JP2008126678A - Non-contacting feeding system - Google Patents

Non-contacting feeding system Download PDF

Info

Publication number
JP2008126678A
JP2008126678A JP2006309905A JP2006309905A JP2008126678A JP 2008126678 A JP2008126678 A JP 2008126678A JP 2006309905 A JP2006309905 A JP 2006309905A JP 2006309905 A JP2006309905 A JP 2006309905A JP 2008126678 A JP2008126678 A JP 2008126678A
Authority
JP
Japan
Prior art keywords
support
power supply
power
receiving core
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006309905A
Other languages
Japanese (ja)
Inventor
Seiji Ozawa
誠司 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2006309905A priority Critical patent/JP2008126678A/en
Publication of JP2008126678A publication Critical patent/JP2008126678A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve feeding efficiency by allowing an air gap to be narrowed. <P>SOLUTION: Litz wire 2 is united with a non-magnetic supporting element 10 by a band 12 to be a feeding cable 14. Tension is added to the supporting element 10 to reduce sagging, and the cable 14 is inserted in a receiving core 16. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は搬送機器やロボットなどへ非接触給電を行うシステムに関し、特に給電効率の向上に関する。   The present invention relates to a system that performs non-contact power supply to a transfer device, a robot, and the like, and particularly relates to improvement of power supply efficiency.

クリーンルーム等で使用する搬送機器やロボットでは、発塵を避けるため非接触給電を行うことが知られている(例えば特許文献1)。図7に従来例での非接触給電システムの要部を示すと、2は給電線としてのリッツ線で、プラスチック等のホルダー4に支持され、受電コア6内を通るようにしてある。受電コア6は磁性体で構成され、例えば両側部7,7に図示しない受電コイルを巻き、エアギャップ8からホルダー4のアーム5を逃がすようにしてある。受電コア4に幅の広いエアギャップ8が存在すると、給電効率が低下する。エアギャップ8の幅は理想的には、リッツ線2からの磁界による磁気が飽和するのを防止できれば良く、アーム5の幅のエアギャップ8は幅が広すぎる。そこで発明者は、アーム5を用いずにリッツ線2を支持することを検討した。
特開2003−63613号
It is known that non-contact power feeding is performed in a transfer device or a robot used in a clean room or the like in order to avoid dust generation (for example, Patent Document 1). FIG. 7 shows a main part of the conventional non-contact power supply system. Reference numeral 2 denotes a litz wire as a power supply line, which is supported by a holder 4 made of plastic or the like and passes through the power receiving core 6. The power receiving core 6 is made of a magnetic material. For example, a power receiving coil (not shown) is wound around the side portions 7 and 7 so that the arm 5 of the holder 4 is released from the air gap 8. If there is a wide air gap 8 in the power receiving core 4, power supply efficiency is reduced. Ideally, the width of the air gap 8 only needs to prevent the magnetism due to the magnetic field from the litz wire 2 from being saturated, and the air gap 8 of the width of the arm 5 is too wide. Therefore, the inventor studied to support the litz wire 2 without using the arm 5.
JP 2003-63613 A

この発明の課題は、受電コアに大きなエアギャップを設ける必要性を解消し、非接触給電システムでの給電効率を改善することにある。
請求項2〜4の発明での追加の課題は、給電線の支持体の具体的な構成を提供することにある。
An object of the present invention is to eliminate the necessity of providing a large air gap in a power receiving core and to improve power supply efficiency in a non-contact power supply system.
The additional subject in the invention of Claims 2-4 is providing the specific structure of the support body of a feeder.

この発明は、給電線を受電コア内を通過させて非接触給電するシステムであって、給電を行う範囲内で前記給電線と平行に配置され、かつ該給電範囲の両外側で位置を固定された支持体により前記給電線を支持すると共に、給電線と支持体とを共に前記受電コア内を通るように配置し、かつ受電コアに設けたエアギャップの給電線の長手方向に沿った幅を、前記支持体並びに前記給電線のいずれよりも狭くしたことを特徴とする。   The present invention is a system for performing non-contact power feeding by passing a power supply line through a power receiving core, which is arranged in parallel with the power supply line within a range where power is supplied, and whose position is fixed on both outer sides of the power supply range. The power supply line is supported by the support body, and the power supply line and the support body are both disposed so as to pass through the power reception core, and the width along the longitudinal direction of the power supply line of the air gap provided in the power reception core is set. Further, the support body and the feeder line are narrower than the above.

