JP2001004768A - Nuclear-fuel cladding tube and its manufacture - Google Patents

Nuclear-fuel cladding tube and its manufacture

Info

Publication number
JP2001004768A
JP2001004768A JP11177786A JP17778699A JP2001004768A JP 2001004768 A JP2001004768 A JP 2001004768A JP 11177786 A JP11177786 A JP 11177786A JP 17778699 A JP17778699 A JP 17778699A JP 2001004768 A JP2001004768 A JP 2001004768A
Authority
JP
Japan
Prior art keywords
oxide film
cladding tube
fuel cladding
film layer
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11177786A
Other languages
Japanese (ja)
Inventor
Masao Endo
正男 遠藤
Yoshitaka Nishino
由高 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11177786A priority Critical patent/JP2001004768A/en
Publication of JP2001004768A publication Critical patent/JP2001004768A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a nuclear-fuel cladding tube whose corrosion and hydrogen absorption are reduced and which can deal with a high burnup and a long-term cycle operation by a method wherein a first oxide film layer and a second oxide film layer on its outside are formed on the outer surface by respectively prescribed methods. SOLUTION: A zirconium-based alloy nuclear-fuel cladding tube 4 which is used for a boiling water reactor or the like is endowed with an oxide film 5 which is composed of a first oxide film layer and a second oxide film layer which are formed at two steps. At a first step, the nuclear-fuel cladding tube 4 is immersed in an electrolytic solution such as, e.g. an ammonium borate solution or the like, it is anodized under a prescribed condition, and an oxide film 5a in a thickness of 0.3 to 5 μm is formed. At a next step, the nuclear-fuel cladding tube 4 is immersed, e.g., in a Zr alkoxide solution or it is sprayed with the solution, and a metal oxide film 5b in a thickness of 1 μm or lower is given to the outer side of the oxide film 5a from the outer side. A pore or a crack 24 in the oxide film 5a is covered completely with the metal oxide film 5b whose density is high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、沸騰水型原子炉の
核燃料被覆管の耐食性向上技術に係わり、特に、核燃料
被覆管の長寿命化に好適な原子炉用ジルコニウム基合金
を用いた核燃料被覆管およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for improving the corrosion resistance of a nuclear fuel cladding of a boiling water reactor, and more particularly to a nuclear fuel cladding using a zirconium-based alloy for a nuclear reactor which is suitable for extending the life of the nuclear fuel cladding. The present invention relates to a pipe and a method for manufacturing the pipe.

【0002】[0002]

【従来の技術】沸騰水型原子炉(BWR)における核燃
料被覆管は、従来からジルコニウム合金が用いられてい
る。核燃料被覆管材料のジルコニウム基合金にはZrに
Sn,Ni,Fe,Cr等の元素を添加したジルカロイ
ー2,4が主に使われている。近年、大幅な高燃焼度化
を目指した高耐食性の優れたジルコニウム基合金の開発
が進められている。例えば、材料開発では製造工程管
理、熱処理条件、添加する合金元素の割合、他合金元素
の添加などといった改良型ジルコニウム基合金がある。
一方、燃料被覆管の表面酸化被膜の形成では高温蒸気雰
囲気中で数時間行なうオートクレーブ処理、電解液中で
直流電圧を印加する陽極酸化処理、などといった表面処
理技術がある。
2. Description of the Related Art A nuclear fuel cladding tube in a boiling water reactor (BWR) has conventionally used a zirconium alloy. Zircaloys 2, 4 in which elements such as Sn, Ni, Fe, Cr and the like are added to Zr are mainly used for the zirconium-based alloy of the nuclear fuel cladding tube material. In recent years, the development of zirconium-based alloys having excellent corrosion resistance has been promoted with the aim of significantly increasing the burnup. For example, in material development, there are improved zirconium-based alloys such as manufacturing process control, heat treatment conditions, the ratio of alloy elements to be added, and the addition of other alloy elements.
On the other hand, for forming a surface oxide film on the fuel cladding tube, there are surface treatment techniques such as an autoclave treatment performed for several hours in a high-temperature steam atmosphere, and an anodization treatment for applying a DC voltage in an electrolytic solution.

【0003】なお、この種の技術として関するものには
例えば特開平6−317687号、同11−02375
7号等が挙げられる。
[0003] Japanese Patent Application Laid-Open Nos. 6-317687 and 11-02375 disclose such techniques.
No. 7 and the like.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記材料の改
良や表面処理においてもジルコニウム合金は原子炉水中
において腐食し、かつ、腐食と同時に腐食反応で生じる
水素の一部を吸収して金属母材中に水素化物が蓄積して
いく。前記腐食および水素化物は原子炉運転時間が長く
なるにしたがって増加していく。そのため材料が減肉や
脆化し機械的強度の確保が難しくなるといった懸念があ
る。
However, even in the above-mentioned material improvement and surface treatment, zirconium alloys are corroded in reactor water, and simultaneously absorb a part of hydrogen generated by the corrosion reaction at the same time as the corrosion, so that the zirconium alloy becomes a metal base material. Hydride accumulates in it. The corrosion and hydride increase as the reactor operation time increases. Therefore, there is a concern that the material is reduced in thickness or embrittled, making it difficult to secure mechanical strength.

