JP2008123798A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2008123798A
JP2008123798A JP2006305421A JP2006305421A JP2008123798A JP 2008123798 A JP2008123798 A JP 2008123798A JP 2006305421 A JP2006305421 A JP 2006305421A JP 2006305421 A JP2006305421 A JP 2006305421A JP 2008123798 A JP2008123798 A JP 2008123798A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
negative electrode
discharge
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006305421A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
貴志 鈴木
Yusuke Tamura
祐介 田村
Chihiro Murata
千洋 村田
Masanori Nakanishi
正典 中西
Kiyohide Tsutsui
清英 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2006305421A priority Critical patent/JP2008123798A/en
Publication of JP2008123798A publication Critical patent/JP2008123798A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery capable of preventing sudden decrease in discharge capacity with temperature drop and using graphite powder in a positive electrode material. <P>SOLUTION: The lithium secondary battery has a positive electrode containing graphite powder charging/discharging by storing/releasing electrolyte anions as the positive electrode material, a negative electrode containing lithium metal or a negative electrode material charging discharging by storing/releasing lithium ions, and an organic electrolyte comprising an organic solvent containing a lithium salt, and the lithium salt contains LiPF<SB>6</SB>and LiN(CF<SB>3</SB>SO<SB>2</SB>)<SB>2</SB>and the concentration of LiN(CF<SB>3</SB>SO<SB>2</SB>)<SB>2</SB>to the organic solvent is made 0.2-0.5 mol/L. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はリチウム二次電池に関する。   The present invention relates to a lithium secondary battery.

黒鉛化された炭素材料からなる正極と、リチウム塩を含んだ電解質と、リチウム金属からなる負極とを備えた非水電解質二次電池は、古くから知られている(例えば、特許文献1及び3参照)。また当該電池の負極としてリチウムの吸蔵・放出が可能な炭素材料を適用し、充放電サイクル特寿命を向上させる試みも為されてきた(例えば、特許文献2及び4参照)。リチウム金属は充放電サイクルによって溶解・析出を繰り返し、デンドライト(樹枝状析出物)の生成及び不動態化が生じる結果、サイクル寿命が短いからである。   Non-aqueous electrolyte secondary batteries including a positive electrode made of a graphitized carbon material, an electrolyte containing a lithium salt, and a negative electrode made of lithium metal have been known for a long time (for example, Patent Documents 1 and 3). reference). In addition, attempts have been made to improve the charge / discharge cycle life by applying a carbon material capable of inserting and extracting lithium as the negative electrode of the battery (see, for example, Patent Documents 2 and 4). This is because lithium metal is repeatedly dissolved and precipitated by the charge / discharge cycle, and dendrite (dendritic precipitate) is generated and passivated, resulting in a short cycle life.

このような構成を有する非水電解質二次電池は、通常放電状態で電池が組み立てられ、充電を行わなければ放電可能な状態にはならない。以下負極として、リチウムの可逆的な吸蔵・放出が可能な黒鉛材料が使用された場合を例に取り、その充放電反応を説明する。   The nonaqueous electrolyte secondary battery having such a configuration is assembled in a normal discharge state, and cannot be discharged unless it is charged. Hereinafter, the charge / discharge reaction will be described by taking as an example a case where a graphite material capable of reversibly occluding and releasing lithium is used as the negative electrode.

先ず、第1サイクル目の充電を行うと、電解質中のアニオンは正極(黒鉛材料)に、カチオン(リチウムイオン)は負極に吸蔵(インターカレーション)され、正極ではアクセプタ型黒鉛層間化合物が、負極ではドナー型炭素層間化合物が各々形成される。その後、放電を行うと両極に吸蔵されたカチオン及びアニオンが放出(デインターカレーション)され、電池電圧は低下する。その充放電反応は下式1及び2のように表現することができる。
正極:(放電)Cx + A = CxA + e(充電) 式1
負極:(放電)Cy + Li + e = LiCy(充電) 式2
従って、この種の二次電池における正極は、充放電により電解質アニオンの黒鉛層問化合物が可逆的に形成される反応を、負極は充放電により電解質カチオンの炭素層問化合物が可逆的に形成される反応を、各々利用したものであると表現することができる。
First, when charging in the first cycle, the anion in the electrolyte is occluded (intercalated) in the positive electrode (graphite material) and the cation (lithium ion) in the negative electrode. Then, a donor type carbon intercalation compound is formed. Thereafter, when discharging is performed, cations and anions stored in both electrodes are released (deintercalation), and the battery voltage decreases. The charge / discharge reaction can be expressed by the following equations 1 and 2.
Positive electrode: (discharge) Cx + A = CxA + e (charge) Equation 1
Negative electrode: (discharge) Cy + Li + + e = LiCy (charge) Equation 2
Therefore, the positive electrode in this type of secondary battery undergoes a reaction in which the graphite layer compound of the electrolyte anion is reversibly formed by charging and discharging, and the carbon layer compound of the electrolyte cation is reversibly formed by charging and discharging. It can be expressed that each reaction is used.

このような正極材料として本発明者等は、サイクル特性の改善を目的とし、易黒鉛化性炭素材料又はその出発原料若しくは炭素前駆体から選択される一種以上の材料を平均粒子径として50μm以下に粉砕後、これらを不活性ガス雰囲気中で1700℃以上に熱処理して黒鉛化された黒鉛粉末(例えば、特許文献5参照)を開発した。また60℃高温下での浮動充電後の容量維持率を改善するため、Xバンドを用いて測定された電子スピン共鳴法において、3200〜3400gaussの範囲に出現する炭素由来のピークを有し、温度296Kで測定された当該ピークの半価幅ΔH296Kに対する、温度40Kで測定された当該ピークの半価幅ΔH40Kの相対比率(ΔH40K/ΔH296K)が2.6以上となるような、局在電子密度が大幅に抑制された黒鉛粉末(例えば、特許文献6参照)を開発した。
特開昭53−123841 特開昭61− 7567 特開昭61− 10882 特開昭62−103991 PCT/JP03/12906 PCT/JP2005/011720
As such a positive electrode material, the present inventors aim to improve cycle characteristics, and one or more materials selected from graphitizable carbon materials or starting materials or carbon precursors thereof have an average particle diameter of 50 μm or less. After pulverization, these were heat-treated at 1700 ° C. or higher in an inert gas atmosphere to develop graphitized graphite powder (see, for example, Patent Document 5). In addition, in order to improve capacity retention after floating charging at a high temperature of 60 ° C., the electron spin resonance method measured using the X band has a peak derived from carbon that appears in the range of 3200 to 3400 gauss, The relative ratio (ΔH 40K / ΔH 296K ) of the peak half-value width ΔH 40K measured at a temperature of 40 K to the peak half-value width ΔH 296 K measured at 296 K is 2.6 or more. A graphite powder (see, for example, Patent Document 6) in which the electron density is significantly suppressed was developed.
JP 53-123841 JP 61-7567 JP 61-10882 JP 62-103991 A PCT / JP03 / 12906 PCT / JP2005 / 011720

しかし、これら黒鉛粉末を正極に使用したリチウム二次電池の放電容量は、温度依存性が非常に高く、特に25℃以下の温度領域において、温度の低下と共に直線的に減少する問題があった。   However, the discharge capacity of lithium secondary batteries using these graphite powders for the positive electrode has a very high temperature dependency, and there is a problem that the discharge capacity decreases linearly as the temperature decreases, particularly in a temperature range of 25 ° C. or lower.

本発明は、電解質アニオンの吸蔵・放出を行うことにより充放電を行う黒鉛粉末を正極材料として含有する正極と、リチウム金属又はリチウムイオンの吸蔵・放出を行うことにより充放電を行う負極材料を含有する負極と、リチウム塩を含有する有機溶媒からなる有機電解液とを備えるリチウム二次電池において、低温特性を改良したリチウム二次電池を提供することを目的とする。   The present invention includes a positive electrode containing, as a positive electrode material, graphite powder that is charged / discharged by occluding / releasing electrolyte anions, and a negative electrode material that is charged / discharged by occluding / releasing lithium metal or lithium ions. An object of the present invention is to provide a lithium secondary battery having improved low-temperature characteristics, in a lithium secondary battery comprising a negative electrode to be prepared and an organic electrolytic solution comprising an organic solvent containing a lithium salt.

リチウム二次電池に使用されるリチウム塩として、これまでに、LiPF,LiBF,LiClO,LiGaCl,LiBCl,LiAsF,LiSbF,LiInCl,LiSCN,LiBrF,LiTaF,LiB(CH,LiNbF,LiIO,LiAlCl,LiNO,LiI,LiBr,LiN(CFSO,LiN(CSO,LiC(CFSO及びLiB(Cなど、種々の化合物が検討されてきた。また、例えば、LiPF(リチウムヘキサフルオロフォスフェート)及びLiN(CFSO(リチウムビス(トリフルオロメタンスルホン)イミド、以下、LiTFSIと略記する)の混合物等、複数の化合物を混合した例も報告されている(第41回電池討論会要旨集P322)。 As lithium salts used in the lithium secondary battery, so far, LiPF 6, LiBF 4, LiClO 4, LiGaCl 4, LiBCl 4, LiAsF 6, LiSbF 6, LiInCl 4, LiSCN, LiBrF 4, LiTaF 6, LiB ( CH 3 ) 4 , LiNbF 6 , LiIO 3 , LiAlCl 4 , LiNO 3 , LiI, LiBr, LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and Various compounds such as LiB (C 2 O 4 ) 2 have been investigated. Further, for example, a mixture of a plurality of compounds such as a mixture of LiPF 6 (lithium hexafluorophosphate) and LiN (CF 3 SO 2 ) 2 (lithium bis (trifluoromethanesulfone) imide, hereinafter abbreviated as LiTFSI). Has also been reported (Abstracts from the 41st Battery Discussion Meeting P322).

