JP2008127226A - Method of producing nitride compound sintered compact - Google Patents

Method of producing nitride compound sintered compact Download PDF

Info

Publication number
JP2008127226A
JP2008127226A JP2006311577A JP2006311577A JP2008127226A JP 2008127226 A JP2008127226 A JP 2008127226A JP 2006311577 A JP2006311577 A JP 2006311577A JP 2006311577 A JP2006311577 A JP 2006311577A JP 2008127226 A JP2008127226 A JP 2008127226A
Authority
JP
Japan
Prior art keywords
alcohol
medium
nitride
mass
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006311577A
Other languages
Japanese (ja)
Other versions
JP4987438B2 (en
Inventor
Motoharu Fukazawa
元晴 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006311577A priority Critical patent/JP4987438B2/en
Publication of JP2008127226A publication Critical patent/JP2008127226A/en
Application granted granted Critical
Publication of JP4987438B2 publication Critical patent/JP4987438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a nitride compound sintered compact suitable for e.g. a susceptor, which shows reduced exposure of boron nitride particles of ≥10 μm or agglomerated particles containing the boron nitride particles. <P>SOLUTION: The method of producing the nitride compound sintered compact is a method of firing a nitride ceramic powder, provided that the nitride ceramic powder is prepared by removing a medium from a wet mixture of the medium and a nitride ceramic powder and that the medium is at least one chosen from hydrofluorocarbon and hydrofluoroether and contains 2-10 mass% alcohol. The alcohol is at least one chosen from ethanol, isopropyl alcohol and t-amyl alcohol, preferably t-amyl alcohol. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、窒化物複合焼結体の製造方法に関する。 The present invention relates to a method for producing a nitride composite sintered body.

窒化ホウ素焼結体は高温の塩化水素ガスやアンモニアガスに対する耐食性が高いことから、GaN等の半導体製造装置用部材(サセプタ)として使用されている。とくに、サセプタが窒化ホウ素と窒化ホウ素以外の窒化物(例えば窒化珪素、窒化アルミニウム等)からなる窒化物複合焼結体であるときは、耐食性が高いという基本特性に加えて、熱伝導率が高いため温度追随性が良好であり、また耐磨耗性にも優れている(特許文献1)。このようなサセプタは、原料を乾式混合又は湿式混合して得られた混合粉末を成型後焼成する工程を経て製造される。窒化物セラミックス原料粉末の比重、粒子径や粒子形状が異なるため、特に窒化ホウ素は他の窒化物に比べて比重が小さく、しかも粒子形状が扁平状と特殊であるため、均一混合粉末が得られやすい湿式混合法が好まれる。 Since the boron nitride sintered body has high corrosion resistance against high-temperature hydrogen chloride gas and ammonia gas, it is used as a member (susceptor) for semiconductor manufacturing equipment such as GaN. In particular, when the susceptor is a nitride composite sintered body made of boron nitride and a nitride other than boron nitride (for example, silicon nitride, aluminum nitride, etc.), in addition to the basic characteristics of high corrosion resistance, the thermal conductivity is high. Therefore, the temperature followability is good and the wear resistance is also excellent (Patent Document 1). Such a susceptor is manufactured through a step of molding and firing a mixed powder obtained by dry mixing or wet mixing raw materials. Since the specific gravity, particle diameter and particle shape of the nitride ceramic raw material powder are different, especially boron nitride has a smaller specific gravity than other nitrides, and the particle shape is flat and special, so a uniform mixed powder can be obtained. Easy wet mixing is preferred.

ところで、MOVPE法のように気相成長させる方法においては、GaN結晶は半導体素子の基板上にのみ成長するものではなくサセプタ上にも成長する。サセプタ上に成長したGaN結晶は、サセプタの自公転運動や原料ガスの気流などによりサセプタ面より剥がれ、ダストとして浮遊して半導体素子上に付着し、半導体素子の欠陥となる。とくに、窒化ホウ素上に析出したGaN、更に言えば10μm以上の大きさの窒化ホウ素粒子上に析出したGaNは、窒化珪素や窒化アルミニウム上に析出したGaNに比べて剥離しやすく、ダストとして浮遊しやすくなる。そこで、窒化ホウ素と窒化珪素及び窒化アルミニウムの少なくとも一方とを含む複合焼結体においては、表面に露出している窒化ホウ素粒子ないしは窒化ホウ素粒子を含む凝集粒子の大きさを、最大でも数μm程度に抑えることが大切なことであるが、乾式混合法では長時間の混合を行ってもそれが困難である。 By the way, in the vapor phase growth method such as the MOVPE method, the GaN crystal grows not only on the substrate of the semiconductor element but also on the susceptor. The GaN crystal grown on the susceptor is peeled off from the susceptor surface due to the revolving motion of the susceptor or the flow of the raw material gas, floats as dust, adheres to the semiconductor element, and becomes a defect of the semiconductor element. In particular, GaN deposited on boron nitride, more specifically, GaN deposited on boron nitride particles having a size of 10 μm or more is more easily separated than GaN deposited on silicon nitride or aluminum nitride, and floats as dust. It becomes easy. Therefore, in the composite sintered body containing boron nitride and at least one of silicon nitride and aluminum nitride, the size of boron nitride particles or aggregated particles containing boron nitride particles exposed on the surface is about several μm at the maximum. It is important to keep it at a low level, but it is difficult to mix for a long time by the dry mixing method.