【0005】本発明の目的は、燃料被覆管の腐食および
水素吸収を抑制する酸化被膜および金属酸化物被膜を燃
料被覆管の外表面に形成して燃料高燃焼度化に伴う長時
間の原子炉運転に対しても十分耐えうる核燃料被覆管お
よびその製造方法を提供することにある。
An object of the present invention is to form an oxide film and a metal oxide film for suppressing corrosion and hydrogen absorption of a fuel cladding tube on the outer surface of the fuel cladding tube, and to provide a long-time nuclear reactor with a high fuel burnup. An object of the present invention is to provide a nuclear fuel cladding tube capable of sufficiently withstanding operation and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、燃料被覆管外表面の第1酸化被膜層を燃料被覆管の
母材を酸化させて形成した酸化被膜と第1酸化被膜層の
外側に第2酸化被膜層を外部より付与して金属酸化物被
膜層を形成したことである。すなわち、酸化被膜と金属
界面での酸素および水素とジルコニウムとの結合を抑制
すればよい。第1酸化被膜層の形成方法としては、例え
ば、高温水蒸気中酸化、高温空気中酸化、高温酸素中酸
化あるいは陽極酸化のいずれかで形成することができ
る。燃料被覆管の腐食および水素吸収を低減させるに
は、酸化被膜中の酸素や水素等の拡散移動距離を長くす
るため酸化被膜層が厚く、または、拡散移動の速度を遅
くするため酸化被膜層の緻密性がよい方が望ましい。し
たがって、酸化被膜層は酸素および水素の拡散移動を抑
制することができる酸化被膜厚み0.3〜5μmにする
のがよい。図6に電解液をほう酸アンモニウム1wt
%、電流密度を1.3A/dm2とした時の陽極酸化処
理の印加電圧と形成被膜厚さの一例を示す。酸化被膜の
厚さは、印加電圧や電流密度、電解液の種類、濃度をパ
ラメータとして調整することができる。また、陽極酸化
処理による形成酸化被膜は厚くなるほど被膜内にポアや
クラックが形成され緻密性が低下し腐食および水素吸収
に悪影響を及ぼしてしまう。そのため、第1酸化被膜層
の外側に第2酸化被膜層として金属酸化物被膜を形成す
ることで達成される。水素の拡散係数は、酸化被膜中の
方が金属Zr合金のそれより約9桁小さい。また、水素
は原子半径が小さいため緻密性や密着性のよい金属酸化
物被膜を形成することによってZr合金内部に入る水素
の量を極端に減少させることができる。そのためには、
金属酸化物被膜の厚みを1μm以下にするのがよい。特
に0.02〜0.3μmの厚みが水素透過障壁としての緻
密性および密着性が高い金属酸化物被膜を得ることがで
きる。第2酸化物被膜層の形成方法としては、例えば、
ゾル・ゲル法で緻密性のよい金属酸化物被膜を形成する
ことができる。金属酸化物被膜は、金属アルコキシド溶
液に浸漬して引き上げたり、スプレーまたは噴霧または
塗布することにより外表面に形成することができる。前
記アルコキシドの金属は、Zrを主成分とし、Ti,N
b等の金属を添加した複合金属でもよい。この金属酸化
物被膜は、酸素、水素の拡散移動を抑制する効果がたか
いアモルファスの方が適する。
In order to achieve the above object, the first oxide film layer on the outer surface of the fuel cladding tube is formed by oxidizing a base material of the fuel cladding tube and the first oxide film layer. That is, a second oxide film layer was externally provided to form a metal oxide film layer. That is, the bond between oxygen and hydrogen and zirconium at the interface between the oxide film and the metal may be suppressed. The first oxide film layer can be formed by, for example, any of oxidation in high-temperature steam, oxidation in high-temperature air, oxidation in high-temperature oxygen, or anodic oxidation. In order to reduce the corrosion and hydrogen absorption of the fuel cladding tube, the thickness of the oxide film layer is increased to extend the diffusion movement distance of oxygen and hydrogen in the oxide film, or the oxide film layer is reduced to decrease the speed of diffusion movement. It is desirable that the denseness is good. Therefore, the thickness of the oxide film layer is preferably 0.3 to 5 [mu] m, which can suppress diffusion and movement of oxygen and hydrogen. FIG. 6 shows that the electrolytic solution is ammonium borate 1 wt.
%, And an example of an applied voltage and a formed film thickness of the anodic oxidation treatment at a current density of 1.3 A / dm 2 . The thickness of the oxide film can be adjusted using the applied voltage, current density, type of electrolyte, and concentration as parameters. In addition, as the oxide film formed by the anodic oxidation treatment becomes thicker, pores and cracks are formed in the film, whereby the denseness is reduced and corrosion and hydrogen absorption are adversely affected. Therefore, it is achieved by forming a metal oxide film as a second oxide film layer outside the first oxide film layer. The diffusion coefficient of hydrogen in the oxide film is about nine orders of magnitude lower than that of the metal Zr alloy. Further, since hydrogen has a small atomic radius, the amount of hydrogen entering the inside of the Zr alloy can be extremely reduced by forming a metal oxide film having good denseness and good adhesion. for that purpose,
It is preferable that the thickness of the metal oxide film be 1 μm or less. In particular, a metal oxide film having a thickness of 0.02 to 0.3 μm and a high density and high adhesion as a hydrogen permeation barrier can be obtained. As a method of forming the second oxide film layer, for example,
A dense metal oxide film can be formed by a sol-gel method. The metal oxide film can be formed on the outer surface by dipping and lifting in a metal alkoxide solution, spraying or spraying or applying. The metal of the alkoxide has Zr as a main component, and Ti, N
A composite metal to which a metal such as b is added may be used. This metal oxide film is more preferably amorphous, which has a high effect of suppressing diffusion and movement of oxygen and hydrogen.

