steel sheet is different.

図5に示されているように、引張り応力の最大値が、300MPaを超える付近から鉄損が増加している。これは、引張り応力の最大値が大きくなると、塑性域が増加するため、磁壁がその塑性域にピンニングされ、ヒステリシス損が増加するものと考えられる。そのため、鋼板内部における板厚方向の引張り応力を導入することにより、磁区細分化、すなわち渦電流損は低減するものの、ヒステリシス損が増加するため、渦電流損とヒステリシス損を加えた全損失が低減しない。一般に、応力状態が弾性域から塑性域に大きく変わる点は素材の降伏応力により規定できる。素材の降伏応力は組成に依存するが、例えば、Fe-3%Siの組成を持つ一方向性電磁鋼板の降伏応力は、約350MPaであるので、図5における鉄損が増加した応力値とほぼ傾向が一致する。   As shown in FIG. 5, the iron loss increases from the vicinity where the maximum value of the tensile stress exceeds 300 MPa. This is presumably because when the maximum value of the tensile stress increases, the plastic region increases, so that the domain wall is pinned to the plastic region and the hysteresis loss increases. Therefore, by introducing tensile stress in the thickness direction inside the steel sheet, magnetic domain subdivision, that is, eddy current loss is reduced, but hysteresis loss increases, so total loss including eddy current loss and hysteresis loss is reduced. do not do. In general, the point at which the stress state changes greatly from the elastic region to the plastic region can be defined by the yield stress of the material. Although the yield stress of the material depends on the composition, for example, the yield stress of the unidirectional electrical steel sheet having the composition of Fe-3% Si is about 350 MPa, so that the stress value with the increased iron loss in FIG. Trends agree.

以上の理由から、本発明では、板厚内部における板厚方向の引張り応力の最大値は40MPa以上、素材の降伏応力値以下であることが必要である。   For the above reasons, in the present invention, the maximum value of the tensile stress in the thickness direction inside the thickness is required to be 40 MPa or more and not more than the yield stress value of the material.

本発明は、上記の実施態様により、低鉄損特性に優れた一方向性電磁鋼板を達成することができるが、これらの発明実施態様に加えてさらに以下の条件を規定することにより、安定して低鉄損特性を改善できる。   The present invention can achieve a unidirectional electrical steel sheet excellent in low iron loss characteristics according to the above-described embodiment. However, in addition to these invention embodiments, the present invention can be stabilized by further defining the following conditions. Can improve low iron loss characteristics.

図8は、上述で規定した応力、すなわち板厚内部における板厚方向の引張り応力の最大値が40MPa以上、素材の降伏応力値以下である応力の分布に関して、板厚方向に伸びる分布幅(板厚に対する比率)(図7参照)および圧延方向に伸びる分布幅(図7参照)と鉄損(W17/50)との関係を示したグラフである。図8から、より鉄損特性に優れた一方向性電磁鋼板を達成するには、圧延方向の分布幅が0.8mm以下であり、かつ、板厚方向の分布幅(板厚に対する比率)が80%以下であることが必要である。このように、応力分布の幅に上限が必要なのは、本発明が規定している応力値の応力分布が大きくなると、歪、欠陥等がより多くなり、これらが磁壁移動の妨げになり、ヒステリシス損が増加してしまうからである。   FIG. 8 shows the distribution width extending in the plate thickness direction (plate width) with respect to the stress distribution defined above, that is, the stress distribution in which the maximum value of the tensile stress in the plate thickness direction is 40 MPa or more and less than the yield stress value of the material. It is a graph showing the relationship between the ratio to the thickness (see FIG. 7) and the distribution width (see FIG. 7) extending in the rolling direction and the iron loss (W17 / 50). From FIG. 8, in order to achieve a unidirectional electrical steel sheet with more excellent iron loss characteristics, the distribution width in the rolling direction is 0.8 mm or less, and the distribution width in the sheet thickness direction (ratio to the sheet thickness) is It is necessary to be 80% or less. As described above, the upper limit of the width of the stress distribution is required because the stress distribution of the stress value defined in the present invention increases, so that the number of strains, defects, etc. increases, which hinders the domain wall movement, and the hysteresis loss. This is because of the increase.

