JP2008122188A - Vehicle radar device - Google Patents

Vehicle radar device Download PDF

Info

Publication number
JP2008122188A
JP2008122188A JP2006305367A JP2006305367A JP2008122188A JP 2008122188 A JP2008122188 A JP 2008122188A JP 2006305367 A JP2006305367 A JP 2006305367A JP 2006305367 A JP2006305367 A JP 2006305367A JP 2008122188 A JP2008122188 A JP 2008122188A
Authority
JP
Japan
Prior art keywords
reflecting mirror
cover
electromagnetic wave
parabolic
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006305367A
Other languages
Japanese (ja)
Other versions
JP4410232B2 (en
Inventor
Katsuhisa Kodama
勝久 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006305367A priority Critical patent/JP4410232B2/en
Priority to DE102007026124A priority patent/DE102007026124B4/en
Publication of JP2008122188A publication Critical patent/JP2008122188A/en
Application granted granted Critical
Publication of JP4410232B2 publication Critical patent/JP4410232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/024Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/12Refracting or diffracting devices, e.g. lens, prism functioning also as polarisation filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/246Polarisation converters rotating the plane of polarisation of a linear polarised wave
    • H01Q15/248Polarisation converters rotating the plane of polarisation of a linear polarised wave using a reflecting surface, e.g. twist reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle radar device capable of improving design flexibility and endurance reliability by resolving performance degradation due to variations among shapes of flat reflectors. <P>SOLUTION: In the vehicle radar device, a flat reflector 1 having a plurality of parallel straight line conductors forming a slit permits electromagnetic waves to reflect/pass through it by selecting them based on the deflection direction. The electromagnetic waves reflected from the flat reflector 1 is received by a parabolic reflector 4, undergoing deflection twist reflection, and radiated through the flat reflector. The flat reflector is made of a metal plate with a plurality of straight line conductors. The straight line conductors may also be arranged in a grid form. The flat reflector is installed in the inside or outside of a cover being spaced from the cover. Accordingly, the performance, durability, and design flexibility are improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、車両用レーダ装置に関し特にビーム照射方向を走査するアンテナ装置に関するものである。   The present invention relates to a vehicular radar apparatus, and more particularly to an antenna apparatus that scans a beam irradiation direction.

従来の車両用レーダ装置は、自車両の周辺を監視するために使用されるものであり、電磁波を自車両の周辺に照射し、障害物等があればそこからの反射波を受信して自車両の周辺の障害物までの距離、相対速度、方向を検出するものである。   A conventional vehicular radar device is used to monitor the surroundings of a host vehicle, irradiates the surroundings of the host vehicle with electromagnetic waves, and receives reflected waves from the obstacles if there are obstacles. It detects the distance, relative speed, and direction to obstacles around the vehicle.

例えば特許文献1に記載されているレーダ装置においては、レーダ装置のカバーにメッキ等により形成された多数の平行な直線導体で構成され、電磁波を偏向方向により選択して反射あるいは透過させる平面反射鏡1を備えている。1次放射器2からの電磁波はこの平面反射鏡1に向けて放射され、そこから偏向ねじり反射手段を持つ放物面反射鏡に向かって反射させられる。放物面反射鏡では電磁波が偏向ねじり反射手段により偏向方向を変えられて再び平面反射鏡に向かって反射させられる。偏波方向が変えられた電磁波は平面反射鏡1を透過して目標領域に放射される。目標領域を走査するために放物面反射鏡4を駆動して電磁波の放射方向を変える駆動装置5も備えている。   For example, in the radar apparatus described in Patent Document 1, a planar reflecting mirror that is configured by a large number of parallel linear conductors formed by plating or the like on the cover of the radar apparatus, and reflects or transmits electromagnetic waves according to the deflection direction. 1 is provided. The electromagnetic wave from the primary radiator 2 is radiated toward the plane reflecting mirror 1, and is reflected from there toward a paraboloid reflecting mirror having a deflection torsion reflecting means. In the parabolic reflecting mirror, the electromagnetic wave is reflected toward the planar reflecting mirror again by changing the deflection direction by the deflecting torsion reflecting means. The electromagnetic wave whose polarization direction has been changed passes through the plane reflecting mirror 1 and is radiated to the target area. In order to scan the target area, a driving device 5 is also provided which changes the radiation direction of the electromagnetic wave by driving the parabolic reflecting mirror 4.

特開2001−217646号公報JP 2001-217646 A

従来のレーダ装置において平面反射鏡を構成する直線導体はカバーの内面にメッキ等で一体に形成されていた。従来の車両レーダ装置ではカバーをプラスチック等の樹脂成形品で構成していたため、平面度の確保が困難であり、この平面度の低化はカバーに直線導体をメッキする際の線幅、ピッチのバラツキ要因となり、これら、平面反射鏡の平面度低下および導体線幅、ピッチのバラツキなどの要因が重なって車両レーダ装置の性能を大きく低下させていた。   In the conventional radar apparatus, the linear conductor constituting the plane reflecting mirror is integrally formed on the inner surface of the cover by plating or the like. In conventional vehicle radar devices, the cover is made of a resin molded product such as plastic, so it is difficult to ensure flatness. This decrease in flatness is caused by the line width and pitch when the linear conductor is plated on the cover. These factors cause variations, and these factors such as a decrease in flatness of the plane reflecting mirror and variations in the conductor line width and pitch have greatly reduced the performance of the vehicle radar device.