【0007】[0007]

【発明の実施の形態】以下、本発明による実施例を図面
を用いて説明する。図1は本発明を実施した核燃料棒の
縦断面図の一実施例を示す。核燃料棒は大別して上部端
栓1、プレナムスプリング2、燃料ペレット3、第1お
よび第2酸化被膜5を含む燃料被覆管4、下部端栓6か
ら構成されている。前記燃料被覆管4の外表面に本発明
による第1および第2酸化被膜5を形成する製造方法の
第1実施例のフローチャートを図2に示す。図2のステ
ップ1aでジルカロイ素管を圧延、熱処理、研磨および
洗浄して製造されたジルコニウムライナー付きのジルカ
ロイ製燃料被覆管からステップ1bで燃料被覆管4内面
の次ステップの酸化被膜形成による汚染防止に燃料被覆
管4の上部1および下部6を端栓溶接する。この時、上
部端栓1はあとで取り除くので仮端栓でよい。ステップ
1cで燃料被覆管4外表面に第1酸化被膜層の酸化被膜
5aを形成する。次に、ステップ1dで第2酸化被膜層
の金属酸化物被膜5bを形成する。ステップ1eで燃料
被覆管4の上部端栓1を切断し、ステップ1fで燃料被
覆管4内に燃料ペレット3を充填する。ステップ1gで
燃料被覆管4内にHeを充填し、ステップ1hで燃料被
覆管4の上部端栓1を溶接して核燃料棒を製造する。ス
テップ1iで燃料集合体の核燃料棒、スペーサー、ウォ
ーターロッド、上部下部タイプレート等の構成要素を組
立て、ステップ1jで燃料集合体とする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a longitudinal sectional view of a nuclear fuel rod embodying the present invention. The nuclear fuel rod is roughly divided into an upper end plug 1, a plenum spring 2, a fuel pellet 3, a fuel cladding tube 4 including first and second oxide films 5, and a lower end plug 6. FIG. 2 is a flowchart of a first embodiment of a manufacturing method for forming the first and second oxide films 5 on the outer surface of the fuel cladding tube 4 according to the present invention. Rolling, heat treatment, polishing, and washing of the zircaloy tube in step 1a of FIG. 2 to prevent contamination from a zircaloy fuel cladding tube with a zirconium liner manufactured in step 1b by forming an oxide film on the inner surface of the fuel cladding tube 4 in the next step The upper part 1 and the lower part 6 of the fuel cladding tube 4 are end plug welded. At this time, since the upper end plug 1 is removed later, a temporary end plug may be used. In step 1c, an oxide film 5a of a first oxide film layer is formed on the outer surface of the fuel cladding tube 4. Next, in step 1d, a metal oxide film 5b of a second oxide film layer is formed. In step 1e, the upper end plug 1 of the fuel cladding tube 4 is cut, and in step 1f, the fuel pellet 3 is filled in the fuel cladding tube 4. In step 1g, the fuel cladding tube 4 is filled with He, and in step 1h, the upper end plug 1 of the fuel cladding tube 4 is welded to produce a nuclear fuel rod. At step 1i, components such as nuclear fuel rods, spacers, water rods, upper and lower tie plates of the fuel assembly are assembled, and at step 1j, a fuel assembly is obtained.

【0008】次に、ステップ1cで本発明による第1酸
化被膜層5aの形成を行う一例の陽極酸化法を説明す
る。陽極酸化を行う装置の模式図の一実施例を図3に示
す。ほう酸アンモニウム1wt%の電解液8を導電性ま
たは絶縁性の電解槽9の中に入れ、フレーム10に固定
した単体または複数本の燃料被覆管4と電極11(導電
性の電解槽9の場合は不要)を絶縁性材料で吊り下げ搬
送して電解液8中に燃料被覆管4を浸漬する。電極の材
質は、腐食しにくい材料、例えば、白金、ステンレス鋼
などが使われる。単体または複数本の燃料被覆管4は、
直流電源12の陽極側に接続され、電極11は陰極側
(導電性の電解槽9の場合は電解槽9を陰極)に接続す
る。例えば、ほう酸アンモニウム1wt%の電解液で両
極間に220Vの直流電圧を約10分間印加し、燃料被
覆管4を陽極酸化することで外表面に約1.7μmの酸
化被膜が形成することができる。陽極酸化後は、フレー
ム10に固定した単体または複数本の燃料被覆管4と電
極11を電解液8中から単体または複数本の燃料被覆管
4を引き上げ、次の工程へ搬送する。陽極酸化装置に
は、形成する酸化被膜の厚さを制御できるよう以下の装
置が具備されている。電解液の温度、電導度、pHをモ
ニタし保持する水質調整装置13、電解液を循環させる
ポンプ14、温度を一定に保持するための温度制御装置
15とこれらを制御する制御装置16がある。また、電
解液8内の水質を均一にするためには撹拌子または液中
にガスをバブリングして行う方法もある。
Next, an example of an anodic oxidation method for forming the first oxide film layer 5a according to the present invention in step 1c will be described. FIG. 3 shows an embodiment of a schematic diagram of an apparatus for performing anodization. An electrolytic solution 8 of 1 wt% ammonium borate is put into a conductive or insulating electrolytic cell 9, and a single or plural fuel cladding tubes 4 fixed to a frame 10 and an electrode 11 (in the case of the conductive electrolytic cell 9, (Unnecessary) is suspended and transported with an insulating material, and the fuel cladding tube 4 is immersed in the electrolyte 8. As a material of the electrode, a material that is hardly corroded, for example, platinum, stainless steel, or the like is used. One or more fuel cladding tubes 4
The electrode 11 is connected to the anode side of the DC power supply 12, and the electrode 11 is connected to the cathode side (in the case of the conductive electrolytic tank 9, the electrolytic cell 9 is the cathode). For example, by applying a DC voltage of 220 V between both electrodes with an electrolyte of 1 wt% ammonium borate for about 10 minutes and anodizing the fuel cladding tube 4, an oxide film of about 1.7 μm can be formed on the outer surface. . After the anodization, the single or plural fuel cladding tubes 4 fixed to the frame 10 and the electrode 11 are lifted from the electrolyte solution 8 to the single or plural fuel cladding tubes 4 and transported to the next step. The anodic oxidation device is provided with the following device so that the thickness of the oxide film to be formed can be controlled. There are a water quality adjusting device 13 for monitoring and maintaining the temperature, conductivity and pH of the electrolyte, a pump 14 for circulating the electrolyte, a temperature controller 15 for maintaining the temperature constant, and a controller 16 for controlling these. Further, in order to make the water quality in the electrolytic solution 8 uniform, there is a method in which a gas is bubbled into the stirrer or the solution.