本発明者らは、リチウム塩としてLiPF及びLiTFSIを含む際に、有機溶媒に対するLiTFSIの濃度を0.2〜0.5mol/Lとすることにより、電解質アニオンが黒鉛の結晶層間へ可逆的に吸蔵することにより充放電が行われる正極が使用された、リチウム二次電池において、上記課題の低温特性が改良できることを見出し、本発明を完成するに至った。 When the present inventors include LiPF 6 and LiTFSI as lithium salts, the electrolyte anion reversibly enters between the graphite crystal layers by setting the concentration of LiTFSI to the organic solvent to 0.2 to 0.5 mol / L. In a lithium secondary battery using a positive electrode that is charged and discharged by occlusion, the present inventors have found that the low-temperature characteristics of the above problem can be improved and have completed the present invention.

すなわち、本発明に係るリチウム二次電池は、電解質アニオンの吸蔵・放出を行うことにより充放電を行う黒鉛粉末を正極材料として含有する正極と、リチウム金属又はリチウムイオンの吸蔵・放出を行う材料により充放電を行う負極材料を含有する負極と、リチウム塩を含有する有機溶媒からなる有機電解液を備え、前記リチウム塩は、LiPF及びLiTFSIを含み、前記有機溶媒に対する前記LiTFSIの濃度は、0.2〜0.5mol/Lであることを特徴とする。 That is, the lithium secondary battery according to the present invention includes a positive electrode containing, as a positive electrode material, graphite powder that is charged and discharged by performing occlusion / release of electrolyte anions, and a material that occludes / releases lithium metal or lithium ions. A negative electrode containing a negative electrode material that performs charge and discharge, and an organic electrolyte solution comprising an organic solvent containing a lithium salt, wherein the lithium salt contains LiPF 6 and LiTFSI, and the concentration of LiTFSI relative to the organic solvent is 0 It is characterized by being 2 to 0.5 mol / L.

本発明によって、電解質アニオンの吸蔵・放出を行うことにより充放電を行う黒鉛粉末を正極材料として含有する正極と、リチウム金属又はリチウムイオンの吸蔵・放出を行うことにより充放電を行う負極材料を含有する負極と、リチウム塩を含有する有機溶媒からなる有機電解液とを備えるリチウム二次電池において、低温特性を改良したリチウム二次電池を提供することが可能となった。   According to the present invention, a positive electrode containing, as a positive electrode material, graphite powder that is charged / discharged by occluding / releasing electrolyte anions, and a negative electrode material that is charged / discharged by occluding / releasing lithium metal or lithium ions It is possible to provide a lithium secondary battery having improved low-temperature characteristics in a lithium secondary battery comprising a negative electrode to be prepared and an organic electrolytic solution comprising an organic solvent containing a lithium salt.

以下、好ましい実施の形態につき詳細に説明する。しかし、以下は本発明を実施するための例であって、本発明を以下の実施形態に限定する意図で記載するものではない。   Hereinafter, a preferred embodiment will be described in detail. However, the following are examples for carrying out the present invention, and are not intended to limit the present invention to the following embodiments.

==本発明のリチウム二次電池の構成==
本発明に係るリチウム二次電池は、電解質アニオンの吸蔵・放出を行うことにより充放電を行う黒鉛粉末を正極材料として含有する正極と、リチウム金属又はリチウムイオンの吸蔵・放出を行うことにより充放電を行う負極材料を含有する負極と、リチウム塩を含有する有機溶媒からなる有機電解液を備え、前記リチウム塩は、LiPF及びLiN(CFSOを含み、前記有機溶媒に対する前記LiN(CFSOの濃度は、0.2〜0.5mol/Lであることを特徴とする。
== Configuration of lithium secondary battery of the present invention ==
The lithium secondary battery according to the present invention includes a positive electrode containing graphite powder as a positive electrode material that charges and discharges by occluding and releasing electrolyte anions, and charging and discharging by occluding and releasing lithium metal or lithium ions. A negative electrode containing a negative electrode material and an organic electrolyte solution comprising an organic solvent containing a lithium salt, wherein the lithium salt contains LiPF 6 and LiN (CF 3 SO 2 ) 2 , and the LiN with respect to the organic solvent The concentration of (CF 3 SO 2 ) 2 is 0.2 to 0.5 mol / L.

リチウム二次電池の正極材料としては、適度な粉砕処理が施された各種の天然黒鉛、合成黒鉛、膨張黒鉛等の黒鉛材料、炭素化処理されたメソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、気相成長炭素繊維、熱分解炭素、石油コークス、ピッチコークス及びニードルコークス等の炭素材料に黒鉛化処理を施した合成黒鉛材料、又はこれらの混合物等を使用できる。   Examples of positive electrode materials for lithium secondary batteries include graphite materials such as various natural graphites, synthetic graphites, and expanded graphites that have been appropriately pulverized, carbonized mesocarbon microbeads, mesophase pitch carbon fibers, A synthetic graphite material obtained by graphitizing a carbon material such as phase-grown carbon fiber, pyrolytic carbon, petroleum coke, pitch coke, and needle coke, or a mixture thereof can be used.

この正極材料を含有する正極は、導電剤及び結着剤と共に混練・成形し、正極合剤として電池内に組み込まれる。なお、黒鉛材料は元々導電性が高く、導電剤等は不要と考えられるが、電池の用途を考慮し、導電剤等を必要に応じて使用しても構わない。導電剤としては、各種黒鉛材料及びカーボンブラックを使用できるが、本発明に係る有機電解液二次電池の場合は、黒鉛材料が正極として機能するため、導電剤として結晶化度や粒子径の異なる別種の黒鉛材料を混入させるより、導電性カーボンブラック類を使用する方が好ましい。   The positive electrode containing this positive electrode material is kneaded and molded together with a conductive agent and a binder, and is incorporated into the battery as a positive electrode mixture. In addition, although graphite material is originally highly conductive and a conductive agent or the like is considered unnecessary, a conductive agent or the like may be used as necessary in consideration of the use of the battery. As the conductive agent, various graphite materials and carbon black can be used. However, in the case of the organic electrolyte secondary battery according to the present invention, the graphite material functions as a positive electrode. It is preferable to use conductive carbon blacks rather than mixing another type of graphite material.

ここで用いられるカーボンブラックは、チャンネルブラック、オイルファーネスブラック、ランプブラック、サーマルブラック、アセチレンブラック、ケッチェンブラック等の何れも使用可能である。ただし、アセチレンブラック以外のカーボンブラックは石油ピッチまたはコールタールピッチの一部を原料として用いているため、硫黄化合物または窒素化合物等の不純物が多く混入する場合があるので、特にこれらの不純物を除去してから使用する方が好ましい。一方、アセチレンブラックはアセチレンのみが原料として用いられ、連続熱分解法によって生成されるため不純物が混入し難く、且つ粒子の鎖状構造が発達していて液体の保持力に優れ、電気抵抗が低いため、この種の導電剤として好ましい。   As the carbon black used here, any of channel black, oil furnace black, lamp black, thermal black, acetylene black, ketjen black and the like can be used. However, carbon blacks other than acetylene black use a part of petroleum pitch or coal tar pitch as raw materials, so there are cases where many impurities such as sulfur compounds or nitrogen compounds may be mixed. It is preferable to use it afterwards. On the other hand, acetylene black uses only acetylene as a raw material and is produced by a continuous pyrolysis method, so it is difficult for impurities to be mixed in, has a chain structure of particles, has excellent liquid retention, and has low electrical resistance. Therefore, it is preferable as this type of conductive agent.

これら導電剤と本発明に係る黒鉛材料の混合比率は、電池の用途に応じて適宜設定して構わない。完成電池への要求事項として、特に急速充電特性や重負荷放電特性の向上が挙げられた場合には、本発明に係る黒鉛材料と共に、導電性を付与する作用が十分に得られる範囲内で導電剤を混合し、正極合剤を構成する方が好ましい。   The mixing ratio of the conductive agent and the graphite material according to the present invention may be appropriately set according to the use of the battery. As requirements for the finished battery, especially when improvement of quick charge characteristics and heavy load discharge characteristics is mentioned, together with the graphite material according to the present invention, it is possible to conduct electricity within a range where an effect of imparting conductivity can be sufficiently obtained. It is preferable to mix the agent to constitute the positive electrode mixture.