また、従来の車両レーダ装置のようにカバー内面にメッキ等を施すことで平面反射鏡を構成する場合、反射位置の制約等によりカバーの配置および形状が固定され、構造設計の自由度が少ないという問題があった。   In addition, when a planar reflecting mirror is configured by plating the inner surface of the cover as in a conventional vehicle radar device, the arrangement and shape of the cover are fixed due to restrictions on the reflection position, etc., and the degree of freedom in structural design is low. There was a problem.

また、平面反射鏡として、直線導体を形成した樹脂フィルムをカバーと一体成形するものや、カバーにフィルムを溶着または接着剤を介して接着するものも従来から提案されているが、上記同様、平面度の確保が困難であることに加え、製造工程が複雑であり安定した製造条件出しが困難であること、また、カバー樹脂とフィルム樹脂の素材を同一にすることが不可能であるため、線膨張係数の違いにより、フィルムに亀裂が発生やカバーから剥離する恐れがある。   In addition, as a planar reflecting mirror, a resin film in which a linear conductor is formed integrally with a cover and a film in which a film is adhered to a cover by welding or using an adhesive have been proposed. In addition to the difficulty of securing the degree, the manufacturing process is complicated and it is difficult to set stable manufacturing conditions, and it is impossible to use the same material for the cover resin and film resin. Due to the difference in expansion coefficient, there is a risk that the film will crack or peel off from the cover.

従って、この発明の目的は、平面反射鏡の形状および直線導体の寸法のバラツキに起因するレーダ性能の低下を解消するとともに、構造設計の自由度、および耐久信頼性を向上させることができる車両レーダ装置を提供することである。   Therefore, an object of the present invention is to eliminate a reduction in radar performance due to variations in the shape of a plane reflecting mirror and the size of a straight conductor, and to improve the degree of freedom in structural design and durability reliability. Is to provide a device.

この発明の車両用レーダ装置は、電磁波を偏向方向により選択して反射あるいは透過させる平面反射鏡と、この平面反射鏡に向けて電磁波を放射する1次放射器と、平面反射鏡からの電磁波を受けて偏向方向を変えて反射させる偏向ねじり反射手段を持ち、偏向ねじり反射手段により偏向方向が変えられた電磁波を平面反射鏡に向けて反射させて平面反射鏡を透過させる放物面反射鏡と、この放物面反射鏡を駆動して、電磁波の放射方向を変える駆動装置とを備え、平面反射鏡が複数の直線導体を持つ金属板であることを特徴とするものである。   A vehicle radar device according to the present invention includes a planar reflector that selectively reflects or transmits electromagnetic waves according to a deflection direction, a primary radiator that radiates electromagnetic waves toward the planar reflector, and electromagnetic waves from the planar reflector. A parabolic reflector that has a deflecting torsion reflecting means for receiving and changing the deflection direction and reflecting the electromagnetic wave whose deflection direction has been changed by the deflecting torsion reflecting means toward the flat reflecting mirror and transmitting the flat reflecting mirror; The parabolic reflecting mirror is driven to change the radiation direction of the electromagnetic wave, and the planar reflecting mirror is a metal plate having a plurality of linear conductors.

本発明によれば、平面反射鏡を薄板板金で構成するため、従来の車両レーダ装置では困難であった平面反射鏡の平面度の精度向上が図れるとともに、平面反射鏡の直線導体の線幅、ピッチのバラツキも削減できることから、車両レーダ装置の性能バラツキの低減が可能となる。また、平面反射鏡の耐久信頼性を向上させることができるのに加えて、カバーの配置および車両レーダ構造設計の自由度が増える。   According to the present invention, since the planar reflecting mirror is formed of a thin sheet metal, it is possible to improve the flatness accuracy of the planar reflecting mirror, which has been difficult with the conventional vehicle radar apparatus, and the line width of the linear conductor of the planar reflecting mirror, Since variations in pitch can also be reduced, performance variations in the vehicle radar device can be reduced. In addition to improving the durability and reliability of the flat reflector, the degree of freedom in cover arrangement and vehicle radar structure design is increased.

実施の形態1.
図1乃至8は、本発明の車両用レーダ装置を示すものである。図1乃至3において、車両用レーダ装置は、電磁波を偏向方向により選択して反射させる平面反射鏡1と、この平面反射鏡1に向けて電磁波を放射する1次放射器2と、平面反射鏡1から反射した電磁波を受けて偏向方向を変える偏向ねじり反射手段3を持ち、偏向ねじり反射手段3により、偏波方向が変えられた電磁波を反射させ、平面反射鏡1を透過させて放射させる放物面反射鏡4と、この放物面反射鏡4を駆動して、電磁波の放射方向を変える駆動装置5とを備えている。
Embodiment 1 FIG.
1 to 8 show a vehicular radar apparatus of the present invention. 1 to 3, a vehicular radar apparatus includes a plane reflecting mirror 1 that selectively reflects electromagnetic waves according to a deflection direction, a primary radiator 2 that radiates electromagnetic waves toward the plane reflecting mirror 1, and a plane reflecting mirror. The deflecting torsion reflecting means 3 that receives the electromagnetic wave reflected from 1 and changes the deflection direction is reflected. The deflecting torsion reflecting means 3 reflects the electromagnetic wave whose polarization direction has been changed, and transmits it through the plane reflecting mirror 1 for radiation. The object reflecting mirror 4 and a driving device 5 that drives the parabolic reflecting mirror 4 and changes the radiation direction of the electromagnetic wave are provided.

