JP2008123732A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008123732A
JP2008123732A JP2006303607A JP2006303607A JP2008123732A JP 2008123732 A JP2008123732 A JP 2008123732A JP 2006303607 A JP2006303607 A JP 2006303607A JP 2006303607 A JP2006303607 A JP 2006303607A JP 2008123732 A JP2008123732 A JP 2008123732A
Authority
JP
Japan
Prior art keywords
nonaqueous electrolyte
secondary battery
negative electrode
electrolyte secondary
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006303607A
Other languages
Japanese (ja)
Inventor
Masaki Deguchi
正樹 出口
Toru Matsui
徹 松井
Koji Yoshizawa
浩司 芳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006303607A priority Critical patent/JP2008123732A/en
Publication of JP2008123732A publication Critical patent/JP2008123732A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which has a high energy concentration and an excellent cycle characteristics even under a high temperature environment. <P>SOLUTION: The nonaqueous electrolyte secondary battery is provided with a group of electrodes, in which a cathode and an anode which can occlude and discharge lithium are wound around or laminated with a separator in-between, and a nonaqueous electrolyte which are both sealed in a case. The nonaqueous electrolyte contains a ring-shaped compound having one unsaturated bond and moreover two nitrogen atoms in a ring. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解質二次電池に関し、特にその好適な電解質を使用したものに関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to a battery using the preferred electrolyte.

現在、非水電解質二次電池においては、高電圧、高エネルギー密度を有するリチウムイオン二次電池の研究が盛んである。リチウムイオン二次電池を構成する正極活物質としてはLiCoO2などのリチウム含有遷移金属酸化物、負極活物質としては炭素材料、セパレータとしてはポリエチレンやポリプロピレンが一般的である。また、非水電解質二次電池に用いられる電解質には、非水溶媒に溶質を溶解させたものが一般的であり、非水溶媒としては環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられ、溶質としては六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)などが用いられている。 Currently, research on lithium ion secondary batteries having high voltage and high energy density is actively conducted in non-aqueous electrolyte secondary batteries. As the positive electrode active material constituting the lithium ion secondary battery, lithium-containing transition metal oxides such as LiCoO 2 are generally used, the negative electrode active material is a carbon material, and the separator is polyethylene or polypropylene. In addition, electrolytes used in non-aqueous electrolyte secondary batteries are generally those in which a solute is dissolved in a non-aqueous solvent. Examples of non-aqueous solvents include cyclic carbonates, chain carbonates, and cyclic carboxylates. As the solute, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), or the like is used.

更に、電池特性を向上させる目的で、正極活物質、負極活物質、および電解質に種々の添加剤を混合することが試みられている。例えば、特許文献1では、ピリジン、ピロール、1−メチルイミダゾール、およびピリミジンなどの含窒素芳香族複素環化合物を電解質に添加する方法が提案されている。この目的はサイクル特性の向上であり、含窒素芳香族複素環化合物が皮膜を形成することにより、目的の効果が得られるというものである。   Furthermore, for the purpose of improving battery characteristics, attempts have been made to mix various additives into the positive electrode active material, the negative electrode active material, and the electrolyte. For example, Patent Document 1 proposes a method of adding a nitrogen-containing aromatic heterocyclic compound such as pyridine, pyrrole, 1-methylimidazole, and pyrimidine to an electrolyte. The purpose is to improve the cycle characteristics, and when the nitrogen-containing aromatic heterocyclic compound forms a film, the desired effect can be obtained.

また、特許文献2および3では、ピロリンを電解質に添加する方法が提案されており、それぞれ、保存後の低温特性の改善と導電性ポリマーの高容量化を達成できるとある。
特開2002−359002号公報 特開平3−46771号公報 特開平4−104477号公報
Patent Documents 2 and 3 propose a method of adding pyrroline to the electrolyte, which can improve the low-temperature characteristics after storage and increase the capacity of the conductive polymer, respectively.
JP 2002-359002 A JP-A-3-46771 JP-A-4-104477

しかし、特許文献1、2、および3で提案されているような含窒素環状化合物を電解質に含有させた場合、高温下では電解質と負極活物質との副反応が激しく起こり、サイクル特性が極めて低下するという課題があった。   However, when a nitrogen-containing cyclic compound as proposed in Patent Documents 1, 2, and 3 is included in the electrolyte, the side reaction between the electrolyte and the negative electrode active material occurs vigorously at a high temperature, resulting in extremely poor cycle characteristics. There was a problem to do.

本発明は、このような課題を解決し、特に高温環境下においても良好な充放電サイクル特性を示す非水電解質二次電池を提供するものである。   The present invention solves such problems and provides a nonaqueous electrolyte secondary battery exhibiting good charge / discharge cycle characteristics even in a high temperature environment.