また、結着剤としては、電解液に対して溶解しないこと、耐溶剤性に優れることから、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)等のフッ素系樹脂、カルポキシメチルセルロースのアルカリ金属塩又はアンモニウム塩、ポリイミド樹脂、ポリアミド樹脂、ポリアクリル酸及びポリアクリル酸ソーダ等の有機高分子化合物が好適である。   Moreover, as a binder, since it does not melt | dissolve with respect to electrolyte solution, and is excellent in solvent resistance, fluorine-types, such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), etc. Organic polymer compounds such as resin, alkali metal salt or ammonium salt of carboxymethyl cellulose, polyimide resin, polyamide resin, polyacrylic acid and sodium polyacrylate are preferred.

一方、負極はリチウムイオンを電気化学的に吸蔵・放出が可能な材料であれば何れも使用可能である。例えばリチウム金属、リチウムアルミニウム合金、黒鉛材料、易黒鉛化性炭素材料、難黒鉛化性炭素材料、五酸化ニオブ(Nb)、チタン酸リチウム(LiTi12)、一酸化珪素(SiO)、一酸化錫(SnO)、錫とリチウムの複合酸化物(LiSnO)、リチウム・リン・ホウ素の複合酸化物(例えばLiP0.40.62.9)、等を用いてもよい。特に黒鉛材料、易黒鉛化性炭素材料、難黒鉛化性炭素材料等の炭素材料を負極に用いた場合は、リチウムの吸蔵・放出を行う電位が卑で、可逆性が高く、容量が大きいため、本発明を適用した場合には、特に大きな効果を発揮する。炭素材料としては、例えば、適度な粉砕処理が施された各種の天然黒鉛、合成黒鉛、膨張黒鉛等の黒鉛材料、炭素化処理されたメソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、気相成長炭素繊維、熱分解炭素、石油コークス、ピッチコークス及びニードルコークス等の炭素材料、及びこれら炭素材料に黒鉛化処理を施した合成黒鉛材料、又はこれらの混合物等が使用できる。負極も、以上に例示したような材料と、結着剤及び必要に応じて前記導電剤等とを混合・成形して負極合剤を構成し、電池内に組み込まれる。この場合、結着剤及び導電剤は正極合剤を作製する際に、例示したような材料をそのまま使用できる。 On the other hand, any material can be used for the negative electrode as long as it can electrochemically occlude and release lithium ions. For example, lithium metal, lithium aluminum alloy, graphite material, graphitizable carbon material, non-graphitizable carbon material, niobium pentoxide (Nb 2 O 5 ), lithium titanate (Li 4 Ti 5 O 12 ), silicon monoxide (SiO), tin monoxide (SnO), a composite oxide of tin and lithium (Li 2 SnO 3 ), a composite oxide of lithium, phosphorus and boron (for example, LiP 0.4 B 0.6 O 2.9 ), Etc. may be used. In particular, when carbon materials such as graphite materials, graphitizable carbon materials, and non-graphitizable carbon materials are used for the negative electrode, the potential for inserting and extracting lithium is low, reversibility is high, and the capacity is large. When the present invention is applied, a particularly great effect is exhibited. Examples of the carbon material include graphite materials such as various natural graphites, synthetic graphites, and expanded graphites that have been appropriately pulverized, carbonized mesocarbon microbeads, mesophase pitch-based carbon fibers, and vapor grown carbon. Carbon materials such as fibers, pyrolytic carbon, petroleum coke, pitch coke, and needle coke, and synthetic graphite materials obtained by subjecting these carbon materials to graphitization, or mixtures thereof can be used. The negative electrode is also mixed and molded with the materials exemplified above, a binder, and, if necessary, the conductive agent and the like to form a negative electrode mixture, which is incorporated into the battery. In this case, as the binder and the conductive agent, the materials as exemplified can be used as they are when producing the positive electrode mixture.

有機電解液はリチウム塩を含有した有機溶媒が用いられるが、有機溶媒は、この種の電池に用いられるものであれば何れも使用可能であるが、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、1,2−ブチレンカーボネート(BC)、γ−ブチロラクトン(GBL)、ビニレンカーボネート(VC)、アセトニトリル(AN)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)及びこれらの誘導体、若しくはそれらの混合溶媒等を使用できる。一方で、リチウム塩は、LiPF及びLiTFSIを含み、有機溶媒に対するLiTFSIの濃度は0.2〜0.5mol/Lである。 As the organic electrolyte, an organic solvent containing a lithium salt is used, and any organic solvent can be used as long as it is used in this type of battery. For example, propylene carbonate (PC), ethylene carbonate ( EC), 1,2-butylene carbonate (BC), γ-butyrolactone (GBL), vinylene carbonate (VC), acetonitrile (AN), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and These derivatives or a mixed solvent thereof can be used. On the other hand, the lithium salt contains LiPF 6 and LiTFSI, and the concentration of LiTFSI with respect to the organic solvent is 0.2 to 0.5 mol / L.

以上のように構成された正極部及び負極部が、セパレータを介して積層配置された電極体を構成し、有機電解液とともに容器内に配置することで、本発明が適用されたリチウム二次電池が完成する。   The lithium secondary battery to which the present invention is applied by constituting the electrode body in which the positive electrode part and the negative electrode part configured as described above constitute a stacked electrode body through a separator and is disposed in a container together with an organic electrolyte. Is completed.

==従来のリチウム二次電池に特有な低温特性問題に関する実験例1==
黒鉛粉末を正極に使用したリチウム二次電池の低温特性問題について、18650型セル(直径φ18mm,高さ65mm)での実施例に基づき詳述する。
== Experimental example 1 concerning low temperature characteristic problem peculiar to a conventional lithium secondary battery ==
The low temperature characteristic problem of the lithium secondary battery using graphite powder as the positive electrode will be described in detail based on an example in a 18650 type cell (diameter φ18 mm, height 65 mm).

図1は前述の18650型セルの断面図である。図1において11及び13は、各々正極部及び負極部である。正極部11は、正極材料である黒鉛粉末(Timcal社製のSFG−44)と結着剤のカルボキシメチルセルロース(第一工業薬品(株)セロゲン4H)を重量比で96:4に混合し、イオン交換水を加えてペースト状にした後、厚さ20μmのアルミニウム箔の両面に塗布し、乾燥及び圧延操作を行い、幅54mmに切断して帯状のシート電極となるように作製した。このシート電極の一部は長手方向に対して垂直に合剤が掻き取られ、アルミニウム製正極リード板14が集電体上に超音波溶接で取り付けられている。   FIG. 1 is a cross-sectional view of the 18650 cell described above. In FIG. 1, 11 and 13 are a positive electrode part and a negative electrode part, respectively. In the positive electrode part 11, graphite powder (SFG-44 manufactured by Timcal) as a positive electrode material and carboxymethylcellulose (Daiichi Kogyo Seiyaku Co., Ltd., Cellogen 4H) as a binder are mixed at a weight ratio of 96: 4, After the replacement water was added to form a paste, it was applied to both sides of an aluminum foil having a thickness of 20 μm, dried and rolled, and cut into a width of 54 mm to form a strip-shaped sheet electrode. A part of the sheet electrode is scraped of the mixture perpendicular to the longitudinal direction, and an aluminum positive electrode lead plate 14 is attached to the current collector by ultrasonic welding.

負極部13は、負極材料である難黒鉛化性炭素材料(呉羽化学(株)社製のPIC)とポリフッ化ビニリデン樹脂(呉羽化学(株)社製のKF#1100)を重量比で90:10に混合し、溶剤としてのN−メチル−2−ピロリジノンを加えてペースト状に混練した後、厚さ14μmの銅箔の両面に塗布し、乾燥及び圧延操作を行い、幅56mmに切断した帯状のシート電極である。このシートの一部はシートの長手方向に対して垂直に合剤が掻き取られ、ニッケル製負極リード板15が集電体上に超音波溶接で取り付けられている。   The negative electrode part 13 is a non-graphitizable carbon material (PIC manufactured by Kureha Chemical Co., Ltd.), which is a negative electrode material, and polyvinylidene fluoride resin (KF # 1100 manufactured by Kureha Chemical Co., Ltd.) in a weight ratio of 90: 10 and mixed with N-methyl-2-pyrrolidinone as a solvent, kneaded into a paste, coated on both sides of a 14 μm thick copper foil, dried and rolled, and cut into a width of 56 mm Sheet electrode. Part of this sheet is scraped of the mixture perpendicularly to the longitudinal direction of the sheet, and a nickel negative electrode lead plate 15 is attached to the current collector by ultrasonic welding.

これら正極部11と負極部13を、セパレ一タ12を介して渦巻き状に巻回する。この巻回電極をステンレス製の電池ケース21内に挿入する。セパレータ12にはポリエチレン製マイクロポーラスフィルムを用いた。負極リード板15は電池ケース21の円形底面の中心位置に抵抗溶接した。電池ケース21は負極端子と負極ケースを兼ねる。23はポリプロピレン製絶縁底板で、巻同時に生じる空間と同面積になるように穴が開いている。   The positive electrode portion 11 and the negative electrode portion 13 are wound in a spiral shape via a separator 12. This wound electrode is inserted into a battery case 21 made of stainless steel. The separator 12 was a polyethylene microporous film. The negative electrode lead plate 15 was resistance welded to the center position of the circular bottom surface of the battery case 21. The battery case 21 serves as a negative electrode terminal and a negative electrode case. Reference numeral 23 denotes a polypropylene insulating bottom plate, which has a hole so as to have the same area as a space generated simultaneously with winding.