以上のことから、本発明では、上記実施形態で規定する要件に加えて、さらに、引っ張り応力が存在する領域が、圧延方向の分布幅が0.8mm以下であり、かつ、板厚方向の分布幅(板厚に対する比率)が80%以下であることが好ましい。   From the above, in the present invention, in addition to the requirements stipulated in the above embodiment, the region where tensile stress is present has a distribution width in the rolling direction of 0.8 mm or less, and a distribution in the plate thickness direction. The width (ratio to the plate thickness) is preferably 80% or less.

上記発明の実施態様において、板厚内部の板厚方向に対する引張り応力が存在する領域の圧延方向の間隔は、それぞれの隣り合う領域間の相互作用により磁区細分化に影響を及ぼすため、その間隔が大き過ぎる場合は、鉄損を低減する効果が減少する。すなわち、引張り応力が存在する領域のそれぞれ隣り合う間隔が大きくなると、図9の概念図に示す180度磁壁の表面積が大きくなり、磁壁エネルギーの増加を招く。一般に、磁壁エネルギーは、180度磁区幅の大きさに反比例するので、磁壁の表面積の増加は180度磁区の細分化を鈍らせる。   In the embodiment of the present invention, the interval in the rolling direction of the region where the tensile stress in the plate thickness direction inside the plate thickness exists affects the magnetic domain fragmentation due to the interaction between the adjacent regions. If it is too large, the effect of reducing iron loss is reduced. That is, when the space between adjacent regions in which tensile stress exists increases, the surface area of the 180-degree domain wall shown in the conceptual diagram of FIG. 9 increases, leading to an increase in domain wall energy. Generally, since the domain wall energy is inversely proportional to the size of the 180-degree domain width, an increase in the surface area of the domain wall blunts the subdivision of the 180-degree domain.

図10は、板厚内部の板厚方向に対する引張り応力の最大値が40Mpaであり、その応力が存在する圧延方向の、それぞれの隣り合う領域間の間隔を変化させたときの、鉄損(W17/50)の変化を示したグラフである。図10が示すように、7.0mm以下の方が渦電流損が低減し、鉄損特性が安定して低減している。   FIG. 10 shows that the maximum value of the tensile stress in the plate thickness direction within the plate thickness is 40 Mpa, and the iron loss (W17) when the interval between adjacent regions in the rolling direction in which the stress exists is changed. / 50) is a graph showing a change. As shown in FIG. 10, the eddy current loss is reduced at 7.0 mm or less, and the iron loss characteristic is stably reduced.

以上のように、本発明の板厚内部の板厚方向に対する引張り応力の最大値が最適な条件下であっても、前記引張り応力が存在する領域の圧延方向の間隔が7.0mmを超える場合には、鋼板の磁区細分化作用は少なくなり、従来に比べて十分に鉄損値を低減することはできないことを確認した。このような理由から、本発明では、上記実施態様で規定する要件に加えて、さらに、引張り応力が存在する間隔を7.0mm以下とすることが好ましい。   As described above, even when the maximum value of the tensile stress in the thickness direction inside the thickness of the present invention is under the optimum condition, the interval in the rolling direction in the region where the tensile stress exists exceeds 7.0 mm. Therefore, it was confirmed that the magnetic domain fragmentation effect of the steel sheet is reduced and the iron loss value cannot be sufficiently reduced as compared with the conventional case. For these reasons, in the present invention, in addition to the requirements defined in the above embodiment, it is preferable that the interval where the tensile stress exists is 7.0 mm or less.