アルコールなどの親水性媒体用いる湿式混合では、窒化物セラミックス粒子や凝集粒子の大きさを数μmに抑えることができるが、アルコールに微量含まれる水分が、窒化物セラミックス粉末を加水分解させるため、不純物酸素が増加して焼結体の熱伝導率や耐熱温度を低下させた。アルコールを脱水すればよいが、空気中の水分を容易に再吸収するため、その取扱いと管理が大変であった。一方、特許文献2で提案されている液状フルオロカーボンなどの親油性媒体用いる湿式混合では、加水分解の問題は解決できるが、窒化物セラミックス粉末の表面が極性基で覆われているため粉末が凝集し、十μm以上の凝集粒子が生成した。また、有機バインダーと、有機バインダーの溶剤(アルコール類、芳香族類、ケトン類)と、フッ素元素を含む溶剤(ハイドロフロロカーボンあるいはハイドロクロロフロロカーボン)との混合媒体を用いる特許文献3の湿式混合では、厚みが数mm程度の窒化物複合焼結体ならばよいが、厚みが50mm以上となると、有機バインダーの残留を避けることができず、焼結時に窒化物と反応して窒素ガスが発生しボイドやクラック等のトラブルの原因となった。なお、厚みが50mm以上の窒化物複合焼結体は、例えば円盤状、円筒状、歯車状等の所望形状のサセプタを機械加工するのに好都合な厚みである。
特開2001−44128号公報 特開平5−104015号公報 特開平5−254918号公報
In wet mixing using a hydrophilic medium such as alcohol, the size of nitride ceramic particles and aggregated particles can be suppressed to several μm. However, moisture contained in a trace amount of alcohol hydrolyzes the nitride ceramic powder. Oxygen increased to lower the thermal conductivity and heat resistance temperature of the sintered body. Alcohol should be dehydrated, but it was difficult to handle and manage because it easily reabsorbs moisture in the air. On the other hand, wet mixing using a lipophilic medium such as liquid fluorocarbon proposed in Patent Document 2 can solve the problem of hydrolysis, but the surface of the nitride ceramic powder is covered with polar groups, so the powder aggregates. Aggregated particles of 10 μm or more were produced. In the wet mixing of Patent Document 3 using a mixed medium of an organic binder, a solvent for the organic binder (alcohols, aromatics, ketones), and a solvent containing a fluorine element (hydrofluorocarbon or hydrochlorofluorocarbon), A nitride composite sintered body having a thickness of about several millimeters may be used. However, when the thickness is 50 mm or more, the organic binder cannot be prevented from remaining, and nitrogen gas is generated by reacting with the nitride during sintering. Cause troubles such as cracks and cracks. Note that the nitride composite sintered body having a thickness of 50 mm or more has a thickness that is convenient for machining a susceptor having a desired shape such as a disk shape, a cylindrical shape, or a gear shape.
JP 2001-44128 A JP-A-5-104015 JP-A-5-254918

本発明の目的は、窒化物複合焼結体の表面に、10μm以上の窒化ホウ素粒子ないしは窒化ホウ素粒子を含む凝集粒子の露出を軽減させた、例えばサセプタとして好適な窒化物複合焼結体の製造方法を提供することである。 An object of the present invention is to produce a nitride composite sintered body suitable for, for example, a susceptor, in which exposure of aggregated particles containing boron nitride particles or boron nitride particles of 10 μm or more is reduced on the surface of the nitride composite sintered body. Is to provide a method.

本発明は、窒化ホウ素粉末と、窒化珪素粉末及び窒化アルミニウム粉末の少なくとも一方とを含む混合粉末を焼成する方法において、混合粉末が、湿式混合物から媒体が除去されたものであり、媒体がハイドロフルオロカーボン及びハイドロフルオロエーテルの少なくとも一方にアルコールを2〜10質量%含有させてなるものであることを特徴とする窒化物複合焼結体の製造方法である。本発明においては、アルコールが、エタノール、イソプロピルアルコール及びt−アミルアルコールから選ばれた少なくとも1種、特にt−アミルアルコールであることが好ましい。中でも、アルコール含有率が、媒体の共沸点組成のプラスマイナス1質量%であることが好ましい。混合粉末が、窒化ホウ素粉末を20〜50質量%、窒化珪素粉末及び窒化アルミニウム粉末の少なくとも一方を80〜50質量%を含むものであることが好ましい。 The present invention relates to a method for firing a mixed powder containing boron nitride powder and at least one of silicon nitride powder and aluminum nitride powder, wherein the mixed powder is obtained by removing the medium from the wet mixture, and the medium is hydrofluorocarbon. And a method for producing a nitride composite sintered body characterized in that alcohol is contained in at least one of hydrofluoroether in an amount of 2 to 10% by mass. In the present invention, the alcohol is preferably at least one selected from ethanol, isopropyl alcohol and t-amyl alcohol, particularly t-amyl alcohol. Especially, it is preferable that alcohol content rate is plus or minus 1 mass% of the azeotropic composition of a medium. The mixed powder preferably contains 20 to 50% by mass of boron nitride powder and 80 to 50% by mass of at least one of silicon nitride powder and aluminum nitride powder.