以上の工程の後、電解液を注入する。使用した電解液は、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)を体積比で1:9に混合した溶媒に2mol/Lの濃度でLiPF(ヘキサフルオロリン酸リチウム)を溶解したものである。 After the above steps, an electrolytic solution is injected. The electrolyte used was a solution in which LiPF 6 (lithium hexafluorophosphate) was dissolved at a concentration of 2 mol / L in a solvent in which propylene carbonate (PC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 9. is there.

この後、電流遮断機構を備えた防爆型蓋要素を、ガスケット25と共に嵌合し、電池ケース21の封口を行う。当該蓋要素は、金属製の正極端子板26と、中間感圧板27と、上方に突出する突部28および基部29からなる導電部材(28,29)と、絶縁性のガスケット25とを有し、該正極端子板26及び該基部29はガス抜き穴が形成されており、該導電部材(28,29)は該基部29の上面部に、該突部28の上面部が露出すると共に該基部29の下面側に該基部29下面が露出し、該電池ケース21の開口部分の内周に該ガスケット25が嵌入され、該ガスケット25の内周に該基部29がはめ込まれ、該基部29の上に該中間感圧板27と該正極端子板26とが積層され、該導電部材(28,29)と該中間感圧板27とは該導電部材(28,29)の突部28で両者が接続して、その接続部30を含む接触部分でのみ両者が導通しており、該正極リード板14の先端が該導電部材(28,29)の基部29に接続されており、該電池ケース21の開口部分が内側にかしめられることで該ガスケット25が圧縮されて該電池ケース21が該蓋要素で密閉されている。該電池ケース21の内部が所定の内圧に達することにより、中間感圧板27が作動し、外側に膨出することによって該導電部材(28,29)の突部28の該接続部30の周囲が破断することにより該正極リード板14と該正極端子板26との導電経路が遮断されるように構成されている。   Thereafter, an explosion-proof lid element provided with a current interruption mechanism is fitted together with the gasket 25 to seal the battery case 21. The lid element includes a positive electrode terminal plate 26 made of metal, an intermediate pressure-sensitive plate 27, conductive members (28, 29) including a protruding portion 28 and a base portion 29 protruding upward, and an insulating gasket 25. The positive electrode terminal plate 26 and the base portion 29 are formed with gas vent holes, and the conductive member (28, 29) is exposed to the upper surface portion of the base portion 29 and the upper surface portion of the protrusion 28 is exposed to the base portion. The lower surface of the base 29 is exposed on the lower surface side of the battery 29, the gasket 25 is fitted into the inner periphery of the opening of the battery case 21, the base 29 is fitted into the inner periphery of the gasket 25, The intermediate pressure-sensitive plate 27 and the positive terminal plate 26 are laminated, and the conductive members (28, 29) and the intermediate pressure-sensitive plate 27 are connected to each other by the protrusions 28 of the conductive members (28, 29). Both of them are conducted only at the contact portion including the connection portion 30. The tip of the positive electrode lead plate 14 is connected to the base 29 of the conductive member (28, 29), and the opening of the battery case 21 is caulked inward to compress the gasket 25, thereby Case 21 is sealed with the lid element. When the inside of the battery case 21 reaches a predetermined internal pressure, the intermediate pressure-sensitive plate 27 is activated, and the outside of the battery member 21 bulges outward, so that the periphery of the connection portion 30 of the protrusion 28 of the conductive member (28, 29). By being broken, the conductive path between the positive lead plate 14 and the positive terminal plate 26 is cut off.

このように作製された18650型セルに対し、60〜0℃の温度範囲で充放電試験を行った。充放電の方法は、所定温度に保たれた恒温槽内に電池を設置し、電流を1A、電圧を4.2V、時間を30分としたとした定電流/定電圧充電を行い、1分間休止させた後、セル電圧が2.0Vに達するまで0.5Aの定電流で放電させ、その放電容量を測定した。温度と放電容量との関係を図2に、各温度で得られた放電カーブを図3に各々示す。   A charge / discharge test was performed on the 18650 type cell thus fabricated in a temperature range of 60 to 0 ° C. The charging / discharging method is as follows: a battery is placed in a thermostat kept at a predetermined temperature, and a constant current / constant voltage charging is performed with a current of 1 A, a voltage of 4.2 V, and a time of 30 minutes. After resting, the battery was discharged at a constant current of 0.5 A until the cell voltage reached 2.0 V, and the discharge capacity was measured. FIG. 2 shows the relationship between temperature and discharge capacity, and FIG. 3 shows the discharge curve obtained at each temperature.

図2より、25℃を境界線として、それ以下の温度で得られた放電容量は、温度の低下と共に直線的且つ急激に低下し、0℃で得られる放電容量は、25℃で得られる放電容量の40%以下まで低下した。この結果は、0℃の温度雰囲気下において実用上使用できないことを示唆し、使用温度範囲の下限が大幅に制限されることを意味する。また図3より、20℃以下の温度で得られた放電カーブには、放電初期に段部が明確に認められ、この段部が出現する電圧は、温度の低下と共に低電圧側に移行し、放電容量が急激に減少している。以上のように、この放電カーブに出現する段部の挙動と、温度の低下に伴う放電容量の低下には相関が認められることから、少なくとも20℃においてでも、放電容量が低下する問題は既に生じていると把握することができる。   From FIG. 2, the discharge capacity obtained at a temperature lower than 25 ° C. as a boundary line decreases linearly and rapidly as the temperature decreases, and the discharge capacity obtained at 0 ° C. is obtained at 25 ° C. It decreased to 40% or less of the capacity. This result suggests that it cannot be used practically in a temperature atmosphere of 0 ° C., and means that the lower limit of the operating temperature range is greatly limited. Further, from FIG. 3, in the discharge curve obtained at a temperature of 20 ° C. or lower, a step portion is clearly recognized at the initial stage of discharge, and the voltage at which this step portion appears shifts to the low voltage side as the temperature decreases, The discharge capacity is decreasing rapidly. As described above, since there is a correlation between the behavior of the step appearing in the discharge curve and the decrease in the discharge capacity accompanying the decrease in temperature, the problem that the discharge capacity is decreased even at least at 20 ° C. has already occurred. Can be grasped.

==従来のリチウム二次電池に特有な低温特性問題に関する実験例2==
次に、前述と同仕様の18650型セルA〜Eを試作し、25℃及び0℃で充放電を行った。充放電の方法は、温度が一定に保たれた恒温槽内に電池を設置し、電流を1A、電圧を4.2V、時間を30分としたとした定電流/定電圧充電を行い、2時間休止させた後、セル電圧が2.0Vに達するまで0.5A又は0.1Aの定電流で放電させ、その放電容量を測定した。放電と充電の温度が異なる場合は、充電終了後、直ちに恒温槽で放電温度の設定を行い、2時間の休止の間に電池温度を放電温度に馴染ませた。
== Experimental example 2 concerning low temperature characteristic problem peculiar to a conventional lithium secondary battery ==
Next, 18650 type cells A to E having the same specifications as described above were made on a trial basis and charged and discharged at 25 ° C. and 0 ° C. The charge / discharge method is a constant current / constant voltage charge in which a battery is installed in a thermostatic chamber maintained at a constant temperature, the current is 1 A, the voltage is 4.2 V, and the time is 30 minutes. After a pause, the battery was discharged at a constant current of 0.5 A or 0.1 A until the cell voltage reached 2.0 V, and the discharge capacity was measured. When the discharge and charge temperatures differed, the discharge temperature was set immediately in the thermostat after the charge was completed, and the battery temperature was adjusted to the discharge temperature during the 2-hour rest period.

各セルの充放電方法(温度,放電電流)、及び得られた充放電容量は下表1の通りである。
The charge / discharge method (temperature, discharge current) of each cell and the obtained charge / discharge capacity are shown in Table 1 below.

また各セルの放電カーブを図4に示す。放電を25℃で行ったセルA及びEは、充電温度に依存せず、殆ど同様であり、約64mAhであった。同様に放電を0℃で行ったセルB,C及びDは、充電温度に依存せず、殆ど同様な放電容量であり、約25mAhであった。この容量は25℃で放電させた場合に得られる容量の39%程度であり、0℃で放電させることにより、放電容量が著しく減少していることが分かる。   Moreover, the discharge curve of each cell is shown in FIG. Cells A and E which were discharged at 25 ° C. were almost the same regardless of the charging temperature, and were about 64 mAh. Similarly, the cells B, C and D which were discharged at 0 ° C. did not depend on the charging temperature and had almost the same discharge capacity, which was about 25 mAh. This capacity is about 39% of the capacity obtained when discharged at 25 ° C. It can be seen that the discharge capacity is remarkably reduced by discharging at 0 ° C.

