JP2008122309A - Fuel cladding tube for boiling water reactor and method for manufacturing it - Google Patents

Fuel cladding tube for boiling water reactor and method for manufacturing it Download PDF

Info

Publication number
JP2008122309A
JP2008122309A JP2006308883A JP2006308883A JP2008122309A JP 2008122309 A JP2008122309 A JP 2008122309A JP 2006308883 A JP2006308883 A JP 2006308883A JP 2006308883 A JP2006308883 A JP 2006308883A JP 2008122309 A JP2008122309 A JP 2008122309A
Authority
JP
Japan
Prior art keywords
cladding tube
fuel
oxide film
boiling water
water reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006308883A
Other languages
Japanese (ja)
Inventor
Michio Owaki
理夫 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2006308883A priority Critical patent/JP2008122309A/en
Publication of JP2008122309A publication Critical patent/JP2008122309A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cladding tube for a boiling water reactor and a method for manufacturing it which make it possible to maintain its better corrosion resistance and mechanical characteristics by specifying the range of ideal cladding thicknesses for catching up with higher burnups as an oxide film formed on the surface of the fuel cladding tube to make its hydrogen absorption suppressibilities better than ever. <P>SOLUTION: In the fuel cladding tube for a boiling water reactor made of zircalloy, which is a fuel cladding tube for higher-burnup fuel assemblies whose average burnup is 45 GWd/t or higher; the oxide film whose thickness ranges between 0.05 μm and 0.2 μm inclusive is formed on the outer surface of the cladding tube. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば沸騰水型原子炉用燃料集合体を構成する燃料棒等の燃料要素の被覆管に関するものであり、詳しくは、高燃焼度燃料集合体用の燃料被覆管外表面に形成される酸化被膜に関するものである。   The present invention relates to a cladding tube of a fuel element such as a fuel rod constituting a fuel assembly for a boiling water reactor, and more specifically, formed on the outer surface of a fuel cladding tube for a high burnup fuel assembly. It relates to an oxide film.

従来から、沸騰水型原子炉用の燃料棒等の各核燃料要素には、ジルコニウム合金からなる被覆管が使用されている。ジルコニウム合金は耐食性に優れた材料であるが、原子炉内で燃料要素の燃焼が進むにつれて腐食量は増大する傾向にある。このジルコニウム合金製燃料被覆管において腐食に伴った水素吸収が起こると、燃料被覆管の水素脆化が進む。   Conventionally, a cladding tube made of a zirconium alloy has been used for each nuclear fuel element such as a fuel rod for a boiling water reactor. Zirconium alloy is a material with excellent corrosion resistance, but the amount of corrosion tends to increase as the combustion of the fuel element proceeds in the nuclear reactor. When hydrogen absorption accompanying corrosion occurs in this zirconium alloy fuel cladding tube, hydrogen embrittlement of the fuel cladding tube proceeds.

従って、ジルコニウム合金製燃料被覆管は耐食性を向上させることによって、腐食に伴って発生する水素を抑制すると同時に該水素が燃料被覆管に吸収されるのを抑制して水素脆化の危険性を低下させることが望まれる。   Therefore, by improving the corrosion resistance of the zirconium alloy fuel cladding tube, it suppresses hydrogen generated due to corrosion and at the same time suppresses the hydrogen from being absorbed into the fuel cladding tube, thereby reducing the risk of hydrogen embrittlement. It is hoped that

燃料被覆管の水素吸収を抑制する手段としては、被覆管の外表面に酸化皮膜を形成しておく方法がある。例えば、被覆管外表面に0.2μm以上の酸化皮膜を付与することで水素透過能を小さくして障壁効果を高めることで水素吸収を抑制する効果が確認されている(例えば、特許文献1参照。)。
特開昭63−179286号公報
As a means for suppressing the hydrogen absorption of the fuel cladding tube, there is a method of forming an oxide film on the outer surface of the cladding tube. For example, the effect of suppressing hydrogen absorption by increasing the barrier effect by applying an oxide film of 0.2 μm or more to the outer surface of the cladding tube has been confirmed (see, for example, Patent Document 1). .)
JP-A 63-179286

一方、原子力発電の高度化の一環としてウラン資源の有効利用、使用済み燃料の発生量低減を図る上で燃料の高燃焼度化が進められている。沸騰水型原子炉用燃料集合体の燃焼度は現在約45GWd/tであるが、将来はさらに高燃焼度側への引き上げが検討されている。   On the other hand, as part of the advancement of nuclear power generation, fuel burnup is being promoted in order to effectively use uranium resources and reduce the amount of spent fuel generated. The burnup of the boiling water reactor fuel assembly is currently about 45 GWd / t, but in the future, raising the burnup to a higher burnup side is under consideration.

