JP2008125515A - Method for producing germination differentiated plant seed, food containing easily water-soluble polyphenol and/or antioxidation substance of germination differentiated plant seed, and apparatus for germination differentiation of plant seed - Google Patents

Method for producing germination differentiated plant seed, food containing easily water-soluble polyphenol and/or antioxidation substance of germination differentiated plant seed, and apparatus for germination differentiation of plant seed Download PDF

Info

Publication number
JP2008125515A
JP2008125515A JP2007292728A JP2007292728A JP2008125515A JP 2008125515 A JP2008125515 A JP 2008125515A JP 2007292728 A JP2007292728 A JP 2007292728A JP 2007292728 A JP2007292728 A JP 2007292728A JP 2008125515 A JP2008125515 A JP 2008125515A
Authority
JP
Japan
Prior art keywords
germination
seeds
water
temperature
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007292728A
Other languages
Japanese (ja)
Other versions
JP5722518B2 (en
Inventor
Koji Ochiai
孝次 落合
Nobuko Ueda
暢子 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDIVI WINE USA LLC
Original Assignee
INDIVI WINE USA LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/603,604 external-priority patent/US20080003314A1/en
Priority claimed from US11/849,213 external-priority patent/US8756861B2/en
Application filed by INDIVI WINE USA LLC filed Critical INDIVI WINE USA LLC
Publication of JP2008125515A publication Critical patent/JP2008125515A/en
Application granted granted Critical
Publication of JP5722518B2 publication Critical patent/JP5722518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pretreatment Of Seeds And Plants (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cereal-Derived Products (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a germination differentiated seed, having increased contents of easily water-soluble polyphenols and antioxidation substances, food containing easily water-soluble polyphenols and/or antioxidation substances of the germination differentiation plant seed, and to provide a method for producing the food. <P>SOLUTION: The germination of a seed is induced within a selected temperature range. The germination induction is carried out, in an atmosphere having elevated carbon dioxide concentration and/or a reduced oxygen concentration. The easily water-soluble polyphenols can be extracted from an aqueous solution, without having to use organic solvent, such as alcohol, by irradiating the seed to light. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、易水溶性ポリフェノールや抗酸化物質が増加した発芽分化種子、発芽分化植物種子の易水溶性ポリフェノール及び/又は抗酸化物質を含む食品及びその製造方法に関するものである。本発明によれば、食品原料、化粧品原料又は医薬品原料として有用な易水溶性ポリフェノールを多量に含む発芽分化種子を製造することが可能であり、その種子から容易に易水溶性ポリフェノールを抽出することができる。   TECHNICAL FIELD The present invention relates to germinated and differentiated seeds with increased readily water-soluble polyphenols and antioxidants, germinated and differentiated plant seeds containing easily water-soluble polyphenols and / or antioxidants, and a method for producing the same. According to the present invention, it is possible to produce germinated and differentiated seeds containing a large amount of easily water-soluble polyphenols useful as food ingredients, cosmetic ingredients or pharmaceutical ingredients, and easily extract readily water-soluble polyphenols from the seeds. Can do.

植物体に含まれるポリフェノールは、分子内にフェノール性ヒドロキシ基を有する植物成分の総称であり、ほとんど全ての植物に含まれており、その数は5,000種以上に及んでいる。ポリフェノールは、フラボノイド系、フェノール酸系、エラグ酸系、リグナン系、クルクミン系、クマリン系、プロシアニン系、コーヒー酸系などに大別され、種々の生理活性、例えば、ラジカル消去能力や抗酸化作用を有している。具体的な生理活性機能としては、抗変異原性作用、抗癌作用、血圧上昇の抑制、抗糖尿病作用、抗アレルギーなどの機能をもつことが報告されている(Wine chemistry Yair Margalit The Wine Appreciation Guild 1997 Ca San Francisco)。そのため、ポリフェノールの適量の摂取は、健康によいと考えられており、従来から多くの食品、健康食品、医薬品あるいは化粧品に用いられている。
特開2001−158739号公報
The polyphenol contained in a plant body is a general term for plant components having a phenolic hydroxy group in the molecule, and is contained in almost all plants, and the number thereof reaches 5,000 or more. Polyphenols are broadly classified into flavonoids, phenolic acids, ellagic acids, lignans, curcumins, coumarins, procyanines, caffeic acids, and various physiological activities such as radical scavenging ability and antioxidant activity. have. Specific bioactive functions have been reported to have functions such as antimutagenic action, anticancer action, suppression of blood pressure increase, antidiabetic action, and antiallergy (Wine chemistry Yair Margalit The Wine Appreciation Guide). 1997 Ca San Francisco). For this reason, taking an appropriate amount of polyphenols is considered to be good for health, and has been conventionally used in many foods, health foods, pharmaceuticals and cosmetics.
JP 2001-158739 A

このポリフェノールは、易水溶性のポリフェノールとして植物体に存在するものもあるが、難水溶性のアグリコンとして植物体に含まれるものも多い。特に植物の種子に含まれるポリフェノールは、難水溶性のポリフェノールが多く、このようなポリフェノールを植物体から抽出する場合、水やアルコールを含まない緩衝液では抽出することが困難であり、特許文献1のようにアルコールを含む抽出液を用いなければならなかった
また、難水溶性のポリフェノールは、水溶液の状態で利用することができないため、その利用範囲は比較的限定される傾向にあった。例えば、化粧品として利用する場合においてこれをクリームに含有させることはできても、アルコール無添加の化粧水には含有させられなかった。更に、健康食品等に含有させ経口で利用される場合も、一般に易水溶性のポリフェノールと比較して、難水溶性ポリフェノールは吸収されにくいため、十分効果が発揮できないことも考えられた。従って、実際に食品等にポリフェノールが含まれていても、それが難水溶性ポリフェノールである場合は、吸収が悪く十分な効果が得られないと考えられた。
そのため健康食品、化粧品等に使用する有用な易水溶性ポリフェノールを多量に含む発芽分化種子を製造し、その種子から容易に易水溶性ポリフェノールを抽出することができる方法や製法の必要があった。
Some of these polyphenols are present in plants as water-soluble polyphenols, but many are included in plants as poorly water-soluble aglycones. In particular, polyphenols contained in plant seeds are mostly poorly water-soluble polyphenols, and when extracting such polyphenols from plants, it is difficult to extract with a buffer solution that does not contain water or alcohol. In addition, an extract containing alcohol had to be used as described above. Further, since a poorly water-soluble polyphenol cannot be used in the state of an aqueous solution, its range of use tended to be relatively limited. For example, when it is used as a cosmetic, it can be contained in a cream, but it is not contained in a lotion free of alcohol. Furthermore, even when contained in health foods orally and used orally, generally, poorly water-soluble polyphenols are less likely to be absorbed as compared to readily water-soluble polyphenols, so that it has been considered that the effect cannot be sufficiently exerted. Therefore, even if polyphenols are actually contained in food or the like, if they are poorly water-soluble polyphenols, it is considered that sufficient effects cannot be obtained due to poor absorption.
Therefore, there is a need for a method and a production method that can produce germinated and differentiated seeds containing a large amount of useful water-soluble polyphenols useful for health foods, cosmetics, and the like, and can easily extract water-soluble polyphenols from the seeds.

本発明は発芽可能な植物の種子に、実質的に2000ppm以上の二酸化炭素濃度及び/又は実質的に18容量%以下の酸素濃度の雰囲気条件での保持、発芽温度条件での保持を実施する、易水溶性ポリフェノールが増加した発芽分化種子の製造方法である。植物種子は水の噴霧や散水、もしくはその他の方法で水をかける事により含水される。含水は発芽誘導工程の前及び/又は発芽中に行われる。さらに、前記発芽誘導工程の前に、植物の種子に加熱する工程を含む、易水溶性ポリフェノールが増加した発芽分化種子の製造方法である。前記発芽誘導工程が、更に光の照射を行う発芽誘導工程である。詳細には前記光の照射が1日当たり5000ルクス以上で2時間以上であることが好ましい。
前記発芽誘導工程において、前記雰囲気条件の二酸化炭素濃度が2,000ppm以上50,000ppm以下で、発芽誘導工程時間の60%以上断続的に保持することが好ましい。
The present invention performs germination plant seed retention under atmospheric conditions of carbon dioxide concentration of substantially 2000 ppm or more and / or oxygen concentration of substantially 18% by volume or less, and retention under germination temperature conditions. This is a method for producing germinated and differentiated seeds with increased readily water-soluble polyphenols. Plant seeds are hydrated by spraying water, sprinkling water, or other methods. The hydration is performed before the germination induction step and / or during germination. Furthermore, before the said germination induction | guidance | derivation process, it is the manufacturing method of the germination differentiation seed which the water-soluble polyphenol increased including the process of heating to the seed of a plant. The said germination induction process is a germination induction process which further irradiates light. Specifically, the light irradiation is preferably 5000 lux or more per day and 2 hours or more.
In the germination induction step, it is preferable that the carbon dioxide concentration in the atmospheric condition is 2,000 ppm or more and 50,000 ppm or less and is intermittently maintained for 60% or more of the germination induction step time.

前記発芽誘導工程において、前記雰囲気条件の酸素濃度が4容量%以上18容量%以下で、発芽誘導工程時間の60%以上断続的に保持することが好ましい。前記発芽誘導工程において、前記発芽温度が20℃〜45℃であることが好ましい。前記加熱の温度が発芽適温の中央値の5℃以上30℃以下であることが好ましい。前記発芽誘導工程が、種子を堆積させて行う発芽誘導工程であり、発芽温度条件での保持を発芽熱による温度上昇及び散水による温度低下を利用して行なうことが好ましい。
本発明は発芽可能な植物の種子に、実質的に2000ppm以上の二酸化炭素濃度及び/又は実質的に18容量%以下の酸素濃度の雰囲気条件での保持、20℃〜45℃の温度条件での保持を行うことで得られる、易水溶性ポリフェノール及び/又は抗酸化物質を含む食品原料に関するものである。植物種子は含水及び/又は光の照射を行う発芽誘導工程である。前記光の照射が1日当たり5000ルクス以上で2時間以上であることが好ましい。前記加熱の温度が発芽適温の中央値の5℃以上30℃以下で維持されることが好ましい。
In the germination induction step, it is preferable that the oxygen concentration in the atmospheric condition is 4% by volume or more and 18% by volume or less, and is intermittently maintained for 60% or more of the germination induction step time. In the germination induction step, the germination temperature is preferably 20 ° C to 45 ° C. The heating temperature is preferably 5 ° C. or higher and 30 ° C. or lower, which is the median temperature for germination. The germination induction step is a germination induction step performed by depositing seeds, and it is preferable to perform retention under the germination temperature condition by utilizing a temperature increase due to germination heat and a temperature decrease due to watering.
The present invention provides the seeds of germinable plants with a carbon dioxide concentration of 2000 ppm or more and / or an oxygen concentration of 18% by volume or less in an atmospheric condition, and a temperature condition of 20 ° C. to 45 ° C. The present invention relates to a food material containing a readily water-soluble polyphenol and / or antioxidant obtained by holding. Plant seeds are a germination induction process in which water is contained and / or light is irradiated. The light irradiation is preferably 5000 lux or more per day and 2 hours or more. It is preferable that the heating temperature is maintained at 5 ° C. or higher and 30 ° C. or lower, which is the median temperature for germination.

食品はポリフェノールを含有する植物種子由来の易水溶性抽出物を含む。食品は植物種子を含む。食品に含まれる植物種子は、植物種子1グラムあたり最低1ミリグラムの易水溶性ポリフェノール混合物を含むことが好ましい。植物種子1グラムあたり最低2ミリグラムの易水溶性ポリフェノールを含むことが好ましい。さらに、植物種子は植物種子1グラムあたり最低40μmol DPPH相当の抗酸化物質を含み、未発芽種子と比較して最低8倍以上の易水溶性ポリフェノール量を有し、基本的にブドウ科の植物種子からなることが好ましい。
本発明の他の様態として、易水溶性ポリフェノール量が増加した植物種子を発芽する装置がある。この装置は実質的に2000ppm以上の二酸化炭素濃度及び/又は実質的に18容量%以下の酸素濃度の雰囲気条件での保持を行う手段をもつ。この装置はさらに植物種子を発芽温度範囲内に保持する手段、また植物種子を含水させる手段をもつ。またさらにこの装置は植物種子を1日あたり5000ルクス以上で2時間以上光を照射する光源を有することが好ましい。
The food contains an easily water-soluble extract derived from plant seeds containing polyphenols. The food includes plant seeds. The plant seeds contained in the food preferably contain at least 1 milligram of a readily water-soluble polyphenol mixture per gram of plant seeds. Preferably, it contains at least 2 milligrams of readily water-soluble polyphenol per gram of plant seed. Furthermore, plant seeds contain an antioxidant equivalent to at least 40 μmol DPPH per gram of plant seeds, have a water-soluble polyphenol content of at least 8 times that of ungerminated seeds, and are basically grape plant seeds. Preferably it consists of.
As another aspect of the present invention, there is an apparatus for germinating plant seeds having an increased amount of water-soluble polyphenol. This apparatus has means for holding at atmospheric conditions of carbon dioxide concentration of substantially 2000 ppm or more and / or oxygen concentration of substantially 18% by volume or less. The apparatus further has means for keeping the plant seeds within the germination temperature range and means for hydrating the plant seeds. Furthermore, it is preferable that this apparatus has a light source that irradiates the plant seed with light at 5000 lux or more for 2 hours or more per day.