本発明では、環内に不飽和結合を1つ有し、且つ、窒素原子を2つ含む環状化合物を非水電解質に含有させたことを特徴とする。   The present invention is characterized in that a non-aqueous electrolyte contains a cyclic compound having one unsaturated bond in the ring and containing two nitrogen atoms.

非水電解質に、本発明の化合物を含有せしめることにより、本発明の化合物は負極上で分解して非常に強固な保護皮膜を形成するため、高温下でも負極表面から剥がれにくく、電解質と負極活物質との副反応を抑制できる。この理由は以下のように考えられる。   By incorporating the compound of the present invention into a non-aqueous electrolyte, the compound of the present invention decomposes on the negative electrode to form a very strong protective film, so that it is difficult to peel off from the negative electrode surface even at high temperatures. Side reactions with substances can be suppressed. The reason is considered as follows.

本発明の化合物は、環内に不飽和結合を1つ有する環状化合物であるため、負極上で還元されて付加または開環重合を起こすことができ、ポリマーとなって保護皮膜を形成できる。また、環内に窒素原子を2つ持つため、重合により生成した含窒素ポリマーは高い耐熱性を有しており、高温下でも負極表面から剥がれにくいため、この強固な皮膜により、
電解質と負極活物質との副反応が抑制され、高温環境下の耐性が向上すると考えられる。特許文献1でも、ピリジン等の含窒素芳香族複素環化合物が提案されているが、これらの化合物は環内に不飽和結合を2つ以上含んでいる点が構造的に本発明の化合物と異なっており、環内に不飽和結合を2つ以上含んでいるために耐酸化性が低下し、高温下では正極活物質上で酸化分解してしまうため、負極活物質を保護できる十分量の皮膜が形成されず、サイクル特性が低下してしまう。
Since the compound of the present invention is a cyclic compound having one unsaturated bond in the ring, it can be reduced on the negative electrode to cause addition or ring-opening polymerization, and can form a protective film as a polymer. In addition, since it has two nitrogen atoms in the ring, the nitrogen-containing polymer produced by polymerization has high heat resistance, and it is difficult to peel off from the negative electrode surface even at high temperatures.
It is considered that side reaction between the electrolyte and the negative electrode active material is suppressed, and resistance under a high temperature environment is improved. Patent Document 1 also proposes nitrogen-containing aromatic heterocyclic compounds such as pyridine, but these compounds are structurally different from the compounds of the present invention in that they contain two or more unsaturated bonds in the ring. In addition, since it contains two or more unsaturated bonds in the ring, the oxidation resistance is lowered, and it oxidatively decomposes on the positive electrode active material at a high temperature. Is not formed, and the cycle characteristics deteriorate.

また、特許文献2および3でも、含窒素環状化合物であるピロリンが提案されているが、この化合物は窒素原子を1つしか含んでいない点が構造的に本発明の化合物と異なっており、窒素原子を1つしか含んでいないために、重合により生成した含窒素ポリマーの耐熱性はあまり向上せず、高温下において負極表面から剥がれやすくなり、電解質と負極活物質との副反応が激しく起こってサイクル特性が低下してしまう。   Patent Documents 2 and 3 also propose pyrroline, which is a nitrogen-containing cyclic compound, but this compound is structurally different from the compound of the present invention in that it contains only one nitrogen atom. Since it contains only one atom, the heat resistance of the nitrogen-containing polymer produced by polymerization does not improve much, and it tends to peel off from the negative electrode surface at high temperatures, causing a side reaction between the electrolyte and the negative electrode active material. Cycle characteristics will deteriorate.

一方、本発明の化合物は、環内に不飽和結合を1つ有し、且つ、窒素原子を2つ含んでいるため、耐酸化性の低下および皮膜耐熱性の低下を招くことはなく、サイクル中でも負極活物質を保護できる十分量の耐熱性皮膜が形成され、高温下におけるサイクル特性が向上する。   On the other hand, since the compound of the present invention has one unsaturated bond in the ring and contains two nitrogen atoms, it does not cause a decrease in oxidation resistance and a decrease in film heat resistance. In particular, a sufficient amount of a heat-resistant film capable of protecting the negative electrode active material is formed, and the cycle characteristics at high temperatures are improved.

本発明の化合物を非水電解質に含有させることにより、従来の化合物を添加した場合の課題、すなわち高温環境下における、電解質と負極活物質の副反応によるサイクル特性劣化が回避でき、良好な充放電サイクル特性を有する非水電解質二次電池を実現化できる。   By incorporating the compound of the present invention into a non-aqueous electrolyte, the problems when conventional compounds are added, that is, deterioration of cycle characteristics due to side reaction between the electrolyte and the negative electrode active material in a high temperature environment can be avoided, and good charge and discharge A non-aqueous electrolyte secondary battery having cycle characteristics can be realized.

以下、本発明を実施するための最良の形態について、以下に詳述する。   The best mode for carrying out the present invention will be described in detail below.