【0009】次に、本発明によるステップ1dで第2酸
化被膜層の金属酸化物被膜を形成する装置についての模
式図の一実施例を図4に示す。両端を密栓した燃料被覆
管4または核燃料棒は、搬送装置17の駆動レールから
吊り下げられてZrアルコキシド溶液18中に浸漬され
る。搬送装置17は燃料被覆管4または核燃料棒を溶液
18から引き上げる際、上昇速度を5cm/sec以下
に減速させるため駆動レール19に傾斜をもたせてあ
る。また、溶液18中への浸漬や引き上げ方法としては
モーターによる巻き上げ、下げ方式もある。引き上げら
れ表面に金属酸化物被膜5bを付与した燃料被覆管4ま
たは核燃料棒は、次の工程のための所定位置に移動され
る。金属酸化物被膜5b厚さの調整は、前記溶液18の
成分濃度と前記溶液18中への浸漬、引き上げを繰り返
して行われる。また、前記溶液18の成分濃度を所定濃
度にするため連続または間欠的に金属アルコキシド溶液
18または有機溶剤が添加される。
Next, FIG. 4 shows an embodiment of a schematic diagram of an apparatus for forming a metal oxide film of the second oxide film layer in step 1d according to the present invention. The fuel cladding tube 4 or the nuclear fuel rod whose both ends are sealed is suspended from the drive rail of the transfer device 17 and immersed in the Zr alkoxide solution 18. When the fuel cladding tube 4 or the nuclear fuel rods are pulled out of the solution 18, the transfer rails 17 have inclined drive rails 19 in order to reduce the rising speed to 5 cm / sec or less. As a method of dipping or lifting in the solution 18, there is also a method of raising and lowering by a motor. The fuel cladding tube 4 or the nuclear fuel rod which has been pulled up and has the metal oxide film 5b applied to its surface is moved to a predetermined position for the next step. The adjustment of the thickness of the metal oxide film 5b is performed by repeating the component concentration of the solution 18, immersion in the solution 18, and lifting. Further, the metal alkoxide solution 18 or an organic solvent is added continuously or intermittently in order to bring the component concentration of the solution 18 to a predetermined concentration.

【0010】図5は、本発明によるステップ1dでの第
2酸化被膜層の金属酸化物被膜を形成する装置について
の模式図の別の一実施例を示す。両端を密栓した燃料被
覆管4または核燃料棒は、搬送機構20によりゆっくり
スプレー装置21の下方を移動していく間にZrアルコ
キシド溶液18を表面にスプレーまたは噴霧または散布
して金属酸化物被膜5bを形成する。スプレーされた液
は、回収槽22により集められ成分濃度を所定濃度に調
整した後循環装置23により再びスプレー装置21で利
用される。
FIG. 5 shows another embodiment of a schematic diagram of an apparatus for forming a metal oxide film of the second oxide film layer in step 1d according to the present invention. The fuel cladding tube 4 or the nuclear fuel rod whose ends are sealed is sprayed, sprayed or sprayed with the Zr alkoxide solution 18 on the surface while slowly moving below the spraying device 21 by the transport mechanism 20 to form the metal oxide film 5b. Form. The sprayed liquid is collected by the recovery tank 22, the component concentration is adjusted to a predetermined concentration, and then used again by the circulation device 23 in the spray device 21.

【0011】図6は、ほう酸アンモニウム1wt%の電
解液中でジルカロイ製燃料被覆管材を陽極酸化したとき
の印加電圧と酸化膜厚さとの関係を測定した発明者らに
よる測定例を示す。印加電圧が約160V以上になると
膜厚は急激に増加することがわかる。この膜厚が約0.
6μmまでは緻密な酸化被膜であったが、約0.6μm
を越えるとポアやクラックを有する酸化被膜が形成され
る。
FIG. 6 shows a measurement example by the present inventors who measured the relationship between the applied voltage and the oxide film thickness when anodizing a Zircaloy fuel cladding tube in an electrolyte containing 1 wt% of ammonium borate. It can be seen that the film thickness sharply increases when the applied voltage becomes about 160 V or more. This film thickness is about 0.
Although it was a dense oxide film up to 6 μm, it was about 0.6 μm
If the thickness exceeds the upper limit, an oxide film having pores and cracks is formed.