セルC及びDは、共に0℃で放電させているが、その電流値が異なっている。セルCは500mA、セルDは100mAであるが、電流値を低下させても放電容量の変化は無い。即ち、0℃で放電容量が低下する原因は、放電電流が大きいために生ずる分極が大きくなったことではなく、潜在的に放電可能な容量が減少したことであることが分かる。セルEは0℃で充電し25℃で放電させているが、放電容量は25℃で充電させたセルAと同様である。即ち0℃では、25℃で放電させれば約64mAhが得られる容量分だけ充電が出来ていることを意味している。以上の現象より、この種のリチウム二次電池は、0℃において、充電は出来るが潜在的に放電可能な容量が減少することにより、25℃の場合と比較して放電容量が減少すると把握することができる。   Cells C and D are both discharged at 0 ° C., but their current values are different. Cell C is 500 mA and cell D is 100 mA, but there is no change in the discharge capacity even when the current value is reduced. That is, it is understood that the cause of the decrease in the discharge capacity at 0 ° C. is not the increase in polarization caused by the large discharge current but the decrease in the capacity that can be discharged potentially. Cell E is charged at 0 ° C. and discharged at 25 ° C., but the discharge capacity is the same as cell A charged at 25 ° C. That is, at 0 ° C., it means that the battery can be charged by a capacity capable of obtaining about 64 mAh when discharged at 25 ° C. From the above phenomenon, it is understood that this type of lithium secondary battery can be charged at 0 ° C., but the capacity that can be discharged is decreased, so that the discharge capacity is reduced as compared with the case of 25 ° C. be able to.

==従来のリチウム二次電池に特有な低温特性問題に関する実験例3==
低温において放電容量が減少する理由について考察するために、3極式の18650型テストセルを作製し、正・負極挙動を観察した。図5に3極式の18650型テストセルの断面図と正・負極電位の測定法(模式図)を示す。このセルは、帯状に成形された正極部48と、同じく帯状に成形された負極部49とが、セパレータ50を介して渦巻状に捲回され、その捲回電極体がステンレス製容器41に収納された構造になっている。この容器41は、円柱状のステンレス製ブロックに直径φ18mm、深さ65mmの円柱状の穴が切削されたもので、この穴に電極捲回体が収納される。容器の開口部にはステンレス製の蓋42が、2枚のエチレンプロピレンゴム(EPDM)製パッキング51を介し、ネジ43で容器41と固定され、この2枚のゴムパッキング51の間から、アルミニウム製の正極リード板44、及びニッケル製の負極リード板45がセルの外部に取り出されている。参照電極は、帯状ニッケル基板52の両側に帯状リチウム金属箔53が貼り付けられたものを使用し、捲回により生じた円柱状の空間部に挿入され、ニッケル基板部分が2枚のゴムパッキング51の間からセルの外部に取り出されている。
== Experimental example 3 concerning low temperature characteristic problem peculiar to a conventional lithium secondary battery ==
In order to consider the reason why the discharge capacity decreases at low temperatures, a three-pole type 18650 type test cell was fabricated and the behavior of positive and negative electrodes was observed. FIG. 5 shows a cross-sectional view of a three-pole 18650 type test cell and a method for measuring positive and negative electrode potentials (schematic diagram). In this cell, a positive electrode portion 48 formed in a band shape and a negative electrode portion 49 also formed in a band shape are wound in a spiral shape via a separator 50, and the wound electrode body is stored in a stainless steel container 41. It has a structured. The container 41 is formed by cutting a cylindrical hole having a diameter of 18 mm and a depth of 65 mm in a cylindrical stainless steel block, and the electrode winding body is accommodated in the hole. A stainless steel lid 42 is fixed to the container 41 with screws 43 through two ethylene propylene rubber (EPDM) packings 51 at the opening of the container, and between the two rubber packings 51 is made of aluminum. Positive electrode lead plate 44 and nickel negative electrode lead plate 45 are taken out of the cell. The reference electrode uses a belt-like nickel substrate 52 with a belt-like lithium metal foil 53 attached to both sides thereof, is inserted into a cylindrical space formed by winding, and the nickel substrate part has two rubber packings 51. It is taken out of the cell from between.

セルの作製方法は、これら正極部48と負極部49を、ポリエチレン製の多孔質フィルムセパレータ50を介して渦巻き状に巻回し、ステンレス製容器41内に挿入する。挿入後は電解液を注入する。電解液注入後に、捲回により生じた円柱状空間部へ参照電極を挿入し、正極リード板44及び負極リード板45と共に参照電極のニッケル基板部分52を、2枚のゴムパッキング51の間から取り出し、蓋42をネジ43で固定する。なお、正極部、負極部の作製方法、及び電解液の組成は、前述の18650型セルの場合と同じである。   In the method for producing the cell, the positive electrode portion 48 and the negative electrode portion 49 are spirally wound via a polyethylene porous film separator 50 and inserted into the stainless steel container 41. After insertion, inject electrolyte. After injection of the electrolyte, the reference electrode is inserted into the cylindrical space generated by winding, and the nickel substrate portion 52 of the reference electrode together with the positive electrode lead plate 44 and the negative electrode lead plate 45 is taken out between the two rubber packings 51. The lid 42 is fixed with screws 43. In addition, the preparation methods of the positive electrode part and the negative electrode part, and the composition of the electrolytic solution are the same as those of the 18650 type cell described above.

図5に示された通り、正極電位は正極リード板44と参照電極のニッケルリード部分52との間の電圧、負極電位は負極リード板45と参照電極のニッケルリード部分52との間の電圧、セル電圧は正極リード板44と負極リード板45の間の電圧である。   As shown in FIG. 5, the positive electrode potential is the voltage between the positive electrode lead plate 44 and the nickel lead portion 52 of the reference electrode, the negative electrode potential is the voltage between the negative electrode lead plate 45 and the nickel lead portion 52 of the reference electrode, The cell voltage is a voltage between the positive electrode lead plate 44 and the negative electrode lead plate 45.

完成した18650型テストセルに対し、前述の18650型セルと同様の充放電試験を行い、その正・負極電位を測定した。充放電の方法は、温度が一定に保たれた恒温槽内に電池を設置し、電流を1A、電圧を4.2V、時間を30分としたとした定電流/定電圧充電を行い、1分間休止させた後、セル電圧が2.0Vに達するまで0.5Aの定電流で放電させ、その放電容量を測定した。測定の温度は25℃及び0℃であり、得られた放電カーブを図6に示す。0℃での放電末期において、急激に電位が変化しているのは正極電位である。即ち、0℃で放電させた場合、正極の容量低下が律速となってセル電圧が低下し、放電容量が低下すると把握できる。25℃で放電させた場合の正極電位は、0℃の場合のように、放電容量が30mAhの時点で急激に低下する現象は認められない。   The completed 18650 type test cell was subjected to the same charge / discharge test as that of the 18650 type cell described above, and the positive / negative electrode potential was measured. The charging / discharging method is performed by performing constant current / constant voltage charging in which a battery is installed in a constant temperature bath maintained at a constant temperature, current is 1 A, voltage is 4.2 V, and time is 30 minutes. After resting for a minute, the battery was discharged at a constant current of 0.5 A until the cell voltage reached 2.0 V, and the discharge capacity was measured. The measurement temperatures were 25 ° C. and 0 ° C., and the obtained discharge curve is shown in FIG. At the end of discharge at 0 ° C., it is the positive electrode potential that rapidly changes in potential. That is, when discharging at 0 ° C., it can be grasped that the capacity decrease of the positive electrode is rate limiting, the cell voltage decreases, and the discharge capacity decreases. A phenomenon that the positive electrode potential when discharged at 25 ° C. rapidly decreases at the time when the discharge capacity is 30 mAh as in the case of 0 ° C. is not recognized.

==本発明の効果を確認する実験例==
(1)テストセルの作製
黒鉛粉末(Timcal社製のSFG−44)及びCMC(カルボキシメチルセルロース)(第1工業製薬(株)セロゲン4H)の2重量%水溶液を、重量比で97:3となるように混合し、蒸留水を加えてスラリーを得た。なお前記重量比のCMC割合は固形分の割合である。得られたスラリーを、単位面積当たりの黒鉛材料の量が約12mg/cmとなるように、ドクタープレード法でアルミニウム箔(厚さ20μm)の片面に塗布し、60℃で20分間乾燥してシート状電極を作成した。その後ダイセットに当該シートを挟み込み、正極合剤の見かけ密度が約1.0g/cmとなるようにプレス機でシート全体を圧縮・成形した。得られたシート電極を打ち抜きプレスでφ9mmに打ち抜き、テストセルの作用極とした。
== Experimental example for confirming the effect of the present invention ==
(1) Preparation of test cell A 2 wt% aqueous solution of graphite powder (SFG-44 manufactured by Timcal) and CMC (carboxymethylcellulose) (Daiichi Kogyo Seiyaku Co., Ltd., Cellogen 4H) is 97: 3 by weight. Then, distilled water was added to obtain a slurry. The CMC ratio in the weight ratio is a solid content ratio. The obtained slurry was applied to one side of an aluminum foil (thickness 20 μm) by a doctor blade method so that the amount of graphite material per unit area was about 12 mg / cm 2 and dried at 60 ° C. for 20 minutes. A sheet electrode was prepared. Thereafter, the sheet was sandwiched between die sets, and the entire sheet was compressed and molded with a press so that the apparent density of the positive electrode mixture was about 1.0 g / cm 3 . The obtained sheet electrode was punched to 9 mm by a punching press, and used as a working electrode of a test cell.