車両用レーダ装置はまた上述の構成要素を収納支持するハウジング6を備え、ハウジング6は、ハウジング本体7とプラスチックなどの誘電体のカバー8とで構成されている。   The vehicular radar apparatus also includes a housing 6 that houses and supports the above-described components. The housing 6 includes a housing body 7 and a cover 8 made of a dielectric material such as plastic.

平面反射鏡1は、図2および4に示すような平面形のステンレス鋼等の導電性金属板であって、枠9の内側に多数の平行な直線導体10を持ち、直線導体10の間にスリット11が形成されており、枠9の4隅部でカバー8に支持されている。図示の例では枠9に丸孔12が設けられていて、この丸孔12にカバー8の内面に設けた段付きの突起13の先端部を挿入し、突出した先端を熱かしめ等でリベット状頭部14にしてカバー8に固定してある。平面反射鏡1とカバー8とが面で接触すると車載時の振動等で振動ノイズ(音)が発生する可能性があるため、平面反射鏡1をカバー8から離間させて浮かせた形態で固定してある。   The planar reflecting mirror 1 is a planar conductive metal plate such as stainless steel as shown in FIGS. 2 and 4, and has a large number of parallel linear conductors 10 inside the frame 9. Slits 11 are formed and supported by the cover 8 at the four corners of the frame 9. In the illustrated example, a round hole 12 is provided in the frame 9, and the tip of a stepped projection 13 provided on the inner surface of the cover 8 is inserted into the round hole 12, and the protruding tip is rivet-shaped by heat caulking or the like. The head 14 is fixed to the cover 8. If the plane reflecting mirror 1 and the cover 8 come into contact with each other on the surface, vibration noise (sound) may be generated due to vibrations when the vehicle is mounted on the surface. It is.

直線導体10は例えばメッキ及びエッチングを組合せた工程により形成され、間隔および幅が互いに等しく互いに平行な多数帯状導体であり、間に間隔および幅が互いに等しいスリット11を形成している。従って平面反射鏡1は電磁波の偏向方向による選択性反射を実現するための反射鏡である。   The straight conductor 10 is formed by, for example, a process combining plating and etching, and is a multi-band conductor having the same interval and width and being parallel to each other, and the slit 11 having the same interval and width is formed therebetween. Therefore, the plane reflecting mirror 1 is a reflecting mirror for realizing selective reflection according to the deflection direction of the electromagnetic wave.

平面反射鏡1においては、直線偏波を放射する1次放射器2からの放射電磁波のうち、平面反射鏡1の直線導体10に平行な偏波は平面反射鏡1で全反射させられる。これに対して平面反射鏡1の直線導体10に垂直な偏波は、平面反射鏡1の直線導体10間のスリット11を透過して空間に放射される。平面反射鏡1はこのように偏波選択性反射を実現するものである。   In the plane reflecting mirror 1, among the radiated electromagnetic waves from the primary radiator 2 that radiates linearly polarized waves, the polarized waves parallel to the linear conductor 10 of the plane reflecting mirror 1 are totally reflected by the plane reflecting mirror 1. On the other hand, the polarized wave perpendicular to the linear conductor 10 of the plane reflecting mirror 1 is transmitted through the slit 11 between the linear conductors 10 of the plane reflecting mirror 1 and radiated to the space. The plane reflecting mirror 1 realizes polarization selective reflection in this way.

図4には平面反射鏡1の機能を実現する直線導体10およびスリット11を有する金属板とそのスリットパターンの拡大詳細図を示す。平面反射鏡1は例えばSUSやCu、Alなどの良導電体で非磁性の材質で構成され、その平面度はレーダ性能を考慮して0.1mm以下が望ましい。また、その板厚はレーダ性能に影響を与えないように薄い方が望ましいが、図示の例では導体の線幅やスリット幅の精度、平面度、板金剛性などを考慮して板厚を0.3mmとした。平面反射鏡1のスリット11は金属エッチング工程により形成できるため、従来の樹脂メッキ工程に比べて安価で高精度な物が安定して製造できる等のメリットがある。図4でpはスリット11のピッチ、Wは直線導体10の幅を表す。   FIG. 4 shows an enlarged detailed view of a metal plate having a straight conductor 10 and a slit 11 for realizing the function of the plane reflecting mirror 1 and its slit pattern. The flat reflecting mirror 1 is made of a non-magnetic material such as SUS, Cu, Al, etc., and its flatness is preferably 0.1 mm or less in consideration of radar performance. Further, the sheet thickness is preferably thin so as not to affect the radar performance. However, in the illustrated example, the sheet thickness is set to 0. 0 in consideration of the conductor line width and slit width accuracy, flatness, sheet metal rigidity, and the like. It was 3 mm. Since the slit 11 of the plane reflecting mirror 1 can be formed by a metal etching process, there is an advantage that an inexpensive and highly accurate object can be stably manufactured as compared with the conventional resin plating process. In FIG. 4, p represents the pitch of the slits 11, and W represents the width of the straight conductor 10.

平面反射鏡1は直線導体10に平行な偏波(水平偏波)を反射させ、垂直な偏波(垂直偏波)を透過させる偏波選択性反射の効率が最大となるように、直線導体10の線幅およびスリット11の幅を選定する。   The plane reflecting mirror 1 reflects the polarized wave (horizontal polarized wave) parallel to the straight conductor 10 and transmits the polarized wave selective reflection (vertical polarized wave) to maximize the efficiency of polarization selective reflection. The line width of 10 and the width of the slit 11 are selected.