また、上記本発明の実施態様において、板厚内部における板厚方向の応力状態が存在する帯状範囲は、図7に示すように鋼板の圧延方向に対してほぼ直角方向が好ましい。しかし、実製造時には、コイルに巻き取りながら、鋼板内部の応力を形成することになるので、その応力が付与された帯状範囲の方向は、鋼板圧延方向に対してずれが生じてしまうことを確認した。   In the embodiment of the present invention, the belt-like range where the stress state in the thickness direction exists in the thickness is preferably substantially perpendicular to the rolling direction of the steel plate as shown in FIG. However, at the time of actual production, since the stress inside the steel sheet is formed while being wound around the coil, it is confirmed that the direction of the belt-shaped range to which the stress is applied is displaced with respect to the rolling direction of the steel sheet. did.

前述した通り、磁区制御を施す前の一方向性電磁鋼板は、理想的には、鉄損を低減するために、圧延方向に磁化容易軸をもった(110)[001]方位の結晶粒で構成された集合組織鋼板であることが望ましい。しかし、実際に工業的に製造し得る一方向性電磁鋼板における磁化容易軸は圧延方向と完全に平行ではなく、磁化容易軸は圧延方向に対してずれ角度が存在する。前述した通り、一方向性電磁鋼板の磁区細分化により鉄損を低減するためには、鋼板の磁化方向、つまり、磁化容易軸に対して直角方向に帯状範囲を形成するのが有効であると考えられる。   As described above, the unidirectional electrical steel sheet before the magnetic domain control is ideally made of (110) [001] oriented grains having an easy axis of magnetization in the rolling direction in order to reduce iron loss. It is desirable that the textured steel plate is configured. However, the easy magnetization axis in a unidirectional electrical steel sheet that can be actually produced industrially is not completely parallel to the rolling direction, and the easy magnetization axis has a deviation angle with respect to the rolling direction. As described above, in order to reduce the iron loss by subdividing the magnetic domain of the unidirectional electrical steel sheet, it is effective to form a belt-shaped range in the magnetization direction of the steel sheet, that is, in the direction perpendicular to the easy axis of magnetization. Conceivable.

図11は、上述した水中でのレーザー照射法を用いて、本発明が規定した応力値や分布を形成し、この応力状態が存在する領域間の間隔を5mmにした場合の一方向性電磁鋼板において、板厚内部における板厚方向の引張り応力が存在する帯状範囲の、圧延方向に対する角度を変化させたときの鉄損との相関を示したグラフである。図12に、上記帯状範囲と圧延方向に対する角度を説明するための概念図を示す。図11は、圧延方向に対して60〜120°の方向に帯状範囲を形成する場合に、磁区細分化の効果による鉄損の低減が充分に得られることを示している。上記の角度範囲は、理想とする磁化容易軸方向、つまり、鋼板の圧延方向に対して直角な方向からずれ角度で30°以内の範囲に相当する。この角度範囲から外れると、鋼板の磁区細分化作用は少なくなるため、従来に比べてより安定して充分に鉄損値を向上するためには、板厚内部の板厚方向に対する引っ張り応力が存在する帯状範囲の方向を圧延方向に対して60〜120°の方向とするのが好ましい。   FIG. 11 shows a unidirectional electrical steel sheet in which the stress value and distribution defined by the present invention are formed using the above-described laser irradiation method in water, and the interval between the regions where the stress state exists is 5 mm. Is a graph showing the correlation with the iron loss when the angle with respect to the rolling direction of the strip-shaped range where the tensile stress in the thickness direction in the thickness of the sheet exists. In FIG. 12, the conceptual diagram for demonstrating the angle with respect to the said strip | belt-shaped range and a rolling direction is shown. FIG. 11 shows that when the band-shaped range is formed in the direction of 60 to 120 ° with respect to the rolling direction, the iron loss can be sufficiently reduced by the effect of magnetic domain subdivision. The above-mentioned angle range corresponds to an ideal easy axis direction, that is, a range within 30 ° in deviation angle from a direction perpendicular to the rolling direction of the steel sheet. Beyond this angle range, the magnetic domain subdivision action of the steel sheet is reduced, so there is a tensile stress in the sheet thickness direction inside the sheet thickness in order to improve the iron loss value more stably than before. It is preferable that the direction of the belt-shaped range to be made is a direction of 60 to 120 ° with respect to the rolling direction.