図7にテストセルの断面図を示す。このテストセルは、上下一対のステンレス固定板80a,80bの間に、作用極64と対極66とをバネ68で加圧して構成した3電極式であり、下側の作用極64にはφ9mmに打ち抜いたシート電極64を、上側の対極66及び参照極70にはリチウム金属を使用した。シート電極64は120℃で、パラフィルム72は45℃で、その他の樹脂部品及び金属部品は60℃で、10時間以上の減圧乾燥を行い、露点−40℃以下のドライエアー雰囲気下でテストセルを組み立てた。ステンレス固定板80a,80bの間にはポリプロピレン製の挿間ブロック82を介在させてボルト・ナット84,86で締結固定しており、挿間ブロック82の上下面にはステンレス固定板80a,80bとの間にパラフィルム72が介在されている。   FIG. 7 shows a cross-sectional view of the test cell. This test cell is a three-electrode type in which a working electrode 64 and a counter electrode 66 are pressed by a spring 68 between a pair of upper and lower stainless steel fixing plates 80a and 80b, and the lower working electrode 64 has a diameter of 9 mm. The punched sheet electrode 64 was made of lithium metal for the upper counter electrode 66 and the reference electrode 70. The sheet electrode 64 is 120 ° C., the parafilm 72 is 45 ° C., and other resin parts and metal parts are dried at 60 ° C. under reduced pressure for 10 hours or more, and in a dry air atmosphere with a dew point of −40 ° C. or less. Assembled. A polypropylene insertion block 82 is interposed between the stainless steel fixing plates 80a and 80b, and is fastened and fixed by bolts and nuts 84 and 86. Stainless steel fixing plates 80a and 80b are attached to the upper and lower surfaces of the insertion block 82, respectively. A parafilm 72 is interposed between the two.

作用極64と対極66との間に介在させるセパレータ74には、厚さ50μmのポリエチレン製マイクロポーラスフィルム74(空隙率67%)を二枚重ねて使用し、その間に参照極となるリチウム金属70が対極66と作用極64とに対して接触しないように挿入されている。この参照極70は固定用ボルト88で挿間ブロック82に固定されている。シート電極64及びセパレータ74は、各々電解液を満たした容器に入れて減圧含浸を行った後にテストセル内へ組み込んだ。   As the separator 74 interposed between the working electrode 64 and the counter electrode 66, two 50 μm thick polyethylene microporous films 74 (porosity 67%) are used in an overlapping manner, and a lithium metal 70 serving as a reference electrode is interposed between the counter electrodes. 66 and the working electrode 64 are inserted so as not to contact each other. The reference electrode 70 is fixed to the insertion block 82 with fixing bolts 88. The sheet electrode 64 and the separator 74 were each placed in a container filled with an electrolytic solution and impregnated under reduced pressure, and then incorporated into a test cell.

下側の作用極64とステンレス固定板80aとの間には、上側からアルミニウム板90,パラフィルム72,ポリプロピレン板92とが介在されている。また、上側の対極66の上面にはステンレスディスク94が載せられ、このステンレスディスク94と上側の固定板80bとの間にバネ68が圧縮介挿されている。   An aluminum plate 90, a parafilm 72, and a polypropylene plate 92 are interposed from the upper side between the lower working electrode 64 and the stainless steel fixing plate 80a. A stainless disk 94 is placed on the upper surface of the upper counter electrode 66, and a spring 68 is interposed between the stainless disk 94 and the upper fixing plate 80b.

(2)充放電サイクル及び低温特性の測定
各テストセルに使用した電解液は、プロピレンカーボネートとエチルメチルカーボネートを体積比で1:9に混合した溶媒に、図8に示した所定の濃度のリチウム塩を溶解することにより、調製した。なお、図8中に示したリチウム塩の略号は以下の表2の通りであり、リチウム塩の濃度の単位は「mol/L」を「M」と記載した。
(2) Measurement of charge / discharge cycle and low-temperature characteristics The electrolyte used in each test cell was lithium having a predetermined concentration shown in FIG. 8 in a solvent in which propylene carbonate and ethylmethyl carbonate were mixed at a volume ratio of 1: 9. Prepared by dissolving the salt. The abbreviations of the lithium salt shown in FIG. 8 are as shown in Table 2 below, and the unit of the lithium salt concentration is “mol / L” as “M”.

充放電サイクルの測定は、所定の電解液をテストセルに注入した後、先ず始めに、大気中の25℃恒温室内で行った。第1サイクル目の充放電条件は、作用極64の黒鉛重量換算で、30mA/gとなるような電流値を設定し、黒鉛重量換算で20mAh/gとなるまで充電を行い、1分間の休止の後、同じ電流で作用極64の電位が参照極10に対し、3.0(V vs Li/Li)となるまで放電した。次に同じ電流密度30mA/gで、作用極64の黒鉛重量換算で15mAh/gとなるまで充電を行い、1分間の休止の後、同電流で作用極64の電位が参照極10に対し、3.0(V vs Li/Li)となるまで放電する充放電サイクルを9回繰り返した。9回目の充放電サイクル数は、最初から数え直すと第10サイクル目となり、この第10サイクル目で得られた放電容量をAとした。 The charge / discharge cycle was measured after first injecting a predetermined electrolyte into the test cell and first in a constant temperature room at 25 ° C. in the atmosphere. The charge / discharge conditions of the first cycle are set to a current value of 30 mA / g in terms of graphite weight of the working electrode 64, charged until it reaches 20 mAh / g in terms of graphite weight, and rested for 1 minute. Thereafter, discharging was performed with the same current until the potential of the working electrode 64 was 3.0 (V vs Li + / Li) with respect to the reference electrode 10. Next, at the same current density of 30 mA / g, charging is performed until the working electrode 64 becomes 15 mAh / g in terms of graphite weight. After a pause of 1 minute, the potential of the working electrode 64 with respect to the reference electrode 10 with the same current is The charge / discharge cycle of discharging until 3.0 (V vs Li + / Li) was repeated 9 times. The number of charge / discharge cycles for the ninth time is the 10th cycle when recounted from the beginning, and the discharge capacity obtained in the 10th cycle is A.

次に恒温槽の温度を0℃に設定し、0℃に到達してから5時間後に、第11サイクル目の充放電サイクルを行った。充放電の方法は第2〜10サイクルで行った充放電方法と同じである。第11サイクル目で得られた放電容量をBとし、以下の式3より、0℃での放電容量維持率を算出した。
[0℃での放電容量維持率] = B/A×100(%) 式3
Next, the temperature of the thermostatic bath was set to 0 ° C., and 5 hours after reaching 0 ° C., the 11th charge / discharge cycle was performed. The charging / discharging method is the same as the charging / discharging method performed in the 2nd to 10th cycles. The discharge capacity obtained in the eleventh cycle was defined as B, and the discharge capacity retention rate at 0 ° C. was calculated from the following formula 3.
[Discharge capacity maintenance rate at 0 ° C.] = B / A × 100 (%) Formula 3

(3)テストセルの充放電及び低温特性の試験結果
図8に、電解液に溶解されたリチウム塩と第10サイクル目の放電容量(25℃での放電容量)、第10サイクル目の充電終止時点に到達した作用極の電位(25℃での作用極の電位)、第11サイクル目の放電容量(0℃での放電容量)、第11サイクル目の充電終止時点に到達した作用極の電位(0℃での作用極の電位)、及び、0℃での放電容量維持率をまとめた。
(3) Test results of charge / discharge and low temperature characteristics of test cell FIG. 8 shows the lithium salt dissolved in the electrolyte, the discharge capacity at the 10th cycle (discharge capacity at 25 ° C.), and the end of charge at the 10th cycle. The potential of the working electrode that has reached the time point (potential of the working electrode at 25 ° C.), the discharge capacity of the eleventh cycle (discharge capacity at 0 ° C.), and the potential of the working electrode that has reached the end of charge in the eleventh cycle (The potential of the working electrode at 0 ° C.) and the discharge capacity maintenance rate at 0 ° C. are summarized.

図8の比較例1で示された電解液は、前述の18650型セルで使用した電解液と同じ組成である。18650型セルの場合、25℃で得られた放電容量に対する0℃で得られた放電容量の割合は、表1のセルA及びCを比較することにより39%と算出することができる。本実施例においては比較例1の放電容量維持率が42%であったことから、電池での放電容量維持率と同様の値が得られたものと見なし、テストセルで得られた放電容量維持率と、電池にした場合の放電容量維持率は殆ど同じ値になると判断できる。   The electrolytic solution shown in Comparative Example 1 in FIG. 8 has the same composition as the electrolytic solution used in the aforementioned 18650 type cell. In the case of the 18650 type cell, the ratio of the discharge capacity obtained at 0 ° C. to the discharge capacity obtained at 25 ° C. can be calculated as 39% by comparing the cells A and C in Table 1. In this example, since the discharge capacity maintenance rate of Comparative Example 1 was 42%, it was considered that the same value as the discharge capacity maintenance rate of the battery was obtained, and the discharge capacity maintenance obtained by the test cell was obtained. It can be determined that the rate and the discharge capacity maintenance rate in the case of a battery are almost the same value.