本発明は発芽分化種子の易水溶性ポリフェノール量を増加させるシステムと方法に関するものである。実施例によれば、発芽可能な植物種子を、実質的に2000ppm以上の二酸化炭素濃度及び/又は実質的に18容量%以下の酸素濃度の雰囲気条件での保持、発芽温度条件での保持、並びに散水を行うことで発芽工程を誘導するためのシステムおよび方法が提供される。
様々な要素を説明するのに最初の、2番目の等の語を用いるが、これは要素を区別するものであり、限定するものではない。例えば最初の要素が2番目の要素と表現されることがあり、同様に2番目の要素が最初の要素と表現されることもあるが、発明の範囲を逸脱するものではない。「及び/又は」という語は記載されたもののいずれかや全てを単独もしくは組み合わせたものを含む。
The present invention relates to a system and method for increasing the amount of water-soluble polyphenols in germinated and differentiated seeds. According to the examples, germinable plant seeds are maintained under atmospheric conditions of carbon dioxide concentration of substantially 2000 ppm or higher and / or oxygen concentration of substantially 18% by volume or lower, holding at germination temperature conditions, and Systems and methods are provided for inducing the germination process by performing watering.
The first, second, etc. terms are used to describe the various elements, but this is to distinguish the elements and not to limit them. For example, the first element may be expressed as the second element, and similarly the second element may be expressed as the first element, but this does not depart from the scope of the invention. The term “and / or” includes any and all of the listed items, alone or in combination.

以下の詳細な説明では具体的な実施例に添付された図について述べる。前述の図は特定の例として発明を説明するものであり、これを限定するものではない。これらの実施は詳細に説明されており、当業者の実施を可能としている。その他の様々な実施例や実施も本発明の原則と一致している。他の実施例や実施を用いてもよく、本発明の精神と範囲から逸脱しない限り、様々な要素に対して構造の変化及び/又は代替を行ってもよい。従って以下の詳細な説明は狭義で解釈するものではない。
ポリフェノールとは、同一分子内にフェノール性ヒドロキシ基2つ以上をもつ植物由来の化合物であり、フラボノイド系、フェニルカルボン酸系、エラグ酸系、リグナン系、クルクミン系、クマリン系、プロシアニン系、コーヒー酸系などに分けられ、5,000種以上のポリフェノールがある。例えば、カテキン、タンニン、アントシアニン、プロアントシアニン、ケルセチン、イソフラボン、ルチン、クロロゲン酸、カカオマスポリフェノール、キサントンなどが挙げられる。これらのポリフェノールを含む植物の種子としては、カテキンを多く含有する種子としては、お茶、リンゴ、ブルーベリー、レンコンなどが、タンニンを多く含有する種子としては、お茶、カキ、バナナ、ブドウなどが、アントシアニン、プロアントシアニンを多く含有する種子としては、ブドウ、リンゴ、ブルーベリーなどが、ケルセチンを多く含有する種子としては、玉ねぎ、ほうれん草、ブロッコリー、春菊などが、イソフラボンを多く含有する種子としては、大豆、クローバーなどが、ルチンを多く含有する種子としては、ソバが、クロロゲン酸を多く含有する種子としては、ジャガイモ、プルーン、春菊などが、カカオマスポリフェノールを多く含有する種子としては、カカオ、コーヒーなどが、キサントンを多く含有する種子としては、マンゴスティーンなどが挙げられる。
In the following detailed description, reference is made to the drawings that accompany the specific examples. The foregoing drawings are illustrative of the invention as a specific example and are not intended to be limiting. These implementations have been described in detail and enable one skilled in the art to do so. Various other embodiments and implementations are also consistent with the principles of the present invention. Other embodiments and implementations may be used, and structural changes and / or substitutions may be made to various elements without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be construed in a narrow sense.
A polyphenol is a plant-derived compound having two or more phenolic hydroxy groups in the same molecule. Flavonoids, phenylcarboxylic acids, ellagic acids, lignans, curcumins, coumarins, procyanines, coffee There are 5,000 or more types of polyphenols, which are divided into acid types. Examples include catechin, tannin, anthocyanin, proanthocyanin, quercetin, isoflavone, rutin, chlorogenic acid, cacao mass polyphenol, and xanthone. Plant seeds containing these polyphenols include teas, apples, blueberries, lotus roots, etc. as seeds containing a large amount of catechins, and teas, oysters, bananas, grapes, etc. as seeds containing a large amount of tannins. The seeds rich in proanthocyanins are grapes, apples, blueberries, etc. The seeds rich in quercetin are onions, spinach, broccoli, spring chrysanthemum, and the seeds rich in isoflavones are soybeans, clover. As seeds rich in rutin, buckwheat, potato, prunes, spring chrysanthemum, etc. as seeds rich in chlorogenic acid, cacao, coffee, etc. as seeds rich in cocoa mass polyphenols, xanthone With high seed content and Te, such as Mangosteen, and the like.

本発明者らは、植物体から易水溶性のポリフェノールを安定的に取得するための方法について、鋭意研究した結果、植物の種子が発芽分化した場合に、易水溶性のポリフェノールが増加することを見出した(米国特許出願 11/246,442)。更に、発芽誘導前の加熱処理、及び発芽分化誘導時に、酸素濃度及び/又は二酸化炭素濃度、並びに発芽温度を調整することにより、発芽分化種子に含有される易水溶性のポリフェノールの量が顕著に増加することを見出した。本発明はこうした知見に基づくものである。特に、実質的に2000ppm以上の二酸化炭素濃度及び/又は実質的に18容量%以下の酸素濃度の雰囲気条件で種子を発芽分化させることで、発芽分化種子内の易水溶性ポリフェノール量が増加することがみつかった。
本明細書中の易水溶性ポリフェノールとは、アルコールなどの有機溶媒を含まない緩衝液又は水で容易に抽出されるポリフェノールであれば、特に限定されるものではない。例えば、植物の種子に多く含まれるアグリコンである難水溶性のポリフェノールに糖が付加した配糖体のポリフェノールの多くは易水溶性ポリフェノールとなる。具体的には、配糖体フラボノイドであるルチン、ダイジン、ナリンギン、及びヘスペリジンなどは易水溶性のポリフェノールである。また、代表的なポリフェノールのアントシアニジンは難水溶性であるが、アントシアニジンをアグリコンとする配糖体であるアントシアニンは易水溶性ポリフェノールである。また、ブドウ種子に多く含まれるプロアントシアニジンの配糖体である配糖体プロアントシアニジンも易水溶性のポリフェノールである。
As a result of intensive research on a method for stably obtaining a water-soluble polyphenol from a plant body, the present inventors have found that when a plant seed germinates, the water-soluble polyphenol increases. (US patent application 11 / 246,442). Furthermore, by adjusting the oxygen concentration and / or carbon dioxide concentration and germination temperature at the time of heat treatment before germination induction and germination differentiation induction, the amount of water-soluble polyphenols contained in germinated and differentiated seeds is remarkably increased. Found to increase. The present invention is based on these findings. In particular, the amount of water-soluble polyphenols in germinated and differentiated seeds is increased by germinating and seeding seeds under atmospheric conditions of carbon dioxide concentration of 2000 ppm or more and / or oxygen concentration of substantially 18% by volume or less. I found it.
The easily water-soluble polyphenol in the present specification is not particularly limited as long as it is a polyphenol that is easily extracted with a buffer solution or water that does not contain an organic solvent such as alcohol. For example, most of glycoside polyphenols obtained by adding sugar to poorly water-soluble polyphenols, which are aglycones contained in large amounts in plant seeds, are readily water-soluble polyphenols. Specifically, glycoside flavonoids such as rutin, daidzin, naringin and hesperidin are readily water-soluble polyphenols. A typical polyphenol, anthocyanidin, is sparingly water-soluble, but anthocyanin, which is a glycoside having anthocyanidin as an aglycone, is a water-soluble polyphenol. In addition, glycoside proanthocyanidins, which are glycosides of proanthocyanidins contained in a large amount in grape seeds, are also readily water-soluble polyphenols.

本発明方法に使用される植物の種子は、発芽分化により易水溶性ポリフェノールが、増加する種子であれば特に限定されない。多くの種子は脂溶性のアグリコンである難水溶性ポリフェノールを含んでいる。これらのアグリコンは、糖が付加された配糖体となることにより、易水溶性のポリフェノールとなる。発芽分化により易水溶性のポリフェノールが増加する種子としては、ブドウ科のブドウなど、キク科のサンフラワー、サフラワー、及びゴボウなど、マメ科のクローバー、ピーナツ、及びコロハなど、十字花科(アブラナ科)のブラシカなど、ゴマ科のゴマなど、シソ科のエゴマ、アマニ、シソ、ローズマリー、タイム、セージ、及びミントなど、タデ科のソバなど、イネ科の米、コーン、小麦、ワイルドライス、大麦、アワ、及びヒエなど、バラ科のアメリカンレッドチェリー、アプリコット、アーモンド、プラム、イチゴ、及びビワなど、ミカン科のグレープフルーツ、及びオレンジなど、オトギリソウ科のセントジョンズワート、及びマンゴスティーンなど、ナス科のトマト、及びピーマンなど、セリ科のニンジンなど、ウルシ科のマンゴなど、ザクロ科のザクロ、タデ科のイタドリ、アオギリ科のカカオなど、カラタチ科、イチョウ科、クワ科、タデ科、ツバキ科、モクセイ科、及びヒイラギ科の種子などを挙げることができる。   The seeds of the plant used in the method of the present invention are not particularly limited as long as the easily water-soluble polyphenol is increased by germination and differentiation. Many seeds contain poorly water-soluble polyphenols, which are fat-soluble aglycones. These aglycones become easily water-soluble polyphenols by becoming glycosides to which sugar is added. Seeds that increase water-soluble polyphenols by germination and differentiation include vines such as grapes, asteraceae sunflowers, safflowers, and burdock, and legumes such as clover, peanuts, and fenugreek. Family) such as sesame, sesame, sesame, linseed, perilla, rosemary, thyme, sage, and mint, soda buckwheat, rice, corn, wheat, wild rice, American red cherries in the family Rosaceae such as barley, millet, and millet, apricots, almonds, plums, strawberries, and loquats, grapefruits in citrus, oranges, St. John's wort in Hypericaceae, and eggplants such as mangosteen Tomatoes and green peppers, such as carrots from the celery family, Gore, such as pomegranate Department of pomegranate, polygonaceae of Japanese knotweed, such as cocoa of Sterculiaceae, trifoliate orange family, the ginkgo family, mention may be made of mulberry family, polygonaceae, camellia family, Oleaceae, and holly Department of seeds, and the like.

本発明の方法により、植物種子中に易水溶性のポリフェノールが高濃度に増加する理由は、完全に解明されているわけではないが、以下のように推論することができる。しかしながら、本発明は以下の説明によって限定されるものではない。
植物の種子中の難水溶性のポリフェノールは、発芽分化により易水溶性のポリフェノール、例えば、配糖体ポリフェノールへと変換される。この難水溶性ポリフェオールから配糖体ポリフェノールへの変換は、酵素反応などを介して起こると考えられるが、更に発芽分化が進むと蓄積した易水溶性ポリフェノールが発芽分化のために使用され、減少する。易水溶性ポリフェノールは種子の呼吸により消費されると考えられる。二酸化炭素濃度及び/又は酸素濃度をコントロールすることにより、種子の呼吸を抑制し、易水溶性ポリフェノールの消費を抑え、種子中の易水溶性ポリフェノール濃度を上昇させることができると考えられる。
しかしながら、本発明の作用は単純に呼吸作用が抑制されるだけでなく、二酸化炭素濃度の低下による種子中のpHの低下、発芽温度の変化による種子内の酵素反応の活性化、光の照射による影響なども、難水溶性ポリフェオールから配糖体ポリフェノールへの変換、及び易水溶性ポリフェノールの蓄積に影響していると考えられる。もちろん、これらの仮説により実施例が限定されるものではなく、また装置に関する特定の仮設または理論に依存、もしくは限定されるものではない。
The reason why the water-soluble polyphenol is increased to a high concentration in the plant seed by the method of the present invention is not completely elucidated, but can be inferred as follows. However, the present invention is not limited by the following description.
The poorly water-soluble polyphenols in the plant seeds are converted into easily water-soluble polyphenols such as glycoside polyphenols by germination differentiation. This conversion of poorly water-soluble polyphenols to glycoside polyphenols is thought to occur via enzymatic reactions, etc., but as germination and differentiation proceed, accumulated water-soluble polyphenols are used for germination and differentiation. To do. Easily water-soluble polyphenols are thought to be consumed by seed respiration. By controlling the carbon dioxide concentration and / or the oxygen concentration, it is considered that the respiration of the seed can be suppressed, the consumption of the water-soluble polyphenol can be suppressed, and the water-soluble polyphenol concentration in the seed can be increased.
However, the action of the present invention not only suppresses the respiratory action, but also lowers the pH in the seed by lowering the carbon dioxide concentration, activates the enzyme reaction in the seed by changing the germination temperature, and by light irradiation. The influence and the like are also considered to affect the conversion of the poorly water-soluble polyphenol to the glycoside polyphenol and the accumulation of the water-soluble polyphenol. Of course, these hypotheses do not limit embodiments, nor are they dependent on or limited to any particular hypothesis or theory relating to the device.