次式に導体スリットと平行な偏波(水平偏波)の反射係数Rhを示す。但し、P:スリットピッチ、L:スリット幅、λ:電磁波の空間波長である。

Rh=1/{1+〔(2P/λ)ln〔cos(πL/2P)〕}

また、導体スリットと垂直な偏波(垂直偏波)の反射係数Ryは次式で表される。

Ry=〔(2P/λ)ln〔sin(πL/2P)〕/{1+〔(2P/λ)ln〔sin(πL/2P)〕〕}
Shows the reflection coefficient Rh 2 conductors slit and polarization parallel (horizontally polarized wave) to the following equation. However, P: slit pitch, L: slit width, λ: spatial wavelength of electromagnetic wave.

Rh 2 = 1 / {1 + [(2P / λ) ln [cos (πL / 2P)]}

Further, the reflection coefficient Ry 2 of the polarization perpendicular to the conductor slit (vertical polarization) is expressed by the following equation.

Ry 2 = [(2P / λ) ln [sin (πL / 2P)] / {1 + [(2P / λ) ln [sin (πL / 2P)]]}

図5はスリット11の幅をL=0.15、0.2、0.3mmに固定し、スリットピッチPを変化させた場合の76GHz帯域の垂直、水平偏波の反射係数をグラフ化したものである。また図6はスリットピッチをP=0.3、0.4、0.4、1.0mmに固定し、スリット幅Lを変化させた場合の76GHz帯域の垂直、水平偏波の反射係数をグラフ化したものである。図5および図6から直線導体10に平行な偏波(水平偏波)を全反射させ、スリットに垂直な偏波(垂直偏波)の反射率を小さく抑える、すなわち垂直偏波の透過性を上げるためにはL/Pの関係を0.5近傍に設定する必要があったため、本発明ではL/Pを0.5とした。   FIG. 5 is a graph showing the reflection coefficient of vertical and horizontal polarization in the 76 GHz band when the width of the slit 11 is fixed at L = 0.15, 0.2, and 0.3 mm and the slit pitch P is changed. It is. FIG. 6 is a graph showing the reflection coefficient of vertical and horizontal polarization in the 76 GHz band when the slit pitch is fixed to P = 0.3, 0.4, 0.4, and 1.0 mm and the slit width L is changed. It has become. 5 and 6, the polarization parallel to the straight conductor 10 (horizontal polarization) is totally reflected, and the reflectance of the polarization perpendicular to the slit (vertical polarization) is kept small, that is, the transmittance of the vertical polarization is reduced. In order to increase it, it was necessary to set the relationship of L / P in the vicinity of 0.5. Therefore, in the present invention, L / P was set to 0.5.

車両用レーダ装置の放物面反射鏡4は、図7および8に示すような構造を持ち、平面反射鏡1から反射した電磁波を受けて偏向方向を変える偏向ねじり反射手段3を持ち、偏向ねじり反射手段3により、偏波方向が変えられた電磁波を平面反射鏡1に向けて反射させ、平面反射鏡1を透過させてレーダ装置で走査すべき方向に放射させるものである。   The parabolic reflecting mirror 4 of the vehicular radar apparatus has a structure as shown in FIGS. 7 and 8, and has a deflecting torsion reflecting means 3 that changes the deflection direction in response to the electromagnetic wave reflected from the planar reflecting mirror 1. The reflecting means 3 reflects the electromagnetic wave whose polarization direction has been changed toward the plane reflecting mirror 1 and transmits it through the plane reflecting mirror 1 to radiate it in the direction to be scanned by the radar apparatus.

放物面反射鏡4は、偏向ねじり反射手段3として、第1および第2の放物面15および16を持つ一様厚さの誘電体17と、第1の放物面15上に第1の放物面15に沿って延びて、間に複数のスリット18を形成する複数の帯状の直線導体19と、第2の放物面16に沿って全面を覆うように設けられて、直線導体19の間の複数のスリット18を通り誘電体17を透過した電磁波を反射する裏面導体20とを備えている。   The parabolic reflecting mirror 4 includes a dielectric 17 having a uniform thickness having first and second paraboloids 15 and 16 and a first parabolic surface 15 on the first paraboloid 15 as the deflection torsion reflecting means 3. A plurality of strip-shaped linear conductors 19 extending along the parabolic surface 15 and forming a plurality of slits 18 therebetween, and a linear conductor provided so as to cover the entire surface along the second parabolic surface 16. And a back conductor 20 that reflects electromagnetic waves transmitted through the dielectric 17 through a plurality of slits 18 between 19.

ここで、放物面反射鏡4の直線導体19は、厳密には直線ではなく第1の放物面15に沿って湾曲している。またその形状は、平面反射鏡1上の直線導体10およびスリット11を、放物面反射鏡4の中心軸心に沿って放物面反射鏡4上に投影させ、この中心軸心まわりに45°回転させた投影図形である。換言すれば、直線導体19の放物面反射鏡4の中心軸心(電磁波の進行方向)に沿った平面投影図形を45°回転させると、平面反射鏡1の直線導体10の形状と一致すると言える。   Here, the linear conductor 19 of the parabolic reflecting mirror 4 is not strictly a straight line but is curved along the first parabolic surface 15. In addition, the linear conductor 10 and the slit 11 on the planar reflecting mirror 1 are projected onto the parabolic reflecting mirror 4 along the central axis of the parabolic reflecting mirror 4, and the shape is 45 around the central axis. ° Projected figure rotated. In other words, when the plane projection figure along the central axis (the traveling direction of the electromagnetic wave) of the parabolic reflector 4 of the linear conductor 19 is rotated by 45 °, it coincides with the shape of the linear conductor 10 of the plane reflector 1. I can say that.