本発明においては、環内に不飽和結合を1つ有し、且つ、窒素原子を2つ含む環状化合物を非水電解質に含有させておく必要がある。   In the present invention, it is necessary for the nonaqueous electrolyte to contain a cyclic compound having one unsaturated bond in the ring and containing two nitrogen atoms.

本発明の化合物の中では、イミダゾリン骨格を持つ化合物が好ましい。これは、イミダゾリン骨格は5員環化合物であるために分子内の歪みが適度に大きいため、歪みの解放を駆動力とした開環重合反応が進みやすく、より重合度が高い強固な保護皮膜が形成されるためである。   Among the compounds of the present invention, compounds having an imidazoline skeleton are preferable. This is because, since the imidazoline skeleton is a 5-membered ring compound, the strain in the molecule is moderately large, and therefore the ring-opening polymerization reaction with the release of strain as a driving force is easy to proceed, and a strong protective film with a higher degree of polymerization can be obtained. This is because it is formed.

以下に詳細に説明する各構成要素を組み合わせることにより、本発明の非水電解質二次電池が構成される。   The nonaqueous electrolyte secondary battery of the present invention is configured by combining the components described in detail below.

正極活物質には、例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4(M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも一種)、(ここでxは、0から1.2、yは0から0.9、zは2.0から2.3)が用いられる。上記x値は、充放電開始前の値であり、充放電により増減する。 The positive electrode active material, for example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1- y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 (M = Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, (At least one of Pb, Sb, and B), where x is 0 to 1.2, y is 0 to 0.9, and z is 2.0 to 2.3. The x value is a value before the start of charging / discharging and increases / decreases due to charging / discharging.

負極材料には、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック(登録商標)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ−ボンブラック類、炭素繊維、金属繊維、合金、リチウム金属、錫化合物、珪化物、窒化物などを用いることができる。   Examples of the anode material include carbon such as natural graphite (eg, scaly graphite), graphite such as artificial graphite, acetylene black, ketjen black (registered trademark), channel black, furnace black, lamp black, thermal black, and the like. Blacks, carbon fibers, metal fibers, alloys, lithium metals, tin compounds, silicides, nitrides, and the like can be used.

正極または負極用結着剤には、例えば、ポリエチレン、ポリプロピレン、ポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体などが用いられる。また、電極に含ませる導電剤には、例えば、黒鉛類、アセチレンブラック、ケッチェンブラック(登録商標)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維などが用いられる。
Examples of the positive electrode or negative electrode binder include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and vinylidene fluoride-hexa. A fluoropropylene copolymer or the like is used. Examples of the conductive agent included in the electrode include graphite, acetylene black, ketjen black (registered trademark), channel black, furnace black, lamp black, thermal black, and other carbon blacks, carbon fibers, metal fibers, and the like. Is used.

正極用集電体には、例えば、ステンレス鋼、アルミニウム、チタンなどからなるシート箔が用いられる。また、負極用集電体には、例えば、ステンレス鋼、ニッケル、銅などからなるシート箔が用いられる。これらの厚さは、特に限定されないが、1〜500μmである。   For the positive electrode current collector, for example, a sheet foil made of stainless steel, aluminum, titanium, or the like is used. For the negative electrode current collector, for example, a sheet foil made of stainless steel, nickel, copper, or the like is used. These thicknesses are not particularly limited, but are 1 to 500 μm.

電解質には、非水溶媒に溶質を溶解させたものが用いられており、非水溶媒には、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、環状スルホンなどが用いられる。ここで、環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられ、鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。また、環状カルボン酸エステルとしては、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)などが挙げられる。また、環状スルホンとしては、スルホラン(SL)、3−メチルスルホラン(3MeSL)などが挙げられる。   As the electrolyte, a solution in which a solute is dissolved in a non-aqueous solvent is used. As the non-aqueous solvent, for example, a cyclic carbonate, a chain carbonate, a cyclic carboxylate, a cyclic sulfone, or the like is used. Here, examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC). Examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). Etc. Examples of the cyclic carboxylic acid ester include γ-butyrolactone (GBL) and γ-valerolactone (GVL). Examples of the cyclic sulfone include sulfolane (SL) and 3-methylsulfolane (3MeSL).

これらの溶媒に溶解するリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ビス(1,2−ベンゼンジオレート(2−)−O,O’)ほう酸リチウム、ビス(2,3−ナフタレンジオレート(2−)−O,O’)ほう酸リチウム、ビス(2,2’−ビフェニルジオレート(2−)−O,O’)ほう酸リチウム、ビス(5−フルオロ−2−オレート−1−ベンゼンスルホン酸−O,O’)ほう酸リチウム等のほう酸塩類、ビステトラフルオロメタンスルホン酸イミドリチウム((CF3SO22NLi)、テトラフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CF3SO2)(C49SO2))、ビスペンタフルオロエタンスルホン酸イミドリチウム((C25SO22NLi)等のイミド塩類等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いることもできる。 Examples of the lithium salt dissolved in these solvents include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lower fat. Lithium group carboxylate, LiCl, LiBr, LiI, chloroborane lithium, bis (1,2-benzenediolate (2-)-O, O ') lithium borate, bis (2,3-naphthalenedioleate (2-) -O, O ') lithium borate, bis (2,2'-biphenyldiolate (2-)-O, O') lithium borate, bis (5-fluoro-2-olate-1-benzenesulfonic acid-O, O ′) borates such as lithium borate, lithium bistetrafluoromethanesulfonate imide ((CF 3 SO 2 ) 2 NLi), tetrafur Olomethanesulfonic acid nonafluorobutane sulfonic acid imidolithium (LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 )), bispentafluoroethane sulfonic acid imidolithium ((C 2 F 5 SO 2 ) 2 NLi), etc. And imide salts thereof. These may be used alone or in combination of two or more.

また、非水電解質には、炭素−炭素不飽和結合を少なくとも一つ有する環状炭酸エステルを含有させることができる。負極上で分解してリチウムイオン伝導性の高い皮膜を形成し、充放電効率が高くなるからである。   The nonaqueous electrolyte can contain a cyclic carbonate having at least one carbon-carbon unsaturated bond. It is because it decomposes | disassembles on a negative electrode and forms a membrane | film | coat with high lithium ion conductivity, and charge / discharge efficiency becomes high.

炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステルとしては、例えば、ビニレンカーボネート(VC)、4−メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、4−エチルビニレンカーボネート、4,5−ジエチルビニレンカーボネート、4−プロピルビニレンカーボネート、4,5−ジプロピルビニレンカーボネート、4−フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネート等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、ビニレンカーボネート、ビニルエチレンカーボネート、およびジビニルエチレンカーボネートよりなる群から選ばれる少なくとも1種が好ましい。なお、上記化合物は、その水素原子の一部がフッ素原子で置換されていてもよい。   Examples of the cyclic ester carbonate having at least one carbon-carbon unsaturated bond include vinylene carbonate (VC), 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4-ethyl vinylene carbonate, 4,5-diethyl. Examples include vinylene carbonate, 4-propyl vinylene carbonate, 4,5-dipropyl vinylene carbonate, 4-phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl ethylene carbonate (VEC), and divinyl ethylene carbonate. These may be used alone or in combination of two or more. Among these, at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate is preferable. In the above compound, part of the hydrogen atoms may be substituted with fluorine atoms.

さらに、非水電解質には、過充電時に分解して電極上に皮膜を形成し、電池を不活性化
する従来からよく知られているベンゼン誘導体を含有することができる。前記ベンゼン誘導体は、フェニル基および前記フェニル基に隣接する環状化合物基からなることが好ましい。前記環状化合物基としては、フェニル基、環状エーテル基、環状エステル基、シクロアルキル基、フェノキシ基などが好ましい。ベンゼン誘導体の具体例としては、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテルなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。ただし、ベンゼン誘導体の含有率は、非水溶媒全体の10体積部以下であることが好ましい。
Further, the non-aqueous electrolyte can contain a conventionally well-known benzene derivative that decomposes during overcharge to form a film on the electrode and inactivate the battery. The benzene derivative is preferably composed of a phenyl group and a cyclic compound group adjacent to the phenyl group. As the cyclic compound group, a phenyl group, a cyclic ether group, a cyclic ester group, a cycloalkyl group, a phenoxy group, and the like are preferable. Specific examples of the benzene derivative include cyclohexylbenzene, biphenyl, diphenyl ether and the like. These may be used alone or in combination of two or more. However, it is preferable that the content rate of a benzene derivative is 10 volume parts or less of the whole non-aqueous solvent.

セパレータには、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性を有する微多孔性薄膜が用いられる。例えば、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマーあるいはガラス繊維などからなるシート、不織布、織布などが用いられる。セパレータの厚さは、一般的には、10〜300μmである。   As the separator, a microporous thin film having a large ion permeability, a predetermined mechanical strength, and an insulating property is used. For example, a sheet made of an olefin polymer such as polypropylene or polyethylene, a glass fiber, a nonwoven fabric, a woven fabric, or the like is used. The thickness of the separator is generally 10 to 300 μm.

(実施例1)
(i)非水電解質の調製
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(体積比1:4)に、1.0mol/Lの濃度でLiPF6を溶解した。得られた溶液に、表1に記載した種々の環内に不飽和結合を1つ有し、且つ、窒素原子を2つ含む環状化合物を、添加剤として溶媒100重量部に対して2重量部添加して非水電解質を調製した。
(Example 1)
(I) Preparation of Nonaqueous Electrolyte LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (volume ratio 1: 4) at a concentration of 1.0 mol / L. In the obtained solution, 2 parts by weight of a cyclic compound having one unsaturated bond in various rings described in Table 1 and containing two nitrogen atoms as an additive with respect to 100 parts by weight of the solvent. A non-aqueous electrolyte was prepared by addition.