本発明の易水溶性ポリフェノールの増加方法に使用する植物の種子は、発芽可能な状態の種子を使用する。発芽可能な植物の種子とは、「休眠状態」でない種子である。例えば、9〜12%の含水率である植物種子は休眠状態であると考えられる。
本発明方法の加熱は、前記のように含水と同時に行なうことも可能であるが、単独の工程として行なうこともできる。植物の種子を休眠状態から発芽可能な状態にするには、具体的には、種子を加熱すること、又は含水させることによって発芽可能な状態にすることができる。しかし、特に特別な前処理を行なわずに、発芽誘導工程中の散水により、種子の含水率が上昇し、発芽可能な状態の種子にすることが可能である。
加熱および含水を組み合わせることが特に有効である。加熱および含水を組み合わせることで発芽可能な状態になった種子は、加熱もしくは含水のいずれかのみを行って発芽可能となった場合の種子と比較して一般的に易水溶性ポリフェノール量が大きい。加熱はまた発芽を促進する。さらに、種子は加熱を行わなくても含水のみで発芽可能な状態にする事が可能であるが、種子の加熱と含水を同時に行うことで発芽率が上昇する。加熱及び含水を同時に行なう場合は、例えば、加熱した水に種子を一定時間浸漬することによって行なうことができる。
種子は特別な前処理を行わなくても、発芽可能温度の範囲内の水を散水することで発芽可能な状態となる。
植物種子は発芽可能温度の範囲で加熱することで発芽可能な状態となり、ポリフェノール量が増加する。本実施例では種子の温度は発芽適温以上かつ、植物種子内のたんぱく質を変性させない温度で保持される。それぞれの発芽適温の中央値より、5℃〜30℃高い温度で加熱することが好ましい。
植物の種子を加熱する加熱温度は、植物種子の発芽適温よりも高い温度領域が好ましい。植物種子の発芽適温は、植物によって異なるが、10℃〜45℃、好ましくは、20℃〜40℃である。例えば、ブドウの種子の発芽適温は20℃〜35℃、リョクトウの発芽適温は20℃〜35℃、ダイコンの発芽適温は18℃〜30℃、及びダイズの発芽適温は10℃〜30℃である。ブドウやリョクトウの発芽適温の中央値は約28℃であり、ダイコンの発芽適温の中央値は24℃であり、ダイズの発芽適温の中央値は20℃である。
The seed of the plant used for the method for increasing the readily water-soluble polyphenol of the present invention is a germinable seed. Germinated plant seeds are seeds that are not "dormant". For example, plant seeds with a moisture content of 9-12% are considered dormant.
The heating of the method of the present invention can be performed simultaneously with water as described above, but can also be performed as a single step. In order to change the seeds of a plant from a dormant state to a germinable state, specifically, the seeds can be brought into a germinable state by heating or containing water. However, without performing any special pretreatment, the water content of the seeds can be increased by watering during the germination induction process, so that the seeds can be germinated.
It is particularly effective to combine heating and hydration. Seeds that have become germinable by combining heating and water content generally have a higher water-soluble polyphenol content than seeds that can be germinated only by heating or water content. Heating also promotes germination. Furthermore, seeds can be made to germinate only with water without heating, but the germination rate increases by simultaneously heating the seeds and water. When heating and hydration are simultaneously performed, for example, the seed can be immersed in heated water for a certain period of time.
Even if the seed is not subjected to special pretreatment, it can be germinated by spraying water within the range of germinable temperature.
Plant seeds are allowed to germinate by heating in the range of germinable temperature, and the amount of polyphenol increases. In this embodiment, the temperature of the seed is maintained at a temperature that is not less than the appropriate temperature for germination and does not denature the protein in the plant seed. It is preferable to heat at a temperature 5 to 30 ° C. higher than the median temperature of each germination.
The heating temperature for heating the plant seeds is preferably in a temperature range higher than the plant germination optimum temperature. Although the optimal temperature for germination of plant seeds varies depending on the plant, it is 10 ° C to 45 ° C, preferably 20 ° C to 40 ° C. For example, the optimal temperature for germination of grape seeds is 20 ° C to 35 ° C, the optimal temperature for germination of mungbean is 20 ° C to 35 ° C, the optimal temperature for germination of radish is 18 ° C to 30 ° C, and the optimal temperature for germination of soybean is 10 ° C to 30 ° C. . The median appropriate temperature for germination of grapes and mungbean is about 28 ° C., the median optimal temperature for germination of radish is 24 ° C., and the median optimal temperature for germination of soybean is 20 ° C.

温度は高い方が易水溶性ポリフェノール量が増加する。これは植物種子内のある種のたんぱく質に関連していると考えられる。これらのたんぱく質はポリフェノールとの親和性があると考えられる。ポリフェノールとの競合的な反応があるため、目的とする易水溶性物資に必要なポリフェノール量を減少させるものと予測される。
発芽適温より5℃以内の温度上昇は、易水溶性ポリフェノールの生成を促進する発芽分化反応にほとんど影響を与えない。しかし5℃程度のわずかな温度上昇でも易水溶性ポリフェノールの生成量が増加する事が確認された。一つの仮説として、この生成量の増加はタンパク質の変性を促進することが原因の一部と考えられる。タンパク質量の減少が、易水溶性ポリフェノールの生成量を減少させる競合的な反応を妨げたり抑制したりすると考えられる。これが開示された工程の含水や温度の効果を説明するものである可能性はあるが、ここに開示された工程、原則や実施例はこの説明やその他の理論に依存するものではない。
発芽適温の中央値より5から20℃高い加熱温度を選択した。具体的には、ブドウやリョクトウの場合は、33℃〜48℃で、ダイズの場合は、25℃〜50℃で加熱することが好ましい。
本発明の製造方法における含水は、前記の加熱と同時に行なうことも可能であるが、単独で行なうこともできる。更に、後述の発芽分化工程において、散水によって植物種子に含水させることも可能である。前記の加熱によってブドウ種子は休眠状態から発芽分化状態に移行し、発芽分化の開始に伴って植物種子は大量に水分を吸収することとなるからである。
The higher the temperature, the more easily the water-soluble polyphenol. This is thought to be related to certain proteins in plant seeds. These proteins are thought to have an affinity for polyphenols. Since there is a competitive reaction with polyphenols, it is expected to reduce the amount of polyphenols required for the desired readily water-soluble materials.
An increase in temperature within 5 ° C. from the optimum germination temperature has little effect on the germination differentiation reaction that promotes the production of water-soluble polyphenols. However, it was confirmed that the amount of readily water-soluble polyphenols increased even with a slight temperature increase of about 5 ° C. One hypothesis is that this increase in production is partly due to promoting protein denaturation. It is thought that the decrease in the amount of protein hinders or suppresses a competitive reaction that reduces the amount of water-soluble polyphenol produced. While this may explain the effects of water content and temperature of the disclosed process, the processes, principles and examples disclosed herein are not dependent on this description or other theory.
A heating temperature 5 to 20 ° C. higher than the median temperature for germination was selected. Specifically, it is preferable to heat at 33 ° C. to 48 ° C. for grapes and mungbeans, and at 25 ° C. to 50 ° C. for soybeans.
The water content in the production method of the present invention can be performed simultaneously with the heating, but can also be performed alone. Furthermore, in the germination differentiation process described later, it is possible to hydrate the plant seeds by watering. This is because the grape seeds shift from the dormant state to the germination and differentiation state by the heating, and the plant seeds absorb a large amount of water with the start of germination and differentiation.

発芽分化種子に含まれる易水溶性ポリフェノール量は、大気中の二酸化炭素濃度及び/又は酸素濃度の影響を受けることが知られている。二酸化炭素濃度の増加や酸素濃度の減少により、発芽分化種子内の易水溶性ポリフェノールの生成が高まる。しかし、二酸化炭素濃度と酸素濃度の両方を調整すると、より多くの易水溶性ポリフェノールが得られる(例えば二酸化炭素を増加させ、酸素を減少させる)。さらに発芽温度の調整、種子への散水、及び種子に光を照射すると、易水溶性ポリフェノール量が一層増加する。
酸素濃度は、大気中の酸素濃度(20%)より低い濃度であり、発芽分化種子の易水溶性ポリフェノールを増加させる濃度であれば、特に重要ではない。酸素濃度は好ましくは4容量%〜20容量%であるが、4容量%〜18容量%、4容量%〜15容量%でも効果的である。4容量%未満であると種子の酸素呼吸が弱く、易水溶性ポリフェノール量が減少する。
これまで、酸素濃度が減少すると種子中の易水溶性ポリフェノールの消費が抑制されると仮定されてきた。しかしながら本実施例はこれやこれ以外の理論に依存するものではなく、いかなる理論によって限定されるものでもない。
酸素濃度のコントロールは、酸素濃度を調節可能なインキュベーター、デシケーター、栽培室などを用いることによって行なうことができる。しかし、密閉されたもしくは換気の悪い装置内では発芽分化種子の呼吸作用により酸素を消費するので、例えば密閉可能な容器に植物種子を何層かに堆積させることによって、酸素濃度を低下させ調整することも可能である。 容器内の酸素は発芽分化を開始した種子によって消費され、酸素濃度は低下する。酸素濃度範囲が、効果の得られる濃度範囲より低くなることを防ぐために、一定時間ごとに通常大気雰囲気と置換することにより酸素濃度を適当な濃度に維持することができる。通常大気雰囲気との置換は、後述する散水により、堆積した種子の間の気体が置き換わることによってできる。
酸素濃度は、発芽誘導工程において、酸素濃度を、例えば、5容量%、10容量%、又は15容量%などの一定の濃度で、維持してもよいが、実質的に18容量%以下に保持されていればよい。この発芽誘導工程の酸素濃度において「実質的」とは、発芽誘導工程の総時間の60%以上、好ましくは80%以上、より好ましくは90%以上において、所定の濃度に保持されることを意味する。所定の濃度に保持される時間は、連続的でも構わないが、断続的に保持されることが好ましい。
It is known that the amount of water-soluble polyphenol contained in germinated and differentiated seeds is affected by the carbon dioxide concentration and / or the oxygen concentration in the atmosphere. The increase in the carbon dioxide concentration and the decrease in the oxygen concentration increase the production of water-soluble polyphenols in germinated and differentiated seeds. However, adjusting both the carbon dioxide concentration and the oxygen concentration yields more readily water-soluble polyphenols (eg, increasing carbon dioxide and decreasing oxygen). Further, when the germination temperature is adjusted, the seed is sprinkled, and the seed is irradiated with light, the amount of the water-soluble polyphenol further increases.
The oxygen concentration is lower than the atmospheric oxygen concentration (20%), and is not particularly important as long as it increases the water-soluble polyphenol of germinated and differentiated seeds. The oxygen concentration is preferably 4% to 20% by volume, but 4% to 18%, 4% to 15% by volume is also effective. If it is less than 4% by volume, oxygen respiration of seeds is weak and the amount of easily water-soluble polyphenols decreases.
Heretofore, it has been postulated that the consumption of readily water-soluble polyphenols in seeds is suppressed when the oxygen concentration decreases. However, this embodiment does not depend on this or any other theory, and is not limited by any theory.
The oxygen concentration can be controlled by using an incubator, desiccator, cultivation room or the like that can adjust the oxygen concentration. However, oxygen is consumed by the respiration of germinated and differentiated seeds in a sealed or poorly ventilated device. For example, by depositing several layers of plant seeds in a sealable container, the oxygen concentration is reduced and adjusted. It is also possible. Oxygen in the container is consumed by seeds that have started germination and differentiation, and the oxygen concentration decreases. In order to prevent the oxygen concentration range from becoming lower than the concentration range where the effect is obtained, the oxygen concentration can be maintained at an appropriate concentration by replacing it with the normal atmospheric atmosphere at regular intervals. The replacement with the normal atmosphere can be performed by replacing the gas between the deposited seeds by watering which will be described later.
The oxygen concentration may be maintained at a constant concentration such as 5% by volume, 10% by volume, or 15% by volume in the germination induction step, but substantially maintained at 18% by volume or less. It only has to be done. “Substantial” in the oxygen concentration of the germination induction step means that the oxygen concentration is maintained at a predetermined concentration at 60% or more, preferably 80% or more, more preferably 90% or more of the total time of the germination induction step. To do. The time for which the predetermined concentration is maintained may be continuous, but is preferably maintained intermittently.

二酸化炭素濃度は、大気中の二酸化炭素濃度より高い濃度であり、発芽分化種子の易水溶性ポリフェノールを増加させ、種子内での消費を抑制し、蓄積させる濃度であれば、特に限定されないが、好ましくは2,000ppm(0.2容量%)〜100,000ppm(10容量%)、より好ましくは4,000ppm(0.4容量%)〜50,000ppm(5容量%)、最も好ましくは12,000ppm(1.2容量%)〜20,000ppm(2容量%)である。2000ppm未満では呼吸の抑制効果が見られず、易水溶性ポリフェノールが消費されてしまい、10%を超えると発芽に障害がでるからである。
二酸化炭素濃度のコントロールは、二酸化炭素濃度を調節可能なインキュベーター、デシケーター、又は栽培室などを用いることによって行なうことができる。しかし、特別な装置を用いず、発芽分化種子の呼吸作用により排出される二酸化炭素によって、二酸化炭素濃度を上昇させ調整することも可能である。例えば、密閉可能な容器に植物種子を何層かに堆積させることによって、発芽分化を開始した種子の呼吸作用により二酸化炭素濃度が排出され、二酸化炭素濃度が上昇する。二酸化炭素濃度範囲が効果の得られる濃度範囲より高くなることを防ぐために、一定時間ごとに空気を置換することにより二酸化炭素濃度を適当な濃度に維持することができる。空気の置換は、後述する散水により、堆積した種子の間の空気が置き換わることによってできる。
二酸化炭素濃度は、発芽誘導工程において、二酸化炭素濃度を連続的に2,000ppm、10,000ppm、又は50,000ppmなどの一定の濃度で維持してもよいが、実質的に12,000ppm前後に保持されていればよい。この発芽誘導工程の酸素濃度において「実質的」とは、発芽誘導工程の総時間の60%以上、好ましくは80%以上、より好ましくは90%以上において、所定の濃度に保持されることを意味する。所定の濃度に保持される時間は、連続的でも構わないが、断続的に保持されることが好ましい。
The carbon dioxide concentration is higher than the carbon dioxide concentration in the atmosphere, and it is not particularly limited as long as it is a concentration that increases easily water-soluble polyphenols of germinated and differentiated seeds, suppresses consumption in seeds, and accumulates. Preferably from 2,000 ppm (0.2 vol%) to 100,000 ppm (10 vol%), more preferably from 4,000 ppm (0.4 vol%) to 50,000 ppm (5 vol%), most preferably 000 ppm (1.2% by volume) to 20,000 ppm (2% by volume). If the amount is less than 2000 ppm, the respiratory repression effect is not observed, and easily water-soluble polyphenol is consumed, and if it exceeds 10%, germination is impaired.
The carbon dioxide concentration can be controlled by using an incubator, a desiccator, a cultivation room or the like that can adjust the carbon dioxide concentration. However, it is also possible to increase and adjust the carbon dioxide concentration by carbon dioxide discharged by the respiration action of germinated and differentiated seeds without using a special device. For example, by depositing several layers of plant seeds in a sealable container, the carbon dioxide concentration is discharged by the respiration action of seeds that have started germination differentiation, and the carbon dioxide concentration increases. In order to prevent the carbon dioxide concentration range from becoming higher than the concentration range where the effect is obtained, the carbon dioxide concentration can be maintained at an appropriate concentration by replacing air at regular intervals. The air can be replaced by replacing the air between the deposited seeds by watering which will be described later.
The carbon dioxide concentration may be maintained at a constant concentration such as 2,000 ppm, 10,000 ppm, or 50,000 ppm continuously in the germination induction step, but substantially around 12,000 ppm. It only has to be held. “Substantial” in the oxygen concentration of the germination induction step means that the oxygen concentration is maintained at a predetermined concentration at 60% or more, preferably 80% or more, more preferably 90% or more of the total time of the germination induction step. To do. The time for which the predetermined concentration is maintained may be continuous, but is preferably maintained intermittently.