本発明によれば、窒化物複合焼結体の表面に、10μm以上の窒化ホウ素粒子ないしは窒化ホウ素粒子を含む凝集粒子(以下、これらを総称して「10μm以上粒子」という。)の露出を軽減させた、特にサセプタとして好適な窒化物複合焼結体の製造方法が提供される。 According to the present invention, the exposure of 10 μm or more boron nitride particles or aggregated particles containing boron nitride particles (hereinafter collectively referred to as “10 μm or more particles”) on the surface of the nitride composite sintered body is reduced. In particular, a method for producing a nitride composite sintered body suitable as a susceptor is provided.

本発明のように、湿式混合物から調整された、窒化ホウ素と窒化珪素及び窒化アルミニウムの少なくとも一方とを含む混合粉末を用いて製造された複合焼結体は、窒化物単独焼結体に比べて、サセプタの基本特性に優れていることに加え、機械加工性や10μm以上粒子の露出抑制効果が顕著であることより、一段と耐磨耗性や高熱伝導性に優れたサセプタの製造が可能となる。とくに、窒化ホウ素を20〜50質量%、窒化珪素及び窒化アルミニウムの少なくとも一方を80〜50質量%を含む混合粉末であることが好ましい。窒化ホウ素が20質量%未満であると、窒化物複合焼結体が硬くなり、加工性が悪くなるため、精密な形状の半導体製造装置用部材(サセプタ)が得がたくなる恐れがある。また、窒化ホウ素が50質量%をこえると、耐磨耗性の低下やダストの発生が顕著となるため、サセプタとして使用しがたくなる恐れがある。なお。例えば酸化ホウ素、酸化珪素、酸化アルミニウム、酸化イットリウム等の焼結助剤を10質量%以下の比率で混合粉末に含有させることもできる。 As in the present invention, a composite sintered body manufactured using a mixed powder containing boron nitride and at least one of silicon nitride and aluminum nitride prepared from a wet mixture is compared with a single nitride sintered body. In addition to the excellent basic characteristics of the susceptor, the machinability and the effect of suppressing the exposure of particles of 10 μm or more are remarkable, which makes it possible to manufacture a susceptor with excellent wear resistance and high thermal conductivity. . In particular, a mixed powder containing 20 to 50% by mass of boron nitride and 80 to 50% by mass of at least one of silicon nitride and aluminum nitride is preferable. If the boron nitride is less than 20% by mass, the nitride composite sintered body becomes hard and the workability deteriorates, so that it may be difficult to obtain a member (susceptor) with a precise shape. Moreover, when boron nitride exceeds 50 mass%, since abrasion resistance fall and generation | occurrence | production of dust will become remarkable, there exists a possibility that it may become difficult to use as a susceptor. Note that. For example, a sintering aid such as boron oxide, silicon oxide, aluminum oxide, and yttrium oxide can be contained in the mixed powder at a ratio of 10% by mass or less.

ハイドロフルオロカーボン、ハイドロフルオロエーテルとしては、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタンである日本ゼオン社製「ゼオローラ」、1,1,1,2,2,3,4,5,5,5−デカフルオロ−3−メトキシ−4−トリフルオロメチル−ペンタン、エチルノナフルオロイソブチルエーテル、エチルノナフルオロブチルエーテルである住友スリーエム社製商品名「ノベック」、1,1,2,2−テトラフルオロエチル−2,2,2,−トリフルオロエチルエーテルである旭硝子社製商品名「アサヒクリン」、など市販のものが使用される。 As hydrofluorocarbons and hydrofluoroethers, 1,1,2,2,3,3,4-heptafluorocyclopentane “ZEOLORA” manufactured by Nippon Zeon Co., Ltd., 1,1,1,2,2,3,4 , 5,5,5-decafluoro-3-methoxy-4-trifluoromethyl-pentane, ethyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether, trade name "Novec", 1,1,2, Commercially available products such as “Asahiclin” manufactured by Asahi Glass Co., Ltd., which is 2-tetrafluoroethyl-2,2,2, -trifluoroethyl ether, are used.