放物面反射鏡4の直線導体19および裏面導体20は、メッキ等によりそれぞれ誘電体17の第1および第2の放物面15および16上に形成されており、それらの間隔は誘電体17の厚さであり、直線導体19で反射される電磁波と裏面導体20で反射される電磁波との間には90°の位相差が生じるようにしてある。   The linear conductor 19 and the back conductor 20 of the parabolic reflector 4 are respectively formed on the first and second paraboloids 15 and 16 of the dielectric 17 by plating or the like, and the distance between them is the dielectric 17. The phase difference of 90 ° is generated between the electromagnetic wave reflected by the straight conductor 19 and the electromagnetic wave reflected by the back conductor 20.

車両用レーダ装置の放射電磁波の偏波方向を左45度に傾けた場合、1次放射器2から右45°の偏波で放射された電磁波は、平面反射鏡1の直線導体10で全反射され、平面反射鏡1の直線導体10に対して電磁波の進行方向に垂直な平面内で45°に配置された放物面反射鏡4の直線導体19および裏面導体20、即ち偏向ねじり反射手段3により、偏波方向が90度変えられて左45度に傾いた偏波となり、平面反射鏡1を透過して空中に放射される。   When the polarization direction of the radiated electromagnetic wave of the vehicle radar apparatus is tilted 45 degrees to the left, the electromagnetic wave radiated from the primary radiator 2 with the right polarized wave of 45 ° is totally reflected by the linear conductor 10 of the plane reflecting mirror 1. The linear conductor 19 and the back conductor 20 of the paraboloidal reflector 4 arranged in a plane perpendicular to the traveling direction of the electromagnetic wave with respect to the linear conductor 10 of the plane reflecting mirror 1, that is, the deflected torsional reflecting means 3. As a result, the polarization direction is changed by 90 degrees to become a polarized wave inclined to 45 degrees to the left, and is transmitted through the plane reflecting mirror 1 and emitted into the air.

また平面反射鏡1に向けて電磁波を放射する1次放射器2は、放物面反射鏡4の焦点の平面反射鏡1による鏡像位置またはその近傍に配置されている。図示の例では、一次放射器2は放物面反射鏡4の中心部背面近傍に位置してハウジング本体7に取り付けられていて、放射された電磁波が放物面反射鏡4の中心部に設けられた開口21を通して前方の平面反射鏡1に向かって放射されるようにしてある。   The primary radiator 2 that radiates electromagnetic waves toward the plane reflecting mirror 1 is disposed at or near the mirror image position of the focal point of the parabolic reflecting mirror 4 by the plane reflecting mirror 1. In the illustrated example, the primary radiator 2 is attached to the housing main body 7 in the vicinity of the back of the central portion of the parabolic reflector 4, and the radiated electromagnetic wave is provided at the central portion of the parabolic reflector 4. It radiates | emits toward the front plane reflective mirror 1 through the formed opening 21. FIG.

放物面反射鏡4は、電磁波の放射方向を変える駆動装置5により方向を変えることができるようにされている。即ち、放物面反射鏡4の重心付近に回転軸22を設け、この回転軸22をハウジング6で回転可能に支持してある。放物面反射鏡1の角度を変化させるための駆動装置5は、図示の例では磁気反発型駆動装置であって、放物面反射鏡4に付設した一対の磁石23と、磁石23に対して逆極性で対向してハウジング6に取り付けられた一対の磁石24と、磁石24にそれぞれ巻回されたコイル25とを備えている。2つのコイル25は逆向きの電流が流れるように直列接続されており、附勢されたときに磁石23および24間のそれぞれの磁気反発力を強弱制御する。電流の向きにより放物面反射鏡4の回転方向を制御し、電流の大きさにより回転角度を制御する   The parabolic reflecting mirror 4 can be changed in direction by a driving device 5 that changes the radiation direction of electromagnetic waves. That is, a rotation shaft 22 is provided in the vicinity of the center of gravity of the parabolic reflecting mirror 4, and the rotation shaft 22 is rotatably supported by the housing 6. The driving device 5 for changing the angle of the parabolic reflecting mirror 1 is a magnetic repulsive driving device in the illustrated example, and a pair of magnets 23 attached to the parabolic reflecting mirror 4 and the magnets 23 are used. And a pair of magnets 24 mounted on the housing 6 so as to face each other with opposite polarities, and coils 25 wound around the magnets 24, respectively. The two coils 25 are connected in series so that currents in opposite directions flow, and when energized, the respective magnetic repulsive forces between the magnets 23 and 24 are controlled in strength. The rotation direction of the parabolic reflector 4 is controlled by the direction of the current, and the rotation angle is controlled by the magnitude of the current.

このようにこの実施の形態によれば、平面反射鏡を薄板板金で構成するために平面度の精度が向上し、直線導体の線幅、ピッチのバラツキが低減し、車両レーダ装置の性能バラツキが低減する。また、平面反射鏡の耐久信頼性を向上させることができるのに加えて、カバーの配置および車両レーダ構造設計の自由度が増える。   As described above, according to this embodiment, since the flat reflector is made of a thin sheet metal, the accuracy of flatness is improved, the line width and pitch variations of the straight conductor are reduced, and the performance variation of the vehicle radar device is reduced. To reduce. In addition to improving the durability and reliability of the flat reflector, the degree of freedom in cover arrangement and vehicle radar structure design is increased.