【0012】図7(a)は本発明を実施した核燃料被覆
管の横断面図(図1のA−A断面)の実施例を示す。図
7(b)は本発明の核燃料被覆管の外表面を拡大した縦
断面図を示す。燃料被覆管4の外表面には第1酸化被膜
層を陽極酸化により形成した酸化被膜5aがあり、前記
酸化被膜の外側には第2酸化被膜層をZrアルコキシド
により形成した金属酸化物被膜5bがある。陽極酸化に
より厚い酸化被膜5aを形成したときに生じるボア、ク
ラック24は、第2酸化被膜層で形成でZrアルコキシ
ド溶液18に接水した部位が緻密性の高い金属酸化物被
膜5bで完全に覆われる。そのため酸化被膜層の緻密性
が保たれる。
FIG. 7 (a) shows an embodiment of a cross-sectional view (section AA in FIG. 1) of a nuclear fuel cladding tube embodying the present invention. FIG. 7B is an enlarged longitudinal sectional view of the outer surface of the nuclear fuel cladding tube of the present invention. On the outer surface of the fuel cladding tube 4, there is an oxide film 5a in which a first oxide film layer is formed by anodic oxidation. Outside the oxide film, there is a metal oxide film 5b in which a second oxide film layer is formed by Zr alkoxide. is there. The bores and cracks 24 formed when the thick oxide film 5a is formed by anodic oxidation are completely covered with the highly dense metal oxide film 5b at the portion formed by the second oxide film layer and in contact with the Zr alkoxide solution 18. Will be Therefore, the denseness of the oxide film layer is maintained.

【0013】次に、図8を用いて、本発明による核燃料
被覆管の製造方法の第2実施例を説明する。同図は、第
2実施例を示すフローチャートである。図8のステップ
2aでジルカロイ素管を圧延、熱処理、研磨および洗浄
して製造されたジルコニウムライナー7付きのジルカロ
イ製燃料被覆管4からステップ2bで燃料被覆管4の下
部端栓6を溶接する。ステップ2cで燃料被覆管4内に
燃料ペレット3を充填する。ステップ2dで燃料被覆管
4内にHeを充填し、ステップ2eで燃料被覆管4の上
部端栓1を溶接して核燃料棒を製造する。次に、ステッ
プ2fで燃料被覆管4外表面に第1酸化被膜層の酸化被
膜5aを形成する。次に、2gステップで第2酸化被膜
層の金属酸化物被膜5bを形成する。ステップ2hで燃
料集合体の核燃料棒、スペーサー、ウォーターロッド、
上部下部タイプレート等の構成要素を組立て、ステップ
1iで燃料集合体とする。すなわち、本実施例では、燃
料被覆管4に燃料ペレット3を充填して核燃料棒を構成
した後で酸化被膜層5を形成する。
Next, a second embodiment of the method for manufacturing a nuclear fuel cladding tube according to the present invention will be described with reference to FIG. FIG. 11 is a flowchart showing the second embodiment. In step 2a of FIG. 8, the lower end plug 6 of the fuel cladding tube 4 is welded from the zircaloy fuel cladding tube 4 with the zirconium liner 7 manufactured by rolling, heat treating, polishing and washing the zircaloy raw tube in step 2b. In step 2c, the fuel pellets 3 are filled in the fuel cladding tube 4. In step 2d, the fuel cladding tube 4 is filled with He, and in step 2e, the upper end plug 1 of the fuel cladding tube 4 is welded to produce a nuclear fuel rod. Next, an oxide film 5a of a first oxide film layer is formed on the outer surface of the fuel cladding tube 4 in step 2f. Next, the metal oxide film 5b of the second oxide film layer is formed in a 2g step. In step 2h, the nuclear fuel rods, spacers, water rods,
The components such as the upper and lower tie plates are assembled to form a fuel assembly in step 1i. That is, in the present embodiment, the fuel cladding tube 4 is filled with the fuel pellets 3 to form a nuclear fuel rod, and then the oxide film layer 5 is formed.

【0014】次に、図9を用いて、本発明による核燃料
被覆管の製造方法の第3実施例を説明する。同図は、第
3実施例を示すフローチャートである。図9のステップ
3aでジルカロイ素管を圧延、熱処理、研磨および洗浄
して製造されたジルコニウムライナー7付きのジルカロ
イ製燃料被覆管4からステップ3bで燃料被覆管4内面
の次ステップの酸化被膜形成による汚染防止に燃料被覆
管4の上部端栓1および下部端栓1を溶接する。この
時、上部端栓1はあとで取り除くので仮端栓でよい。ス
テップ3cで燃料被覆管4外表面に第1酸化被膜層の酸
化被膜5aを形成する。ステップ3dで燃料被覆管4の
上部端栓1を切断し、ステップ3e燃料被覆管4内に燃
料ペレット3を充填する。ステップ3fで燃料被覆管4
内にHeを充填し、ステップ3gで燃料被覆管4の上部
端栓1を溶接し核燃料棒を製造する。次に、ステップ3
hで第2酸化被膜層の金属酸化物被膜5bを形成し、ス
テップ3iで燃料集合体の核燃料棒、スペーサー、ウォ
ーターロッド、上部下部タイプレート等の構成要素を組
立て、ステップ3jで燃料集合体とする。すなわち、本
実施例では、燃料被覆管4の上部端栓1および下部端栓
6溶接後に第1酸化被膜層5aを形成し、第2酸化被膜
層5bは燃料ペレット3を充填して核燃料棒を構成した
後で形成する。
Next, a third embodiment of the method for manufacturing a nuclear fuel cladding tube according to the present invention will be described with reference to FIG. FIG. 14 is a flowchart showing the third embodiment. From the zircaloy fuel cladding tube 4 with the zirconium liner 7 manufactured by rolling, heat-treating, polishing and washing the zircaloy tube in step 3a of FIG. The upper end plug 1 and the lower end plug 1 of the fuel cladding tube 4 are welded to prevent contamination. At this time, since the upper end plug 1 is removed later, a temporary end plug may be used. In step 3c, an oxide film 5a of the first oxide film layer is formed on the outer surface of the fuel cladding tube 4. In step 3d, the upper end plug 1 of the fuel cladding tube 4 is cut off, and the fuel pellets 3 are filled in the fuel cladding tube 4 in step 3e. In step 3f, the fuel cladding tube 4
Is filled with He, and in step 3g, the upper end plug 1 of the fuel cladding tube 4 is welded to produce a nuclear fuel rod. Next, step 3
h to form a metal oxide film 5b of a second oxide film layer, assemble components such as nuclear fuel rods, spacers, water rods, upper and lower tie plates of the fuel assembly in step 3i, and form a fuel assembly in step 3j. I do. That is, in this embodiment, the first oxide film layer 5a is formed after the upper end plug 1 and the lower end plug 6 of the fuel cladding tube 4 are welded, and the second oxide film layer 5b is filled with the fuel pellet 3 to form the nuclear fuel rod. Formed after configuration.

【0015】図10は、本発明により形成した酸化被膜の
ジルコニウム基合金の腐食量を測定した発明者らによる
測定例を示す。試験片は、ジルカロイー2合金の(a)
未処理材のもの、(b)155V印加電圧で陽極酸化に
より約0.6μmの酸化被膜を形成したもの、(c)ジ
ルコニウムと2.5重量%チタン含有のジルコニウムアル
コキシド溶液で約0.12μmの金属酸化物被膜を形成
した3種類とした。これら試験片を450℃水蒸気中で
120時間の腐食試験を実施し、試験後、試料の腐食増
量を測定した。その結果、未処理のものに比べて全て腐
食量は少なく抑制効果があることがわかった。
FIG. 10 shows a measurement example by the inventors of measuring the amount of corrosion of a zirconium-based alloy in an oxide film formed according to the present invention. The test piece was made of Zircaloy 2 alloy (a)
An untreated material, (b) an oxide film having a thickness of about 0.6 μm formed by anodic oxidation at 155 V applied voltage, and (c) a metal oxide of about 0.12 μm with a zirconium alkoxide solution containing zirconium and 2.5 wt% titanium. Object coatings were formed. These test pieces were subjected to a corrosion test for 120 hours in steam at 450 ° C., and after the test, the corrosion increase of the sample was measured. As a result, it was found that the amount of corrosion was all smaller than that of the untreated one, and that there was an inhibitory effect.

【0016】また、図11は、本発明により形成した酸化
被膜のジルコニウム基合金の水素吸収量を測定した発明
者らによる測定例を示す。試験片は、ジルカロイー2合
金の(a)未処理材のもの、(b)155V印加電圧で
陽極酸化により約0.6μmの酸化被膜を形成したも
の、(c)ジルコニウムと2.5重量%チタン含有のジル
コニウムアルコキシド溶液で約0.12μmの金属酸化
物被膜を形成した3種類とした。これら試験片を450
℃水蒸気中で120時間の腐食試験を実施し、試験後、
腐食に伴って母材に吸収された水素量を分析した。その
結果、未処理のものに比べて全て水素吸収抑制効果があ
ることがわかった。
FIG. 11 shows a measurement example by the inventors of measuring the hydrogen absorption of a zirconium-based alloy having an oxide film formed according to the present invention. The test pieces were (a) an untreated Zircaloy 2 alloy, (b) an oxide film having a thickness of about 0.6 μm formed by anodic oxidation at an applied voltage of 155 V, and (c) zirconium and 2.5% by weight titanium. Three types of metal oxide films having a thickness of about 0.12 μm were formed using a zirconium alkoxide solution. 450 specimens
Conduct corrosion test for 120 hours in steam at ℃ C. After the test,
The amount of hydrogen absorbed in the base material due to corrosion was analyzed. As a result, it was found that all had an effect of suppressing hydrogen absorption as compared with the untreated one.

【0017】[0017]

【発明の効果】本発明によれば、沸騰水型原子炉のジル
コニウム合金製燃料被覆管の腐食および水素吸収を大幅
に低減することができ、さらなる高燃焼度化や長期サイ
クル運転への対応が可能となり、さらに、プラントの経
済性向上にも効果がある。
According to the present invention, corrosion and hydrogen absorption of a zirconium alloy fuel cladding tube of a boiling water reactor can be greatly reduced, and higher burnup and long-term cycle operation can be achieved. It is possible to improve the economical efficiency of the plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による核燃料棒の一実施例を示す縦断面
図である。
FIG. 1 is a longitudinal sectional view showing one embodiment of a nuclear fuel rod according to the present invention.