媒体に含ませるアルコールとしては特に種類を選ばないが、ハイドロフルオロカーボン、ハイドロフルオロエーテルと沸点が近く、また相溶性の良い、エタノール(COH)、イソプロピルアルコール(COH)及びt−アミルアルコール(C11OH)から選ばれた少なくとも一種が好ましい。とくに、t−アミルアルコールが粉末の分散性、媒体の水分含率、蒸留による媒体の除去のしやすさの点から好ましい。メタノール(CHOH)のように低分子量のアルコールでは、親水性が高いため媒体が水分を含有しやすくなり、またへプチルアルコール(C15OH)のように高分子量のアルコールでは、沸点(176℃)が高くなるために媒体の除去が困難となる。 The alcohol to be contained in the medium is not particularly limited, but has a boiling point close to that of hydrofluorocarbon, hydrofluoroether, and is compatible with ethanol (C 2 H 5 OH), isopropyl alcohol (C 3 H 7 OH) and At least one selected from t-amyl alcohol (C 5 H 11 OH) is preferred. In particular, t-amyl alcohol is preferable from the viewpoint of the dispersibility of the powder, the water content of the medium, and the ease of removal of the medium by distillation. A low molecular weight alcohol such as methanol (CH 3 OH) has high hydrophilicity, so the medium tends to contain moisture, and a high molecular weight alcohol such as heptyl alcohol (C 7 H 15 OH) has a boiling point. Since (176 ° C.) becomes high, it becomes difficult to remove the medium.

アルコールの媒体中の含有率は2〜10質量%である。2質量%未満では窒化物セラミックス粉末が媒体中に良好に分散せず、また10質量%をこえると、普通の水分管理を行っても、窒化物セラミックス粉末が加水分解を起こす程度の水分を、媒体が空気中から吸収する。 The content rate in the medium of alcohol is 2-10 mass%. If it is less than 2% by mass, the nitride ceramic powder does not disperse well in the medium, and if it exceeds 10% by mass, the moisture that causes the nitride ceramic powder to hydrolyze even if ordinary moisture management is performed, The medium absorbs from the air.

アルコール含有率の2〜10質量%は次のようにして求めた。すなわち、3種類の窒化物セラミックス粉末{窒化ホウ素粉末(電気化学工業社製商品名「SP」)、窒化アルミニウム粉末(トクヤマ社製商品名「Hグレード」、窒化珪素粉末(電気化学工業社製商品名「NP−600」))の各1gを、ハイドロフルオロエーテル(住友スリーエム社製商品名「ノベック HFE−7200」)15mL又はイソプロピルアルコール(関東化学 特級)15mLの媒体が入った50mLバイアル瓶に入れ、1分間混合後、1時間静置してから沈積層の高さ測定した。それら結果を表1に示す。窒化ホウ素粉末又は窒化珪素粉末では、両媒体の沈積層高さの比は2以下であり、また、沈積層は比較的密であり、これらの粉末は媒体の種類に寄らず、媒体への分散性は良好であった。しかし、窒化アルミニウム粉末の場合、沈積層の高さの比は7であり、イソプロピルアルコールでは沈積層は密であったが、ハイドロフルオロエーテルでは沈積層は隙間の多いものであり、ハイドロフルオロエーテルへの分散性は不良であった。 2-10 mass% of alcohol content rate was calculated | required as follows. That is, three types of nitride ceramic powder {boron nitride powder (trade name “SP” manufactured by Denki Kagaku Kogyo Co., Ltd.), aluminum nitride powder (trade name “H grade” manufactured by Tokuyama Kogyo Co., Ltd.), silicon nitride powder (product manufactured by Denki Kagaku Kogyo Co., Ltd.) 1 g of each of the name “NP-600”) is placed in a 50 mL vial containing a medium of 15 mL of hydrofluoroether (trade name “Novec HFE-7200” manufactured by Sumitomo 3M Limited) or 15 mL of isopropyl alcohol (special grade of Kanto Chemical). After mixing for 1 minute, the mixture was allowed to stand for 1 hour and then the height of the deposited layer was measured. The results are shown in Table 1. In the boron nitride powder or silicon nitride powder, the ratio of the deposition height of both media is 2 or less, and the deposition is relatively dense, and these powders are dispersed in the media regardless of the type of media. The property was good. However, in the case of aluminum nitride powder, the height ratio of the sedimentation layer is 7, and in isopropyl alcohol, the sedimentation layer was dense, but in hydrofluoroether, the sedimentation layer has many gaps. The dispersibility of was poor.

Figure 2008127226
Figure 2008127226

このように、ハイドロフルオロエーテル中の窒化物セラミックス粉末の分散性が、その粉末種によって異なることがわかったので、ハイドロフルオロエーテル中の窒化アルミニウム粉末の分散性を向上させるべく、ハイドロフルオロエーテルにアルコールを混合する試みを行った。すなわち、上記のハイドロフルオロエーテルとイソプロピルアルコールとを用い、表2のアルコール含有率にして種々混合して得られた媒体を用いたこと以外は、同様にして沈積層の高さを測定した。その結果、媒体のアルコール含有率が1質量%以下であると、沈積層の高さが10mm以上(隙間の多い沈積層)となるが、2質量%以上になると高さが10mm未満(比較的緻密な沈積層)となった。 Thus, since it was found that the dispersibility of the nitride ceramic powder in the hydrofluoroether varies depending on the powder type, an alcohol is added to the hydrofluoroether to improve the dispersibility of the aluminum nitride powder in the hydrofluoroether. An attempt was made to mix. That is, the height of the sedimentation layer was measured in the same manner except that the above-described hydrofluoroether and isopropyl alcohol were used and a medium obtained by various mixing with the alcohol content shown in Table 2 was used. As a result, when the alcohol content of the medium is 1% by mass or less, the height of sedimentation is 10 mm or more (sedimentation with many gaps), but when it is 2% by mass or more, the height is less than 10 mm (relatively Dense sedimentation).

一方、媒体の水分吸収の容易性、すなわち窒化物セラミックス粉末を加水分解させる容易性を評価するため、ハイドロフルオロエーテルとイソプロピルアルコールからなる表2の媒体15mLに水10mLを入れ、1分間混合後、1日静置してから媒体の含水率をJIS K 0068のカールフィッシャー滴定法で測定した。その結果、表2のとおりであり、媒体のアルコール含有率が10質量%をこえると、媒体の含水率が0.2質量%以上となり、窒化物セラミックス粉末が加水分解する恐れが高くなった。これらのことから、本発明では媒体中のアルコール含有率を2〜10質量%とした。 On the other hand, in order to evaluate the ease of water absorption of the medium, that is, the ease of hydrolyzing the nitride ceramic powder, 10 mL of water was added to 15 mL of the medium of Table 2 composed of hydrofluoroether and isopropyl alcohol, and after mixing for 1 minute, After standing for one day, the water content of the medium was measured by Karl Fischer titration method of JIS K 0068. As a result, as shown in Table 2, when the alcohol content of the medium exceeded 10% by mass, the water content of the medium became 0.2% by mass or more, and the possibility that the nitride ceramic powder was hydrolyzed was increased. From these things, in this invention, the alcohol content rate in a medium was 2-10 mass%.

Figure 2008127226
Figure 2008127226

窒化物セラミックス粉末は加水分解すると、水酸化物とアンモニアが生成する。アンモニアはガス揮散するが、水酸化物はそのまま混合粉末中に残存するので混合粉末中の酸素分が増加することになる。このため、窒化物セラミックス粉末の加水分解のしやすさは、窒化物セラミックス粉末中の酸素量で予測可能となる。本発明において、窒化物セラミックス粉末の酸素量は、試料を媒体中で一定時間(例えば20時間)混合した後、媒体を蒸留などで除去してから、例えばJIS R 1603、日本セラミックス協会規格 JCRS 105、108等の不活性ガス融解−赤外線吸収法により測定することができる。 When the nitride ceramic powder is hydrolyzed, hydroxide and ammonia are produced. Ammonia vaporizes, but hydroxide remains in the mixed powder as it is, so that the oxygen content in the mixed powder increases. For this reason, the ease of hydrolysis of the nitride ceramic powder can be predicted by the amount of oxygen in the nitride ceramic powder. In the present invention, the amount of oxygen in the nitride ceramic powder is determined by mixing the sample in a medium for a certain period of time (for example, 20 hours) and then removing the medium by distillation or the like, and then, for example, JIS R 1603, Japan Ceramic Society Standard JCRS 105 , 108, etc., can be measured by melting with an inert gas-infrared absorption method.

アルコール含有率が2〜10質量%の範囲内にあっても、共沸点組成のプラスマイナス1質量%のアルコール含有率であることが好ましい、このような媒体を用いることによって、蒸留などの媒体除去操作を行った後であっても、アルコールの含有率の変化が小さく、更には保管時にその含有率が変化することも少ないので媒体の再利用が容易となる。すなわち、アルコール含有率が共沸点組成のプラスマイナス1量%の組成を著しく逸脱すると、回収された媒体のアルコール含有率をその都度測定し再調整する必要があり操作が煩雑となる。 Even if the alcohol content is in the range of 2 to 10% by mass, it is preferable that the alcohol content is plus or minus 1% by mass of the azeotropic composition. By using such a medium, media such as distillation can be removed. Even after the operation is performed, the change in the alcohol content is small, and further, the content does not change during storage, so that the medium can be easily reused. That is, when the alcohol content deviates significantly from the composition of plus or minus 1% by weight of the azeotropic composition, it is necessary to measure and readjust the alcohol content of the recovered medium each time, and the operation becomes complicated.

共沸点組成のプラスマイナス1質量%のアルコール含有率の媒体を製造するには、温度−組成図を作成し、気相と液相の組成が一致する組成を求めればよい。すなわち、還流器を備えたフラスコ等にアルコール濃度を調節したハイドロフルオロカーボン及びハイドロフルオロエーテルの少なくとも一方を入れ、加熱・沸騰させて液相と気相の温度を同温とする。この状態で、フラスコ内の液相及び気相の組成をガスクロマトグラフィー等により分析して温度−組成図を作成し、気相と液相の組成が一致する組成より、共沸組成を求めることができる(参考:千原秀昭,徂徠道夫編;物理化学実験法 第4版,東京化学同人,(2000))。 In order to produce a medium having an alcohol content of plus or minus 1% by mass of the azeotropic composition, a temperature-composition diagram may be prepared to obtain a composition in which the composition of the gas phase and the liquid phase match. That is, at least one of hydrofluorocarbon and hydrofluoroether whose alcohol concentration is adjusted is placed in a flask or the like equipped with a refluxer, and heated and boiled so that the liquid phase and the gas phase have the same temperature. In this state, the composition of the liquid phase and the gas phase in the flask is analyzed by gas chromatography or the like to create a temperature-composition diagram, and the azeotropic composition is obtained from the composition in which the gas phase and the liquid phase composition match. (Reference: Hideaki Chihara, edited by Michio Tsuji; Physical Chemistry Experimental Method 4th edition, Tokyo Chemical Dojin, (2000)).

窒化物セラミックス原料粉末の湿式混合は、この原料粉末100質量部あたり媒体300〜800質量部を配合し、例えばボールミル、振動ミル、ホモミキサー等の混合装置を用いて行われる。湿式混合物は、次いで例えばロータリーエバポレーター、溶剤回収装置付き乾燥機等の装置で媒体を除去して混合粉末を製造し、それを例えば乾式プレス成型法、冷間等方圧プレス成形法(CIP法)等により成型した後、例えば窒素、アルゴン、アンモニア、水素、炭酸ガス等の非酸化性気流中、1650〜2000℃で常圧焼結するか、又は15〜35MPaの加圧下、1650〜2000℃でホットプレス焼結することによって窒化物セラミックス焼結体が製造される。 The wet mixing of the nitride ceramic raw material powder is performed by using 300 to 800 parts by mass of the medium per 100 parts by mass of the raw material powder and using, for example, a mixing device such as a ball mill, a vibration mill, or a homomixer. The wet mixture is then mixed with a device such as a rotary evaporator or a dryer with a solvent recovery device to produce a mixed powder, which is, for example, a dry press molding method or a cold isostatic press molding method (CIP method). After molding by, for example, normal pressure sintering at 1650 to 2000 ° C. in a non-oxidizing air current such as nitrogen, argon, ammonia, hydrogen, carbon dioxide, or at 1650 to 2000 ° C. under a pressure of 15 to 35 MPa. A nitride ceramic sintered body is manufactured by hot press sintering.

実施例1
ハイドロフルオロエーテル(住友スリーエム社製商品名「ノベック HFE−7200」)95質量%とイソプロピルアルコール5質量%からなる媒体700mLに、窒化ホウ素粉末(電気化学工業社製商品名「SP」)25質量%と、窒化アルミニウム粉末(トクヤマ社製商品名「Hグレード」75質量%とからなる原料粉末200gを、直径5mmのアルミナボールを5kg入れた5L−容器に入れ、ボールミルにて20時間混合(90回転/分)した後、乾燥器(50℃、8時間)にて媒体を蒸発除去して混合粉末を製造した。混合粉末の酸素量は2.5質量%であった。これを温度1900℃、圧力20MPa、時間90分間の条件でホットプレス焼結をした。得られた複合焼結体の断面を走査型電子顕微鏡にて観察したところ、10μm以上粒子は認められなかった。また、JIS R 1611のレーザーフラッシュ法による熱伝導率は47W/m・Kであった。
Example 1
Hydrocarbon ether (trade name “NOBEC HFE-7200” manufactured by Sumitomo 3M Co., Ltd.) 95 mass% and medium 700 mL consisting of 5 mass% isopropyl alcohol, boron nitride powder (trade name “SP” manufactured by Denki Kagaku Kogyo Co., Ltd.) 25 mass% 200 g of raw material powder made of aluminum nitride powder (trade name “H grade” made by Tokuyama Co., Ltd., 75 mass%) is placed in a 5 L-container containing 5 kg of alumina balls having a diameter of 5 mm, and mixed for 20 hours in a ball mill (90 revolutions) After that, the medium was evaporated and removed in a dryer (50 ° C., 8 hours) to produce a mixed powder having an oxygen content of 2.5% by mass. Hot press sintering was performed under the conditions of a pressure of 20 MPa and a time of 90 minutes, and a cross section of the obtained composite sintered body was observed with a scanning electron microscope. Particles of μm or more were not observed, and the thermal conductivity according to JIS R 1611 laser flash method was 47 W / m · K.

実施例2
媒体をハイドロフルオロエーテル(旭硝子社製商品名「アサヒクリン AE−3000」)95質量%とエタノール(大成薬品工業 日本薬局方)5質量%からなる媒体に変更したこと以外は、実施例1と同様にして複合焼結体を製造した。混合粉末の酸素量は2.7質量%であった。複合焼結体には10μm以上粒子は認められず、熱伝導率は42W/m・Kである。
Example 2
Example 1 except that the medium was changed to a medium composed of 95% by mass of hydrofluoroether (trade name “Asahiclin AE-3000” manufactured by Asahi Glass Co., Ltd.) and 5% by mass of ethanol (Taipei Pharmaceutical Japan Pharmacopoeia). Thus, a composite sintered body was produced. The oxygen content of the mixed powder was 2.7% by mass. Particles of 10 μm or more are not observed in the composite sintered body, and the thermal conductivity is 42 W / m · K.

実施例3
媒体をハイドロフルオロカーボンとt−アミルアルコール(4.2質量%)の共沸混合物である市販の日本ゼオン社商品名「ゼオローラHTA」に変更したこと以外は、実施例1と同様にして複合焼結体を製造した。混合粉末の酸素量は2.0質量%であった。複合焼結体には10μm以上粒子は認められず、熱伝導率は56W/m・Kである。
Example 3
Compound sintering was carried out in the same manner as in Example 1 except that the medium was changed to the commercial name “ZEOLORA HTA”, a commercial product of ZEON Corporation, which is an azeotropic mixture of hydrofluorocarbon and t-amyl alcohol (4.2% by mass). The body was manufactured. The oxygen content of the mixed powder was 2.0% by mass. Particles of 10 μm or more are not observed in the composite sintered body, and the thermal conductivity is 56 W / m · K.

実施例4
原料粉末を窒化ホウ素粉末30質量%、窒化珪素62質量%、酸化イットリウム6質量%および酸化アルミニウム2質量%に変更したこと以外は、実施例3と同様にして複合焼結体を製造した。複合焼結体には10μm以上粒子は認められず、熱伝導率は45W/m・Kである。
Example 4
A composite sintered body was produced in the same manner as in Example 3 except that the raw material powder was changed to 30% by mass of boron nitride powder, 62% by mass of silicon nitride, 6% by mass of yttrium oxide, and 2% by mass of aluminum oxide. Particles of 10 μm or more are not observed in the composite sintered body, and the thermal conductivity is 45 W / m · K.

比較例1
媒体をハイドロフルオロエーテル単独としたこと以外は、実施例3と同様にして複合焼結体を製造した。原料粉末の酸素量は1.8質量%であった。焼結体の熱伝導率は55W/m・Kを示したものの、複合焼結体には10μm以上粒子が認められた。GaN等の半導体製造装置用部材として使用した場合、ダストの発生が懸念される。
Comparative Example 1
A composite sintered body was produced in the same manner as in Example 3 except that the medium was hydrofluoroether alone. The amount of oxygen in the raw material powder was 1.8% by mass. Although the thermal conductivity of the sintered body showed 55 W / m · K, particles of 10 μm or more were observed in the composite sintered body. When used as a member for semiconductor manufacturing equipment such as GaN, there is a concern about the generation of dust.

本発明によって製造された窒化物複合焼結体は、半導体製造装置用部材(サセプタ)として使用することができる。 The nitride composite sintered body manufactured according to the present invention can be used as a member (susceptor) for a semiconductor manufacturing apparatus.

Claims (5)

窒化ホウ素粉末と、窒化珪素粉末及び窒化アルミニウム粉末の少なくとも一方とを含む混合粉末を焼成する方法において、混合粉末が、湿式混合物から媒体が除去されたものであり、媒体がハイドロフルオロカーボン及びハイドロフルオロエーテルの少なくとも一方にアルコールを2〜10質量%含有させてなるものであることを特徴とする窒化物複合焼結体の製造方法。 In a method of firing a mixed powder containing boron nitride powder and at least one of silicon nitride powder and aluminum nitride powder, the mixed powder is obtained by removing the medium from the wet mixture, and the medium is hydrofluorocarbon and hydrofluoroether A method for producing a nitride composite sintered body characterized in that at least one of these comprises alcohol in an amount of 2 to 10% by mass. アルコールが、エタノール、イソプロピルアルコール及びt−アミルアルコールから選ばれた少なくとも1種であることを特徴とする請求項1に記載の製造方法。 The production method according to claim 1, wherein the alcohol is at least one selected from ethanol, isopropyl alcohol, and t-amyl alcohol. アルコールがt−アミルアルコールであることを特徴とする請求項2に記載の製造方法。 The production method according to claim 2, wherein the alcohol is t-amyl alcohol. アルコール含有率が、媒体の共沸点組成のプラスマイナス1質量%であることを特徴とする請求項1〜3のいずれかに記載の製造方法。 The production method according to claim 1, wherein the alcohol content is 1% by mass or less of the azeotropic composition of the medium. 混合粉末が、窒化ホウ素粉末を20〜50質量%、窒化珪素粉末及び窒化アルミニウム粉末の少なくとも一方が80〜50質量%を含むものであることを特徴とする請求項1〜4のいずれかに記載の製造方法。 5. The production according to claim 1, wherein the mixed powder contains 20 to 50% by mass of boron nitride powder and at least one of silicon nitride powder and aluminum nitride powder contains 80 to 50% by mass. Method.
JP2006311577A 2006-11-17 2006-11-17 Method for producing nitride composite sintered body Active JP4987438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006311577A JP4987438B2 (en) 2006-11-17 2006-11-17 Method for producing nitride composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006311577A JP4987438B2 (en) 2006-11-17 2006-11-17 Method for producing nitride composite sintered body

Publications (2)

Publication Number Publication Date
JP2008127226A true JP2008127226A (en) 2008-06-05
JP4987438B2 JP4987438B2 (en) 2012-07-25

Family

ID=39553436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311577A Active JP4987438B2 (en) 2006-11-17 2006-11-17 Method for producing nitride composite sintered body

Country Status (1)