発芽誘導工程の発芽温度条件は、植物の種子が発芽分化できる温度条件であれば限定されない。発芽分化可能な温度は、植物種子によって異なるが、例えば、その植物の発芽適温で行なうことが可能である。植物種子の発芽適温も、前記のように植物種子によって異なるが10℃〜50℃、好ましくは20℃〜45℃、より好ましくは26℃〜42℃である。発芽誘導工程において、植物種子は一定の発芽温度で保持されてもよく、また、一定の温度範囲内で保持されてもよい。植物種子を一定の温度範囲内で保持する場合は、温度の上昇及び下降を繰り返す条件で保持してもよい。
温度条件のコントロールは、温度調節可能なインキュベーターを用いてもよいし、室温を調整できる栽培室を用いることによっても行なうことができる。従来型のヒーター、冷却装置、又は空気制御や電子制御装置等により温度を保持することが可能である。発芽分化中の植物種子の呼吸作用による発芽熱と、散水により発芽温度条件を調整することも可能である。
温度や温度範囲を保持するために、様々な方法が同時にとられることもある。例えば、発芽温度条件は発芽熱及び散水により調整することが可能である。植物種子を何層かに堆積させることによって、発芽分化を開始した種子の呼吸作用により発芽熱が発生する。種子が堆積しているために発生した発芽熱は放散せず、時間の経過と共に、堆積した種子の間の温度が上昇する。この上昇した温度を、一定時間ごとに行なう散水により、下降させることによって一定温度範囲内に発芽温度を調整することが可能である。このように温度条件を発芽熱と散水によって調整する場合は、図1に示すように、温度は植物の種子が発芽分化できる温度条件の範囲内で漸次の上昇と下降を繰り返すことになる。
一定温度での保持によっても、発芽植物種子内の易水溶性ポリフェノールは十分増加するが、温度条件の範囲内で漸次の上昇と急激な下降を繰り返すことが、易水溶性ポリフェノールの種子内での増加に影響している可能性も考えられる。
The germination temperature condition in the germination induction process is not limited as long as it is a temperature condition that allows the seeds of the plant to germinate and differentiate. The temperature at which germination can be differentiated varies depending on the plant seed, but for example, it can be carried out at a suitable temperature for germination of the plant. Although the suitable temperature for germination of plant seeds varies depending on the plant seed as described above, it is 10 ° C to 50 ° C, preferably 20 ° C to 45 ° C, more preferably 26 ° C to 42 ° C. In the germination induction step, plant seeds may be maintained at a constant germination temperature, or may be maintained within a constant temperature range. When plant seeds are held within a certain temperature range, they may be held under conditions where the temperature rises and falls repeatedly.
The temperature condition can be controlled by using an incubator capable of adjusting the temperature or by using a cultivation room capable of adjusting the room temperature. The temperature can be maintained by a conventional heater, cooling device, air control, electronic control device, or the like. It is also possible to adjust the germination temperature conditions by the heat of germination due to the respiration of plant seeds during germination and watering.
Various methods may be taken simultaneously to maintain temperature and temperature range. For example, germination temperature conditions can be adjusted by germination heat and watering. By depositing plant seeds in several layers, germination heat is generated by the respiration action of seeds that have started germination differentiation. The germination heat generated because the seeds are deposited does not dissipate, and the temperature between the deposited seeds increases with time. It is possible to adjust the germination temperature within a certain temperature range by lowering this increased temperature by watering performed at regular intervals. When the temperature condition is adjusted by the germination heat and watering as described above, as shown in FIG. 1, the temperature repeatedly increases and decreases gradually within the temperature condition range in which the seeds of the plant can germinate and differentiate.
Even when maintained at a constant temperature, the water-soluble polyphenols in the germinating plant seeds increase sufficiently, but the gradual rise and fall within the temperature condition range can be repeated within the seeds of the water-soluble polyphenols. There is also a possibility that it is affecting the increase.

散水は、発芽誘導工程において植物種子の乾燥を防ぐために行なう。「散水」とは種子に水を吹き付けたり、水をかけたり、断続的に水に浸漬させたり、また種子に霧を当てたり、湿度を比較的高い状態(種子の発芽温度範囲内の温度で80%飽和状態以上)で維持し、種子の乾燥を防ぐことを意味する。散水は、発芽誘導工程における温度や温度範囲を保持し、湿度を保持する等複数の役目を果たしている。
散水する水の温度は、特に限定されないが、発芽温度条件の範囲内の温度が好ましい。特に、散水で温度条件を一定範囲に調整する場合は、発芽温度条件範囲で、比較的低い温度の水を使用することが好ましい。散水に使用する水は、衛生上の観点から、発芽誘導工程における細菌などの発生を防ぐため、殺菌剤を含むことが好ましい。殺菌剤としては、例えば、10ppmの次亜塩素酸ナトリウムなどが挙げられるが、その他の抗菌化合物を使用しても良い。
発芽誘導工程においては、光の照射を行なうことが好ましい。全く光を照射しない場合でも、発芽分化種子において易水溶性ポリフェノールは、十分増加するが、光を照射することによって、更に易水溶性ポリフェノールが増加する。光の照射は、植物栽培で通常使用される蛍光管を使用することが可能である。波長の異なる三波長型、四波長型、UV、赤外などの光を単一で又は組み合わせて使用してもよい。光の照射時間は特に限定されないが、2時間以上が好ましく、より好ましくは4時間以上、最も好ましくは6時間以上であり、最大24時間照射してもよい。また、光強度は、20μmol/m2・秒〜100μmol/m2・秒が好ましい。本明細書において「発芽分化種子」とは、休眠状態から発芽可能な状態に移行した種子を意味する。例えば、加熱工程によりヒートショックを受け、含水工程により含水率が上昇した種子が含まれる。従って、外見的には芽が出ていない種子も、本発明の「発芽分化種子」に含まれ、発芽し芽が伸長した種子も含まれる。本発明の発芽分化種子は、休眠状態にある未発芽の種子と比較すると1.5倍以上の易水溶性ポリフェノールを含んでいる。
Watering is performed in order to prevent drying of plant seeds in the germination induction process. “Sprinkling” means spraying water on the seeds, spraying water, intermittently immersing them in water, applying fog to the seeds, and relatively high humidity (at a temperature within the germination temperature range of the seeds). 80% saturation or higher), which means preventing seed drying. Sprinkling plays multiple roles such as maintaining the temperature and temperature range in the germination induction process and maintaining humidity.
Although the temperature of the water to sprinkle is not specifically limited, The temperature within the range of germination temperature conditions is preferable. In particular, when adjusting the temperature condition to a certain range by watering, it is preferable to use water having a relatively low temperature within the germination temperature condition range. The water used for watering preferably contains a bactericidal agent from the viewpoint of hygiene in order to prevent the generation of bacteria and the like in the germination induction process. Examples of the disinfectant include 10 ppm sodium hypochlorite, but other antibacterial compounds may be used.
In the germination induction step, it is preferable to perform light irradiation. Even when light is not irradiated at all, the water-soluble polyphenols in the germinated and differentiated seeds are sufficiently increased. However, when light is irradiated, the water-soluble polyphenols are further increased. For the irradiation of light, a fluorescent tube usually used in plant cultivation can be used. Lights such as three-wavelength type, four-wavelength type, UV, and infrared having different wavelengths may be used singly or in combination. The irradiation time of light is not particularly limited, but is preferably 2 hours or more, more preferably 4 hours or more, most preferably 6 hours or more, and irradiation may be performed for a maximum of 24 hours. Further, light intensity, 20 [mu] mol / m 2 · sec ~100μmol / m 2 · sec is preferred. As used herein, “germinated and differentiated seed” means a seed that has transitioned from a dormant state to a germinable state. For example, the seed which received the heat shock by the heating process and the moisture content increased by the water-containing process is included. Accordingly, seeds that are not apparently sprouted are also included in the “germinated and differentiated seeds” of the present invention, and seeds that have sprouted and have elongated buds are also included. The germinated and differentiated seed of the present invention contains 1.5 times or more easily water-soluble polyphenol as compared with an ungerminated seed in a dormant state.

本発明の方法により得られた易水溶性ポリフェノールを含む発芽分化種子から、易水溶性ポリフェノールを抽出する方法は、公知の方法を使用することが可能である。例えば、発芽種子を破砕し、水又は有機溶媒を含まない水系緩衝液で抽出することによって、易水溶性ポリフェノールを含む抽出物を得ることができる。
上述のように、密閉もしくは一部密閉された容器内に植物種子を堆積させる。さらにこの構造は、種子の周囲の酸素濃度を減少させ二酸化炭素濃度を上昇させるので、易水溶性ポリフェノール(抗酸化物質)が増加する。
植物種子830を堆積して発芽誘導工程を行なう装置としては、図8に示したような発芽誘導容器800を例示することができる。発芽誘導容器800は、上面810が開放状態で使用することも可能であるが、密閉して使用することも可能である。容器内の二酸化炭素濃度、酸素濃度、及び温度を管理するためには、上面810および下面840とを密閉状態で使用することが望ましい。また、二酸化炭素濃度、酸素濃度、及び温度を管理できる栽培室などにおいて開放状態で使用することも可能である。また容器内の二酸化炭素、酸素及び温度は栽培室と近い条件である。
発芽誘導容器800は、上方に水820を散水するためのノズル860を有している。底面は約1cm間隔で排水口(空気口)850があり、散水で余った水を排水することができる。排水口は下部容器840の底から出てくる垂直な管(図示しない)と結合する。各管はU字型の管の片方のアームとはめ合わせる。各U字管の他方のアームは室内の周囲環境に開放されており、散水された水がU字管のある一定の高さまでたまると開放されたアームから水があふれ出し、U字管はサイフォンとして働く。このサイフォンにより散水終了後、容器内は空になる。
本発明の発芽分化種子の製造方法によれば、発芽分化種子に含まれる易水溶性のポリフェノールの量を顕著に増加させることが可能である。また、本発明の発芽分化種子によれば、未発芽種子と比較して多くの易水溶性ポリフェノールを含んでいるため、アルコールなどの有機溶媒を使用せずに、種子からのポリフェノールの抽出及び精製を容易に行なうことが可能である。更に、本発明の易水溶性ポリフェノールの製造方法により抽出された易水溶性ポリフェノールを含む抽出物は、アルコールなどの溶媒を含んでいないため、食品、健康食品、医薬品あるいは化粧品などの広範囲の用途に容易に適用することが可能である。
A known method can be used as a method for extracting a water-soluble polyphenol from germinated and differentiated seeds containing the water-soluble polyphenol obtained by the method of the present invention. For example, an extract containing an easily water-soluble polyphenol can be obtained by crushing germinated seeds and extracting with a water-based buffer solution that does not contain water or an organic solvent.
As described above, plant seeds are deposited in a sealed or partially sealed container. Furthermore, this structure decreases the oxygen concentration around the seeds and increases the carbon dioxide concentration, thus increasing readily water-soluble polyphenols (antioxidants).
As an apparatus for depositing plant seeds 830 and performing a germination induction process, a germination induction container 800 as shown in FIG. 8 can be exemplified. The germination induction container 800 can be used with the upper surface 810 open, but can also be used in a sealed state. In order to control the carbon dioxide concentration, oxygen concentration, and temperature in the container, it is desirable to use the upper surface 810 and the lower surface 840 in a sealed state. It can also be used in an open state in a cultivation room where the carbon dioxide concentration, oxygen concentration, and temperature can be controlled. Carbon dioxide, oxygen, and temperature in the container are close to the cultivation room.
The germination induction container 800 has a nozzle 860 for spraying water 820 upward. The bottom surface has drain ports (air ports) 850 at intervals of about 1 cm, so that excess water can be drained by watering. The drain is connected to a vertical pipe (not shown) coming out from the bottom of the lower container 840. Each tube is fitted with one arm of a U-shaped tube. The other arm of each U-shaped tube is open to the surrounding environment of the room, and when the water sprinkled accumulates to a certain height of the U-shaped tube, water overflows from the opened arm, and the U-shaped tube is a siphon. Work as. After the sprinkling is finished by this siphon, the inside of the container becomes empty.
According to the method for producing germinated differentiated seeds of the present invention, it is possible to remarkably increase the amount of water-soluble polyphenol contained in germinated differentiated seeds. In addition, according to the germinated and differentiated seed of the present invention, since it contains many readily water-soluble polyphenols compared to ungerminated seeds, extraction and purification of polyphenols from seeds without using an organic solvent such as alcohol Can be easily performed. Furthermore, since the extract containing the water-soluble polyphenol extracted by the method for producing the water-soluble polyphenol of the present invention does not contain a solvent such as alcohol, it can be used in a wide range of applications such as foods, health foods, pharmaceuticals and cosmetics. It can be easily applied.