(ii)正極板の作製
コバルト酸リチウム粉末85重量部に対し、導電剤のアセチレンブラック10重量部と、結着剤のポリフッ化ビニリデン樹脂5重量部とを混合し、これらを脱水N−メチル−2−ピロリドンに分散させてスラリー状の正極合剤を調製した。この正極合剤をアルミニウム箔からなる正極集電体上に塗布し、乾燥後、圧延して、正極板を得た。
(Ii) Production of Positive Electrode Plate With respect to 85 parts by weight of lithium cobaltate powder, 10 parts by weight of acetylene black as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder were mixed, and these were mixed with dehydrated N-methyl- A slurry-like positive electrode mixture was prepared by dispersing in 2-pyrrolidone. This positive electrode mixture was applied onto a positive electrode current collector made of an aluminum foil, dried and rolled to obtain a positive electrode plate.

(iii)負極板の作製
人造黒鉛粉末75重量部に対し、導電剤であるアセチレンブラック20重量部と、結着剤のポリフッ化ビニリデン樹脂5重量部とを混合し、これらを脱水N−メチル−2−ピロリドンに分散させてスラリー状の負極合剤を調製した。この負極合剤を銅箔からなる負極集電体上に塗布し、乾燥後、圧延して、負極板を得た。
(Iii) Production of Negative Electrode Plate To 75 parts by weight of artificial graphite powder, 20 parts by weight of acetylene black as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder were mixed, and these were dehydrated N-methyl- A slurry-like negative electrode mixture was prepared by dispersing in 2-pyrrolidone. This negative electrode mixture was applied on a negative electrode current collector made of copper foil, dried and rolled to obtain a negative electrode plate.

(iv)円筒型電池の製造
円筒型電池を作製した。その縦断面図を図1に示す。
(Iv) Production of Cylindrical Battery A cylindrical battery was produced. A longitudinal sectional view thereof is shown in FIG.

正極板11及び負極板12とを、セパレータ13を介して渦巻状に捲回して、極板群を作製した。極板群はニッケルメッキした鉄製電池ケース18内に収納した。正極板11からはアルミニウム製正極リード14を引き出して、正極端子20に導通した封口板19の裏面に接続した。また、負極板12からはニッケル製負極リード15を引き出して、電池ケース18の底部に接続した。極板群の上部には絶縁板16を、下部には絶縁板17をそれぞれ設けた。そして、所定の非水電解質を電池ケース18内に注液し、封口板19を用いて電池ケース18の開口部を密封した。   The positive electrode plate 11 and the negative electrode plate 12 were wound in a spiral shape via the separator 13 to produce an electrode plate group. The electrode plate group was housed in a nickel-plated iron battery case 18. The positive electrode lead 14 made of aluminum was pulled out from the positive electrode plate 11 and connected to the back surface of the sealing plate 19 that was conducted to the positive electrode terminal 20. Further, a nickel negative electrode lead 15 was pulled out from the negative electrode plate 12 and connected to the bottom of the battery case 18. An insulating plate 16 is provided above the electrode plate group, and an insulating plate 17 is provided below the electrode plate group. A predetermined nonaqueous electrolyte was poured into the battery case 18, and the opening of the battery case 18 was sealed using the sealing plate 19.

このようにして、電池1から8を作成した。   In this way, batteries 1 to 8 were prepared.

(v)電池の評価
[サイクル後容量維持率]
以上のようにして製造した電池1から8に対して、電池の充放電サイクルを45℃で繰り返し、3サイクル目の放電容量を100%とみなして、500サイクルを経過した電池
の容量維持率を算出し、サイクル維持率とした。結果を表1に示す。
(V) Battery evaluation [Capacity maintenance rate after cycle]
For the batteries 1 to 8 manufactured as described above, the battery charge / discharge cycle was repeated at 45 ° C., the discharge capacity at the third cycle was regarded as 100%, and the capacity retention rate of the battery after 500 cycles was The cycle maintenance rate was calculated. The results are shown in Table 1.

なお、充電では、最大電流1050mA、上限電圧4.2Vで、2時間30分の定電流・定電圧充電を行った。また、放電では、放電電流1500mA、放電終止電圧3.0Vで、定電流放電を行った。   In the charging, constant current / constant voltage charging was performed for 2 hours 30 minutes with a maximum current of 1050 mA and an upper limit voltage of 4.2 V. In discharging, constant current discharge was performed at a discharge current of 1500 mA and a discharge end voltage of 3.0 V.

(比較例1)
非水電解質として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(体積比1:4)に、1.0mol/Lの濃度でLiPF6を溶解させた溶液を用いた以外は、実施例1と同様の電池9を作製し、45℃で充放電サイクルを行った。
(Comparative Example 1)
As a non-aqueous electrolyte, except that a solution in which LiPF6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent (volume ratio 1: 4) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was used, A battery 9 similar to that of Example 1 was produced, and a charge / discharge cycle was performed at 45 ° C.

(比較例2)
非水電解質として、環内に不飽和結合を1つ有し、且つ、窒素原子を2つ含む環状化合物を含ませずに、表1に記載した種々の含窒素環状化合物を混合した以外は、実施例1と同様の電池10から14を作製し、45℃で充放電サイクルを行った。
(Comparative Example 2)
The nonaqueous electrolyte has one unsaturated bond in the ring and does not include a cyclic compound containing two nitrogen atoms, except that various nitrogen-containing cyclic compounds described in Table 1 are mixed. Batteries 10 to 14 similar to those in Example 1 were produced, and a charge / discharge cycle was performed at 45 ° C.

Figure 2008123732
Figure 2008123732

比較例1及び2の結果も表1に示す。表1より、非水電解質に環内に不飽和結合を1つ有し、且つ、窒素原子を2つ含む環状化合物を含ませることで、高温サイクル特性に優れた電池を得ることができることがわかる。これは、環内に不飽和結合を1つ有し、且つ、窒素原子を2つ含む環状化合物が負極上で還元されて重合することにより、耐熱性の高い含窒素ポリマーが保護皮膜として形成されるため、高温下でも負極表面から剥がれにくく、電解質と負極活物質との副反応を抑制したためと推察できる。   The results of Comparative Examples 1 and 2 are also shown in Table 1. From Table 1, it can be seen that a battery excellent in high-temperature cycle characteristics can be obtained by including a cyclic compound containing one unsaturated bond in the ring and two nitrogen atoms in the nonaqueous electrolyte. . This is because a cyclic compound containing one unsaturated bond in the ring and containing two nitrogen atoms is reduced and polymerized on the negative electrode, whereby a highly heat-resistant nitrogen-containing polymer is formed as a protective film. Therefore, it is difficult to peel off from the negative electrode surface even under high temperature, and it can be inferred that the side reaction between the electrolyte and the negative electrode active material was suppressed.

環内に不飽和結合を1つ有し、且つ、窒素原子を2つ含む環状化合物の中では、イミダゾリン骨格を持つ化合物がより高温サイクル特性に優れていた。これは、イミダゾリン骨格は5員環化合物であるために分子内の歪みが適度に大きいため、歪みの解放を駆動力とした開環重合反応が進みやすく、より重合度が高い強固な保護皮膜が形成されるためであると考えられる。   Among the cyclic compounds having one unsaturated bond in the ring and two nitrogen atoms, the compounds having an imidazoline skeleton were more excellent in high-temperature cycle characteristics. This is because, since the imidazoline skeleton is a 5-membered ring compound, the strain in the molecule is moderately large, and therefore the ring-opening polymerization reaction with the release of strain as a driving force is easy to proceed, and a strong protective film with a higher degree of polymerization can be obtained. It is thought that it is because it is formed.

(実施例2)
非水電解質として、ECとEMCの混合溶媒(体積比1:4)100重量部に対し、表2に記載した量の2−メチル−2−イミダゾリンを混合した液に、LiPF6を1.0mol/Lの濃度で溶解したものを用いた。非水電解質以外は、実施例1と同様にして電池15から23を組み立て、45℃で充放電サイクルを行った。結果を表2に示す。
(Example 2)
As a nonaqueous electrolyte, 1.0 mol of LiPF 6 was added to a solution obtained by mixing 2-methyl-2-imidazoline in an amount shown in Table 2 with respect to 100 parts by weight of a mixed solvent of EC and EMC (volume ratio 1: 4). A solution dissolved at a concentration of / L was used. Except for the nonaqueous electrolyte, batteries 15 to 23 were assembled in the same manner as in Example 1, and a charge / discharge cycle was performed at 45 ° C. The results are shown in Table 2.

Figure 2008123732
Figure 2008123732

表2より、2−メチル−2−イミダゾリンの混合量を増加するにしたがって、高温サイクル特性が向上していることが分かる。0.1重量部以下であると添加による効果が少なく、10重量部以上加えると皮膜が厚くなり過ぎて抵抗が増加し、リチウムイオンの負極への挿入・脱離反応が阻害されるため、サイクル特性で効果が現れる2−メチル−2−イミダゾリンの好ましい混合範囲は、溶媒100重量部に対して、0.1〜10重量部であることが分かる。   From Table 2, it can be seen that the high-temperature cycle characteristics are improved as the mixing amount of 2-methyl-2-imidazoline is increased. When the amount is less than 0.1 parts by weight, the effect of addition is small, and when more than 10 parts by weight is added, the film becomes too thick and the resistance increases, and the insertion / extraction reaction of lithium ions to the negative electrode is inhibited. It can be seen that the preferable mixing range of 2-methyl-2-imidazoline, which is effective in properties, is 0.1 to 10 parts by weight with respect to 100 parts by weight of the solvent.

(実施例3)
非水電解質として、表3に記載した種々の溶媒100重量部に対し、2−メチル−2−イミダゾリンを2重量部混合した液に、1.0mol/Lの濃度でLiPF6を溶解したものを用いた。非水電解質以外は、実施例1と同様にして電池24から33を組み立て、45℃で充放電サイクルを行った。結果を表3に示す。
(Example 3)
As a non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a solution obtained by mixing 2 parts by weight of 2-methyl-2-imidazoline with 100 parts by weight of various solvents described in Table 3 Using. Except for the nonaqueous electrolyte, batteries 24 to 33 were assembled in the same manner as in Example 1, and a charge / discharge cycle was performed at 45 ° C. The results are shown in Table 3.

なお、電解質溶媒として混合溶媒を用いた場合は、体積比で混合して調製した。   When a mixed solvent was used as the electrolyte solvent, it was prepared by mixing at a volume ratio.

(比較例3)
非水電解質として、表3に記載した種々の溶媒100重量部に対し、LiPF6を1.0mol/Lの濃度で溶解したものを用いた以外は、実施例1と同様の電池34から43を作製し、45℃で充放電サイクルを行った。なお、電解質溶媒として混合溶媒を用いた場合は、体積比で混合して調製した。
(Comparative Example 3)
Batteries 34 to 43 as in Example 1 were used except that LiPF 6 was dissolved at a concentration of 1.0 mol / L with respect to 100 parts by weight of various solvents described in Table 3 as the nonaqueous electrolyte. It produced and the charge / discharge cycle was performed at 45 degreeC. When a mixed solvent was used as the electrolyte solvent, it was prepared by mixing at a volume ratio.

Figure 2008123732
Figure 2008123732

比較例3の結果も表3に示す。表3より、いずれの電解質溶媒を用いた場合においても、非水電解質に2−メチル−2−イミダゾリンを含ませることで、高温サイクル特性に優れた電池を得ることができることがわかる。中でも、SLまたは3MeSLを溶媒として用いた場合に、特に高温サイクル特性に優れていた。これは、2−メチル−2−イミダゾリンが還元されて負極表面上に形成するポリマー皮膜が、SLまたは3MeSLを取り込むことで、溶媒分子中の硫黄原子を含んだより耐熱性の高い皮膜へと変化したためと推察できる。   The results of Comparative Example 3 are also shown in Table 3. From Table 3, it can be seen that when any electrolyte solvent is used, a battery having excellent high-temperature cycle characteristics can be obtained by including 2-methyl-2-imidazoline in the nonaqueous electrolyte. Among these, when SL or 3MeSL was used as a solvent, the high temperature cycle characteristics were particularly excellent. This is because the polymer film formed on the negative electrode surface by reduction of 2-methyl-2-imidazoline is changed to a film with higher heat resistance containing sulfur atoms in solvent molecules by incorporating SL or 3MeSL. It can be inferred that

本発明は、高温サイクル特性に優れた非水電解質二次電池となっているため、携帯電話やノート型パソコン、ビデオカムコーダーなどのポータブル電子機器の駆動用電源として有用である。   Since the present invention is a non-aqueous electrolyte secondary battery excellent in high-temperature cycle characteristics, it is useful as a power source for driving portable electronic devices such as mobile phones, notebook computers, and video camcorders.

本発明の実施例にかかる円筒型の非水電解質二次電池の縦断面図1 is a longitudinal sectional view of a cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

符号の説明Explanation of symbols

11 正極板
12 負極板
13 セパレータ
14 正極リード
15 負極リード
16 上部絶縁板
17 下部絶縁板
18 電池ケース
19 封口板
20 正極端子
DESCRIPTION OF SYMBOLS 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Positive electrode lead 15 Negative electrode lead 16 Upper insulating plate 17 Lower insulating plate 18 Battery case 19 Sealing plate 20 Positive electrode terminal

Claims (2)