Country Link
JP (1) JP4987438B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076995A (en) * 2008-09-29 2010-04-08 Denki Kagaku Kogyo Kk Susceptor member for apparatus for manufacturing group iii-v compound semiconductor
WO2010082478A1 (en) * 2009-01-13 2010-07-22 日立金属株式会社 Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
KR101567311B1 (en) 2014-10-21 2015-11-09 주식회사 원익큐엔씨 Seramic material component and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233075A (en) * 1987-03-20 1988-09-28 石川島播磨重工業株式会社 Manufacture of high strength ceramic formed sintered body
JPH0465365A (en) * 1990-06-29 1992-03-02 Kurosaki Refract Co Ltd Reactive sintered silicon nitride composite body
JPH05221709A (en) * 1992-02-07 1993-08-31 Hitachi Ltd Production of green sheet
JPH05254918A (en) * 1992-03-16 1993-10-05 Hitachi Ltd Production of ceramics
JPH08133841A (en) * 1994-11-15 1996-05-28 Shin Etsu Chem Co Ltd Ceramic composite substrate
JP2005340403A (en) * 2004-05-26 2005-12-08 Denki Kagaku Kogyo Kk Substrate rotation mechanism for film forming apparatus
JP2006216300A (en) * 2005-02-02 2006-08-17 Toray Ind Inc Insulating paste and method of manufacturing electronic circuit component using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233075A (en) * 1987-03-20 1988-09-28 石川島播磨重工業株式会社 Manufacture of high strength ceramic formed sintered body
JPH0465365A (en) * 1990-06-29 1992-03-02 Kurosaki Refract Co Ltd Reactive sintered silicon nitride composite body
JPH05221709A (en) * 1992-02-07 1993-08-31 Hitachi Ltd Production of green sheet
JPH05254918A (en) * 1992-03-16 1993-10-05 Hitachi Ltd Production of ceramics
JPH08133841A (en) * 1994-11-15 1996-05-28 Shin Etsu Chem Co Ltd Ceramic composite substrate
JP2005340403A (en) * 2004-05-26 2005-12-08 Denki Kagaku Kogyo Kk Substrate rotation mechanism for film forming apparatus
JP2006216300A (en) * 2005-02-02 2006-08-17 Toray Ind Inc Insulating paste and method of manufacturing electronic circuit component using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076995A (en) * 2008-09-29 2010-04-08 Denki Kagaku Kogyo Kk Susceptor member for apparatus for manufacturing group iii-v compound semiconductor
WO2010082478A1 (en) * 2009-01-13 2010-07-22 日立金属株式会社 Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
US8858865B2 (en) 2009-01-13 2014-10-14 Hitachi Metals, Ltd. Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
JP5673106B2 (en) * 2009-01-13 2015-02-18 日立金属株式会社 Method for manufacturing silicon nitride substrate, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
KR101567311B1 (en) 2014-10-21 2015-11-09 주식회사 원익큐엔씨 Seramic material component and manufacturing method thereof

Also Published As

Publication number Publication date
JP4987438B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5034992B2 (en) Sintered body and manufacturing method thereof
JP2008544937A (en) Crucible for crystallizing silicon
TW200829719A (en) Thermal spray powder, method for forming thermal spray coating, and plasma resistant member
CN104046823A (en) Graded metal-ceramic composite and preparation method thereof
JP2008133160A (en) Boron carbide sintered compact and method of manufacturing the same
FR2888836A1 (en) ALPHA-ALUMINA FINE PARTICLES, THEIR PRODUCTION PROCESS, ALPHA-ALUMINA BODY AND ITS PRODUCTION PROCESS, AND ABRASIVE INCLUDING ALPHA-ALUMINA
JP4987438B2 (en) Method for producing nitride composite sintered body
JP2009068067A (en) Plasma resistant ceramics sprayed coating
FR2679219A1 (en) PROCESS FOR THE PREPARATION OF SILICON CARBIDE POWDER FOR USE IN SEMICONDUCTOR EQUIPMENT.
JPH075372B2 (en) Manufacturing method of ceramics with high thermal conductivity
JPWO2018194052A1 (en) Sintered body, substrate, circuit board, and method for manufacturing sintered body
JP4894770B2 (en) Silicon carbide / boron nitride composite sintered body, method for producing the same, and member using the sintered body
JP2006069843A (en) Ceramic member for semiconductor manufacturing apparatus
WO2007086427A1 (en) Method for producing carbon-containing silicon carbide ceramic
TWI590370B (en) Electrostatic chuck Dielectric layer and electrostatic chuck
WO2013160581A1 (en) Product made of dense silicon carbide
JP2002128569A (en) High thermal conductive silicon nitride ceramic and its manufacturing method
JP4197050B1 (en) Ceramic member and corrosion resistant member
JP5030268B2 (en) Manufacturing method of ceramics
JP5351405B2 (en) Alumina ceramics with excellent wear resistance
JP5132034B2 (en) High resistivity silicon carbide sintered body
Mantzel et al. Reduction of the Sintering Temperature for the Manufacturing of Carbon‐Rich Dense SiOC Bulk Ceramics
JP2004250281A (en) Method for producing waterproof aluminum nitride powder coated with carbonaceous film
JP2005335992A (en) Method of manufacturing aluminum nitride sintered compact
JP4651145B2 (en) Corrosion resistant ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R151 Written notification of patent or utility model registration

Ref document number: 4987438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250