以下に実施例及び比較例を示し本発明の具体的な説明を行うが、これらは本発明の範囲を限定するものではない。
これらの実施例について、未発芽分化種子及び発芽分化種子の易水溶性ポリフェノール量は標準的な方法で測定された(社団法人 日本生物工学実験書「生物工学実験」培風館)。種子は破砕され、水や有機溶媒を含まない緩衝液で易水溶性ポリフェノールを抽出した。溶液中の易水溶性ポリフェノール量は没食子酸を標準とし、吸光を用いて測定した。またポリフェノールと配糖体はそれぞれフォーリン・チオカルト法とフェノール・硫酸法によって測定された。抽出物中の化合物は薄層クロマトグラフィーを用いる方法により、易水溶性配糖体であることが確認された。前記の発芽分化種子からの抽出物中の易水溶性ポリフェノールの抗酸化活性は、Trolox(トロロックス:6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid)標準を参考にジフェニピクリルヒドラジル(DPPH)ラジカル捕捉活性により測定された。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but these do not limit the scope of the present invention.
For these examples, the amount of water-soluble polyphenols in ungerminated and differentiated seeds was measured by a standard method (Japan Biotechnology Experiment Paper “Biotechnology Experiment” Culture Style Hall). The seeds were crushed, and easily water-soluble polyphenols were extracted with a buffer solution containing no water or organic solvent. The amount of easily water-soluble polyphenol in the solution was measured using light absorption with gallic acid as a standard. Polyphenols and glycosides were measured by the foreign / thiocult method and the phenol / sulfuric acid method, respectively. The compound in the extract was confirmed to be a readily water-soluble glycoside by a method using thin layer chromatography. The antioxidant activity of the water-soluble polyphenols in the extract from the germinated seeds was determined by referring to the Trolox (Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) standard. Measured by phenicrylhydrazyl (DPPH) radical scavenging activity.

実施例1:ブドウ種子での易水溶性ポリフェノールの増加
ブドウ種子225gを流水で洗浄後、殺菌剤である次亜塩素酸ナトリウム100ppmを含む水溶液50℃で1時間浸漬した。種子を取り出し、更に100ppm次亜塩素酸ナトリウム溶液を交換し、40℃で4時間時間浸漬した。次に、種子を蒸留水で洗浄後、柔らかい紙で水を取り除いた。種子を発芽誘導容器800に約5cmの厚さで積層した(図8)。発芽誘導容器800の上面を密閉し、室温28℃の栽培室に設置し、4時間おきに28℃の10ppm次亜塩素酸ナトリウム溶液を散水した。24時間(1日)、48時間(2日)、96時間(4日)、168時間(7日)ごとに発芽分化種子約100粒(4.12g)を回収した。
回収した発芽分化種子4.12gを乳鉢に入れ、蒸留水10mlを添加し、乳棒で破砕した。破砕物を10000×gで15分間、遠心分離し、その上清を抽出物とした。
発芽分化ブドウ種子から得られた抽出物に含まれたポリフェノールを前述の方法で分析した。一つの方法では抽出物に302μgのポリフェノールが含まれていた。 また別の配糖体分析によると366μgの配糖体の存在を確認した。つまり抽出物中には、多量に水溶性の配糖体ポリフェノールが存在した。ブドウ種子中に最も多く含まれるポリフェノールはプロアントシアニジンであるが、この発芽分化した種子に含まれる配糖体ポリフェノールはプロアントシアニジン又はその誘導体に糖が付加した配糖体ポリフェノールであると考えられる。
Example 1: Increase in water-soluble polyphenols in grape seeds After 225 g of grape seeds were washed with running water, they were immersed in an aqueous solution containing 100 ppm of sodium hypochlorite as a fungicide for 1 hour. The seeds were taken out and the 100 ppm sodium hypochlorite solution was exchanged and immersed for 4 hours at 40 ° C. Next, after washing the seeds with distilled water, the water was removed with a soft paper. The seeds were stacked in a germination induction container 800 with a thickness of about 5 cm (FIG. 8). The upper surface of the germination induction container 800 was sealed and placed in a cultivation room at room temperature of 28 ° C., and a 10 ppm sodium hypochlorite solution at 28 ° C. was sprinkled every 4 hours. Approximately 100 germinated seeds (4.12 g) were collected every 24 hours (1 day), 48 hours (2 days), 96 hours (4 days), and 168 hours (7 days).
4.12 g of the collected germinated differentiated seeds were placed in a mortar, 10 ml of distilled water was added, and the mixture was crushed with a pestle. The crushed material was centrifuged at 10,000 × g for 15 minutes, and the supernatant was used as an extract.
The polyphenol contained in the extract obtained from germinated differentiated grape seeds was analyzed by the method described above. In one method, the extract contained 302 μg polyphenols. According to another glycoside analysis, the presence of 366 μg glycoside was confirmed. That is, a large amount of water-soluble glycoside polyphenol was present in the extract. Proanthocyanidin is the most abundant polyphenol contained in grape seeds, and the glycoside polyphenol contained in the germinated seed is considered to be a glycoside polyphenol obtained by adding sugar to proanthocyanidin or a derivative thereof.

実施例2:未発芽種子からの易水溶性ポリフェノールの抽出
ジュースポマス由来のブドウ種子(リースリング種:含水率9.5〜11.0)約100粒(4,12g)を、乳鉢に入れ、蒸留水10mlを添加し乳棒で破砕した。これを10000×gで15分間、遠心分離し、その上清を抽出物とした。
実施例1の24時間経過した発芽分化ブドウ種子から得られた抽出物と比較して、約半分の易水溶性ポリフェノールが含まれていた。
Example 2: Extraction of readily water-soluble polyphenols from ungerminated seeds About 100 grape seeds (Riesling species: moisture content 9.5 to 11.0) (4,12 g) derived from juice pomace were placed in a mortar and distilled. 10 ml of water was added and crushed with a pestle. This was centrifuged at 10,000 × g for 15 minutes, and the supernatant was used as an extract.
Compared with the extract obtained from the germinated differentiated grape seed of 24 hours after Example 1, about half of the water-soluble polyphenol was contained.

実施例3:酸素濃度および二酸化炭素濃度の効果
リョクトウ種子、クローバー種子、サンフラワー種子、又はユズ種子225gを流水で洗浄後、殺菌剤である次亜塩素酸ナトリウム100ppmを含む水溶液40℃で4時間浸漬た。次に、種子を蒸留水で洗浄し、柔らかい紙で水を取り除いた。種子を発芽誘導容器800に約5cmの厚さで積層した(図8)。
発芽誘導容器800を室温(28℃)の栽培室に設置し、4時間おきに28℃の10ppm次亜塩素酸ナトリウム溶液を散水し、48時間発芽誘導し、発芽分化種子約675gを回収した。
回収した発芽分化種子4.12gを乳鉢に入れ、蒸留水10mlを添加し乳棒で破砕した。この破砕物を10000×gで15分間、遠心分離し、その上清を抽出物とした。
発芽誘導容器800を用いたリョクトウ種子の温発芽誘導工程での温度変化を発芽誘導開始から24時間まで測定した。温度は、種子を積層した表面から3cm内部の位置の温度である。栽培室は28℃であるが、発芽誘導容器内の温度は、リョクトウ種子の発芽熱で次第に上昇する。発芽誘導開始から4時間で39℃に達するが、28℃の水温の10ppm次亜塩素酸ナトリウム水溶液を散水し、発芽物の温度を28℃まで低下させる(図1)。この温度は表面から3cm内部で測定しているが、積層された種子の内部は、ほぼ同じ温度変化を示した。
発芽誘導容器800を用いたリョクトウ種子の温発芽誘導工程での酸素濃度変化を発芽誘導開始から24時間まで測定した。酸素濃度は、種子積層した表面から3cm内部の位置の濃度である。4時間おきの散水時に外気と入れ替わるので、一時的に通常大気雰囲気の酸素濃度になるが、すぐに酸素は種子の呼吸作用によって消費され、15%以下に低下する。(図3)。この濃度は表面から3cm内部で測定しているが、積層された種子の内部はほぼ同じ濃度変化を示した。
発芽誘導容器800を用いたリョクトウ種子の発芽誘導工程での二酸化炭素濃度変化を発芽誘導開始から24時間まで測定した。二酸化炭素濃度は、種子を積層した表面から3cm内部の位置の濃度である。4時間おきの散水時に外気と入れ替わるので、一時的に通常大気雰囲気の二酸化炭素濃度になるが、すぐに二酸化炭素は種子の呼吸作用によって増加する。散水後、二酸化炭素は急激に8000ppmに達する(図5)。二酸化炭素濃度は表面から3cm内部で測定しているが、積層された種子の内部はほぼ同じ濃度を示した。
Example 3 Effect of Oxygen Concentration and Carbon Dioxide Concentration After 225 g of mungbean seed, clover seed, sunflower seed, or yuzu seed were washed with running water, an aqueous solution containing 100 ppm of sodium hypochlorite as a bactericide was used for 4 hours. Soaked. The seeds were then washed with distilled water and the water was removed with a soft paper. The seeds were stacked in a germination induction container 800 with a thickness of about 5 cm (FIG. 8).
The germination induction container 800 was installed in a cultivation room at room temperature (28 ° C.), and a 10 ppm sodium hypochlorite solution at 28 ° C. was sprinkled every 4 hours to induce germination for 48 hours, and about 675 g of germinated differentiated seeds were collected.
4.12 g of the collected germinated differentiated seeds were put in a mortar, 10 ml of distilled water was added and crushed with a pestle. This crushed material was centrifuged at 10,000 × g for 15 minutes, and the supernatant was used as an extract.
The temperature change in the warm germination induction process of mungbean seeds using the germination induction container 800 was measured from the start of germination induction to 24 hours. The temperature is a temperature at a position 3 cm from the surface where the seeds are stacked. Although the cultivation room is 28 ° C., the temperature in the germination induction container gradually increases with the heat of germination of mungbean seeds. Although it reaches 39 ° C. in 4 hours from the start of germination induction, a 10 ppm sodium hypochlorite aqueous solution with a water temperature of 28 ° C. is sprinkled to lower the temperature of the germinated product to 28 ° C. (FIG. 1). This temperature was measured 3 cm from the surface, but the inside of the stacked seeds showed almost the same temperature change.
Changes in oxygen concentration in the warm germination induction process of mungbean seeds using the germination induction container 800 were measured from the start of germination induction to 24 hours. The oxygen concentration is a concentration at a position within 3 cm from the surface where the seeds are stacked. Since it is replaced with the outside air every 4 hours, the oxygen concentration in the normal atmospheric atmosphere temporarily temporarily. However, oxygen is consumed immediately by the respiration action of the seed and falls to 15% or less. (Figure 3). This concentration was measured within 3 cm from the surface, but the inside of the stacked seeds showed almost the same concentration change.
Changes in carbon dioxide concentration in the germination induction process of mungbean seeds using the germination induction container 800 were measured from the start of germination induction to 24 hours. The carbon dioxide concentration is a concentration at a position within 3 cm from the surface where the seeds are stacked. Since it is replaced with the outside air every 4 hours, the carbon dioxide concentration in the normal atmosphere is temporarily increased, but carbon dioxide immediately increases due to the respiration action of the seeds. After sprinkling, carbon dioxide rapidly reaches 8000 ppm (FIG. 5). The carbon dioxide concentration was measured 3 cm inside from the surface, but the inside of the stacked seeds showed almost the same concentration.