図9及び10に、電解液中のリチウムイオン濃度が2mol/Lとなるように、LiPFとLiTFSIを種々の割合で溶解した電解液における、25℃及び0℃の充放電サイクルの測定結果を示す。25℃(図9)においては、いずれの電解液においても高い放電容量を示すことが分かった。一方、0℃(図10)においては、電解液中にLiTFSIを加えた場合は、LiTFSIの濃度が上昇するに従い、放電容量が著しく上昇することが明らかになった。具体的には、LiPFを単独で溶解した時は、25℃で得られた放電容量に対する0℃で得られた放電容量の割合は、42%であったのに対し(詳細な数値は、図8、比較例1参照)、LiTFSIを濃度0.2mol/L以上溶解した場合は、25℃で得られた放電容量に対する0℃で得られた放電容量の割合は70%以上であった(詳細な数値は、図8、実施例1〜3参照)。 9 and 10 show the measurement results of charge and discharge cycles at 25 ° C. and 0 ° C. in an electrolyte solution in which LiPF 6 and LiTFSI are dissolved at various ratios so that the lithium ion concentration in the electrolyte solution is 2 mol / L. Show. At 25 ° C. (FIG. 9), it was found that any electrolyte solution showed a high discharge capacity. On the other hand, at 0 ° C. (FIG. 10), when LiTFSI was added to the electrolytic solution, it became clear that the discharge capacity significantly increased as the concentration of LiTFSI increased. Specifically, when LiPF 6 was dissolved alone, the ratio of the discharge capacity obtained at 0 ° C. to the discharge capacity obtained at 25 ° C. was 42% (detailed numerical values are 8), when LiTFSI was dissolved at a concentration of 0.2 mol / L or more, the ratio of the discharge capacity obtained at 0 ° C. to the discharge capacity obtained at 25 ° C. was 70% or more ( For detailed numerical values, see FIG. 8 and Examples 1 to 3).

なお、LiTFSIの濃度を0.5mol/Lとした場合には、アルミニウムなどの正極集電体が著しく溶解するため好ましくないことも分かった。   In addition, when the density | concentration of LiTFSI was 0.5 mol / L, since positive electrode collectors, such as aluminum, melt | dissolved remarkably, it turned out that it is not preferable.

従って、容量維持率が最も高いのは、1.5mol/LのLiPFと0.5mol/LのLiTFSIを溶解した電解液を使用した場合であり、その容量維持率は99.5%と非常に高い値であることが明らかになった(図8、実施例3参照)。 Therefore, the capacity retention rate is highest when an electrolytic solution in which 1.5 mol / L LiPF 6 and 0.5 mol / L LiTFSI are dissolved is used, and the capacity retention rate is as high as 99.5%. (Fig. 8, Example 3).

次に、LiTFSIの代わりに、TFSIアニオン(N(CFSO )と同様の化学構造を有した、BETIアニオン(N(CSO )およびMethidアニオン(C(CFSO )のリチウム塩を0.5mol/Lで溶解した電解液、即ち、1.5mol/LのLiPFと0.5mol/Lの種々の他のリチウム塩を用い、25℃及び0℃の充放電サイクルを測定した。結果を図11及び12に示す。 Then, instead of LiTFSI, TFSI - had similar chemical structure as, BETI - anion (N (CF 3 SO 2) 2) - anion (N (C 2 F 5 SO 2) 2 -) and Methid - An electrolytic solution in which a lithium salt of an anion (C (CF 3 SO 2 ) 3 ) is dissolved at 0.5 mol / L, that is, 1.5 mol / L LiPF 6 and various other lithium salts of 0.5 mol / L The charge / discharge cycle at 25 ° C. and 0 ° C. was measured. The results are shown in FIGS.

LiBETIおよびLiMethidのいずれの場合も、25℃で得られた放電容量に対する0℃で得られた放電容量の割合は38〜41%と低く(詳細な数値は、図8、比較例4及び5参照)、LiTFSIのような低温特性の改善効果は一切見られなかった。よって、単純にLiPF以外の塩を溶解させれば0℃での放電容量維持率が向上するのではなく、所定濃度以上のLiTFSIをLiPFと共に溶解させることが、低温特性の向上に不可欠であることが明らかになった。 In both cases of LiBETI and LiMetheid, the ratio of the discharge capacity obtained at 0 ° C. to the discharge capacity obtained at 25 ° C. is as low as 38 to 41% (see FIG. 8 and Comparative Examples 4 and 5 for detailed numerical values). ), No improvement effect of low temperature characteristics such as LiTFSI was observed. Therefore, simply dissolving a salt other than LiPF 6 does not improve the discharge capacity maintenance rate at 0 ° C., but dissolving LiTFSI at a predetermined concentration or more together with LiPF 6 is indispensable for improving low-temperature characteristics. It became clear that there was.

また、1.5mol/LのLiPFと0.5mol/LのLiTFSIを溶解した電解液を使用した場合に容量維持率が上昇する要因として、図8比較例1(2mol/LのLiPF)に比べてLiPFが低濃度であるためとも考えうる。しかし、図11及び12に示すように、1.5mol/LのLiPFのみを溶解した電解液では、その0℃での放電容量維持率は、2mol/Lの場合とほぼ同様で45.2%であった(詳細な数値は、図8、比較例2参照)。 Further, as a factor that increases the capacity retention rate when using an electrolytic solution in which 1.5 mol / L LiPF 6 and 0.5 mol / L LiTFSI are dissolved, FIG. 8 Comparative Example 1 (2 mol / L LiPF 6 ) It can also be considered that LiPF 6 has a low concentration compared to the above. However, as shown in FIGS. 11 and 12, in the electrolytic solution in which only 1.5 mol / L LiPF 6 was dissolved, the discharge capacity retention rate at 0 ° C. was almost the same as in the case of 2 mol / L, which was 45.2. (For detailed numerical values, see FIG. 8 and Comparative Example 2).

この結果から、1.5mol/LのLiPFと0.5mol/LのLiTFSIを溶解した電解液を使用した場合に容量維持率が高かった理由は、LiPFの塩濃度が低下したためではないことが証明された。 From this result, the reason why the capacity retention rate was high when using an electrolytic solution in which 1.5 mol / L LiPF 6 and 0.5 mol / L LiTFSI were dissolved was not that the salt concentration of LiPF 6 was lowered. Proved.

以上のように良好な結果を示した1.5mol/LのLiPFと0.5mol/LのLiTFSIを溶解した電解液は、2mol/LのLiPFのみを用いた図8比較例1に比べて、25℃での充電終止時点の電位(V25)、0℃での充電終止時点の電位(V0)、およびその差(V0−V25)には大きな変化はなかった。従って、LiTFSIを溶解させることで他の特性に影響を与えることなく、低温特性のみを向上させることが明らかになった。 The electrolytic solution in which 1.5 mol / L LiPF 6 and 0.5 mol / L LiTFSI which showed good results as described above were dissolved was compared with FIG. 8 Comparative Example 1 using only 2 mol / L LiPF 6 . Thus, there was no significant change in the potential at the end of charging at 25 ° C. (V 25 ), the potential at the end of charging at 0 ° C. (V 0 ), and the difference (V 0 −V 25 ). Therefore, it has been clarified that by dissolving LiTFSI, only the low temperature characteristics are improved without affecting other characteristics.

次に、1mol/LのLiPFのみが溶解された電解液、及び1mol/LのLiPFと種々濃度のLiTFSIとが共に溶解された電解液を使用した場合の25℃及び0℃の充放電カーブを図13、14に示す。 Next, charging and discharging at 25 ° C. and 0 ° C. when using an electrolytic solution in which only 1 mol / L LiPF 6 is dissolved and an electrolytic solution in which 1 mol / L LiPF 6 and various concentrations of LiTFSI are dissolved are used. The curves are shown in FIGS.

図13より、25℃での充放電カーブに大きな差は認められなかった。しかし、0℃でのカーブは、1mol/LのLiPFと共存するLiTFSIの濃度に依存して大きく変化した。この傾向は、図9及び10で認められたものと同様である。電解液の溶質が1mol/LのLiPFのみの場合は、25℃の放電容量に対する0℃での放電容量の割合が49%であり、0℃での潜在的に放電可能な容量が減少するため好ましくない。これに対して0.2mol/L以上の濃度でLiTFSIが溶解された電解液を使用した場合には、25℃の放電容量に対する0℃での放電容量の割合が79%以上と高く、LiTFSIが溶解されていない電解液を使用した場合と比較して、潜在的に放電可能な大幅に増加することが分かった。 From FIG. 13, a large difference was not recognized in the charge / discharge curve at 25 ° C. However, the curve at 0 ° C. varied greatly depending on the concentration of LiTFSI coexisting with 1 mol / L LiPF 6 . This trend is similar to that observed in FIGS. When the electrolyte solute is only 1 mol / L LiPF 6 , the ratio of the discharge capacity at 0 ° C. to the discharge capacity at 25 ° C. is 49%, and the potentially dischargeable capacity at 0 ° C. decreases. Therefore, it is not preferable. On the other hand, when an electrolyte solution in which LiTFSI is dissolved at a concentration of 0.2 mol / L or more is used, the ratio of the discharge capacity at 0 ° C. to the discharge capacity at 25 ° C. is as high as 79% or more, and LiTFSI is It has been found that there is a significant increase in potential discharge compared to using undissolved electrolyte.