したがって、本発明において、板厚内部の板厚方向に対する引っ張り応力が存在する帯状範囲は、鋼板圧延方向に対して60〜120°の角度をなす方向に存在することが好ましい。   Therefore, in this invention, it is preferable that the strip | belt-shaped range where the tensile stress with respect to the plate | board thickness direction inside a plate | board thickness exists exists in the direction which makes an angle of 60-120 degrees with respect to a steel plate rolling direction.

なお、上記で示した応力領域間の間隔や導入領域の角度に関しては、特許文献3に、鋼板表面に加工した溝について、その間隔や角度に関しての記述がある。しかしながら、本発明は、板厚内部に歪あるいは応力を付加しその板厚方向の引張り応力を制御することにより低鉄損を達成するものであり、特許文献3のように鋼板表面に溝を加工する技術とは全く異なる。   In addition, regarding the space | interval between stress area | regions shown above and the angle of the introduction | transduction area | region, patent document 3 has description regarding the space | interval and angle about the groove | channel processed into the steel plate surface. However, the present invention achieves low iron loss by applying strain or stress to the inside of the plate thickness and controlling the tensile stress in the plate thickness direction. It is completely different from the technology to do.

板厚が0.23mmの一方向性電磁鋼板を用いて、この鋼板を水中に置き、ビーム径150μmのパルスYAGレーザーを照射パルスが重なるように照射した。このレーザーの出力を調整することにより、表1に示すような、板厚内部における板厚方向の引張り応力の最大値、本応力分布の板厚内部における圧延方向の分布幅および板厚方向の分布幅(対板厚率)、本応力が存在する領域の圧延方向の間隔、本領域の圧延方向に対する角度をそれぞれ変えた一方向性電磁鋼板を製造後、各鋼板の鉄損W17/50の測定を行った。なお、表1の板厚内部における板厚方向の引張り応力は、上述したように、X線回折法により、3方向の結晶格子の歪を測定し、弾性率等の物性値を用いて応用値に変換し求めた。また、鉄損値は、周波数50Hz、磁束密度1.7T時の鉄損W17/50を、単板磁気装置を用いて測定した。

Figure 2008127632
Using a unidirectional electrical steel sheet having a thickness of 0.23 mm, this steel sheet was placed in water and irradiated with a pulse YAG laser having a beam diameter of 150 μm so that the irradiation pulses overlapped. By adjusting the output of this laser, as shown in Table 1, the maximum value of the tensile stress in the plate thickness direction within the plate thickness, the distribution width in the rolling direction and the distribution in the plate thickness direction within the plate thickness of this stress distribution. Measurement of iron loss W17 / 50 of each steel sheet after manufacturing unidirectional electrical steel sheets with different width (against plate thickness ratio), spacing in the rolling direction in the region where the stress is present, and angle in the rolling direction in the region. Went. The tensile stress in the thickness direction within the thickness in Table 1 is an applied value obtained by measuring the strain of the crystal lattice in the three directions by the X-ray diffraction method and using the physical properties such as the elastic modulus as described above. Converted to Moreover, the iron loss value measured the iron loss W17 / 50 at the time of frequency 50Hz and magnetic flux density 1.7T using the single plate magnetic apparatus.
Figure 2008127632

表1から明らかなように、試験No.1〜7(本発明例)に示す一方向性電磁鋼板は何れも、板厚内部における板厚方向に対する引張り応力の最大値が本発明で規定する範囲内にあるため、これらの条件が外れる試験No.8〜10(比較例)に比べて低鉄損特性に優れた一方向性電磁鋼鈑が得られた。   As is apparent from Table 1, test no. In any of the unidirectional electrical steel sheets shown in 1 to 7 (examples of the present invention), the maximum value of the tensile stress in the sheet thickness direction within the sheet thickness is within the range defined by the present invention. No. A unidirectional electromagnetic steel plate excellent in low iron loss characteristics as compared with 8 to 10 (comparative example) was obtained.