実施例4:酸素濃度および二酸化炭素濃度の効果
リョクトウ種子、クローバー種子、サンフラワー種子、又はユズ種子225gを流水で洗浄後、殺菌剤である次亜塩素酸ナトリウム100ppmを含む水溶液40℃で4時間時間浸漬し、加熱及び含水を同時に行なった。次に、種子を蒸留水で洗浄後、柔らかい紙で水を取り除いた。種子を発芽容器700に一層にまいた(図7)。
発芽容器700は、上面710が開放状態であり、上方に散水用のノズル760を有している。底面には1cm間隔で排水口(空気口)740があり、余分な水を排水することができる。上面は開放状態であり、多くの排水口(空気口)を有するため、容器内の酸素濃度及び二酸化炭素濃度は通常大気雰囲気の濃度とほぼ同じに保たれる。1回目では発芽容器700を38℃の栽培室に設置し、4時間おきに36℃の10ppm次亜塩素酸ナトリウム溶液を散水した。2回目では容器700を室温28℃の栽培室に設置し、4時間おきに27℃の10ppm次亜塩素酸ナトリウム溶液を散水した。それぞれ48時間後に、発芽分化種子約675gを回収した。
回収した発芽分化種子4.12gを乳鉢に入れ、蒸留水10mlを添加し乳棒で破砕した。この破砕物を10000×gで15分間、遠心分離し、その上清を抽出物とした。
図2に示すように発芽容器700を用いたリョクトウ種子の発芽誘導工程での温度変化を発芽誘導開始から24時間まで測定した。温度は、一層にまいた種子の表面上で測定した。栽培室が38℃の場合、10ppm次亜塩素酸ナトリウム水溶液の散水により36℃に低下した。よって図2の曲線210で示されるように1回目の試験では温度は36℃と38℃の間に保たれている。栽培室が28℃の場合、10ppm次亜塩素酸ナトリウム水溶液の散水により27℃に低下した。よって図2の曲線220で示されるように2回目の試験では温度は27℃と28℃の間に保たれている
発芽容器700を用いたリョクトウ種子の発芽誘導工程での酸素濃度変化を発芽誘導開始から24時間まで測定した。酸素濃度は、一層にまいた種子の表面の濃度を測定した。酸素濃度は、発芽誘導工程を通じてほぼ21%であった(図4)。
発芽容器700を用いたリョクトウ種子の発芽誘導工程での二酸化炭素濃度変化を発芽誘導開始から24時間まで測定した。二酸化炭素濃度は、一層にまいた種子の表面の濃度である。二酸化炭素濃度は、発芽誘導工程を通じてほぼ300ppmであった(図6)。
Example 4: Effect of oxygen concentration and carbon dioxide concentration After washing 225 g of mungbean seed, clover seed, sunflower seed or yuzu seed with running water, an aqueous solution containing 100 ppm of sodium hypochlorite as a bactericide was used for 4 hours. It was immersed for a period of time, and heating and water content were performed simultaneously. Next, after washing the seeds with distilled water, the water was removed with a soft paper. Seeds were spread further in the germination container 700 (FIG. 7).
The germination container 700 has an open upper surface 710 and has a nozzle 760 for watering above. There are drainage ports (air ports) 740 at 1 cm intervals on the bottom surface, and excess water can be drained. Since the upper surface is in an open state and has many drainage ports (air ports), the oxygen concentration and carbon dioxide concentration in the container are usually kept almost the same as the concentration in the atmospheric air. At the first time, the germination container 700 was placed in a 38 ° C. cultivation room, and a 10 ppm sodium hypochlorite solution at 36 ° C. was sprinkled every 4 hours. In the second time, the container 700 was placed in a cultivation room at a room temperature of 28 ° C., and a 10 ppm sodium hypochlorite solution at 27 ° C. was sprinkled every 4 hours. After about 48 hours, about 675 g of germinated seeds were collected.
4.12 g of the collected germinated differentiated seeds were put in a mortar, 10 ml of distilled water was added and crushed with a pestle. This crushed material was centrifuged at 10,000 × g for 15 minutes, and the supernatant was used as an extract.
As shown in FIG. 2, the temperature change in the germination induction process of mungbean seeds using the germination container 700 was measured from the start of germination induction to 24 hours. The temperature was measured on the surface of the seed that had been spread. When the cultivation room was 38 ° C., the temperature dropped to 36 ° C. by watering a 10 ppm sodium hypochlorite aqueous solution. Therefore, as shown by the curve 210 in FIG. 2, the temperature is maintained between 36 ° C. and 38 ° C. in the first test. When the cultivation room was 28 ° C., the temperature dropped to 27 ° C. by watering a 10 ppm sodium hypochlorite aqueous solution. Therefore, as shown by the curve 220 in FIG. 2, the temperature is kept between 27 ° C. and 28 ° C. in the second test. Oxygen concentration change in the germination induction process of mungbean seeds using the germination container 700 is induced to germinate. Measurements were taken up to 24 hours from the start. As for the oxygen concentration, the concentration of the surface of the seeds spread in one layer was measured. The oxygen concentration was approximately 21% throughout the germination induction process (FIG. 4).
Changes in carbon dioxide concentration in the germination induction process of mungbean seeds using the germination container 700 were measured from the start of germination induction to 24 hours. The carbon dioxide concentration is the concentration on the surface of the seed that has been spread further. The carbon dioxide concentration was approximately 300 ppm throughout the germination induction process (FIG. 6).

抽出物の分析
リョクトウ種子、クローバー種子、サンフラワー種子、またユズ種子から得られた抽出物を上記の方法で分析した。
表1に示すように、発芽分化種子は、未発芽の種子と比較して、リョクトウは少なくとも11倍以上、クローバーは少なくとも5倍以上、サンフラワーは少なくとも4.1倍以上、ユズは少なくとも20倍以上の易水溶性ポリフェノールを含んでいた。一方、実施例4の発芽種子は、栽培室温度が38℃又は28℃の場合も、実施例の発芽分化種子3より易水溶性ポリフェノールの量は少なかった。(表1)。
Extract analysis
Extracts obtained from mungbean seeds, clover seeds, sunflower seeds and yuzu seeds were analyzed by the method described above.
As shown in Table 1, germinated and differentiated seeds are at least 11 times higher than mung bean seeds, at least 5 times higher than clover, at least 4.1 times higher than sunflower, and at least 20 times higher than sunflower. The above readily water-soluble polyphenol was contained. On the other hand, the germinated seeds of Example 4 had less water-soluble polyphenols than germinated and differentiated seeds 3 of Examples even when the cultivation room temperature was 38 ° C. or 28 ° C. (Table 1).

Figure 2008125515
Figure 2008125515

実施例5: 温度の効果
リョクトウ種子、クローバー種子、サンフラワー種子、ブドウ種子225gを流水で洗浄後、発芽適温(中央値)又は発芽適温(中央値)より10℃高い温度の次亜塩素酸ナトリウム100ppmを含む水溶液で4時間浸漬し、加熱及び含水を同時に行なった。次に、種子を蒸留水で洗浄し、柔らかい紙で水を取り除いた。種子を発芽誘導容器800に約5cmの厚さで積層した(図8)。発芽誘導容器800を室温(28℃)の栽培室に設置し、4時間おきに28℃の10ppm次亜塩素酸ナトリウム溶液を散水し、8時間発芽誘導し、発芽分化種子約675gを回収した。リョクトウ種子の発芽適温の中央値は28℃、クローバー種子の発芽適温の中央値は24℃、サンフラワー種子の発芽適温の中央値は24℃、ブドウ種子の発芽適温の中央値は28℃である。
リョクトウ種子、クローバー種子、サンフラワー種子、又はブドウ種子の回収した発芽分化種子4.12gを乳鉢に入れ、蒸留水10mlを添加し乳棒で破砕した。これを10000×gで15分間、遠心分離し、その上清を抽出物とした。
上述の方法で各サンプルのポリフェノール含有量を分析した。分析結果を表2に示す。発芽適温の中央値より10℃高い温度で加熱工程を行なった場合は、平均発芽適温で加熱工程を行なうより、易水溶性ポリフェノールの増加が顕著であった。リョクトウ種子では、発芽適温の5℃、20℃、及び30℃高い温度で加熱工程を行なった場合も、平均発芽適温で加熱工程を行なうより、易水溶性ポリフェノールの増加が顕著であった。
Example 5: Effect of temperature
After washing 225 g of mungbean seeds, clover seeds, sunflower seeds and grape seeds with running water, germination optimum temperature (median value) or an aqueous solution containing 100 ppm sodium hypochlorite at a temperature 10 ° C higher than germination optimum temperature (median value) for 4 hours Immersion was performed, and heating and water content were performed simultaneously. The seeds were then washed with distilled water and the water was removed with a soft paper. The seeds were stacked in a germination induction container 800 with a thickness of about 5 cm (FIG. 8). A germination induction container 800 was installed in a cultivation room at room temperature (28 ° C.), and a 10 ppm sodium hypochlorite solution at 28 ° C. was sprinkled every 4 hours to induce germination for 8 hours, and about 675 g of germinated differentiated seeds were collected. The median appropriate temperature for germination of mung bean seeds is 28 ° C., the median optimal temperature for germination of clover seeds is 24 ° C., the median optimal temperature for germination of sunflower seeds is 24 ° C., and the median appropriate temperature for germination of grape seeds is 28 ° C. .
4.12 g of germinated differentiated seeds collected from mungbean seeds, clover seeds, sunflower seeds, or grape seeds were placed in a mortar, and 10 ml of distilled water was added and crushed with a pestle. This was centrifuged at 10,000 × g for 15 minutes, and the supernatant was used as an extract.
The polyphenol content of each sample was analyzed by the method described above. The analysis results are shown in Table 2. When the heating step was carried out at a temperature 10 ° C. higher than the median appropriate germination temperature, the increase in water-soluble polyphenols was more marked than when the heating step was carried out at an average germination optimum temperature. In mungbean seeds, even when the heating step was performed at temperatures of 5 ° C., 20 ° C., and 30 ° C. higher than the appropriate temperature for germination, the increase in water-soluble polyphenols was more significant than when the heating step was performed at the average appropriate temperature for germination.

Figure 2008125515
Figure 2008125515

実施例6:酸素濃度の効果
酸素濃度の低下が、発芽誘導工程の際に易水溶性ポリフェノールを増加させる影響について、ブドウ種子を用いて検討した。ブドウ種子225gを流水で洗浄後、100ppm次亜塩素酸ナトリウム溶液で、40℃で4時間時間浸漬した。
次に、種子を蒸留水で洗浄し、柔らかい紙で水を取り除いた。種子をデシケーターに入れ、窒素ガスと空気の混合により酸素濃度を5%、10%及び15%に調整した気体を通気させた。通常大気雰囲気下の酸素濃度は約21容量%である。デシケータ内の二酸化炭素濃度は、いずれの条件でもほぼ350ppmだった。温度を28℃に維持し、4時間おきに28℃の10ppm次亜塩素酸ナトリウム溶液を散水し、48時間発芽誘導し、発芽分化種子約675gを回収した。
回収した発芽分化種子4.12gを乳鉢に入れ、蒸留水10mlを添加し乳棒で破砕した。この破砕物を10000×gで15分間、遠心分離し、その上清を抽出物とした。この発芽種子抽出物250μlを分析した。
種子抽出物の抗酸化力の相対的な値をジフェニピクリルヒドラジル(DPPH)/Troloxラジカル捕捉活性法を用いて吸光度A=log10(I0/I)で測定した。ここでI0 はラジカルが無い場合の光強度、I は溶液中にラジカルが存在する場合に減衰された光強度である。この吸光度は抽出溶液中の抗酸化物質が捕捉した後のフリーラジカルの濃度に依存する。表3にDPPHラジカルに対する種子抗酸化力の相対値を示す。酸素濃度を周囲環境以下に減少させることで、抗酸化力が最低でも5倍以上の40μmol DPPH equiv./gm-seed以上に増加する。
Example 6: Effect of Oxygen Concentration The effect of a decrease in oxygen concentration on the increase of readily water-soluble polyphenols during the germination induction process was examined using grape seeds. 225 g of grape seeds were washed with running water, and then immersed in a 100 ppm sodium hypochlorite solution at 40 ° C. for 4 hours.
The seeds were then washed with distilled water and the water was removed with a soft paper. The seeds were put in a desiccator and a gas whose oxygen concentration was adjusted to 5%, 10% and 15% by mixing nitrogen gas and air was aerated. Usually, the oxygen concentration in the atmosphere is about 21% by volume. The carbon dioxide concentration in the desiccator was almost 350 ppm under all conditions. The temperature was maintained at 28 ° C., and a 10 ppm sodium hypochlorite solution at 28 ° C. was sprinkled every 4 hours to induce germination for 48 hours, and about 675 g of germinated differentiated seeds were collected.
4.12 g of the collected germinated differentiated seeds were put in a mortar, 10 ml of distilled water was added and crushed with a pestle. This crushed material was centrifuged at 10,000 × g for 15 minutes, and the supernatant was used as an extract. 250 μl of this germinated seed extract was analyzed.
The relative value of the antioxidant power of the seed extract was measured by the absorbance A = log 10 (I 0 / I) using the diphenpicrylhydrazyl (DPPH) / Trolox radical scavenging activity method. Here, I 0 is the light intensity in the absence of radicals, and I is the light intensity attenuated in the presence of radicals in the solution. This absorbance depends on the concentration of free radicals after the antioxidant in the extraction solution has captured. Table 3 shows the relative value of seed antioxidant power against DPPH radicals. By reducing the oxygen concentration below the ambient environment, the antioxidant power increases to at least 5 times more than 40 μmol DPPH equiv./gm-seed.

Figure 2008125515
Figure 2008125515

実施例7: 二酸化炭素濃度の効果
二酸化炭素濃度が、発芽誘導工程に与える影響について、ブドウ種子を用いて検討した。ブドウ種子225gを流水で洗浄後、100ppm次亜塩素酸ナトリウム溶液で、40℃で4時間時間浸漬した。次に、種子を蒸留水で洗浄し、柔らかい紙で水を取り除いた。種子をデシケーターに入れ、二酸化炭素ガスと空気の混合により二酸化炭素濃度を2,000ppm(0.2容量%)、10,000ppm(1容量%)及び50,000ppm(5容量%)に調整した気体をデシケーターに通気させた。通常大気雰囲気下の二酸化炭素濃度は約300ppmである。酸素濃度は、いずれの条件でも20〜21容量%であった。温度を28℃に維持し、4時間おきに28℃の10ppm次亜塩素酸ナトリウム溶液を散水し、48時間発芽誘導し、発芽分化種子約675gを回収した。回収した発芽分化種子4.12gを乳鉢に入れ、蒸留水10mlを添加し乳棒で破砕した。この破砕物を10000×gで15分間、遠心分離し、その上清を抽出物とした。
表4にジフェニピクリルヒドラジル(DPPH)ラジカル捕捉活性で測定した抽出物中の易水溶性ポリフェノールの抗酸化活性値を示す。通常大気雰囲気の二酸化炭素濃度以上になると、抗酸化力が8倍以上の40μmol DPPH equiv./gm−seedになった。
Example 7: Effect of carbon dioxide concentration The effect of carbon dioxide concentration on the germination induction process was examined using grape seeds. 225 g of grape seeds were washed with running water, and then immersed in a 100 ppm sodium hypochlorite solution at 40 ° C. for 4 hours. The seeds were then washed with distilled water and the water was removed with a soft paper. A gas in which seeds are put into a desiccator and the carbon dioxide concentration is adjusted to 2,000 ppm (0.2 vol%), 10,000 ppm (1 vol%), and 50,000 ppm (5 vol%) by mixing carbon dioxide gas and air. Was passed through a desiccator. Usually, the carbon dioxide concentration in the atmosphere is about 300 ppm. The oxygen concentration was 20 to 21% by volume under any conditions. The temperature was maintained at 28 ° C., and a 10 ppm sodium hypochlorite solution at 28 ° C. was sprinkled every 4 hours to induce germination for 48 hours, and about 675 g of germinated differentiated seeds were collected. 4.12 g of the collected germinated differentiated seeds were put in a mortar, 10 ml of distilled water was added and crushed with a pestle. This crushed material was centrifuged at 10,000 × g for 15 minutes, and the supernatant was used as an extract.
Table 4 shows the antioxidant activity value of the readily water-soluble polyphenol in the extract measured by diphenicpicrylhydrazyl (DPPH) radical scavenging activity. When the carbon dioxide concentration in the atmospheric air was exceeded, the antioxidant power became 40 μmol DPPH equiv./gm-seed, which is 8 times or more.