以上、詳細に説明したとおり、電解質アニオンの吸蔵・放出を行うことにより充放電を行う黒鉛粉末からなる正極を備えるリチウム二次電池の電解質として、LiPFとLiTFSIを用い、かつLiTFSIの濃度が0.2〜0.5mol/Lである場合には、この種の電池に特有の低温特性、即ち、低温において、その電池が潜在的に有する放電可能な容量が大幅に減少する問題を改善できることが明らかになった。 As described above in detail, LiPF 6 and LiTFSI are used as the electrolyte of a lithium secondary battery including a positive electrode made of graphite powder that is charged and discharged by occluding and releasing electrolyte anions, and the concentration of LiTFSI is 0. In the case of 2 to 0.5 mol / L, the low temperature characteristic peculiar to this type of battery, that is, the problem that the dischargeable capacity of the battery potentially decreases at a low temperature can be improved. It was revealed.

電解質アニオンの吸蔵・放出を行うことにより充放電を行う黒鉛粉末を正極材料として含有する正極と、リチウム金属又はリチウムイオンの吸蔵・放出を行うことにより充放電を行う負極材料を含有する負極と、リチウム塩を含有する有機溶媒からなる有機電解液とを備えるリチウム二次電池において、低温特性を改良したリチウム二次電池を提供することが可能となる。   A positive electrode containing, as a positive electrode material, graphite powder that is charged and discharged by occluding and releasing electrolyte anions, and a negative electrode containing a negative electrode material that is charged and discharged by occluding and releasing lithium metal or lithium ions; It is possible to provide a lithium secondary battery having improved low-temperature characteristics in a lithium secondary battery including an organic electrolyte solution made of an organic solvent containing a lithium salt.

18650型セルによるリチウム二次電池の模式図を示す。The schematic diagram of the lithium secondary battery by a 18650 type cell is shown. 放電容量の温度依存性を示す。The temperature dependence of the discharge capacity is shown. 各温度における放電カーブを示す。The discharge curve at each temperature is shown. 充電温度変化時の各温度における放電カーブを示す。The discharge curve in each temperature at the time of charge temperature change is shown. 3極式18650型セルによるリチウム二次電池の模式図を示す。The schematic diagram of the lithium secondary battery by a 3 pole-type 18650 type | mold cell is shown. 3極式18650型セルの各温度における放電カーブを示す。The discharge curve in each temperature of a 3 pole type 18650 type cell is shown. 一実施例におけるテストセルの模式図を示す。The schematic diagram of the test cell in one Example is shown. 一実施例における電解液の溶質及び濃度と25℃及び0℃での充放電試験結果を示す。The solute and density | concentration of the electrolyte solution in one Example, and the charging / discharging test result in 25 degreeC and 0 degreeC are shown. 一実施例におけるLiTFSIを含む電解液の25℃での充放電カーブを示す。The charging / discharging curve at 25 degreeC of the electrolyte solution containing LiTFSI in one Example is shown. 一実施例におけるLiTFSIを含む電解液の0℃での充放電カーブを示す。The charging / discharging curve in 0 degreeC of the electrolyte solution containing LiTFSI in one Example is shown. 一実施例におけるリチウム塩を含む電解液の25℃での充放電カーブを示す。The charging / discharging curve in 25 degreeC of the electrolyte solution containing the lithium salt in one Example is shown. 一実施例におけるリチウム塩を含む電解液の0℃での充放電カーブを示す。The charging / discharging curve at 0 degreeC of the electrolyte solution containing the lithium salt in one Example is shown. 一実施例における種々のリチウム塩濃度を有する電解液の25℃での充放電カーブを示す。The charging / discharging curve in 25 degreeC of the electrolyte solution which has various lithium salt density | concentration in one Example is shown. 一実施例における種々のリチウム塩濃度を有する電解液の0℃での充放電カーブを示す。The charging / discharging curve in 0 degreeC of the electrolyte solution which has various lithium salt density | concentration in one Example is shown.

符号の説明Explanation of symbols

11 正極部 12 セパレータ
13 負極部 14 正極リード板
15 負極リード板 21 電池ケース
23 絶縁底板 25 ガスケット
26 正極端子板 27 中間感圧板
28 突部 29 基部
30 接続部 41 容器
42 蓋 43 ネジ
44 正極リード板 45 負極リード板
48 正極部 49 負極部
50 セパレータ 51 ゴムパッキング
52 ニッケル基板 53 帯状リチウム金属箔
64 作用極 66 対極
68 バネ 70 参照極
72 パラフィルム 74 セパレータ
80(80a,80b) ステンレス固定板 82 挿間ブロック
84 ボルト 86 ナット
88 固定用ボルト 90 アルミニウム板
92 ポリプロピレン板 94 ステンレスディスク
DESCRIPTION OF SYMBOLS 11 Positive electrode part 12 Separator 13 Negative electrode part 14 Positive electrode lead board 15 Negative electrode lead board 21 Battery case 23 Insulation bottom board 25 Gasket 26 Positive electrode terminal board 27 Intermediate pressure-sensitive plate 28 Protrusion 29 Base 30 Connection part 41 Container 42 Cover 43 Screw 44 Positive electrode lead board 45 Negative electrode lead plate 48 Positive electrode portion 49 Negative electrode portion 50 Separator 51 Rubber packing 52 Nickel substrate 53 Banded lithium metal foil 64 Working electrode 66 Counter electrode 68 Spring 70 Reference electrode 72 Parafilm 74 Separator 80 (80a, 80b) Stainless steel fixing plate 82 Insertion Block 84 Bolt 86 Nut 88 Fixing bolt 90 Aluminum plate 92 Polypropylene plate 94 Stainless disc

Claims (1)

電解質アニオンの吸蔵・放出を行うことにより充放電を行う黒鉛粉末を正極材料として含有する正極と、
リチウム金属又はリチウムイオンの吸蔵・放出を行う材料により充放電を行う負極材料を含有する負極と、
リチウム塩を含有する有機溶媒からなる有機電解液と
を備えるリチウム二次電池であって、
前記リチウム塩は、LiPF及びLiN(CFSOを含み、
前記有機溶媒に対する前記LiN(CFSOの濃度は、0.2〜0.5mol/Lであることを特徴とする、
リチウム二次電池。
A positive electrode containing, as a positive electrode material, graphite powder that is charged and discharged by occluding and releasing electrolyte anions;
A negative electrode containing a negative electrode material that is charged and discharged by a material that absorbs and releases lithium metal or lithium ions;
A lithium secondary battery comprising an organic electrolyte solution made of an organic solvent containing a lithium salt,
The lithium salt includes LiPF 6 and LiN (CF 3 SO 2 ) 2 ,
The concentration of the LiN (CF 3 SO 2 ) 2 with respect to the organic solvent is 0.2 to 0.5 mol / L,
Lithium secondary battery.
JP2006305421A 2006-11-10 2006-11-10 Lithium secondary battery Pending JP2008123798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006305421A JP2008123798A (en) 2006-11-10 2006-11-10 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305421A JP2008123798A (en) 2006-11-10 2006-11-10 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2008123798A true JP2008123798A (en) 2008-05-29

Family

ID=39508340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305421A Pending JP2008123798A (en) 2006-11-10 2006-11-10 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2008123798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754726B2 (en) 2012-11-12 2017-09-05 Ricoh Company, Ltd. Nonaqueous electrolytic capacitor element
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754726B2 (en) 2012-11-12 2017-09-05 Ricoh Company, Ltd. Nonaqueous electrolytic capacitor element
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element

Similar Documents

Publication Publication Date Title
JP4888411B2 (en) Positive electrode and non-aqueous electrolyte battery
US7736807B2 (en) Non-aqueous electrolytic solution secondary battery
KR100782868B1 (en) Charging method for charging nonaqueous electrolyte secondary battery
JP5228576B2 (en) Lithium ion secondary battery and electric vehicle power supply
JP3492173B2 (en) Non-aqueous battery
JP6728134B2 (en) Non-aqueous electrolyte secondary battery
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
KR19980064693A (en) Non-aqueous electrolyte secondary battery
KR20140001114A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
KR102232185B1 (en) Lithium-ion secondary cell
JP2005183384A (en) Electrochemical active material for positive electrode of lithium rechargeable electrochemical cell
JP4834330B2 (en) Non-aqueous electrolyte secondary battery
JP2006351306A (en) Nonaqueous electrolyte secondary battery
US8691435B2 (en) Electrochemical cell and electrochemical capacitor
JP4424895B2 (en) Lithium secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JPH11214001A (en) Nonaqueous electrolytic solution secondary battery
JP2008117623A (en) Lithium secondary battery
JP5150080B2 (en) Lithium secondary battery
JP2006004878A (en) Battery
JP2007157538A (en) Battery
JP2000149987A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP2008123798A (en) Lithium secondary battery