また、上記試験No.1〜7(本発明例)のうちで、板厚内部における板厚方向に対する引張り応力の最大値に加えて、さらに、この応力分布の板厚内部における圧延方向の分布幅および板厚方向の分布幅(対板厚率)、鋼板の圧延方向に対する応力存在領域(板厚内部における板厚方向に対する引張り応力が存在する領域)の圧延方向間隔、同領域の圧延方向に対する角度が好ましい範囲内にある試験No.1〜3(発明例)は、試験No.4〜7(発明例)に比べてより鉄損を低減することができた。   In addition, the above test No. Among 1 to 7 (examples of the present invention), in addition to the maximum value of the tensile stress in the plate thickness direction inside the plate thickness, the distribution width in the rolling direction and the distribution in the plate thickness direction inside the plate thickness of this stress distribution The width (against the plate thickness ratio), the stress-existing region with respect to the rolling direction of the steel plate (the region in which the tensile stress with respect to the plate thickness direction within the plate thickness exists), the angle in the rolling direction, and the angle of the same region with respect to the rolling direction are within the preferred ranges. Test No. 1-3 (invention example) was able to reduce iron loss more compared with test No. 4-7 (invention example).

鋼板に生じるランセット磁区を示す概念図。The conceptual diagram which shows the lancet magnetic domain which arises in a steel plate. 鋼板に生じる磁区構造を示す概念図。The conceptual diagram which shows the magnetic domain structure which arises in a steel plate. 本発明の鋼板に導入した応力状態を示す概念図。The conceptual diagram which shows the stress state introduce | transduced into the steel plate of this invention. 本発明に従い導入した応力により変化した磁化の分布を示す概念図。The conceptual diagram which shows distribution of the magnetization changed with the stress introduce | transduced according to this invention. 鋼板内部に形成した板厚方向に対する引っ張り応力の最大値と鉄損の関係を示すグラフ。The graph which shows the relationship between the maximum value of the tensile stress with respect to the plate | board thickness direction formed in the steel plate inside, and an iron loss. X線回折法を用いて、板厚内部の3方向の応力値を測る場合の鋼板試料の配置を示す概念図。The conceptual diagram which shows arrangement | positioning of the steel plate sample in the case of measuring the stress value of 3 directions inside a plate | board thickness using a X-ray diffraction method. 本発明の鋼板内部に形成した板厚方向に対する引っ張り応力が形成された一実施形態を示す概念図。The conceptual diagram which shows one Embodiment in which the tensile stress with respect to the plate | board thickness direction formed in the steel plate of this invention was formed. 板厚内部における板厚方向の引張り応力の圧延方向の分布幅および板厚方向の分布幅(対板厚率)と鉄損との関係を示すグラフ。The graph which shows the relationship between the distribution width | variety of the rolling direction of the tensile stress of the plate | board thickness direction in a plate | board thickness direction, the distribution width | variety (plate thickness ratio) in a plate | board thickness direction, and an iron loss. 引っ張り応力が存在する領域のそれぞれ隣り合う間隔に存在する180度磁壁の表面積を示す概念図。The conceptual diagram which shows the surface area of the 180 degree | times domain wall which exists in the space | interval which each adjoins the area | region where tensile stress exists. 引っ張り応力が存在する領域のそれぞれ隣り合う間隔と鉄損の関係を示すグラフ。The graph which shows the relationship between each adjacent space | interval of the area | region where tensile stress exists, and an iron loss. 板厚方向の引っ張り応力が存在する帯状範囲の圧延方向に対する角度と鉄損との関係を示すグラフ。The graph which shows the relationship between the angle with respect to the rolling direction of a strip | belt-shaped range where the tensile stress of a plate | board thickness direction exists, and an iron loss. 引っ張り応力が存在する領域と圧延方向とのなす角度を説明するための概念図。The conceptual diagram for demonstrating the angle which the area | region where tensile stress exists, and the rolling direction make.