Figure 2008125515
Figure 2008125515

大気中の二酸化炭素濃度の増加に伴い抗酸化力が上がるという傾向は多くの種子(キク科、マメ科、十字花科、シソ科、カラタチ科、バラ科、イチョウ科、イネ科、クワ科、タデ科、ツバキ科、モクセイ科、 ヒイラギ科の種子、具体的には、ブドウ、サンフラワー、サフラワー、クローバー、ブラシカ、ゴマ、エゴマ、アマニ、シソ、ピーナツ、米、そば、コーン、小麦、ワイルドライス、大麦、アワ、ヒエ、コロハ、ローズマリー、タイム、セージ、ミント、アメリカンレッドチェリー、アプリコット、アーモンド、グレープルルーツ、オレンジ、プラム、セントジョンズワート、トマト、イチゴ、ニンジン、ピーマン、マンゴスティーン、マンゴ、ビワ、ゴボウ、カカオなど)で認められた。   The trend of increasing antioxidant capacity with increasing carbon dioxide concentration in the atmosphere is that many seeds (Asteraceae, Leguminosae, Cross Flower, Perillaceae, Calabidae, Rose, Ginkgo, Gramineae, Mulberry, Seeds of camellia, camellia, oleaceae, holly, specifically grapes, sunflower, safflower, clover, brassica, sesame, egoma, flaxseed, perilla, peanut, rice, buckwheat, corn, wheat, wild Rice, barley, millet, millet, fenugreek, rosemary, thyme, sage, mint, American red cherry, apricot, almond, grapefruit, orange, plum, St. John's wort, tomato, strawberry, carrot, bell pepper, mangosteen, Mango, loquat, burdock, cacao etc.).

実施例8:光の照射の効果
実施例3と4において、異なる可視光線量を照射しながら通常大気雰囲気下の酸素濃度及び二酸化炭素濃度(酸素濃度21%、二酸化炭素濃度350ppm)で発芽誘導工程と分析を繰り返した。その結果を表5に示す。光の照射は、蛍光管を使用し、0時間(暗条件)、2時間、6時間、24時間照射した。光強度は、簡易照度計で5000ルクスで行なった。各条件で照射を行った種子から易水溶性ポリフェノールを抽出した。
暗条件に比べ、一日当たり最低2時間以上の光を照射した種子から抽出した易水溶性ポリフェノールの方が強い抗酸化力を示した。光の照射がない場合でも発芽時間とともに抗酸化成分の量は増加しているが、光の照射により種子抽出物の抗酸化成分量が増加することがわかった。条件によっては光の照射が種子の抗酸化力を50%以上増加させることもあった。
Example 8: Effect of light irradiation In Examples 3 and 4, germination induction step at normal oxygen concentration and carbon dioxide concentration (21% oxygen concentration, 350 ppm carbon dioxide concentration) while irradiating different visible light doses And the analysis was repeated. The results are shown in Table 5. The light was irradiated using a fluorescent tube for 0 hour (dark condition), 2 hours, 6 hours, and 24 hours. The light intensity was 5000 lux with a simple illuminometer. Easily water-soluble polyphenols were extracted from seeds irradiated under each condition.
Compared to dark conditions, the highly water-soluble polyphenols extracted from seeds irradiated with light for at least 2 hours per day showed stronger antioxidant power. Even in the absence of light irradiation, the amount of antioxidant component increased with germination time, but it was found that the amount of antioxidant component in seed extract increased with light irradiation. Depending on the conditions, light irradiation may increase the antioxidant capacity of the seed by 50% or more.

Figure 2008125515
Figure 2008125515

この傾向は多くの種子(キク科、マメ科、十字花科、シソ科、カラタチ科、バラ科、イチョウ科、イネ科、クワ科、タデ科、ツバキ科、モクセイ科、ヒイラギ科の種子、具体的には、ブドウ、サンフラワー、サフラワー、クローバー、ブラシカ、ゴマ、エゴマ、アマニ、シソ、ピーナツ、米、そば、コーン、小麦、ワイルドライス、大麦、アワ、ヒエ、コロハ、ローズマリー、タイム、セージ、ミント、アメリカンレッドチェリー、アプリコット、アーモンド、グレープルルーツ、オレンジ、プラム、セントジョンズワート、トマト、イチゴ、ニンジン、ピーマン、マンゴスティーン、マンゴ、ビワ、ゴボウ、カカオなど)で認められた。
手段や装置の具体例や実施例は説明を目的とするものであり、本発明の精神と範囲を逸脱することなく、各種の変更を行うことが可能である。例えば本発明の実施例は様々なシステムに適用することが可能であり、多くの種類の植物種子から易水溶性ポリフェノールや抗酸化化合物を得ることができる。本発明は有機溶媒を使用せずに、種子からのポリフェノールの抽出及び精製を容易に行なうことが可能なため、食品、健康食品、医薬品あるいは化粧品などの広範囲の用途に適用することができる。さらに、実施様態では水溶液を用いて種子からの抽出を行ったが、一例として種子もしくは種子の副産物を直接食品に取り入れるなど、他の多くの用途に本発明を適用することが可能であり、易水溶性ポリフェノールを利用するあらゆる用途に用いることができる。さらには実施例の特性は他の実施例に組み込んでもよく、本記述内に一つの実施例としてそれらの特性が説明されておらずともよい。従って上記の説明は、添付の請求項で定義される発明の範囲を制限するものではない。
This tendency is related to many seeds (Asteraceae, Leguminosae, Cross Flower, Perillaceae, Calcaretaceae, Rose, Ginkgo, Gramineae, Mulberry, Tadeidae, Camellia, Coleaceae, Holly, etc. In particular, grape, sunflower, safflower, clover, brassica, sesame, egoma, flaxseed, perilla, peanut, rice, buckwheat, corn, wheat, wild rice, barley, millet, millet, koroha, rosemary, thyme, Sage, Mint, American Red Cherry, Apricot, Almond, Grape Roots, Orange, Plum, St. John's Wort, Tomato, Strawberry, Carrot, Pepper, Mangosteen, Mango, Biwa, Burdock, Cacao, etc.).
Specific examples and embodiments of the means and apparatus are for the purpose of explanation, and various changes can be made without departing from the spirit and scope of the present invention. For example, the embodiments of the present invention can be applied to various systems, and easily water-soluble polyphenols and antioxidant compounds can be obtained from many types of plant seeds. Since the present invention can easily extract and purify polyphenols from seeds without using an organic solvent, it can be applied to a wide range of uses such as foods, health foods, pharmaceuticals, and cosmetics. Furthermore, in the embodiment, the extraction from the seed was performed using the aqueous solution, but the present invention can be applied to many other uses such as directly incorporating seeds or seed by-products into food as an example. It can be used for any application that utilizes water-soluble polyphenols. Furthermore, the characteristics of the embodiments may be incorporated in other embodiments, and those characteristics may not be described as one embodiment in the present description. Therefore, the above description should not limit the scope of the invention as defined in the appended claims.

ブドウの種子を図8の発芽誘導容器800に5cm積層させて、室温28℃で、発芽誘導した場合の24時間の温度変化を示すグラフ。The graph which shows the temperature change of 24 hours at the time of laminating | stacking grape seeds on the germination induction container 800 of FIG. リョクトウの種子を図7の発芽容器700に1層にまいて、室温28℃又は室温36℃で、発芽誘導した場合の24時間の温度変化を示すグラフ。The graph which shows the temperature change of 24 hours at the time of sprinkling a mung bean seed to the germination container 700 of FIG. リョクトウの種子を図8の発芽誘導容器800に入れ、室温28℃で、発芽誘導した場合の24時間の酸素濃度変化を示すグラフ。The graph which shows the oxygen concentration change for 24 hours at the time of putting germinating seeds in the germination induction container 800 of FIG. リョクトウの種子を図7の発芽誘導容器700に入れ、室温28℃又は室温36℃で、発芽誘導した場合の24時間の酸素濃度変化を示すグラフ。FIG. 8 is a graph showing a change in oxygen concentration for 24 hours when mung bean seeds are placed in the germination induction container 700 of FIG. 7 and germination is induced at a room temperature of 28 ° C. or a room temperature of 36 ° C. FIG. リョクトウの種子を図8の発芽誘導容器800に入れ、室温28℃で、発芽誘導した場合の24時間の二酸化炭素濃度変化を示すグラフ。FIG. 9 is a graph showing changes in carbon dioxide concentration over 24 hours when mungbean seeds are placed in the germination induction container 800 of FIG. 8 and germination is induced at room temperature of 28 ° C. FIG. リョクトウの種子を図7の発芽容器700に入れ、室温28℃又は室温36℃で、発芽誘導した場合の24時間の二酸化炭素濃度変化を示すグラフ。FIG. 8 is a graph showing a change in carbon dioxide concentration for 24 hours when mung bean seeds are placed in the germination container 700 of FIG. 7 and germination is induced at a room temperature of 28 ° C. or a room temperature of 36 ° C. FIG. 発芽容器に種子の入った状態を説明する説明図。Explanatory drawing explaining the state in which the seed entered the germination container. 発芽容器に種子の入った状態を説明する説明図。Explanatory drawing explaining the state in which the seed entered the germination container.

Claims (25)