実施の形態2.
図9に示す平面反射鏡26においては、平行な直線導体27が一つ置きに互い違いにずれて食い違った短い接続導体28により接続されて、比較的短い多数のスリット29がずれて並べられた、全体として煉瓦パターンの格子構造(グリッド構造)とされている。これにより偏波選択性反射鏡である平面反射鏡26の複数の平行に配列されたスリット29の長さが調整できるのである。この複数のスリット29の長さGは平面反射鏡26を通過した電磁波である、スリット29に対して垂直な偏波(垂直偏波)の中で共振周波数となる電磁波を遮蔽する長さを選定する。図9でGはスリット29の長さ、pはスリット29のピッチ、Wは直線導体27の幅を表す。例えば50GHzの電磁波の場合、電磁波の速度は3×10(m/s)であるから、1波長は(3×10)/(50×10)=0.006(m)となる。したがって、半波長では0.006/2=0.003(m)すなわち3mmの長さとなる。スリット29の長さGを3mmに選定することにより、平面反射鏡26で透過するスリット29に垂直な偏波(垂直偏波)のうち50GHz以下の電磁波を遮蔽することができる。
Embodiment 2. FIG.
In the plane reflecting mirror 26 shown in FIG. 9, the parallel straight conductors 27 are alternately connected to each other by the short connecting conductors 28 which are shifted in a staggered manner, and a plurality of relatively short slits 29 are arranged in a shifted manner. The overall structure is a brick pattern lattice structure (grid structure). Accordingly, the lengths of the plurality of parallelly arranged slits 29 of the plane reflecting mirror 26 which is a polarization selective reflecting mirror can be adjusted. The length G of the plurality of slits 29 is the electromagnetic wave that has passed through the plane reflecting mirror 26, and the length that shields the electromagnetic wave having the resonance frequency in the polarized wave (vertically polarized wave) perpendicular to the slit 29 is selected. To do. In FIG. 9, G represents the length of the slit 29, p represents the pitch of the slit 29, and W represents the width of the straight conductor 27. For example, in the case of an electromagnetic wave of 50 GHz, the speed of the electromagnetic wave is 3 × 10 8 (m / s), so one wavelength is (3 × 10 8 ) / (50 × 10 9 ) = 0.006 (m). Therefore, at a half wavelength, the length is 0.006 / 2 = 0.003 (m), that is, 3 mm. By selecting the length G of the slit 29 to be 3 mm, it is possible to shield electromagnetic waves of 50 GHz or less out of polarized waves (vertically polarized waves) perpendicular to the slit 29 that are transmitted by the plane reflecting mirror 26.

このように平面反射鏡26をグリッド構造にすることで、所望周波数以外の電磁波を車両レーダ装置の外部に漏洩しない、または、外部からの不要な電磁波の入射を遮蔽するフィルタ機能を実現できる。また、平面反射鏡26の直線導体27が多数の短い接続導体28で互いに接続されているのでSUS等の薄板で形成される平面反射鏡26の剛性を高め、スリット共振周波数を高めることができる。   Thus, by making the plane reflecting mirror 26 have a grid structure, it is possible to realize a filter function that does not leak electromagnetic waves other than the desired frequency to the outside of the vehicle radar device or shields unnecessary electromagnetic waves from entering from the outside. In addition, since the straight conductors 27 of the flat reflecting mirror 26 are connected to each other by a large number of short connecting conductors 28, the rigidity of the flat reflecting mirror 26 formed of a thin plate such as SUS can be increased, and the slit resonance frequency can be increased.

実施の形態3.
平面反射鏡1のカバー8への取付構造として、図1に示す例の他に様々なものが使用できる。例えば図10に示すようなプッシュナット構造31を枠9の一部に設けてカバー8から延びた突起13の先端部に固定しても良いし、図11に示すように平面反射鏡1の枠9に長孔32を設けてカバー8の突起13に嵌めて、樹脂で形成されるカバー8と金属板で形成される平面反射鏡1の温度による線膨張差を吸収できる構造としても良い。またカバー8の材質にLCP等を用いて平面反射鏡1をカバー8にインサート成形することもできる。更に平面反射鏡1はカバー8で支持する必要はなく、例えばハウジング本体7で支持することもできる。このような様々な取付構造を採用できるので設計自由度が大きい。
Embodiment 3 FIG.
Various structures other than the example shown in FIG. 1 can be used as the structure for attaching the flat reflecting mirror 1 to the cover 8. For example, a push nut structure 31 as shown in FIG. 10 may be provided on a part of the frame 9 and fixed to the tip of the protrusion 13 extending from the cover 8, or the frame of the flat reflector 1 as shown in FIG. 9 may have a structure in which a long hole 32 is provided and fitted into the protrusion 13 of the cover 8 to absorb a difference in linear expansion due to the temperature of the cover 8 formed of resin and the flat reflector 1 formed of a metal plate. Further, the planar reflecting mirror 1 can be insert-molded into the cover 8 using LCP or the like as the material of the cover 8. Further, the planar reflecting mirror 1 does not need to be supported by the cover 8, and can be supported by the housing body 7, for example. Since such various mounting structures can be adopted, the degree of freedom in design is great.