Claims (4)

鋼板の板厚内部における1箇所又は複数箇所に、板厚方向に対する応力が引張り応力であり、かつその最大値が40MPa以上で鋼板素材の降伏応力値以下であることを特徴とする低鉄損一方向性電磁鋼板。   The low iron loss is characterized in that the stress in the thickness direction is tensile stress at one or a plurality of locations inside the thickness of the steel plate, and the maximum value is 40 MPa or more and less than the yield stress value of the steel plate material. Oriented electrical steel sheet. 前記引張り応力が存在する領域の圧延方向の分布幅が0.8mm以下であり、かつ板厚方向の分布幅が板厚の80%以下の大きさを持つことを特徴とする請求項1に記載の低鉄損一方向性電磁鋼板。   The distribution width in the rolling direction in the region where the tensile stress exists is 0.8 mm or less, and the distribution width in the plate thickness direction is 80% or less of the plate thickness. Low iron loss unidirectional electrical steel sheet. 前記引張り応力が存在する領域が、鋼板の圧延方向に7.0mm以下の間隔で有することを特徴とする請求項1または2に記載の低鉄損一方向性電磁鋼板。   The low iron loss unidirectional electrical steel sheet according to claim 1 or 2, wherein the region where the tensile stress exists has an interval of 7.0 mm or less in a rolling direction of the steel sheet. 前記引張り応力が存在する領域が、鋼板の圧延方向に対して60〜120°の方向に連続的または所定間隔で形成されていることを特徴とする請求項1〜3のいずれかに記載の低鉄損一方向性電磁鋼板。   The region in which the tensile stress exists is formed continuously or at a predetermined interval in a direction of 60 to 120 ° with respect to the rolling direction of the steel sheet. Iron loss unidirectional electrical steel sheet.
JP2006314323A 2006-11-21 2006-11-21 Low iron loss unidirectional electrical steel sheet Active JP5241095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314323A JP5241095B2 (en) 2006-11-21 2006-11-21 Low iron loss unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314323A JP5241095B2 (en) 2006-11-21 2006-11-21 Low iron loss unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2008127632A true JP2008127632A (en) 2008-06-05
JP5241095B2 JP5241095B2 (en) 2013-07-17