発芽可能な植物種子を、約2000ppm以上の二酸化炭素濃度及び/又は約18容量%以下の酸素濃度の雰囲気条件で保持し、その植物種子を発芽温度範囲で保持する、易水溶性ポリフェノールが増加した発芽分化植物種子の製造方法。 Increased water-soluble polyphenols that maintain germinable plant seeds under atmospheric conditions of carbon dioxide concentration of about 2000 ppm or more and / or oxygen concentration of about 18% by volume or less, and holding the plant seeds in the germination temperature range A method for producing germinated differentiated plant seeds. 植物種子を含水させる、請求項1に記載の発芽分化植物種子の製造方法。 The method for producing a germinated differentiated plant seed according to claim 1, wherein the plant seed is hydrated. 含水には散水を含む、請求項2に記載の発芽分化植物種子の製造方法。 The method for producing germinated differentiated plant seeds according to claim 2, wherein the water content includes watering. 発芽分化工程前に植物種子に含水させる工程を含む、請求項1に記載の発芽分化植物種子の製造方法。 The method for producing a germinated differentiated plant seed according to claim 1, comprising a step of adding water to the plant seed before the germination differentiation step. 発芽分化工程前に植物種子を加熱する、請求項1に記載の発芽分化植物種子の製造方法。 The method for producing germinated differentiated plant seeds according to claim 1, wherein the plant seeds are heated before the germination differentiation step. 植物種子に光を照射する、請求項1に記載の発芽分化植物種子の製造方法。 The method for producing germinated differentiated plant seeds according to claim 1, wherein the plant seeds are irradiated with light. 光の照射が1日当たり5000ルクス以上で2時間以上である、請求項6に記載の発芽分化植物種子の製造方法。 The method for producing germinated differentiated plant seeds according to claim 6, wherein the irradiation with light is 5000 lux or more per day for 2 hours or more. 発芽誘導工程において、雰囲気条件の二酸化炭素濃度が2,000ppm以上50,000ppm以下で、発芽誘導工程時間の60%以上保持する、請求項1に記載の発芽分化植物種子の製造方法。 The method for producing germinated differentiated plant seeds according to claim 1, wherein in the germination induction step, the carbon dioxide concentration in the atmospheric condition is 2,000 ppm or more and 50,000 ppm or less, and 60% or more of the germination induction step time is maintained. 発芽誘導工程において、雰囲気条件の酸素濃度が4容量%以上18容量%以下で、発芽誘導工程時間の60%以上保持する、請求項1に記載の発芽分化植物種子の製造方法。 The method for producing germinated differentiated plant seeds according to claim 1, wherein, in the germination induction step, the oxygen concentration under atmospheric conditions is 4 vol% or more and 18 vol% or less, and 60% or more of the germination induction step time is maintained. 発芽誘導工程において、発芽温度が20℃〜45℃である、請求項1に記載の発芽分化植物種子の製造方法。 The method for producing a germinated differentiated plant seed according to claim 1, wherein the germination temperature is 20 ° C. to 45 ° C. in the germination induction step. 加熱温度が発芽適温の中央値の5℃以上30℃以下である、請求項1に記載の発芽分化植物種子の製造方法。 The method for producing germinated differentiated plant seeds according to claim 1, wherein the heating temperature is 5 ° C. or higher and 30 ° C. or lower, which is the median value of the appropriate germination temperature. 発芽誘導工程が、種子を堆積させて行う発芽誘導工程であり、温度調節を発芽熱による温度上昇及び散水による温度低下を利用して行なう、請求項1に記載の発芽分化植物種子の製造方法。 The method according to claim 1, wherein the germination induction step is a germination induction step performed by depositing seeds, and temperature adjustment is performed using a temperature increase due to heat of germination and a temperature decrease due to watering. 植物種子を二酸化炭素濃度が2,000ppm以上及び/又は酸素濃度が18容量%以下の雰囲気条件で発芽誘導工程を行い、温度を20℃〜45℃で保持することで生成される易水溶性ポリフェノール及び/又は抗酸化物質を含む食品。 A readily water-soluble polyphenol produced by subjecting plant seeds to a germination induction step under atmospheric conditions where the carbon dioxide concentration is 2,000 ppm or more and / or the oxygen concentration is 18% by volume or less, and the temperature is maintained at 20 ° C to 45 ° C. And / or food containing antioxidants. 発芽分化工程中に種子に含水及び/又は光の照射を行った、請求項12に記載の食品。 The food according to claim 12, wherein the seed is subjected to moisture and / or light irradiation during the germination differentiation process. 光の照射が1日当たり5000ルクス以上で2時間以上である、請求項14に記載の食品。 The food according to claim 14, wherein the irradiation with light is 5000 lux or more per day for 2 hours or more. 植物種子の発芽適温の中央値の5℃以上30℃以下の温度で保持された、請求項14に記載の食品。 The food according to claim 14, wherein the food is maintained at a temperature of 5 ° C. or higher and 30 ° C. or lower, which is the median optimal temperature for germination of plant seeds. ポリフェノールを含む植物由来の易水溶性抽出物を含む、請求項12に記載の食品。 The foodstuff of Claim 12 containing the easily water-soluble extract derived from a plant containing a polyphenol. 植物種子を含む、請求項13に記載の食品。 The food according to claim 13, comprising plant seeds. 植物種子1グラムあたり1ミリグラム以上の易水溶性ポリフェノールを含む植物種子からなる、請求項18に記載の食品。 The food according to claim 18, comprising plant seeds containing 1 milligram or more of a readily water-soluble polyphenol per gram of plant seeds. 植物種子1グラムあたり2ミリグラム以上の易水溶性ポリフェノールを含有する植物種子からなる、請求項18に記載の食品。 The food according to claim 18, comprising plant seeds containing 2 milligrams or more of a readily water-soluble polyphenol per gram of plant seeds. 植物種子1グラムあたり40μmol DPPH相当以上の抗酸化物質を含む植物種子からなる、請求項18に記載の食品。 The food according to claim 18, comprising a plant seed containing an antioxidant equivalent to 40 µmol DPPH or more per gram of plant seed. 未発芽の種子と比較して8倍以上の易水溶性ポリフェノールを含有する植物種子を含む、請求項18に記載の食品。 The foodstuff of Claim 18 containing the plant seed containing 8 times or more easily water-soluble polyphenol compared with an ungerminated seed. 植物種子は基本的にブドウ科の植物種子からなる、請求項12及び請求項18に記載の食品。 The foodstuff according to claim 12 and claim 18, wherein the plant seed is basically composed of a grape seed. 二酸化炭素濃度を約2,000ppm以上及び/又は酸素濃度を約18容量%以下に保持し、植物種子の温度を発芽適温範囲内に保持し、その植物種子を含水させる手段を有する、易水溶性ポリフェノールが増加した発芽分化植物種子の発芽分化を行うための装置。 Water-soluble, having means for maintaining a carbon dioxide concentration of about 2,000 ppm or more and / or an oxygen concentration of about 18% by volume or less, maintaining the temperature of the plant seed within a suitable temperature range for germination, and allowing the plant seed to be hydrated An apparatus for germinating and differentiating germinated plant seeds with increased polyphenols. 植物種子に1日当たり5000ルクス以上で2時間以上光を照射するための光源を有する、請求項24に記載の装置。 25. The apparatus of claim 24, comprising a light source for irradiating plant seeds with light at 5000 lux or more for 2 hours or more per day.
JP2007292728A 2006-11-21 2007-11-12 Method for producing germinated differentiated plant seed, food containing water-soluble polyphenol and / or antioxidant substance of germinated differentiated plant seed, and apparatus for germinating differentiation of plant seed Active JP5722518B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/603,604 2006-11-21
US11/603,604 US20080003314A1 (en) 2006-06-29 2006-11-21 Germinated seeds possessing increased water-soluble polyphenols and method of manufacturing
US11/849,213 US8756861B2 (en) 2006-06-29 2007-08-31 Germinated seeds possessing increased water-soluble polyphenols and method of manufacturing
US11/849,213 2007-08-31

Publications (2)

Publication Number Publication Date
JP2008125515A true JP2008125515A (en) 2008-06-05
JP5722518B2 JP5722518B2 (en) 2015-05-20

Family

ID=39551976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292728A Active JP5722518B2 (en) 2006-11-21 2007-11-12 Method for producing germinated differentiated plant seed, food containing water-soluble polyphenol and / or antioxidant substance of germinated differentiated plant seed, and apparatus for germinating differentiation of plant seed

Country Status (1)

Country Link
JP (1) JP5722518B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063454A (en) * 2008-08-12 2010-03-25 Shinshu Univ Method for enriching and processing polyphenol in cereal, and food containing the cereal
JP2010534488A (en) * 2007-07-27 2010-11-11 ザ ステート オブ イスラエル, ミニストリー オブ アグリカルチャー アンド ルーラル ディヴェロプメント, アグリカルチュラル リサーチ オーガニゼーション, (エー.アール.オー.), ボルカニ Pomegranate sprouts, preparations derived from pomegranate sprouts and compositions containing them
WO2011115075A1 (en) * 2010-03-15 2011-09-22 三菱化学株式会社 Organic electroluminescent element and process for production thereof, organic el display device, organic el lighting device, and device for production of organic electroluminescent element
WO2012098772A1 (en) * 2011-01-22 2012-07-26 株式会社エーゼット Disinfection method, disinfection device, and disinfecting agent utilizing light
WO2014061262A1 (en) * 2012-10-19 2014-04-24 株式会社小倉屋柳本 High-gaba-content sprouted soybean and method for producing same
JP2014073988A (en) * 2012-10-04 2014-04-24 Tsukasa Nagao Functional composition, and health food and cosmetic containing the composition
JP5795676B1 (en) * 2014-11-28 2015-10-14 株式会社果実堂 Method for producing germination-treated plant seed, method for producing seed for germination induction, composition for extracting germination-treated plant seed, and screening method
KR101560775B1 (en) 2013-11-25 2015-10-19 대한민국 Kidney bean herbs, and cultivation method thereof
JP2022058005A (en) * 2020-09-30 2022-04-11 司 永尾 Composition for reducing excessive immune response

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7290297B1 (en) 2022-06-20 2023-06-13 菱熱工業株式会社 Method for producing vegetable protein food

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237718A (en) * 1993-02-12 1994-08-30 Hishiyoushiya:Kk Apparatus for producing sprouted unpolished rice and production of sprouted unpolished rice
JPH07289021A (en) * 1994-04-28 1995-11-07 Sumitomo Chem Co Ltd Method for uniforming germination starting period of seed and utilization thereof
JP2000501501A (en) * 1995-12-01 2000-02-08 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Method and apparatus for micro-screening agricultural products
JP2002045135A (en) * 2001-04-25 2002-02-12 Omusubi Kororin Honpo:Kk Germ-free sprouting brown rice and method of manufacturing the same
JP2003325040A (en) * 2002-05-08 2003-11-18 Taishi Shokuhin Kogyo Kk Bean sprout with high sugar content and method for cultivating the same
JP2004141138A (en) * 2002-10-21 2004-05-20 Toshiyuki Ota Method for producing germinating seed and method for using the germinating seed

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237718A (en) * 1993-02-12 1994-08-30 Hishiyoushiya:Kk Apparatus for producing sprouted unpolished rice and production of sprouted unpolished rice
JPH07289021A (en) * 1994-04-28 1995-11-07 Sumitomo Chem Co Ltd Method for uniforming germination starting period of seed and utilization thereof
JP2000501501A (en) * 1995-12-01 2000-02-08 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Method and apparatus for micro-screening agricultural products
JP2002045135A (en) * 2001-04-25 2002-02-12 Omusubi Kororin Honpo:Kk Germ-free sprouting brown rice and method of manufacturing the same
JP2003325040A (en) * 2002-05-08 2003-11-18 Taishi Shokuhin Kogyo Kk Bean sprout with high sugar content and method for cultivating the same
JP2004141138A (en) * 2002-10-21 2004-05-20 Toshiyuki Ota Method for producing germinating seed and method for using the germinating seed

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534488A (en) * 2007-07-27 2010-11-11 ザ ステート オブ イスラエル, ミニストリー オブ アグリカルチャー アンド ルーラル ディヴェロプメント, アグリカルチュラル リサーチ オーガニゼーション, (エー.アール.オー.), ボルカニ Pomegranate sprouts, preparations derived from pomegranate sprouts and compositions containing them
JP2010063454A (en) * 2008-08-12 2010-03-25 Shinshu Univ Method for enriching and processing polyphenol in cereal, and food containing the cereal
US8927326B2 (en) 2010-03-15 2015-01-06 Mitsubishi Chemical Corporation Organic electroluminescence element, production method thereof, organic EL display device, organic EL lighting, and apparatus for producing organic electroluminescence element
WO2011115075A1 (en) * 2010-03-15 2011-09-22 三菱化学株式会社 Organic electroluminescent element and process for production thereof, organic el display device, organic el lighting device, and device for production of organic electroluminescent element
US8999236B2 (en) 2011-01-22 2015-04-07 Az Co., Ltd. Disinfection method and disinfection device
JP5265057B2 (en) * 2011-01-22 2013-08-14 株式会社エーゼット Sterilization method and sterilization apparatus
WO2012098772A1 (en) * 2011-01-22 2012-07-26 株式会社エーゼット Disinfection method, disinfection device, and disinfecting agent utilizing light
JP2014073988A (en) * 2012-10-04 2014-04-24 Tsukasa Nagao Functional composition, and health food and cosmetic containing the composition
WO2014061262A1 (en) * 2012-10-19 2014-04-24 株式会社小倉屋柳本 High-gaba-content sprouted soybean and method for producing same
JPWO2014061262A1 (en) * 2012-10-19 2016-09-05 株式会社小倉屋柳本 High GABA content germinated soybean and method for producing the same
KR101560775B1 (en) 2013-11-25 2015-10-19 대한민국 Kidney bean herbs, and cultivation method thereof
JP5795676B1 (en) * 2014-11-28 2015-10-14 株式会社果実堂 Method for producing germination-treated plant seed, method for producing seed for germination induction, composition for extracting germination-treated plant seed, and screening method
WO2016084886A1 (en) * 2014-11-28 2016-06-02 株式会社果実堂 Method for manufacturing germination-treated plant seed, method for manufacturing raw seed for germination induction, germination treated plant seed extract composition, and screening method
EP3225692A4 (en) * 2014-11-28 2018-03-28 Daiz Energy Co., Ltd. Method for manufacturing germination-treated plant seed, method for manufacturing raw seed for germination induction, germination treated plant seed extract composition, and screening method
US10660258B2 (en) 2014-11-28 2020-05-26 Daiz Energy Co., Ltd. Method for producing germinated plant seeds, a method for producing germination induction raw material seeds, extract composition of germination processing plant seeds, and screening method
JP2022058005A (en) * 2020-09-30 2022-04-11 司 永尾 Composition for reducing excessive immune response

Also Published As

Publication number Publication date
JP5722518B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5722518B2 (en) Method for producing germinated differentiated plant seed, food containing water-soluble polyphenol and / or antioxidant substance of germinated differentiated plant seed, and apparatus for germinating differentiation of plant seed
US8756861B2 (en) Germinated seeds possessing increased water-soluble polyphenols and method of manufacturing
Zhang et al. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance
US20080003314A1 (en) Germinated seeds possessing increased water-soluble polyphenols and method of manufacturing
Amarowicz et al. Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods
Çoklar et al. Effect of sun, oven and freeze-drying on anthocyanins, phenolic compounds and antioxidant activity of black grape (Ekşikara)(Vitis vinifera L.)
Park et al. Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage
Ali et al. Tomato fruit quality as influenced by salinity and nitric oxide
Tiwari et al. Factors influencing levels of phytochemicals in selected fruit and vegetables during pre-and post-harvest food processing operations
Kim et al. Flavonoids and antioxidant capacity of various cabbage genotypes at juvenile stage
Yalcin et al. Bioactive compounds of fruits and vegetables
Oancea et al. Anthocyanins, from biosynthesis in plants to human health benefits.
Zeng et al. Phytochemical compositions, health-promoting properties and food applications of crabapples: A review
Stevens et al. Application of hormetic UV‐C for delayed ripening and reduction of Rhizopus soft rot in tomatoes: the effect of tomatine on storage rot development
Martinez et al. Controlling anthracnose by means of extracts, and their major constituents, from Brosimum rubescens Taub
Aly Biosynthesis of phenolic compounds and water soluble vitamins in culantro (Eryngium foetidum L.) plantlets as affected by low doses of gamma irradiation
JP2006020565A (en) Method and device for producing sprout vegetable highly containing polyphenol
KR101014202B1 (en) Dried grape with increased antioxidant activities through infrared radiation
KR101014203B1 (en) Grape jam with increased antioxidant activities through infrared radiation
Pirovani et al. Bioactive compounds in fresh‐cut fruits: Occurrence and impact of processing and cold storage
KR101014204B1 (en) Grape juice with increased antioxidant activities through infrared radiation
JP4910085B2 (en) Production method of flavones
Surjadinata Wounding and ultraviolet radiation stresses affect the phenolic profile and antioxidant capacity of carrot tissue
Wan Sembok Regulation of fruit colour development, quality and storage life of ‘Cripps Pink’apple with deficit irrigation and plant bioregulators
Chacko et al. Sensory, physicochemical and antimicrobial evaluation of jams made from indigenous fruit peels

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130926

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131025

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150326

R150 Certificate of patent or registration of utility model

Ref document number: 5722518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250