好ましくは、前記支持体が絶縁性かつ非磁性である。
また好ましくは、前記給電線により給電範囲の両外側から、前記支持体に張力を加えることにより、給電線並びに支持体の垂下を制限する。
好ましくは、前記給電線と前記支持体とを1本のケーブルに組み込む。
Preferably, the support is insulating and nonmagnetic.
Preferably, the supply line and the support are suspended from each other by applying tension to the support from both outer sides of the power supply range.
Preferably, the power supply line and the support are incorporated in one cable.

この発明では、給電線を支持体で支持し、支持体は給電範囲の両外側で位置を固定して支持すればよい。このため給電線を支持するためのホルダーのアームが不要で、受電コアのエアギャップを狭くもしくは解消できる。エアギャップを狭くすると、給電線と受電コアの磁気結合を高めることができ、給電効率が向上する。   In the present invention, the power supply line is supported by the support, and the support may be supported by fixing the position on both outer sides of the power supply range. For this reason, the holder arm for supporting the power supply line is unnecessary, and the air gap of the power receiving core can be narrowed or eliminated. When the air gap is narrowed, the magnetic coupling between the power supply line and the power receiving core can be increased, and the power supply efficiency is improved.

支持体を絶縁性でかつ非磁性とすると、支持体での渦電流などによる電力損失を防止し、また支持体に磁界が閉じこめられて給電効率が低下することも防止できる。
さらに給電範囲の両外側から支持体に張力を加えると、支持体の垂下を防止できる。
また前記給電線と前記支持体とを1本のケーブルに組み込むと、給電線や支持体を一体化したケーブルを配設すれば良く、取り扱いが容易になる。
When the support is insulative and non-magnetic, power loss due to eddy current or the like in the support can be prevented, and power supply efficiency can be prevented from being reduced due to a magnetic field confined in the support.
Furthermore, when tension is applied to the support from both outer sides of the power supply range, the support can be prevented from drooping.
In addition, when the power supply line and the support are incorporated in one cable, a cable in which the power supply line and the support are integrated may be provided, and the handling becomes easy.

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図6に、実施例の非接触給電システムとその変形とを示す。各図において、2はリッツ線で、給電線の例であり、例えば銅の撚り線である。10は支持体で、例えばセラミックスや高強度のプラスチックなどで構成され、特に配向性の高い高靱性の結晶性プラスチック、すなわちいわゆるエンジニアリングプラスチックが適しており、その形状は丸棒状や角状、筒状など任意であり、重力による垂下に伴う変形を防止するためのリブなどを設けても良い。12はバンドで、支持体10とリッツ線2とを結合するために用い、リッツ線2を支持体10で支持させるのに必ずしもバンド12を用いる必要はなく、例えばリッツ線2を支持体10に融着したり、支持体10中にリッツ線の素線を分散させても良い。   1 to 6 show a non-contact power feeding system and a modification thereof according to the embodiment. In each figure, 2 is a litz wire, which is an example of a feeder line, for example, a copper stranded wire. Reference numeral 10 denotes a support, which is made of, for example, ceramics or high-strength plastic, and is particularly suitable for highly oriented high-toughness crystalline plastic, that is, so-called engineering plastic, which has a round bar shape, a square shape, or a cylindrical shape. A rib or the like may be provided to prevent deformation caused by drooping due to gravity. Reference numeral 12 denotes a band which is used to couple the support 10 and the litz wire 2, and it is not always necessary to use the band 12 to support the litz wire 2 with the support 10. For example, the litz wire 2 is attached to the support 10. It may be fused or litz wire may be dispersed in the support 10.