【図2】本発明による核燃料被覆管の製造方法の第1実
施例を示すフローチャートである。
FIG. 2 is a flowchart showing a first embodiment of a method of manufacturing a nuclear fuel cladding tube according to the present invention.

【図3】陽極酸化による酸化被膜を形成する本発明を実
施するための装置の一例を示す模式図である。
FIG. 3 is a schematic view showing an example of an apparatus for implementing the present invention for forming an oxide film by anodic oxidation.

【図4】金属酸化物被膜を形成する本発明による第1の
方法を実施するための装置の一例を示す模式図である。
FIG. 4 is a schematic view showing an example of an apparatus for performing a first method of forming a metal oxide film according to the present invention.

【図5】金属酸化物被膜を形成する本発明による第2の
方法を実施するための装置の一例を示す模式図である。
FIG. 5 is a schematic view showing an example of an apparatus for performing a second method of forming a metal oxide film according to the present invention.

【図6】本発明による陽極酸化の印加電圧と酸化膜の膜
厚との関係を求めた測定例を示す図である。
FIG. 6 is a diagram showing a measurement example in which the relationship between the applied voltage of anodic oxidation and the thickness of an oxide film according to the present invention is obtained.

【図7】本発明による核燃料被覆管で、(a)は核燃料
被覆管の横断面図、(b)は核燃料被覆管の外表面を拡
大した縦断面図である。
FIGS. 7A and 7B are nuclear fuel cladding tubes according to the present invention, wherein FIG. 7A is a cross-sectional view of the nuclear fuel cladding tube, and FIG. 7B is a longitudinal sectional view in which the outer surface of the nuclear fuel cladding tube is enlarged.

【図8】本発明による核燃料被覆管の製造方法の第2実
施例を示すフローチャートである。
FIG. 8 is a flowchart showing a second embodiment of the method for manufacturing a nuclear fuel cladding tube according to the present invention.

【図9】本発明による核燃料被覆管の製造方法の第3実
施例を示すフローチャートである。
FIG. 9 is a flowchart showing a third embodiment of the method for manufacturing a nuclear fuel cladding tube according to the present invention.

【図10】本発明により酸化被膜を形成したZr基合金
の腐食量の測定例を示す図である。
FIG. 10 is a diagram showing a measurement example of a corrosion amount of a Zr-based alloy having an oxide film formed according to the present invention.

【図11】本発明により酸化被膜を形成したZr基合金
の水素吸収量の測定例を示す図である。
FIG. 11 is a view showing a measurement example of a hydrogen absorption amount of a Zr-based alloy on which an oxide film is formed according to the present invention.

【符号の説明】[Explanation of symbols]

1…上部端栓、3…燃料ペレット、4…燃料被覆管、5
…酸化被膜層、6…下部端栓、8…電解液、9…電解
槽、11…電極、12直流電源、13…水質調整装置、
14…循環ポンプ、15…温度制御装置、17…搬送装
置、18…金属アルコキシド溶液、19…駆動レール、
21…スプレー装置、22…回収槽、23…循環装置、
24…ポア…クラック。
DESCRIPTION OF SYMBOLS 1 ... Top end plug 3 ... Fuel pellet 4 ... Fuel cladding tube 5
... Oxide film layer, 6 ... Lower end plug, 8 ... Electrolyte, 9 ... Electrolyzer, 11 ... Electrode, 12 DC power supply, 13 ... Water quality control device,
14 circulating pump, 15 temperature control device, 17 transport device, 18 metal alkoxide solution, 19 drive rail,
21: spray device, 22: collection tank, 23: circulation device,
24 ... pore ... crack.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニウム基合金からなる原子炉核燃
料被覆管において、前記被覆管の腐食および水素吸収を
抑制する方法として、前記被覆管の外表面に第1酸化被
膜層とその外側に第2酸化被膜層が形成されていること
を特徴とする核燃料被覆管。
In a reactor nuclear fuel cladding made of a zirconium-based alloy, as a method for suppressing corrosion and hydrogen absorption of the cladding, a first oxide film layer is formed on the outer surface of the cladding tube and a second oxide film is formed on the outer surface thereof. A nuclear fuel cladding tube having a coating layer formed thereon.
【請求項2】 請求項1記載の核燃料被覆管の外表面の
第1酸化被膜層は前記被覆管を酸化させて形成した酸化
被膜であり、前記被覆管の第2酸化被膜層は前記酸化被
膜の外側に外部より付与して金属酸化物被膜を形成した
層であることを特徴とする核燃料被覆管。
2. The cladding tube according to claim 1, wherein the first oxide film layer on the outer surface is an oxide film formed by oxidizing the cladding tube, and the second oxide film layer of the cladding tube is the oxide film. A nuclear fuel cladding tube characterized in that it is a layer provided from outside to form a metal oxide coating on the outside of the tube.
【請求項3】 請求項1または請求項2記載の核燃料被
覆管の第1酸化被膜層の厚さが0.3〜5μmであり、
高温水蒸気中酸化、高温空気中酸化、高温酸素中酸化あ
るいは陽極酸化のいずれかの方法で形成されたことを特
徴とする核燃料被覆管およびその製造方法。
3. The nuclear fuel cladding tube according to claim 1, wherein the first oxide film layer has a thickness of 0.3 to 5 μm.
A nuclear fuel cladding tube formed by any one of oxidation in high-temperature steam, oxidation in high-temperature air, oxidation in high-temperature oxygen and anodic oxidation, and a method for producing the same.
【請求項4】 請求項1または請求項2記載の核燃料被
覆管の第2酸化被膜層の厚さが1μm以下であることを
特徴とする核燃料被覆管。
4. The nuclear fuel cladding tube according to claim 1, wherein the thickness of the second oxide film layer of the nuclear fuel cladding tube is 1 μm or less.
JP11177786A 1999-06-24 1999-06-24 Nuclear-fuel cladding tube and its manufacture Pending JP2001004768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11177786A JP2001004768A (en) 1999-06-24 1999-06-24 Nuclear-fuel cladding tube and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11177786A JP2001004768A (en) 1999-06-24 1999-06-24 Nuclear-fuel cladding tube and its manufacture

Publications (1)

Publication Number Publication Date
JP2001004768A true JP2001004768A (en) 2001-01-12

Family

ID=16037090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11177786A Pending JP2001004768A (en) 1999-06-24 1999-06-24 Nuclear-fuel cladding tube and its manufacture

Country Status (1)

Country Link
JP (1) JP2001004768A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077452A1 (en) * 2003-02-28 2004-09-10 Hanyang Hak Won Co. Ltd. Zirconim alloy nuclear fuel cladding tube having excellent corrosion resistance and process for the manufacture of the cladding tube
JP2008070138A (en) * 2006-09-12 2008-03-27 Global Nuclear Fuel-Japan Co Ltd Nuclear fuel assembly, part for use in the assembly, and method of producing the part
JP2008122309A (en) * 2006-11-15 2008-05-29 Nuclear Fuel Ind Ltd Fuel cladding tube for boiling water reactor and method for manufacturing it
WO2014133609A3 (en) * 2012-11-07 2014-11-13 Westinghouse Electric Company Llc Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077452A1 (en) * 2003-02-28 2004-09-10 Hanyang Hak Won Co. Ltd. Zirconim alloy nuclear fuel cladding tube having excellent corrosion resistance and process for the manufacture of the cladding tube
JP2008070138A (en) * 2006-09-12 2008-03-27 Global Nuclear Fuel-Japan Co Ltd Nuclear fuel assembly, part for use in the assembly, and method of producing the part
JP2008122309A (en) * 2006-11-15 2008-05-29 Nuclear Fuel Ind Ltd Fuel cladding tube for boiling water reactor and method for manufacturing it
WO2014133609A3 (en) * 2012-11-07 2014-11-13 Westinghouse Electric Company Llc Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application
US8971476B2 (en) 2012-11-07 2015-03-03 Westinghouse Electric Company Llc Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application
US9336909B2 (en) 2012-11-07 2016-05-10 Westinghouse Electric Company Llc Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application
US10290383B2 (en) 2012-11-07 2019-05-14 Westinghouse Electric Company Llc Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application
US10984919B2 (en) 2012-11-07 2021-04-20 Westinghouse Electric Company Llc Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application

Similar Documents

Publication Publication Date Title
CN101857288B (en) Preparation method of titanium-based titanium dioxide nanotube stannic oxide electrode
CN108677207B (en) Ni rich in sulfur vacancy3S2Nano-rod oxygen evolution electrocatalytic material and preparation method and application thereof
EP2248662A1 (en) Metal composite substrate and method of producing the same
CN104894595B (en) A kind of amorphous metal oxide hydrogen-precipitating electrode of high catalytic activity and preparation method thereof
CN103014755B (en) Fabrication method of long-life titanium base electrode
CN104611731B (en) Preparation method of fence-type aluminum bar lead alloy anode plate for non-ferrous metal electrodeposition
CN105621540A (en) Method for degrading antibiotic pharmaceutical wastewater
CN110863211A (en) Electrode for hydrothermal oxidation treatment under alkaline condition and preparation method thereof
CN107904645A (en) A kind of anodized surface processing method for improving metal molybdenum foil surface-active
CN111485249B (en) Method for improving catalytic hydrogen evolution performance of iron-based amorphous alloy
JP3313624B2 (en) Manufacturing method of control rod for boiling water reactor
JP2001004768A (en) Nuclear-fuel cladding tube and its manufacture
CN110820012A (en) Electrode modification method based on acid thermal reflux treatment
Chamelot et al. Studies of niobium electrocrystallization phenomena in molten fluorides
CN102864465B (en) A kind of preparation method of high reactivity Ti/Pr2O3-PbO2 modified electrode
KR101487991B1 (en) Method for coating with metallic oxide by anodic oxidation, graded material and zircalloy nuclear fuel tube using the same
CN114272920B (en) Composite oxide coating electrode for degrading organic pollutants and preparation method thereof
CN114808041B (en) Preparation and activation regeneration method of Pb-based pseudo-stable anode for manganese electrodeposition
CN106591915A (en) Plasma electrolytic oxidation catalytic membrane with three-layer structure and preparation method of plasma electrolytic oxidation catalytic membrane
CN102586836A (en) Preparation method for mesoporous titanium dioxide thin film
JPH11142562A (en) Fuel assembly
CN106976856A (en) Carbonize the purposes that silk cocoon material is used as anode of microbial fuel cell
CN112981442A (en) FeCoMoPC amorphous alloy for alkaline full-hydrolysis and preparation method thereof
JPS59225740A (en) Electrode catalyst and preparation thereof
JP2000105290A (en) Fuel assembly, fuel rod support means and manufacture therefor