Family

ID=39553771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314323A Active JP5241095B2 (en) 2006-11-21 2006-11-21 Low iron loss unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5241095B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593678B2 (en) * 2008-02-19 2010-12-08 新日本製鐵株式会社 Low iron loss unidirectional electrical steel sheet and manufacturing method thereof
JP2011162829A (en) * 2010-02-08 2011-08-25 Jfe Steel Corp Method for manufacturing grain-oriented magnetic steel sheet
WO2014034128A1 (en) 2012-08-30 2014-03-06 Jfeスチール株式会社 Oriented electromagnetic steel sheet for iron core and method for manufacturing same
WO2022255014A1 (en) * 2021-05-31 2022-12-08 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
WO2023190339A1 (en) * 2022-03-28 2023-10-05 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
WO2023190328A1 (en) 2022-03-28 2023-10-05 日本製鉄株式会社 Grain-oriented electrical steel sheet and manufacturing method therefor
WO2024111628A1 (en) * 2022-11-22 2024-05-30 日本製鉄株式会社 Grain-oriented electrical steel sheet having excellent iron loss characteristics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867913A (en) * 1994-08-24 1996-03-12 Nippon Steel Corp Silicon steel sheet small in core loss, its production and its using method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867913A (en) * 1994-08-24 1996-03-12 Nippon Steel Corp Silicon steel sheet small in core loss, its production and its using method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593678B2 (en) * 2008-02-19 2010-12-08 新日本製鐵株式会社 Low iron loss unidirectional electrical steel sheet and manufacturing method thereof
JPWO2009104521A1 (en) * 2008-02-19 2011-06-23 新日本製鐵株式会社 Low iron loss unidirectional electrical steel sheet and manufacturing method thereof
JP2011162829A (en) * 2010-02-08 2011-08-25 Jfe Steel Corp Method for manufacturing grain-oriented magnetic steel sheet
US10026533B2 (en) 2012-08-30 2018-07-17 Jfe Steel Corporation Grain-oriented electrical steel sheet for iron core and method of manufacturing the same
KR20150036775A (en) 2012-08-30 2015-04-07 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet for iron core and method of manufacturing the same
JPWO2014034128A1 (en) * 2012-08-30 2016-08-08 Jfeスチール株式会社 Oriented electrical steel sheet for iron core and method for producing the same
WO2014034128A1 (en) 2012-08-30 2014-03-06 Jfeスチール株式会社 Oriented electromagnetic steel sheet for iron core and method for manufacturing same
WO2022255014A1 (en) * 2021-05-31 2022-12-08 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
JPWO2022255014A1 (en) * 2021-05-31 2022-12-08
JP7459956B2 (en) 2021-05-31 2024-04-02 Jfeスチール株式会社 grain-oriented electrical steel sheet
WO2023190339A1 (en) * 2022-03-28 2023-10-05 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
WO2023190328A1 (en) 2022-03-28 2023-10-05 日本製鉄株式会社 Grain-oriented electrical steel sheet and manufacturing method therefor
KR20240136374A (en) 2022-03-28 2024-09-13 닛폰세이테츠 가부시키가이샤 Directional electrical steel sheet and method for manufacturing the same
WO2024111628A1 (en) * 2022-11-22 2024-05-30 日本製鉄株式会社 Grain-oriented electrical steel sheet having excellent iron loss characteristics
JP7538460B1 (en) 2022-11-22 2024-08-22 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent core loss characteristics

Also Published As

Publication number Publication date
JP5241095B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP4593678B2 (en) Low iron loss unidirectional electrical steel sheet and manufacturing method thereof
JP5241095B2 (en) Low iron loss unidirectional electrical steel sheet
JP5613972B2 (en) Unidirectional electrical steel sheet with excellent iron loss characteristics
KR101421391B1 (en) Grain oriented electrical steel sheet
RU2238340C2 (en) Method for improving magnetic qualities of textured electrical silicon steel sheets by laser treatment
RU2597190C1 (en) Sheet of electrotechnical textured steel for iron core and method of its manufacturing
JP5761377B2 (en) Oriented electrical steel sheet
KR101553497B1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JP5866850B2 (en) Method for producing grain-oriented electrical steel sheet
US10020101B2 (en) Grain-oriented electrical steel sheet and method for producing same
RU2570591C1 (en) Textured sheet of electrical steel
JP4344264B2 (en) Low iron loss unidirectional electrical steel sheet
JP7230933B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP4719319B2 (en) Unidirectional electrical steel sheet and manufacturing method thereof
JP5429213B2 (en) Method for producing unidirectional electrical steel sheet with excellent iron loss characteristics
RU2710496C1 (en) Textured sheet of electrical steel and method for production of such sheet
CA3088125A1 (en) Grain-oriented electrical steel sheet, stacked transformer core using the same, and method for producing stacked core
JP2002356750A (en) Grain-oriented electric steel plate of low core loss and low noise, and manufacturing method thereof
JP2001181805A (en) Grain oriented silicon steel sheet for low noise transformer
JP2002069594A (en) Silicon steel sheet for low-noise transformer
RU2803297C1 (en) Sheet from oriented electrical steel and method for its manufacturing
JP7180763B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP4437939B2 (en) Low iron loss unidirectional electrical steel sheet
JP4276618B2 (en) Low iron loss unidirectional electrical steel sheet
JP5884168B2 (en) Oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5241095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350