支持体10をプラスチックとする場合、アラミド樹脂などのエンジニアリングプラスチックが好ましく、引っ張り強度が高いプラスチックに大きな張力を加えることにより垂下を小さくする。これに対して支持体10をセラミックスとする場合、剛性が高いことを利用して垂下を小さくする。長尺状のセラミックスは製造が困難なので、例えば所定の長さ毎に支持体のユニットを設けて、互いに嵌め合わせて結合する。支持体10及びバンド12は共に絶縁性かつ非磁性、例えば絶縁性で反強磁性以外の反磁性とし、リッツ線2からの磁界による渦電流が生じず、また磁界を封じ込めることがないようにする。リッツ線2及び支持体10,バンド12を全体として給電ケーブル14と言う。ここでケーブルと呼ぶのは、リッツ線2が支持体10により覆われているというよりも、リッツ線2と支持体10並びにバンド12が複合化されていることに着目したものである。   When the support 10 is made of plastic, an engineering plastic such as an aramid resin is preferable, and the droop is reduced by applying a large tension to the plastic having a high tensile strength. On the other hand, when the support 10 is made of ceramics, the droop is reduced by utilizing the high rigidity. Since long ceramics are difficult to manufacture, for example, a unit of a support is provided for each predetermined length, and they are fitted and bonded together. The support 10 and the band 12 are both insulative and nonmagnetic, for example, insulative and diamagnetic other than antiferromagnetic, so that no eddy current is generated by the magnetic field from the litz wire 2 and no magnetic field is contained. . The litz wire 2, the support 10, and the band 12 are collectively referred to as a feeding cable 14. The term “cable” here refers to the fact that the litz wire 2, the support 10, and the band 12 are combined rather than the litz wire 2 being covered by the support 10.

受電コア16は筒状で、磁性体で構成され、例えばその両側面17,17に図示しない受電コイルを巻いて、リッツ線2からの磁界を利用して受電する。18はエアギャップで、その位置は受電コア16の上部に限らず、底部や側面などでもよく、リッツ線2からの磁界による磁気が受電コア16内で飽和するのを防止するために設ける。エアギャップ18の幅はリッツ線2の長手方向と直角な方向で、言い換えると受電コア16の幅方向や高さ方向で、給電ケーブル14の幅よりも狭く、より好ましくは支持体10の幅やリッツ線2の幅のいずれよりも狭くする。このためエアギャップ18は、受電コア16に磁気回路が形成されることを妨げず、給電効率を向上させる。   The power receiving core 16 is cylindrical and made of a magnetic material. For example, a power receiving coil (not shown) is wound around both side surfaces 17 and 17 of the power receiving core 16 to receive power using a magnetic field from the litz wire 2. Reference numeral 18 denotes an air gap, which is not limited to the upper part of the power receiving core 16 but may be the bottom or side surface, and is provided to prevent the magnetism due to the magnetic field from the litz wire 2 from being saturated in the power receiving core 16. The width of the air gap 18 is a direction perpendicular to the longitudinal direction of the litz wire 2, in other words, in the width direction or height direction of the power receiving core 16, which is narrower than the width of the power feeding cable 14, more preferably the width of the support 10. Narrower than any of the widths of the litz wire 2. For this reason, the air gap 18 does not prevent the magnetic circuit from being formed in the power receiving core 16 and improves the power feeding efficiency.

支持体の形状は図1のもの以外に種々のものが可能で、図2の給電ケーブル20では、芯線状の支持体24の周囲にリッツ線22を鞘状に配置している。図3の給電ケーブル30では、リッツ線32を芯線状に配置し、その周囲に支持体34を鞘状に配置している。給電ケーブルの形状は任意で、例えば棒状やパイプ状に成型したアラミド樹脂などの支持体の樹脂内にリッツ線の素線を分散させても良い。   The support body can have various shapes other than that shown in FIG. 1. In the power supply cable 20 shown in FIG. 2, the litz wire 22 is disposed around the core-like support body 24 in a sheath shape. In the power supply cable 30 of FIG. 3, the litz wire 32 is arranged in a core shape, and the support 34 is arranged in a sheath shape around the litz wire 32. The shape of the power feeding cable is arbitrary, and for example, the litz wire may be dispersed in a support resin such as an aramid resin molded into a rod shape or a pipe shape.