リチウムの吸蔵・放出が可能な正極と負極とをセパレータを介して倦回または積層した電極群を、非水電解質とともにケースに封入してなる非水電解質二次電池において、環内に不飽和結合を1つ有し、且つ、窒素原子を2つ含む環状化合物を、前記非水電解質に含有させたことを特徴とする非水電解質二次電池。   In a non-aqueous electrolyte secondary battery in which an electrode group in which a positive electrode and a negative electrode capable of occluding and releasing lithium are wound or laminated with a non-aqueous electrolyte is enclosed in a case with a separator, an unsaturated bond is formed in the ring. And a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte containing a cyclic compound containing one nitrogen atom and two nitrogen atoms. 前記環状化合物は、イミダゾリン骨格を持つ化合物であることを特徴とする請求項1記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the cyclic compound is a compound having an imidazoline skeleton.
JP2006303607A 2006-11-09 2006-11-09 Nonaqueous electrolyte secondary battery Pending JP2008123732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303607A JP2008123732A (en) 2006-11-09 2006-11-09 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303607A JP2008123732A (en) 2006-11-09 2006-11-09 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008123732A true JP2008123732A (en) 2008-05-29

Family

ID=39508283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303607A Pending JP2008123732A (en) 2006-11-09 2006-11-09 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008123732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136975A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery material, battery, and method for producing battery material
CN113711414A (en) * 2019-04-30 2021-11-26 株式会社Lg新能源 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119473A (en) * 1998-10-15 2000-04-25 Tosoh Corp Solid polyelectrolyte
JP2000156245A (en) * 1998-11-19 2000-06-06 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2005038744A (en) * 2003-07-16 2005-02-10 Sony Corp Manufacturing method of separator, composition for electrolyte, and battery
WO2006088002A1 (en) * 2005-02-18 2006-08-24 Sony Corporation Electrolyte solution and battery
JP2007291007A (en) * 2006-04-25 2007-11-08 Sanyo Chem Ind Ltd Ionic liquid
JP2009537463A (en) * 2006-05-17 2009-10-29 フィリップス−ウニベルジテート・マールブルク Salts consisting of pentafluorophenylimide anions and their use as ionic liquids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119473A (en) * 1998-10-15 2000-04-25 Tosoh Corp Solid polyelectrolyte
JP2000156245A (en) * 1998-11-19 2000-06-06 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2005038744A (en) * 2003-07-16 2005-02-10 Sony Corp Manufacturing method of separator, composition for electrolyte, and battery
WO2006088002A1 (en) * 2005-02-18 2006-08-24 Sony Corporation Electrolyte solution and battery
JP2007291007A (en) * 2006-04-25 2007-11-08 Sanyo Chem Ind Ltd Ionic liquid
JP2009537463A (en) * 2006-05-17 2009-10-29 フィリップス−ウニベルジテート・マールブルク Salts consisting of pentafluorophenylimide anions and their use as ionic liquids

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136975A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery material, battery, and method for producing battery material
CN113039673A (en) * 2018-12-28 2021-06-25 松下知识产权经营株式会社 Battery material, battery, and method for producing battery material
EP3905394A4 (en) * 2018-12-28 2022-03-23 Panasonic Intellectual Property Management Co., Ltd. Battery material, battery, and method for producing battery material
JP7336726B2 (en) 2018-12-28 2023-09-01 パナソニックIpマネジメント株式会社 BATTERY MATERIAL, BATTERY AND METHOD FOR MANUFACTURING BATTERY MATERIAL
CN113711414A (en) * 2019-04-30 2021-11-26 株式会社Lg新能源 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2022523945A (en) * 2019-04-30 2022-04-27 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing it
JP7250401B2 (en) 2019-04-30 2023-04-03 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same

Similar Documents

Publication Publication Date Title
US8252462B2 (en) Non-aqueous electrolyte secondary battery
JP5085940B2 (en) Nonaqueous electrolyte for secondary battery and secondary battery including the same
US11431019B2 (en) Lithium secondary battery
KR101073221B1 (en) Non-aqueous electrolyte and secondary battery using the same
JP4042034B2 (en) Non-aqueous electrolyte battery
US20080299457A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode of nonaqueous electrolyte secondary battery
JP5109359B2 (en) Nonaqueous electrolyte secondary battery
WO2006030624A1 (en) Nonaqueous electrolyte secondary battery
JP4949223B2 (en) Nonaqueous electrolyte and secondary battery including the same
KR101431259B1 (en) Additive for non-aqueous electrolyte and secondary battery using the same
JP4167103B2 (en) Nonaqueous electrolyte secondary battery
KR20160037102A (en) Non-aqueous liquid eletrolyte and lithium secondary battery comprising the same
JP2019102451A (en) Electrolyte solution for nonaqueous electrolyte battery and nonaqueous electrolyte battery using the same
JP4795019B2 (en) Nonaqueous electrolyte secondary battery
JP4417649B2 (en) Nonaqueous electrolyte secondary battery
JP2009110799A (en) Battery
CN111052486B (en) Nonaqueous electrolyte secondary battery
WO2019111958A1 (en) Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used
JP4176435B2 (en) Non-aqueous electrolyte battery
JP2006179210A (en) Non-aqueous electrolytic solution secondary battery and its non-aqueous electrolytic solution
US11539079B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2008123732A (en) Nonaqueous electrolyte secondary battery
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2004103545A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091028

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605