しかし、燃料の高燃焼度化に伴い、燃料の炉内滞在期間は長くなる傾向にあり、その結果、燃料被覆管の水素吸収は増大することは明白である。そこで、燃料被覆管の水素吸収を抑制する手段として、従来から行われている被覆管表面への酸化被膜の付与は有効な方法ではあるが、燃料被覆管の長寿命化によりその使用に当たっては酸化被膜厚さを好適な範囲に設定することが重要となる。   However, as the fuel burns up, the fuel stays in the furnace for a long period of time. As a result, it is clear that the hydrogen absorption of the fuel cladding tube increases. Therefore, as a means of suppressing hydrogen absorption in the fuel cladding, the conventional method of applying an oxide film to the surface of the cladding is an effective method. It is important to set the film thickness within a suitable range.

しかしながら、上記の如き従来の酸化皮膜形成技術では、水素吸収試験が、450℃、3時間水素ガス中および70℃、300時間塩酸溶液中で行われたものであり、酸化皮膜に対する水素吸収試験は比較的短時間でまた低温での試験でしかなく、高燃焼度時を想定した酸化被膜の最適化という観点では未だ充分な検討がなされていないのが現状である。   However, in the conventional oxide film formation technology as described above, the hydrogen absorption test is performed at 450 ° C. for 3 hours in hydrogen gas and at 70 ° C. for 300 hours in a hydrochloric acid solution. It is only a test in a relatively short time and at a low temperature, and at present, sufficient studies have not yet been made from the viewpoint of optimizing an oxide film assuming a high burnup.

本発明の目的は、上記問題点に鑑み、燃料被覆管表面に形成される酸化被膜として高燃焼度化に対応する好適な膜厚範囲を特定し、従来より水素吸収抑制特定が向上されてより良好な耐食性と機械的特性が維持できる沸騰水型原子炉用燃料被覆管およびその製造方法を提供することにある。   In view of the above problems, the object of the present invention is to specify a suitable film thickness range corresponding to high burnup as an oxide film formed on the surface of the fuel cladding tube, and to improve the hydrogen absorption suppression specification than before. An object of the present invention is to provide a fuel cladding tube for a boiling water reactor capable of maintaining good corrosion resistance and mechanical properties, and a method for producing the same.

上記目的を達成するため、請求項1に記載の発明に係る沸騰水型原子炉用燃料被覆管は、ジルコニウム合金からなる沸騰水型原子炉用燃料被覆管において、燃料集合体平均燃焼度が45GWd/t以上の高燃焼度燃料集合体用の燃料被覆管であって、被覆管外表面に、膜厚が0.05μm以上、0.2μm以下の酸化被膜が形成されているものである。   In order to achieve the above object, a boiling water reactor fuel cladding tube according to the first aspect of the present invention is a boiling water reactor fuel cladding tube made of a zirconium alloy having a fuel assembly average burnup of 45 GWd. This is a fuel cladding tube for a high burnup fuel assembly of / t or more, and an oxide film having a film thickness of 0.05 μm or more and 0.2 μm or less is formed on the outer surface of the cladding tube.

また、請求項2に記載の発明に係る沸騰水型原子炉用燃料被覆管の製造方法は、ジルカロイ合金インゴットから成形したビレットを用いて冷間圧延処理および真空焼鈍処理を経た素管を精整してなる被覆管の外表面に酸化被膜を形成する工程を備えた沸騰水型原子炉用燃料被覆管の製造方法であって、前記酸化被膜形成工程は、酸化被膜形成方法として、大気中焼鈍法、陽極酸化法、オートクレーブ法の何れかを用いることを特徴とするものである。   According to a second aspect of the present invention, there is provided a method of manufacturing a fuel clad tube for a boiling water reactor, which uses a billet formed from a Zircaloy alloy ingot to refine a tube that has undergone a cold rolling process and a vacuum annealing process. A method for producing a fuel cladding tube for a boiling water reactor, comprising a step of forming an oxide film on the outer surface of the cladding tube, wherein the oxide film forming step is an atmospheric annealing as an oxide film forming method. Any one of a method, an anodic oxidation method, and an autoclave method is used.

本発明による沸騰水型原子炉用燃料被覆管においては、被覆管の外表面に形成される酸化被膜の膜厚について特定の範囲としたことにより、燃料集合体平均燃焼度が45GWd/t以上という高燃焼度化条件においても、従来の燃料被覆管より水素吸収抑制特性が向上し、より良好な耐食性および機械的特性を維持できるという効果がある。   In the fuel cladding tube for a boiling water reactor according to the present invention, the fuel assembly average burnup is 45 GWd / t or more by setting the film thickness of the oxide film formed on the outer surface of the cladding tube to a specific range. Even under high burn-up conditions, the hydrogen absorption suppression characteristics are improved as compared with the conventional fuel cladding tube, and there is an effect that better corrosion resistance and mechanical characteristics can be maintained.

本発明においては、沸騰水型原子炉用燃料被覆管の外表面に形成される酸化被膜の膜厚を、後述のとおり長時間腐食処理においても優れた水素吸収抑制効果を示す範囲、0.05μm以上、0.2μm以下を特定することにより、燃料集合体平均燃焼度45GWd/t以上という高燃焼度化、長寿命化に対応して従来より良好な耐食性、機械的特性の維持を可能とするものである。   In the present invention, the film thickness of the oxide film formed on the outer surface of the fuel cladding tube for boiling water reactors is set to a range showing an excellent hydrogen absorption suppression effect even in a long-time corrosion treatment as described later, 0.05 μm. As described above, by specifying 0.2 μm or less, it is possible to maintain better corrosion resistance and mechanical characteristics than the conventional one corresponding to the high burnup and long life of the fuel assembly average burnup of 45 GWd / t or more. Is.

水素透過バリヤとしての酸化被膜には好適な厚さの範囲があり、この範囲より厚すぎても薄くても効果が減少する。酸化被膜が該範囲の上限を超える厚さの場合、酸化被膜に割れが発生し、水素透過バリヤ効果が損なわれる。また前記範囲の下限より薄い酸化被膜の場合、水素透過バリヤとしての効果を発揮するに不充分である。   There is a suitable thickness range for the oxide film as a hydrogen permeation barrier, and the effect is reduced if it is too thick or thinner than this range. When the thickness of the oxide film exceeds the upper limit of the range, cracks occur in the oxide film and the hydrogen permeation barrier effect is impaired. In addition, an oxide film thinner than the lower limit of the above range is insufficient to exhibit the effect as a hydrogen permeation barrier.

ところが、酸化被膜に割れが発生するかどうかの確認は、短時間の水素吸収試験では割れが判定し難く、長時間に亘る試験を行って始めて明確に判定できるものであって、酸化被膜の膜厚が厚すぎる際の水素吸収が大きいという結果は得られない。即ち、酸化被膜の好適な膜厚の上限値は、長時間の水素吸収試験を行って始めて特定できるものである。   However, it is difficult to determine whether or not cracks occur in the oxide film in the short-time hydrogen absorption test, and it can be clearly determined only after a long-time test. The result that the hydrogen absorption when the thickness is too thick is not obtained. That is, a suitable upper limit value of the oxide film thickness can be specified only after a long-time hydrogen absorption test.

ジルコニウム合金製被覆管の標準的な腐食試験方法として、JIS H 4751に400℃腐食試験が規定されている。これは、温度400℃で72時間腐食試験を行うものであるが、通常、72時間腐食試験では酸化被膜は緻密な黒色を呈しており膜割れ等は認められていない。   As a standard corrosion test method for a zirconium alloy cladding tube, JIS H 4751 specifies a 400 ° C. corrosion test. In this method, a corrosion test is performed at a temperature of 400 ° C. for 72 hours. Usually, in the 72-hour corrosion test, the oxide film has a dense black color and no film cracking is observed.

一般的に400℃腐食試験の場合、1000時間程度で緻密な酸化皮膜が破壊されることによると考えられる腐食遷移が見られ、遷移後は腐食量が増大する。この知見に基づいて、本発明では、後述する実施例で示すように、腐食時間を腐食遷移よりも充分に長い2000時間とし、酸化被膜の膜厚をパラメータとして、400℃、2000時間の腐食試験後の水素吸収量を測定することにより、好適な酸化被膜の膜厚範囲を特定した。   In general, in the case of a 400 ° C. corrosion test, a corrosion transition that is considered to be due to the destruction of a dense oxide film is observed in about 1000 hours, and the amount of corrosion increases after the transition. Based on this knowledge, in the present invention, as shown in Examples described later, the corrosion time is set to 2000 hours which is sufficiently longer than the corrosion transition, and the oxide film thickness is used as a parameter, and the corrosion test is performed at 400 ° C. for 2000 hours. By measuring the amount of hydrogen absorbed later, a suitable oxide film thickness range was identified.

その結果、酸化被膜の膜厚が0.05μm以上、0.2μm以下の範囲にあるとき、水素吸収量が最も小さな値となることを見出し、本発明に到ったものである。この膜厚の範囲を特定した酸化被膜が外表面に形成された本発明の沸騰水型原子炉用燃料被覆管においては、例えば約45GWd/tという燃料の高燃焼度化条件においても、従来の燃料被覆管より水素吸収抑制特性が向上され、より良好な耐食性および機械的特性を維持できるものとなる。   As a result, when the thickness of the oxide film is in the range of 0.05 μm or more and 0.2 μm or less, the hydrogen absorption amount is found to be the smallest value, and the present invention has been achieved. In the fuel clad for a boiling water reactor of the present invention in which an oxide film that specifies this film thickness range is formed on the outer surface, for example, even under high fuel burnup conditions of about 45 GWd / t, The hydrogen absorption suppression characteristic is improved from the fuel cladding tube, and better corrosion resistance and mechanical characteristics can be maintained.

本発明の燃料被覆管の外表面に形成される酸化被膜は、上記の如く、特定の膜厚範囲内のものとするため、酸化被膜形成方法は、膜厚の調整が可能な方法を選択する。例えば、大気中焼鈍法、陽極酸化法、オートクレーブ法が挙げられ、いずれも、処理時間、温度、雰囲気をコントロールすることによって酸化被膜の形成膜厚を所望の範囲内とすることが可能な方法である。   Since the oxide film formed on the outer surface of the fuel cladding tube of the present invention is within the specific film thickness range as described above, the oxide film forming method is selected so that the film thickness can be adjusted. . For example, an atmospheric annealing method, an anodic oxidation method, and an autoclave method can be mentioned, and all of them are methods that can control the treatment time, temperature, and atmosphere to make the oxide film thickness within a desired range. is there.

本発明の第1実施例による沸騰水型原子炉用燃料被覆管を図1のフロー図に示す工程に沿って製造した例を以下に説明する。まず、インゴット製造工程1にて、ジルカロイ−2のブリケットを多重溶解してジルカロイインゴットを得る。得られたインゴットは、ビレット製造工程2にて、熱間鍛造により丸棒材に伸ばされた後、中心を孔開け加工されてビレットとなる。このビレットは耐食性向上を目的としてβ焼入れを施す。   An example in which the fuel cladding tube for a boiling water reactor according to the first embodiment of the present invention is manufactured along the steps shown in the flowchart of FIG. 1 will be described below. First, in the ingot manufacturing process 1, zircaloy-2 briquettes are dissolved in multiple to obtain a zircaloy ingot. The obtained ingot is stretched into a round bar material by hot forging in the billet manufacturing process 2 and then drilled at the center to become a billet. This billet is subjected to β quenching for the purpose of improving corrosion resistance.

次に、素管製造工程3にて、ビレットは、外層のジルカロイ−2管と内層のジルコニウム管とを電子ビーム溶接により合わせビレットとしたのち、これを高周波加熱で押し出すことで外層ジルカロイ−2管と内層ジルコニウム管を金属的に結合させて素管を得る。   Next, in the raw tube manufacturing process 3, the billet is made by combining the outer layer Zircaloy-2 tube and the inner layer zirconium tube by electron beam welding to form a billet, and then extruding the billet by high-frequency heating to produce the outer layer Zircaloy-2 tube. The inner layer zirconium pipe is metallically bonded to obtain a raw pipe.

素管は、冷間圧延処理4、真空焼鈍処理5が複数回繰り返し行われて所定の寸法に仕上げられる。各冷間圧延処理4後に真空焼鈍処理5のうち、最終焼鈍以外の中間焼鈍処理は、圧延による加工硬化を充分軟化することによって次の圧延加工を可能にするのが主な目的である。そして最終の真空焼鈍処理では、最終的な製品の機械的性質を考慮して再結晶化焼鈍の温度に設定する。   The raw tube is finished to a predetermined size by repeatedly performing a cold rolling process 4 and a vacuum annealing process 5 a plurality of times. Of the vacuum annealing treatments 5 after each cold rolling treatment 4, the intermediate annealing treatment other than the final annealing is mainly intended to enable the next rolling process by sufficiently softening the work hardening by rolling. In the final vacuum annealing treatment, the recrystallization annealing temperature is set in consideration of the mechanical properties of the final product.

ジルコニウム合金の耐食性、水素吸収特性は、一般にその加工の際に行われた熱処理に基づく熱履歴に大きく依存し、以下の式(1)で表される累積入熱パラメータΣAiの値が2×10-19以上、2×10-18以下の範囲にあるとき、ジルコニウム合金の耐食性、水素吸収特性は最も良好なものとなることが知られている。 The corrosion resistance and hydrogen absorption characteristics of a zirconium alloy generally depend largely on the thermal history based on the heat treatment performed during the processing, and the value of the cumulative heat input parameter ΣAi represented by the following formula (1) is 2 × 10. It is known that when it is in the range of −19 to 2 × 10 −18 , the corrosion resistance and hydrogen absorption characteristics of the zirconium alloy are the best.

ΣAi=t・exp(−Q/RT) ・・・(1)
t;温度Tにおける保持時間(h)
T;焼鈍温度(K)
Q;活性化エネルギー
R;気体定数
Q/R;40000
ΣAi = t · exp (−Q / RT) (1)
t: Holding time at temperature T (h)
T: annealing temperature (K)
Q: Activation energy
R: Gas constant
Q / R; 40000

冷間圧延処理4および真空焼鈍処理5に続く工程は精整工程6であり、ここで管の曲がりの矯正、表面仕上げ、寸法調整等が行われる。焼鈍後の管の曲がりはロール矯正機にて真直化する。表面仕上げは、管外表面にセンタレス方式による機械研磨を行い、管内表面に酸洗浄およびサンドブラストを施して行う。これらの処理により微細な表面傷を除去すると共に全表面を均一化し、さらに寸法の微調整が行われる。最後に脱脂、洗浄を行って燃料被覆管を得る。   The process following the cold rolling process 4 and the vacuum annealing process 5 is a refining process 6, where the bending of the pipe is corrected, the surface is finished, the dimensions are adjusted, and the like. The bending of the pipe after annealing is straightened with a roll straightener. The surface finish is performed by performing center-less mechanical polishing on the outer surface of the tube, and acid cleaning and sand blasting on the inner surface of the tube. By these treatments, fine surface scratches are removed, the entire surface is made uniform, and the dimensions are finely adjusted. Finally, degreasing and cleaning are performed to obtain a fuel cladding tube.

本実施例においては、以上の工程で得られた被覆管の外表面に膜厚が0.05μm以上、0.2μm以下の酸化被膜を形成する工程7をさらに備えたものである。酸化被膜は、大気中焼鈍により温度・時間をコントロールすることによって、前記膜厚範囲に調整することができる。   In this example, the method further includes a step 7 of forming an oxide film having a thickness of 0.05 μm or more and 0.2 μm or less on the outer surface of the cladding tube obtained by the above steps. The oxide film can be adjusted to the film thickness range by controlling the temperature and time by atmospheric annealing.

なお、被覆管の外表面に酸化被膜を形成する方法としては、上記実施例で示した大気中焼鈍に限るものではなく、所望の膜厚範囲で酸化被膜が形成できる方法であれば採用可能である。例えば、酸素量を調整した混合ガス中で焼鈍する方法や陽極酸化法、オートクレーブ法などが挙げられる。   The method for forming an oxide film on the outer surface of the cladding tube is not limited to the atmospheric annealing shown in the above embodiment, and any method that can form an oxide film in a desired film thickness range can be adopted. is there. For example, a method of annealing in a mixed gas in which the amount of oxygen is adjusted, an anodic oxidation method, an autoclave method and the like can be mentioned.

陽極酸化法では、被覆管を水酸化ナトリウムや硝酸等の電解液中に浸漬し、被覆管側を陽極として適当な電圧を印可することにより酸化被膜を形成することができ、電圧を調整することによって酸化被膜の膜厚を調整することができる。オートクレーブ法の場合は、オートクレーブ処理における温度・時間・雰囲気をコントロールすることによって酸化被膜の膜厚を調整することができる。   In the anodic oxidation method, an oxide film can be formed by immersing the cladding tube in an electrolyte such as sodium hydroxide or nitric acid, and applying an appropriate voltage with the cladding tube side as the anode. The thickness of the oxide film can be adjusted. In the case of the autoclave method, the film thickness of the oxide film can be adjusted by controlling the temperature, time, and atmosphere in the autoclave process.

本発明の第2実施例として、上記実施例1で得られた燃料被覆管(大気中焼鈍による酸化被膜形成済み)に対して、腐食試験を以下の通り行った。試験被覆管は、0.01μm〜2μmに亘って互いに異なる膜厚で酸化被膜が形成されたものを準備し、それぞれ試験に供した。   As a second example of the present invention, a corrosion test was performed on the fuel cladding tube obtained in Example 1 above (an oxide film formed by atmospheric annealing) as follows. Test coated tubes were prepared in which oxide films were formed with different film thicknesses from 0.01 μm to 2 μm, and each was subjected to a test.

腐食試験は、循環型オートクレーブを用い、温度を400℃、圧力を10.3MPa、溶存酸素200ppb、溶存水素5ppb、電気伝導度2×10-6S/cm、pHを5〜8に設定し、試験時間は72時間と2000時間とで行った。腐食試験後、各試験被覆管について水素吸収量を測定し、酸化被膜の膜厚と水素吸収量との関係を検討し、その結果を、腐食試験72時間の場合を図2に、2000時間の場合を図3にそれぞれ示した。 The corrosion test uses a circulating autoclave, set the temperature to 400 ° C., the pressure to 10.3 MPa, the dissolved oxygen 200 ppb, the dissolved hydrogen 5 ppb, the electrical conductivity 2 × 10 −6 S / cm, and the pH to 5-8. The test time was 72 hours and 2000 hours. After the corrosion test, the hydrogen absorption amount was measured for each test cladding tube, and the relationship between the thickness of the oxide film and the hydrogen absorption amount was examined. The results are shown in FIG. The cases are shown in FIG.

図2、図3の結果から明らかなように、腐食試験時間が短い場合では、ある膜厚までは厚いほど水素吸収量が抑えられ、それ以降は水素吸収量の膜厚への依存傾向は認められないが、長時間試験を行った場合では、ある膜厚までは厚いほど水素吸収量が抑えられ、ある膜厚以上では厚いほど水素吸収抑制効果が低減していくことが確認された。   As is apparent from the results of FIGS. 2 and 3, when the corrosion test time is short, the hydrogen absorption amount is suppressed as the film thickness increases, and thereafter, the dependence of the hydrogen absorption amount on the film thickness is recognized. However, when the test was performed for a long time, it was confirmed that the hydrogen absorption amount was suppressed as the film thickness increased to a certain film thickness, and the hydrogen absorption suppression effect decreased as the film thickness increased beyond a certain film thickness.

即ち、燃料被覆管において、外表面の酸化被膜による良好な水素吸収抑制効果が得られるのは、限られた範囲内の膜厚の場合であって、具体的には、図3の結果から水素吸収量が最も低くなる0.1μm〜0.2μmを含む0.05μm以上0.2μm以下の範囲内であることが明らかとなった。   That is, in the fuel cladding tube, the excellent hydrogen absorption suppression effect by the oxide film on the outer surface is obtained when the film thickness is within a limited range. Specifically, from the result of FIG. It became clear that it was in the range of 0.05 μm or more and 0.2 μm or less including 0.1 μm to 0.2 μm where the absorption amount was the lowest.

以上のように、本発明による沸騰水型原子炉用燃焼被覆管では、外表面に付与される酸化被膜の膜厚を0.05μm以上、0.2μm以下の範囲とすることによって、燃料の高燃焼度化、即ち燃料の長寿命化に対し、優れた水素吸収抑制効果により良好な耐食性・機械的特性を維持できるものとなる。   As described above, in the combustion cladding tube for boiling water reactor according to the present invention, the thickness of the oxide film applied to the outer surface is set in the range of 0.05 μm or more and 0.2 μm or less, thereby increasing the fuel Good corrosion resistance and mechanical characteristics can be maintained due to the excellent hydrogen absorption suppression effect with respect to the burnup, that is, the long life of the fuel.

本発明の実施例1による沸騰水型原子炉用燃料被覆管の製造工程を説明する概略フロー図である。It is a schematic flowchart explaining the manufacturing process of the fuel cladding tube for boiling water reactors by Example 1 of this invention. 本発明の実施例2による燃料被覆管の短時間腐食試験における酸化被膜の膜厚(横軸:μm)に対する水素吸収量(縦軸:相対値)を示す線図である。It is a diagram which shows the hydrogen absorption amount (vertical axis: relative value) with respect to the film thickness (horizontal axis: micrometer) of the oxide film in the short-time corrosion test of the fuel cladding tube by Example 2 of this invention. 本発明の実施例2による燃料被覆管の長時間腐食試験における酸化被膜の膜厚(横軸:μm)に対する水素吸収量(縦軸:相対値)を示す線図である。It is a diagram which shows the hydrogen absorption amount (vertical axis | shaft: relative value) with respect to the film thickness (horizontal axis: micrometer) of the oxide film in the long-time corrosion test of the fuel cladding tube by Example 2 of this invention.

符号の説明Explanation of symbols

1:インゴット製造工程
2:ビレット製造工程
3:素管製造工程
4:冷間圧延処理
5:真空焼鈍処理
6:精整工程
7:酸化被膜形成工程
1: Ingot manufacturing process 2: Billet manufacturing process 3: Element pipe manufacturing process 4: Cold rolling process 5: Vacuum annealing process 6: Refinement process 7: Oxide film forming process

Claims (2)

ジルコニウム合金からなる沸騰水型原子炉用燃料被覆管において、
燃料集合体平均燃焼度が45GWd/t以上の高燃焼度燃料集合体用の燃料被覆管であって、被覆管外表面に、膜厚が0.05μm以上、0.2μm以下の酸化被膜が形成されていることを特徴とする沸騰水型原子炉用燃料被覆管。
In fuel clad tubes for boiling water reactors made of zirconium alloys,
A fuel cladding tube for high-burning fuel assemblies having an average fuel assembly burnup of 45 GWd / t or more, and an oxide film having a film thickness of 0.05 μm or more and 0.2 μm or less is formed on the outer surface of the cladding tube A fuel cladding tube for a boiling water reactor characterized by being made.
ジルカロイ合金インゴットから成形したビレットを用いて冷間圧延処理および真空焼鈍処理を経た素管を精整してなる被覆管の外表面に酸化被膜を形成する工程を備えた沸騰水型原子炉用燃料被覆管の製造方法であって、
前記酸化被膜形成工程は、酸化被膜形成方法として、大気中焼鈍法、陽極酸化法、オートクレーブ法の何れかを用いることを特徴とする請求項1に記載の沸騰水型原子炉用燃料被覆管の製造方法。
Fuel for boiling water reactors comprising a step of forming an oxide film on the outer surface of a cladding tube obtained by refining a raw tube that has undergone cold rolling and vacuum annealing using a billet formed from a Zircaloy alloy ingot A method for manufacturing a cladding tube, comprising:
2. The fuel clad for a boiling water reactor according to claim 1, wherein the oxide film forming step uses any one of an atmospheric annealing method, an anodizing method, and an autoclave method as an oxide film forming method. Production method.
JP2006308883A 2006-11-15 2006-11-15 Fuel cladding tube for boiling water reactor and method for manufacturing it Pending JP2008122309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308883A JP2008122309A (en) 2006-11-15 2006-11-15 Fuel cladding tube for boiling water reactor and method for manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308883A JP2008122309A (en) 2006-11-15 2006-11-15 Fuel cladding tube for boiling water reactor and method for manufacturing it

Publications (1)

Publication Number Publication Date
JP2008122309A true JP2008122309A (en) 2008-05-29

Family

ID=39507208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308883A Pending JP2008122309A (en) 2006-11-15 2006-11-15 Fuel cladding tube for boiling water reactor and method for manufacturing it

Country Status (1)

Country Link
JP (1) JP2008122309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524256A (en) * 2009-05-04 2012-10-11 ポステック アカデミー−インダストリー ファンデーション Method for forming fine irregularities on cladding surface of nuclear fuel rod containing zirconium
WO2021125439A1 (en) * 2019-12-18 2021-06-24 한전원자력연료 주식회사 Ferritic alloy and method for manufacturing nuclear fuel cladding using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260967A (en) * 1994-03-18 1995-10-13 Hitachi Ltd Fuel assembly for light water reactor and manufacture of fuel cladding pipe
JP2000056054A (en) * 1998-08-06 2000-02-25 Nuclear Fuel Ind Ltd Production of zirconium alloy reactor fuel material
JP2001004768A (en) * 1999-06-24 2001-01-12 Hitachi Ltd Nuclear-fuel cladding tube and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260967A (en) * 1994-03-18 1995-10-13 Hitachi Ltd Fuel assembly for light water reactor and manufacture of fuel cladding pipe
JP2000056054A (en) * 1998-08-06 2000-02-25 Nuclear Fuel Ind Ltd Production of zirconium alloy reactor fuel material
JP2001004768A (en) * 1999-06-24 2001-01-12 Hitachi Ltd Nuclear-fuel cladding tube and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524256A (en) * 2009-05-04 2012-10-11 ポステック アカデミー−インダストリー ファンデーション Method for forming fine irregularities on cladding surface of nuclear fuel rod containing zirconium
WO2021125439A1 (en) * 2019-12-18 2021-06-24 한전원자력연료 주식회사 Ferritic alloy and method for manufacturing nuclear fuel cladding using same
US11603584B2 (en) 2019-12-18 2023-03-14 Kepco Nuclear Fuel Co., Ltd. Ferritic alloy and method of manufacturing nuclear fuel cladding tube using the same

Similar Documents

Publication Publication Date Title
EP0622470B1 (en) Method of fabricating zircaloy tubing having high resistance to crack propagation
US5838753A (en) Method of manufacturing zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
JP2003149365A (en) Manufacturing method of niobium-containing zircalloy nuclear fuel cladding with excellent corrosion resistance
JPH08239740A (en) Production of pipe for nuclear fuel aggregate,and pipe obtained thereby
JPS6145699B2 (en)
US5618356A (en) Method of fabricating zircaloy tubing having high resistance to crack propagation
US5854818A (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
JP4417378B2 (en) Zirconium alloy and structural member for core of light water cooled reactor
US5835550A (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
JP2008122309A (en) Fuel cladding tube for boiling water reactor and method for manufacturing it
JP2010501850A (en) Water reactor fuel clad tube
TWI545201B (en) Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
JPH0528357B2 (en)
JPS6358223B2 (en)
JPS6123265B2 (en)
JP3400815B2 (en) Method for producing Zircaloy-2 fuel material for BWR reactor
JP2000056054A (en) Production of zirconium alloy reactor fuel material
JP2002302723A (en) Zirconium alloy and structural parts for nuclear reactor consisting of the same
JP2001262259A (en) Highly corrosion resistant zirconium alloy, structural material for nuclear reactor core and its producing method
JP2001074872A (en) Method for manufacturing zirconium alloy for nuclear reactor
JP2004238737A (en) Zirconium-based alloy and nuclear reactor structural part made of the same
JP2005146381A (en) Zirconium alloy for nuclear reactor fuel aggregate, and its production method
JPH1081929A (en) Zirconium alloy and alloy pipe and their production
JP2001221878A (en) Zirconium-based alloy and its manufacturing method and fuel assembly for light water reactor using the same
JP6249786B2 (en) High corrosion resistance zirconium alloy material and fuel cladding tube, spacer, water rod and channel box using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100805