図4に、実施例の給電ケーブル14を用いて、スタッカークレーン42へ非接触給電するようにした例を示す。40,40は左右両端の支柱で、この範囲内でスタッカークレーン42は給電ケーブル14から給電を受け、支柱40,40間がスタッカークレーン42への給電範囲である。支柱40,40の外側で、リッツ線2と支持体10とを分離し、支持体10をアンカー41に固定し張力を加える。ここではリッツ線2と支持体10とを分離して、支持体10のみに張力を加えているが、これらを一体にしたままで張力を加えても良い。   FIG. 4 shows an example in which contactless power feeding is performed to the stacker crane 42 using the power feeding cable 14 of the embodiment. Reference numerals 40 and 40 denote struts on both the left and right sides. Within this range, the stacker crane 42 receives power from the power supply cable 14, and the space between the struts 40 and 40 is a power supply range to the stacker crane 42. The litz wire 2 and the support body 10 are separated outside the support columns 40, 40, the support body 10 is fixed to the anchor 41, and tension is applied. Here, the litz wire 2 and the support 10 are separated and tension is applied only to the support 10, but tension may be applied while these are integrated.

スタッカークレーン42にはマスト44を設けて、移載装置を備えた昇降台46を昇降させ、マスト44に沿って受電コア48を昇降させる。図5に受電コア48を示すと、その基本的な構造は図1の受電コア16と同様で、ベルト50に取り付けられて図示しないベルト駆動モータによりマスト44に沿って昇降する。52は高さ調整センサで、受電コア48の前後双方に設け、スタッカークレーン42の進行方向前方での給電ケーブル14の高さ変化を検出して、ベルト50により受電コア48を昇降させる。他の点では受電コア48は図1の受電コア16と同等である。   The stacker crane 42 is provided with a mast 44, and a lifting platform 46 having a transfer device is moved up and down, and the power receiving core 48 is moved up and down along the mast 44. When the power receiving core 48 is shown in FIG. 5, the basic structure is the same as that of the power receiving core 16 of FIG. 1. The power receiving core 48 is attached to the belt 50 and is moved up and down along the mast 44 by a belt drive motor (not shown). A height adjustment sensor 52 is provided on both the front and rear sides of the power receiving core 48, detects a change in the height of the power feeding cable 14 in front of the stacker crane 42 in the traveling direction, and moves the power receiving core 48 up and down by the belt 50. In other respects, the power receiving core 48 is equivalent to the power receiving core 16 of FIG.

図6に受電コアの高さ調整に関する変形例を示す。受電コア16の前後にアーム60,60を設けて、それぞれに絶縁性かつ非磁性のローラ61を配置して、給電ケーブル20を支持する。受電コア16はバネ62により上向きに付勢し、ガイド63の範囲で上下動自在にする。この結果、給電ケーブル20の垂下をバネ62により制限すると共に、受電コア16を給電ケーブル20の垂下に応じて上下動させる。ローラ61は給電ケーブル20と接触するが、この接触は転がり摩擦であり、大きな電流を安定して受電する場合ほど確実な接触である必要は無く、接触圧を小さくできる。従って発塵を比較的小さくできる。   FIG. 6 shows a modification regarding the height adjustment of the power receiving core. Arms 60 and 60 are provided before and after the power receiving core 16, and an insulating and nonmagnetic roller 61 is disposed on each of the arms 60 and 60 to support the power feeding cable 20. The power receiving core 16 is biased upward by a spring 62 so as to be movable up and down within the range of the guide 63. As a result, the drooping of the power feeding cable 20 is limited by the spring 62 and the power receiving core 16 is moved up and down according to the drooping of the power feeding cable 20. The roller 61 is in contact with the power supply cable 20, but this contact is rolling friction, and does not need to be as reliable as when a large current is stably received, and the contact pressure can be reduced. Therefore, dust generation can be made relatively small.