実施の形態4.
図12に示す例においては、車両用レーダ装置の平面反射鏡1はカバー8の外表面から前方に突出して設けた突起13によりカバー8の外側に支持されている。突起13は、図1乃至3、10および11に示す突起13と同様の構造のものでよいが、平面反射鏡1を放物面反射鏡4に対して焦点の半分の位置に支持できるものであれば様々な支持構造を採用できる。このように平面反射鏡1をハウジング6の外部に設けると、カバー8を含むハウジング6の形態、形状設計時に選択肢が広がる。例えば、カバー8は図示の例のように平板でなく、公知の誘電体レンズ(図示しない)のような構成にすることもできる。
Embodiment 4 FIG.
In the example shown in FIG. 12, the planar reflecting mirror 1 of the vehicular radar apparatus is supported on the outside of the cover 8 by a projection 13 provided to project forward from the outer surface of the cover 8. The protrusion 13 may have the same structure as that of the protrusion 13 shown in FIGS. Various support structures can be used if necessary. When the planar reflecting mirror 1 is provided outside the housing 6 as described above, the options are widened when designing the shape and shape of the housing 6 including the cover 8. For example, the cover 8 may be configured as a known dielectric lens (not shown) instead of a flat plate as in the illustrated example.

また、SUS等の薄板で形成した平面反射鏡1を、放物面反射鏡4の焦点の半分の位置に配置し、車体レドームやフロントグリル、バンパカバーの一部として形成、または、それらの内側に設置し、放物面反射鏡4等のレーダ装置本体側の構成要素を平面反射鏡1に関連させて取り付けることもできる。   In addition, the planar reflecting mirror 1 formed of a thin plate such as SUS is disposed at a half position of the focal point of the parabolic reflecting mirror 4 and formed as a part of the vehicle body radome, the front grille, or the bumper cover, or inside thereof. The components on the radar apparatus main body side such as the parabolic reflector 4 can be attached in association with the planar reflector 1.

本発明の車両用レーダ装置を示す概略断面図である。It is a schematic sectional drawing which shows the radar apparatus for vehicles of this invention. 図1の線A−Aに沿った概略断面図である。It is a schematic sectional drawing in alignment with line AA of FIG. 図2の線B−Bに沿った概略断面図である。It is a schematic sectional drawing in alignment with line BB of FIG. 本発明の車両用レーダ装置の平面反射鏡を示す平面図である。It is a top view which shows the plane reflective mirror of the radar apparatus for vehicles of this invention. スリット幅L固定でスリットピッチpを変化させた場合の76GHz帯域の垂直、水平偏波の反射係数を表すグラフである。It is a graph showing the reflection coefficient of the vertical and horizontal polarized waves in the 76 GHz band when the slit pitch p is changed with the slit width L fixed. スリットピッチp固定でスリット幅Lを変化させた場合の76GHz帯域の垂直、水平偏波の反射係数を表すグラフである。It is a graph showing the reflection coefficient of the vertical and horizontal polarized waves in the 76 GHz band when the slit width L is changed with the slit pitch p fixed. 本発明の車両用レーダ装置の放物面反射鏡を示す概略平面図である。It is a schematic plan view which shows the parabolic reflector of the radar apparatus for vehicles of this invention. 図7の放物面反射鏡の概略側面断面図である。FIG. 8 is a schematic side cross-sectional view of the parabolic reflector of FIG. 7. 本発明の車両用レーダ装置の平面反射鏡の別の例を示す平面図である。It is a top view which shows another example of the plane reflective mirror of the radar apparatus for vehicles of this invention. 本発明の平面反射鏡の取付構造の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the attachment structure of the plane reflective mirror of this invention. 本発明の平面反射鏡の取付構造の更に別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the attachment structure of the plane reflective mirror of this invention. 本発明の平面反射鏡の取付位置の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the attachment position of the plane reflective mirror of this invention.

符号の説明Explanation of symbols

1 平面反射鏡、2 1次放射器、3 偏向ねじり反射手段、4 放物面反射鏡、5 駆動装置、8 カバー、9 枠、10 直線導体、11、29 スリット、28 接続導体。   DESCRIPTION OF SYMBOLS 1 Planar reflector, 2 Primary radiator, 3 Deflection torsional reflection means, 4 Parabolic reflector, 5 Drive, 8 Cover, 9 Frame, 10 Straight conductor, 11, 29 Slit, 28 Connection conductor.

Claims (5)