実施例では以下の効果が得られる。
(1) 受電コアのエアギャップを狭くできるので、給電効率を向上できる。
(2) 支持体に非磁性かつ絶縁性の材質を用いると、渦電流による損失や磁界の封じ込めが生じない。
(3) 給電範囲の両外側から給電ケーブルもしくは支持体に張力を加えると、垂下を制限できる。
(4) 支持体を高強度のプラスチック製とすると、大きな張力を加えることができ、垂下を相対的に小さくできる。
(5) 支持体を絶縁性かつ非磁性のセラミックスとすると、大きな剛性を持つため、垂下を小さくできる。
(6) スタッカークレーンなどの搬送装置やロボットの側に、受電コアの高さを給電ケーブルの垂下に応じて調整する機構を設けると、給電ケーブルの垂下に対応できる。
In the embodiment, the following effects can be obtained.
(1) Since the air gap of the power receiving core can be narrowed, the power feeding efficiency can be improved.
(2) If a nonmagnetic and insulating material is used for the support, loss due to eddy currents and magnetic field containment will not occur.
(3) Dripping can be restricted by applying tension to the power supply cable or support from both sides of the power supply range.
(4) If the support is made of high-strength plastic, a large tension can be applied and the droop can be made relatively small.
(5) If the support is made of insulating and non-magnetic ceramics, the droop can be reduced because of the large rigidity.
(6) If a mechanism for adjusting the height of the power receiving core according to the drooping of the feeding cable is provided on the side of the transfer device such as a stacker crane or the robot, the drooping of the feeding cable can be handled.

実施例の非接触給電システムでの、受電コアとリッツ線及び支持体を示す断面図Sectional drawing which shows a receiving core, a litz wire, and a support body in the non-contact electric power feeding system of an Example 変形例でのリッツ線と支持体を示す図The figure which shows the litz wire and the support body in the modification 第2の変形例でのリッツ線と支持体を示す図The figure which shows the litz wire and support body in a 2nd modification 実施例の非接触給電をスタッカークレーンに応用した例を示す図The figure which shows the example which applied the non-contact electric power feeding of an Example to a stacker crane 実施例での受電コアの昇降機構を示す図The figure which shows the raising / lowering mechanism of the receiving core in an Example 第3の変形例での給電ケーブルの高さ保持機構を示す図The figure which shows the height holding mechanism of the electric power feeding cable in a 3rd modification. 従来例での受電コアとリッツ線との断面図Sectional view of power receiving core and litz wire in the conventional example

符号の説明Explanation of symbols

2 リッツ線
4 ホルダー
5 アーム
6,16 受電コア
7,17 側部
8,18 エアギャップ
10 支持体
12 バンド
14 給電ケーブル
20,30 給電ケーブル
22,32 リッツ線
24,34 支持体
40 支柱
41 アンカー
42 スタッカークレーン
44 マスト
46 昇降台
48 受電コア
50 ベルト
52 高さ調整センサ
60 アーム
61 ローラ
62 バネ
63 ガイド
2 Litz wire 4 Holder 5 Arm 6, 16 Power receiving core 7, 17 Side portion 8, 18 Air gap 10 Support body 12 Band 14 Power supply cable 20, 30 Power supply cable 22, 32 Litz wire 24, 34 Support body 40 Strut 41 Anchor 42 Stacker crane 44 Mast 46 Lift platform 48 Power receiving core 50 Belt 52 Height adjustment sensor 60 Arm 61 Roller 62 Spring 63 Guide

Claims (4)

給電線を受電コア内を通過させて非接触給電するシステムであって、給電を行う範囲内で前記給電線と平行に配置され、かつ該給電範囲の両外側で位置を固定された支持体により前記給電線を支持すると共に、給電線と支持体とを共に前記受電コア内を通るように配置し、かつ受電コアに設けたエアギャップの給電線の長手方向に沿った幅を、前記支持体並びに前記給電線のいずれよりも狭くしたことを特徴とする、非接触給電システム。 A non-contact power supply system in which a power supply line passes through a power receiving core, and is arranged in parallel with the power supply line within a power supply range and fixed at positions outside the power supply range. The power supply line is supported, and both the power supply line and the support are disposed so as to pass through the power receiving core, and the width of the air gap provided in the power receiving core along the longitudinal direction of the power supply line is set to the support. And the non-contact electric power feeding system characterized by making it narrower than any of the said electric power feeding line. 前記支持体が絶縁性かつ非磁性であることを特徴とする、請求項1の非接触給電システム。 The contactless power feeding system according to claim 1, wherein the support is insulative and nonmagnetic. 前記給電線により前記給電範囲の両外側から、前記支持体に張力を加えることにより、給電線並びに支持体の垂下を制限するようにしたことを特徴とする、請求項1または2の非接触給電システム。 3. The non-contact power feeding according to claim 1 or 2, wherein the supply line and the support are suspended from each other by applying tension to the support from both outsides of the power feeding range by the power feeding line. system. 前記給電線と前記支持体とを1本のケーブルに組み込んだことを特徴とする、請求項1〜3のいずれかの非接触給電システム。
The non-contact power feeding system according to claim 1, wherein the power feeding line and the support are incorporated into one cable.
JP2006309905A 2006-11-16 2006-11-16 Non-contacting feeding system Pending JP2008126678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006309905A JP2008126678A (en) 2006-11-16 2006-11-16 Non-contacting feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309905A JP2008126678A (en) 2006-11-16 2006-11-16 Non-contacting feeding system

Publications (1)

Publication Number Publication Date
JP2008126678A true JP2008126678A (en) 2008-06-05

Family

ID=39552987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309905A Pending JP2008126678A (en) 2006-11-16 2006-11-16 Non-contacting feeding system

Country Status (1)

Country Link
JP (1) JP2008126678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018029548A (en) * 2016-08-25 2018-03-01 株式会社Adeka Salty taste reinforcing agent
JP2018029547A (en) * 2016-08-25 2018-03-01 株式会社Adeka Sodium chloride composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018029548A (en) * 2016-08-25 2018-03-01 株式会社Adeka Salty taste reinforcing agent
JP2018029547A (en) * 2016-08-25 2018-03-01 株式会社Adeka Sodium chloride composition

Similar Documents

Publication Publication Date Title
WO2015008600A1 (en) Movement mechanism
TW201801443A (en) Device for the contact-free transfer of electrical energy into a moving system of a shifting device
KR101727785B1 (en) Device for inductive energy transfer
JP2006136197A (en) Contactless power feeding type run truck
US20180056463A1 (en) Transfer robot
CN109906537B (en) Inductive power transfer system
JP2011144016A (en) Feeder system and crane system
TW201410568A (en) Conveying apparatus
US9026269B2 (en) System and method for providing wireless power and control signals to a trolley
JP2008126678A (en) Non-contacting feeding system
JP5857204B2 (en) Non-contact power feeding device
US10611263B2 (en) Wireless power supply apparatus
JP2002078103A (en) Non-contact power feeder pickup, carrier and carrier system
JP2002064025A (en) Feeder for non-contact feeding and carrier system
JP2013046439A (en) Non-contact power supply system and power reception device mounted on electric apparatus
CN109545500A (en) Device and method for the component demagnetization to elongated composition
JP2015079822A (en) Non-contact power supply
KR102380467B1 (en) storage device
CN205441996U (en) Magnetic core of transformer transfer device
TW201924184A (en) Non-contact power supply facility
KR101157391B1 (en) Apparatus for Feeding/Collecting Power Having Minimal Airgap
JP2010260134A (en) Method of supplying power and transmitting signal to transfer machine
KR20190001222U (en) carriage system based on wireless electric power supply by use of high frequency track cable
JP5879487B2 (en) Contactless power supply
JP2018074855A (en) Non-contact power transmission device