電磁波を偏向方向により選択して反射あるいは透過させる平面反射鏡と、
この平面反射鏡に向けて電磁波を放射する1次放射器と、
上記平面反射鏡から反射した電磁波を受けて偏向方向を変える偏向ねじり反射手段を持ち、上記偏向ねじり反射手段により、偏向方向が変えられた電磁波を反射させ、上記平面反射鏡を透過させて放射させる放物面反射鏡と、
この放物面反射鏡を駆動して、電磁波の放射方向を変える駆動装置とを備えた車両用レーダ装置において、
上記平面反射鏡が複数の直線導体を持つ金属板であることを特徴とする車両用レーダ装置。
A plane reflecting mirror that reflects or transmits electromagnetic waves according to the direction of deflection;
A primary radiator that radiates electromagnetic waves toward the plane reflector;
It has a deflecting torsion reflecting means that receives an electromagnetic wave reflected from the plane reflecting mirror and changes the deflection direction. The deflecting torsion reflecting means reflects the electromagnetic wave whose deflection direction has been changed, and transmits the electromagnetic wave through the planar reflecting mirror to radiate. A parabolic reflector,
In the vehicle radar apparatus provided with a driving device that drives the parabolic reflecting mirror and changes the radiation direction of the electromagnetic wave,
A radar apparatus for a vehicle, wherein the planar reflecting mirror is a metal plate having a plurality of straight conductors.
上記平面反射鏡は、枠とこの枠から連続して一体に延びて間にスリットを形成するように互いに平行に配置された複数の直線導体とを備えていることを特徴とする請求項1記載の車両用レーダ装置。   2. The planar reflecting mirror includes a frame and a plurality of linear conductors extending in a continuous manner from the frame and arranged in parallel to each other so as to form a slit therebetween. Vehicle radar system. 上記平面反射鏡は、所定周波数の電磁波を透過させるとともに、所定周波数よりも低い周波数のノイズ電源を遮断するために、複数の平行に配列されたスリットの長さを調整する接続導体を設けたことを特徴とする請求項1あるいは2記載の車両用レーダ装置。   The plane reflecting mirror is provided with a connection conductor that adjusts the length of a plurality of slits arranged in parallel in order to transmit an electromagnetic wave having a predetermined frequency and cut off a noise power source having a frequency lower than the predetermined frequency. The vehicular radar apparatus according to claim 1 or 2. 上記平面反射鏡は、上記放物面反射鏡の周囲を囲むカバーにカバー内側でカバーから離間させて取り付けられていることを特徴とする請求項1乃至3のいずれか一項記載の車両用レーダ装置。   4. The vehicular radar according to claim 1, wherein the planar reflecting mirror is attached to a cover surrounding the parabolic reflecting mirror so as to be separated from the cover inside the cover. 5. apparatus. 上記平面反射鏡は、上記放物面反射鏡の周囲を囲むカバーの外側に取り付けられていることを特徴とする請求項1乃至3のいずれか一項記載の車両用レーダ装置。   The vehicular radar apparatus according to any one of claims 1 to 3, wherein the planar reflecting mirror is attached to the outside of a cover surrounding the parabolic reflecting mirror.
JP2006305367A 2006-11-10 2006-11-10 Radar equipment for vehicles Expired - Fee Related JP4410232B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006305367A JP4410232B2 (en) 2006-11-10 2006-11-10 Radar equipment for vehicles
DE102007026124A DE102007026124B4 (en) 2006-11-10 2007-06-05 Vehicle radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305367A JP4410232B2 (en) 2006-11-10 2006-11-10 Radar equipment for vehicles

Publications (2)

Publication Number Publication Date
JP2008122188A true JP2008122188A (en) 2008-05-29
JP4410232B2 JP4410232B2 (en) 2010-02-03

Family

ID=39277797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305367A Expired - Fee Related JP4410232B2 (en) 2006-11-10 2006-11-10 Radar equipment for vehicles

Country Status (2)

Country Link
JP (1) JP4410232B2 (en)
DE (1) DE102007026124B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018182A1 (en) * 2015-07-30 2017-02-02 株式会社デンソー Radar apparatus
JP2017032539A (en) * 2015-07-30 2017-02-09 株式会社日本自動車部品総合研究所 Radar device
US9828036B2 (en) 2015-11-24 2017-11-28 Srg Global Inc. Active grille shutter system with integrated radar

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801831B2 (en) * 2000-02-04 2006-07-26 三菱電機株式会社 Radar antenna
JP2003258543A (en) * 2002-03-04 2003-09-12 Shimizu Corp Electromagnetic shield film
JP2006029834A (en) * 2004-07-13 2006-02-02 Hitachi Ltd Vehicle-mounted radar

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018182A1 (en) * 2015-07-30 2017-02-02 株式会社デンソー Radar apparatus
JP2017032539A (en) * 2015-07-30 2017-02-09 株式会社日本自動車部品総合研究所 Radar device
US10802139B2 (en) 2015-07-30 2020-10-13 Denso Corporation Radar apparatus
US9828036B2 (en) 2015-11-24 2017-11-28 Srg Global Inc. Active grille shutter system with integrated radar
US10137938B2 (en) 2015-11-24 2018-11-27 Srg Global Inc. Active grille shutter system with integrated radar

Also Published As

Publication number Publication date
JP4410232B2 (en) 2010-02-03
DE102007026124A1 (en) 2008-05-15
DE102007026124B4 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
US7042420B2 (en) Multi-beam antenna
WO2013168319A1 (en) Antenna device and method for attaching antenna device
JP7382395B2 (en) Vehicle body parts with at least one directional antenna
US20150229023A1 (en) Antenna unit, radar device, and composite sensor device
JP5877894B2 (en) antenna
JPWO2005114785A1 (en) Antenna device and radar device using the same
JP2018207301A (en) Antenna, array antenna, radar device, and on-vehicle system
JP5731745B2 (en) Antenna device and radar device
JP7129649B2 (en) In-vehicle light device
JP4410232B2 (en) Radar equipment for vehicles
JP3801831B2 (en) Radar antenna
JP2007049691A (en) Antenna module and radio apparatus
JP2001185946A (en) Antenna system
JP4632999B2 (en) Phased array antenna
JP4579951B2 (en) Reflector antenna
JP4651700B2 (en) Radar equipment
JP2015190810A (en) Radar device and radar method
JP7189062B2 (en) ANTENNA DEVICE AND REFLECTION PHASE CONTROL METHOD
JP2008199407A (en) Antenna device
JP3941349B2 (en) Beam scanning antenna
JPWO2005114786A1 (en) Antenna device and radar device using the same
JPH05273339A (en) On-vehicle radar equipment
JP2018148351A (en) Antenna device
JP2007036823A (en) Radar antenna and on-vehicle radar apparatus
JPH07118608B2 (en) Radar antenna

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

R150 Certificate of patent or registration of utility model

Ref document number: 4410232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees