JP2008121690A - Controller of hydrogen-added internal combustion engine - Google Patents

Controller of hydrogen-added internal combustion engine Download PDF

Info

Publication number
JP2008121690A
JP2008121690A JP2008027791A JP2008027791A JP2008121690A JP 2008121690 A JP2008121690 A JP 2008121690A JP 2008027791 A JP2008027791 A JP 2008027791A JP 2008027791 A JP2008027791 A JP 2008027791A JP 2008121690 A JP2008121690 A JP 2008121690A
Authority
JP
Japan
Prior art keywords
hydrogen
gasoline
amount
fuel
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008027791A
Other languages
Japanese (ja)
Inventor
Yasushi Ito
泰志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008027791A priority Critical patent/JP2008121690A/en
Publication of JP2008121690A publication Critical patent/JP2008121690A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a combustion state even when factors such as property of gasoline change in a hydrogen-added internal combustion engine using hydrogen gas together with gasoline as fuel for combustion. <P>SOLUTION: This controller for the hydrogen-added internal combustion engine using hydrogen gas together with hydrocarbon fuel as the fuel for combustion is provided with a means for obtaining a decreasing quantity of an engine rotation frequency immediately after start, a feedback correction value of an ignition timing lead angle immediately after star, or a feedback correction value of injection quantity increase of a hydrocarbon fuel immediately after start and an addition rate increase means for increasing an addition rate of hydrogen gas for the hydrocarbon fuel in the case that the obtained value is equal to or larger than a predetermined value. Thus, as the addition rate of hydrogen gas to hydrocarbon fuel is increased when the combustion state in a cylinder is deteriorated, it is possible to prevent deterioration of the combustion state and improve emission and drivability. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、水素添加内燃機関の制御装置に関する。   The present invention relates to a control device for a hydrogenated internal combustion engine.

燃料としてガソリンを用いる内燃機関では、ガソリンに加えてさらに水素ガスを供給することによって、排気ガス中の窒素酸化物(NO)の更なる低減が可能となることが知られている。例えば、特開2004−116398号公報には、NOの排出量が少なくなるように水素添加割合を決定し、決定した割合に従ってガソリン、水素を噴射して内燃機関を運転する技術が記載されている。 In an internal combustion engine that uses gasoline as fuel, it is known that further reduction of nitrogen oxides (NO x ) in exhaust gas is possible by supplying hydrogen gas in addition to gasoline. For example, Japanese Patent Application Laid-Open No. 2004-116398 describes a technique for operating an internal combustion engine by determining a hydrogen addition ratio so as to reduce NO X emissions and injecting gasoline and hydrogen according to the determined ratio. Yes.

特開2004−116398号公報JP 2004-116398 A 特開平6−200805号公報JP-A-6-200805

しかしながら、上記従来の技術ではガソリンの性状を考慮していないため、ガソリンの性状が変動した場合は、筒内の燃焼が悪化することがある。特に冷間始動時にガソリンの性状が重質であると、筒内でのガソリンの霧化の度合いが低下するため、冷間ヘジテーションが発生し易くなり、加速のもたつき、機関停止などドライバビリティが悪化するという問題が生じる。また、ガソリンの性状に起因して燃焼状態が悪化すると、エミッションが悪化するという問題も生じる。   However, since the conventional technology does not consider the properties of gasoline, combustion in a cylinder may deteriorate if the properties of gasoline fluctuate. In particular, if the properties of gasoline are heavy during cold start, the degree of gasoline atomization in the cylinder decreases, so cold hesitation is likely to occur, acceleration is slow, and drivability such as engine stoppage deteriorates. Problem arises. Further, when the combustion state is deteriorated due to the properties of gasoline, there is a problem that the emission is deteriorated.

この発明は、上述のような問題を解決するためになされたものであり、燃焼の燃料としてガソリンと共に水素ガスを用いる水素添加内燃機関において、ガソリンの性状等の要因が変化した場合であっても、燃焼状態を良好にすることを目的とする。   The present invention has been made to solve the above-described problems. In a hydrogenated internal combustion engine that uses hydrogen gas together with gasoline as a fuel for combustion, even when factors such as the properties of gasoline change. The purpose is to improve the combustion state.

第1の発明は、上記の目的を達成するため、燃焼の燃料として炭化水素燃料と共に水素ガスを用いる水素添加内燃機関の制御装置であって、
始動直後の機関回転数の低下量、始動直後の点火時期進角のフィードバック補正値、又は始動直後の炭化水素燃料の噴射量増大のフィードバック補正値を取得する手段と、
前記機関回転数の低下量、前記点火時期進角のフィードバック補正値、又は前記炭化水素燃料の噴射量増大のフィードバック補正値が所定値以上の場合に、炭化水素燃料に対する水素ガスの添加割合を増加させる添加割合増加手段と、
を備えたことを特徴とする。
In order to achieve the above object, a first invention is a control device for a hydrogenated internal combustion engine that uses hydrogen gas together with hydrocarbon fuel as combustion fuel,
Means for obtaining a reduction amount of the engine speed immediately after the start, a feedback correction value of the ignition timing advance immediately after the start, or a feedback correction value of an increase in the injection amount of hydrocarbon fuel immediately after the start;
When the amount of decrease in the engine speed, the feedback correction value for the ignition timing advance, or the feedback correction value for the increase in the injection amount of the hydrocarbon fuel is equal to or greater than a predetermined value, the proportion of hydrogen gas added to the hydrocarbon fuel is increased. Means for increasing the addition ratio,
It is provided with.

第1の発明によれば、始動直後の機関回転数の低下量、点火時期進角のフィードバック補正値、又は前記炭化水素燃料の噴射量増大のフィードバック補正値が所定値以上の場合は、筒内の燃焼状態が悪化していると判断できるため、炭化水素燃料に対する水素ガスの添加割合を増加させることで、燃焼状態の悪化を抑止することができる。従って、エミッション、ドライバビリティを良好にすることが可能となる。   According to the first invention, when the amount of decrease in the engine speed immediately after starting, the feedback correction value of the ignition timing advance, or the feedback correction value of the increase in the injection amount of hydrocarbon fuel is greater than or equal to a predetermined value, Therefore, it is possible to suppress the deterioration of the combustion state by increasing the proportion of hydrogen gas added to the hydrocarbon fuel. Therefore, it is possible to improve the emission and drivability.

以下、図面に基づいてこの発明の一実施形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。なお、以下の実施の形態によりこの発明が限定されるものではない。   An embodiment of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted. The present invention is not limited to the following embodiments.

実施の形態1.
図1は、本発明の実施の形態1に係る水素添加内燃機関10を備えたシステムの構成を説明するための図である。内燃機関10の筒内には、その内部を往復運動するピストン12が設けられている。また、内燃機関10は、シリンダヘッド14を備えている。ピストン12とシリンダヘッド14との間には、燃焼室16が形成されている。燃焼室16には、吸気ポート18および排気ポート20が連通している。吸気ポート18および排気ポート20には、それぞれ吸気弁22および排気弁24が配置されている。
Embodiment 1 FIG.
FIG. 1 is a diagram for explaining the configuration of a system including a hydrogenated internal combustion engine 10 according to Embodiment 1 of the present invention. A piston 12 that reciprocates inside the cylinder of the internal combustion engine 10 is provided. Further, the internal combustion engine 10 includes a cylinder head 14. A combustion chamber 16 is formed between the piston 12 and the cylinder head 14. An intake port 18 and an exhaust port 20 communicate with the combustion chamber 16. An intake valve 22 and an exhaust valve 24 are disposed in the intake port 18 and the exhaust port 20, respectively.

吸気ポート18には、ポート内にガソリン(炭化水素燃料)を噴射するガソリン噴射弁26が配置されている。また、吸気ポート18には、ポート内に水素を噴射する水素燃料ポート噴射弁28が配置されている。   The intake port 18 is provided with a gasoline injection valve 26 that injects gasoline (hydrocarbon fuel) into the port. The intake port 18 is provided with a hydrogen fuel port injection valve 28 for injecting hydrogen into the port.

ガソリン噴射弁26には、ガソリン供給管32を介してガソリンタンク34が連通している。ガソリン供給管32は、ガソリン噴射弁26とガソリンタンク34との間に、ポンプ36を備えている。ポンプ36は、ガソリン噴射弁26に所定の圧力でガソリンを供給することができる。このため、ガソリン噴射弁26は、外部から供給される駆動信号を受けて開弁することにより、その開弁の時間に応じた量のガソリンを吸気ポート18内に噴射することができる。   A gasoline tank 34 communicates with the gasoline injection valve 26 via a gasoline supply pipe 32. The gasoline supply pipe 32 includes a pump 36 between the gasoline injection valve 26 and the gasoline tank 34. The pump 36 can supply gasoline to the gasoline injection valve 26 at a predetermined pressure. For this reason, the gasoline injection valve 26 is able to inject an amount of gasoline into the intake port 18 according to the opening time by opening the valve in response to a drive signal supplied from the outside.

本実施形態のシステムは、気体状態にある水素を高圧で貯留するための水素タンク38を備えている。水素タンク38には、水素供給管40が連通している。水素供給管40は、水素燃料ポート噴射弁28に連通している。尚、本実施形態のシステムでは、水素燃料ポート噴射弁28に供給される水素燃料として、外部から水素タンク38内に充填される水素ガスを使用しているが、これらの噴射弁に供給される水素燃料はこれに限定されるものではなく、車両上で生成、あるいは外部より供給される高濃度の水素を含む水素リッチガスを使用するものであってもよい。   The system of this embodiment includes a hydrogen tank 38 for storing hydrogen in a gaseous state at a high pressure. A hydrogen supply pipe 40 communicates with the hydrogen tank 38. The hydrogen supply pipe 40 communicates with the hydrogen fuel port injection valve 28. In the system of the present embodiment, hydrogen gas charged into the hydrogen tank 38 from the outside is used as the hydrogen fuel supplied to the hydrogen fuel port injection valve 28, but supplied to these injection valves. The hydrogen fuel is not limited to this, and a hydrogen-rich gas containing a high concentration of hydrogen generated on the vehicle or supplied from the outside may be used.

水素供給管40には、レギュレータ44が配置されている。このような構成によれば、水素燃料ポート噴射弁28には、レギュレータ44により減圧された所定の圧力で、水素タンク38内にある水素が供給される。このため、水素燃料ポート噴射弁28は、外部から供給される駆動信号を受けて開弁することにより、その開弁の時間に応じた量の水素を吸気ポート18内に噴射することができる。   A regulator 44 is disposed in the hydrogen supply pipe 40. According to such a configuration, hydrogen in the hydrogen tank 38 is supplied to the hydrogen fuel port injection valve 28 at a predetermined pressure reduced by the regulator 44. For this reason, the hydrogen fuel port injection valve 28 opens the valve in response to a drive signal supplied from the outside, and can inject an amount of hydrogen into the intake port 18 in accordance with the valve opening time.

また、水素供給管40には、レギュレータ44と水素燃料ポート噴射弁28との間に、燃圧センサ48が配置されている。燃圧センサ48は、水素燃料ポート噴射弁28に供給される水素の圧力に応じた出力を発するセンサである。本実施形態のシステムでは、燃圧センサ48が発する出力に基づいてレギュレータ44を制御することとしている。このため、水素タンク38から供給される水素の圧力が変動する場合であっても、水素燃料ポート噴射弁28に安定した圧力で水素を供給することができる。   In the hydrogen supply pipe 40, a fuel pressure sensor 48 is disposed between the regulator 44 and the hydrogen fuel port injection valve 28. The fuel pressure sensor 48 is a sensor that emits an output corresponding to the pressure of hydrogen supplied to the hydrogen fuel port injection valve 28. In the system of this embodiment, the regulator 44 is controlled based on the output generated by the fuel pressure sensor 48. For this reason, even when the pressure of hydrogen supplied from the hydrogen tank 38 fluctuates, hydrogen can be supplied to the hydrogen fuel port injection valve 28 at a stable pressure.

本実施形態のシステムは、ECU50を備えている。ECU50には、上述した燃圧センサ48に加え、内燃機関10の運転状態を把握すべく、ノッキングの発生を検知するKCSセンサや、スロットル開度、機関回転数、排気温度、冷却水温度、潤滑油温度、触媒床温度などを検出するための各種センサ(不図示)が接続されている。また、ECU50には、上述したガソリン噴射弁26、水素燃料ポート噴射弁28、ポンプ36などのアクチュエータが接続されている。このような構成によれば、ECU50は、内燃機関10の運転状態に応じて、燃料噴射を実行する噴射弁を任意に選択することができる。   The system of this embodiment includes an ECU 50. In addition to the fuel pressure sensor 48 described above, the ECU 50 includes a KCS sensor that detects the occurrence of knocking in order to grasp the operating state of the internal combustion engine 10, a throttle opening, an engine speed, an exhaust temperature, a coolant temperature, a lubricating oil Various sensors (not shown) for detecting temperature, catalyst bed temperature and the like are connected. The ECU 50 is connected to actuators such as the gasoline injection valve 26, the hydrogen fuel port injection valve 28, and the pump 36 described above. According to such a configuration, the ECU 50 can arbitrarily select an injection valve that performs fuel injection according to the operating state of the internal combustion engine 10.

従って、内燃機関10の運転状態に応じて水素燃料ポート噴射弁28から水素を噴射することで、筒内(燃焼室16内)の燃焼状態を良好にすることができ、NOXの排出量を低減させることができる。   Therefore, by injecting hydrogen from the hydrogen fuel port injection valve 28 according to the operating state of the internal combustion engine 10, the combustion state in the cylinder (inside the combustion chamber 16) can be improved, and the amount of NOx emission is reduced. Can be made.

ところで、ガソリンの性状にはバラツキがあり、ガソリンの性状は筒内の燃焼状態に影響を与える。特に、ガソリンの性状が重質の場合、ガソリン噴射弁26から噴射されたガソリンが吸気ポート18の壁面または筒内壁面に付着し易くなり、ガソリンの霧化の度合いが低下して燃焼状態が不安定になる場合がある。   By the way, there are variations in the properties of gasoline, and the properties of gasoline affect the combustion state in the cylinder. In particular, when the properties of the gasoline are heavy, the gasoline injected from the gasoline injection valve 26 tends to adhere to the wall surface of the intake port 18 or the cylinder inner wall surface, and the degree of gasoline atomization is reduced and the combustion state is poor. May become stable.

このため、本実施形態のシステムでは、ガソリンの性状を判別し、ガソリンの性状が重質の場合は水素燃料ポート噴射弁28からの水素の噴射量を増加するようにしている。これにより、ガソリンの性状が重質の場合であっても、燃焼状態を良好にすることが可能となる。   For this reason, in the system of this embodiment, the property of gasoline is discriminated, and when the property of gasoline is heavy, the amount of hydrogen injected from the hydrogen fuel port injection valve 28 is increased. Thereby, even if the property of gasoline is heavy, it becomes possible to make a combustion state favorable.

なお、ガソリンの性状に起因するエミッション、ドライバビリティの悪化は主として始動直後のファーストアイドル時に発生するため、水素ガスの増量はファーストアイドル時に行うことが好適であるが、ファーストアイドル時以降のアイドリング時、又は通常の運転時に水素ガスを増量することによっても重質燃料に起因する燃焼状態の悪化を抑えることができる。   In addition, since the deterioration of emissions and drivability due to the properties of gasoline mainly occurs at the first idle immediately after the start, it is preferable to increase the hydrogen gas at the first idle, but at the idling after the first idle, Or the deterioration of the combustion state resulting from heavy fuel can also be suppressed by increasing the amount of hydrogen gas during normal operation.

ガソリンの性状判定は、例えば始動直後の機関回転数に基づいて行う。ガソリンの性状が重質の場合、通常の性状に比べて始動直後の機関回転数が低下する。従って、重質判定のためのしきい値を予め定めておき、始動直後の機関回転数がしきい値よりも低下した場合は、ガソリンの性状が重質であると判定する。   The property determination of gasoline is performed based on, for example, the engine speed immediately after starting. When the properties of gasoline are heavy, the engine speed immediately after start-up is lower than the normal properties. Accordingly, a threshold value for determining the heavyness is determined in advance, and when the engine speed immediately after the start of operation is lower than the threshold value, it is determined that the gasoline is heavy.

また、始動直後の機関回転数が低下した場合は、点火時期を進角させる制御、またはガソリンの噴射量を増大させる制御によってフィードバック補正が行われる。従って、点火時期の補正量、またはガソリン噴射量の補正量に基づいてガソリンの性状を判定しても良い。   Further, when the engine speed immediately after start-up decreases, feedback correction is performed by control for advancing the ignition timing or control for increasing the injection amount of gasoline. Therefore, the property of gasoline may be determined based on the correction amount of the ignition timing or the correction amount of the gasoline injection amount.

ガソリンの性状が重質と判定された場合は、重質度合いに基づいて水素の添加量を決定する。このとき、冷却水温に応じて筒内の燃焼状態は変動するため、冷却水温を考慮に入れて水素の添加量を決定することが好適である。   When it is determined that the gasoline is heavy, the amount of hydrogen to be added is determined based on the degree of heavyness. At this time, since the combustion state in the cylinder fluctuates according to the cooling water temperature, it is preferable to determine the addition amount of hydrogen in consideration of the cooling water temperature.

次に、図2のフローチャートに基づいて、本実施形態のシステムにおける処理の手順を説明する。先ず、ステップS1では、始動直後の機関回転数に基づいてガソリンの性状を判定する。このとき、上述したように点火時期、またはガソリン噴射量のフィードバック補正量に基づいてガソリンの性状を判定しても良い。   Next, a processing procedure in the system of this embodiment will be described based on the flowchart of FIG. First, in step S1, the property of gasoline is determined based on the engine speed immediately after starting. At this time, as described above, the property of gasoline may be determined based on the ignition timing or the feedback correction amount of the gasoline injection amount.

ステップS1でガソリンの性状が重質であると判定された場合は、ステップS2へ進む。ステップS2では、ガソリンの性状の重質度合い、および冷却水温などの運転状態を表すパラメータに基づいて、目標水素添加割合を算出する。ここでは、重質のガソリンに対応したマップを用い、マップに重質度合い、及び冷却水温などのパラメータを当てはめて目標水素添加割合を算出する。このとき、ガソリンの性状が重質であるほど目標水素添加割合が高く設定される。また、冷却水温が低いほど燃焼状態が低下するため、目標水素添加割合が高く設定される。   If it is determined in step S1 that the gasoline is heavy, the process proceeds to step S2. In step S2, the target hydrogen addition ratio is calculated based on parameters representing the operating condition such as the degree of heavy gasoline properties and the coolant temperature. Here, a map corresponding to heavy gasoline is used, and the target hydrogen addition ratio is calculated by applying parameters such as the degree of heavyness and cooling water temperature to the map. At this time, the target hydrogen addition ratio is set higher as the property of gasoline is heavier. Further, since the combustion state decreases as the cooling water temperature decreases, the target hydrogen addition ratio is set high.

一方、ステップS1でガソリンの性状が重質と判定されず、通常の性状と判定された場合は、ステップS3へ進む。この場合は、通常の性状のガソリンに対応したマップを用いて、マップに冷却水温などの運転状態を表すパラメータを当てはめて目標水素添加割合を算出する。なお、ステップS2,S3で算出された目標水素添加割合は、機関の負荷率に対して水素ガスの燃焼のエネルギーが負担する割合を表している。   On the other hand, when the property of gasoline is not determined to be heavy in step S1, and the normal property is determined, the process proceeds to step S3. In this case, a target hydrogen addition ratio is calculated by using a map corresponding to gasoline having normal properties and applying a parameter representing an operation state such as a cooling water temperature to the map. The target hydrogen addition ratio calculated in steps S2 and S3 represents the ratio of the energy of hydrogen gas combustion to the engine load factor.

ステップS2,S3の後はステップS4へ進む。ステップS4では、ステップS2,S3で決定した目標水素添加割合に基づいて、実際に水素燃料ポート噴射弁28から噴射する水素添加量を決定する。具体的には、アクセル開度と機関回転数から求めた負荷率に目標水素添加割合を乗算し、更に所定の係数を乗算することで水素添加量が決定される。そして、決定した水素添加量によって内燃機関10が運転される。   After steps S2 and S3, the process proceeds to step S4. In step S4, the hydrogen addition amount actually injected from the hydrogen fuel port injection valve 28 is determined based on the target hydrogen addition ratio determined in steps S2 and S3. Specifically, the hydrogen addition amount is determined by multiplying the load factor obtained from the accelerator opening and the engine speed by the target hydrogen addition ratio and further multiplying by a predetermined coefficient. Then, the internal combustion engine 10 is operated with the determined hydrogen addition amount.

以上説明したように実施の形態1によれば、ガソリンの性状が重質と判定された場合は、水素ガスの添加量を増加することができる。従って、重質燃料に起因する燃焼状態の悪化を確実に抑えることができ、エミッション、ドライバビリティを良好にすることが可能となる。   As described above, according to the first embodiment, when the property of gasoline is determined to be heavy, the amount of hydrogen gas added can be increased. Therefore, the deterioration of the combustion state caused by the heavy fuel can be surely suppressed, and the emission and drivability can be improved.

実施の形態2.
次に、この発明の実施の形態2について説明する。実施の形態2におけるシステム構成は図1に示したものと同様である。実施の形態2は、特に始動直後のファーストアイドル時に、エミッション、ドライバビリティの悪化を抑制するものである。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described. The system configuration in the second embodiment is the same as that shown in FIG. The second embodiment suppresses the deterioration of emission and drivability especially at the first idle immediately after starting.

ガソリンの性状が重質の場合、ガソリンが吸気ポート18の壁面、筒内の壁面に付着するため、特に冷間始動時に冷間ヘジテーションが発生し易くなり、エミッション、ドライバビリティが悪化する場合がある。このため、実施の形態2では、ファーストアイドル時に水素添加割合の初期値を高く設定して水素の添加量を増大させるようにしている。そして、ファーストアイドル時を経過した後は、ガソリンの性状に応じた下限値まで水素の添加量を減少させる制御を行う。   When the properties of gasoline are heavy, gasoline adheres to the wall surface of the intake port 18 and the wall surface in the cylinder, so that cold hesitation is likely to occur especially during cold start, and emission and drivability may be deteriorated. . For this reason, in the second embodiment, the initial value of the hydrogen addition ratio is set high during the first idling to increase the amount of hydrogen addition. Then, after the first idle time has elapsed, control is performed to reduce the amount of hydrogen added to the lower limit value according to the properties of gasoline.

このように、水素添加割合の初期値を一律に高い値に設定することで、ファーストアイドル時の燃焼がガソリンの性状に影響を受けてしまうことを抑止することができる。これにより、アイドル回転数を低い値に設定することができ、ファーストアイドル時の燃費を向上させることができ、エミッション、ドライバビリティを良好にすることができる。また、ファーストアイドル時以降は必要なレベルまで水素添加量を減少させるため、水素の使用量を最小限に抑えることができ、システム効率を高めることが可能となる。   In this way, by setting the initial value of the hydrogen addition ratio to a uniformly high value, it is possible to prevent the combustion at the time of the first idle from being affected by the properties of gasoline. Thereby, the idling speed can be set to a low value, the fuel efficiency at the time of the first idling can be improved, and the emission and drivability can be improved. Further, since the amount of hydrogen addition is reduced to a necessary level after the first idle, the amount of hydrogen used can be minimized, and the system efficiency can be increased.

次に、図3及び図4のフローチャートに基づいて、実施の形態2のシステムにおける処理の手順を説明する。ここで、図3のフローチャートは、ファーストアイドル時に水素添加割合を高く設定し、ファーストアイドル時以降は水素添加割合を下限値まで減少させる処理を示している。また、図4のフローチャートは、ファーストアイドル時以降に水素添加割合を減少させる際の下限値を、ガソリンの重質度合いに基づいて算出する処理を示している。   Next, processing procedures in the system of the second embodiment will be described based on the flowcharts of FIGS. 3 and 4. Here, the flowchart of FIG. 3 shows a process of setting the hydrogen addition rate high during the first idle, and reducing the hydrogen addition rate to the lower limit after the first idle. Further, the flowchart of FIG. 4 shows a process of calculating a lower limit value for decreasing the hydrogen addition ratio after the first idle based on the degree of gasoline heavyness.

最初に、図3の処理について説明する。先ず、ステップS11では、始動直後から2秒が経過しているか否かを判定し、現在の運転がファーストアイドル時の運転であるか否かを判定する。始動直後から2秒以内の場合はファーストアイドル時の運転であるため、ステップS12へ進む。   First, the process of FIG. 3 will be described. First, in step S11, it is determined whether or not 2 seconds have passed since the start, and it is determined whether or not the current operation is an operation during fast idle. If it is within 2 seconds immediately after the start, it is the operation at the time of the first idle, and the process proceeds to step S12.

ステップS12では、水素添加割合の初期値を設定する。水素添加割合の初期値は冷却水温に基づいてマップ算出される値であって、ガソリンの性状に関わらず燃焼が良好となるように十分に大きな値に設定されている。これにより、ファーストアイドル時の燃焼状態を常に良好にすることができ、安定してアイドリングを行うことが可能となる。従って、燃料の性状に起因してファーストアイドル時にエミッション、ドライバビリティが悪化してしまうことを確実に抑止できる。   In step S12, an initial value of the hydrogen addition ratio is set. The initial value of the hydrogen addition ratio is a value calculated on the basis of the coolant temperature, and is set to a sufficiently large value so that combustion is good regardless of the properties of gasoline. As a result, the combustion state at the time of first idling can always be made good, and idling can be performed stably. Therefore, it is possible to reliably prevent the emission and drivability from deteriorating during the first idling due to the properties of the fuel.

一方、ステップS11で始動後から2秒を超えている場合は、ステップS13へ進む。この場合、ステップS12の処理によって既にファーストアイドル時のアイドリングは安定した状態に維持されている。従って、必要量の水素ガスのみを供給するため、ステップS13以降の処理では水素添加割合を減少させる処理を行う。   On the other hand, if it is longer than 2 seconds after the start in step S11, the process proceeds to step S13. In this case, idling at the time of first idling has already been maintained in a stable state by the process of step S12. Therefore, in order to supply only a necessary amount of hydrogen gas, processing for reducing the hydrogen addition ratio is performed in the processing after step S13.

すなわち、ステップS13では、現在の水素添加割合が下限値よりも大きいか否かを判定する。ここで、水素添加割合の下限値は、後で図4のフローチャートで説明するようにガソリンの性状の重質度合いを表す重質指数から定められる。   That is, in step S13, it is determined whether or not the current hydrogen addition ratio is greater than the lower limit value. Here, the lower limit value of the hydrogen addition ratio is determined from a heavy index representing the degree of heavyness of the properties of gasoline as will be described later with reference to the flowchart of FIG.

ステップS13で現在の水素添加割合が下限値よりも大きい場合は、ステップS14へ進み、水素添加割合を所定値だけ減少させる処理を行う。一方、ステップS13で現在の水素添加割合が下限値以下の場合は、ステップS15へ進む。   When the current hydrogen addition ratio is larger than the lower limit value in step S13, the process proceeds to step S14, and a process for reducing the hydrogen addition ratio by a predetermined value is performed. On the other hand, if the current hydrogen addition ratio is equal to or lower than the lower limit value in step S13, the process proceeds to step S15.

ステップS12,S14の後はステップS15へ進む。ステップS15では、ステップS12,S14で決定した目標水素添加割合に基づいて、実際に水素燃料ポート噴射弁28から噴射する水素添加量を決定する。具体的には、アクセル開度と機関回転数から求めた負荷率に目標水素添加割合を乗算し、更に所定の係数を乗算することで水素添加量が決定される。そして、決定した水素添加量によって内燃機関10が運転される。   After steps S12 and S14, the process proceeds to step S15. In step S15, the hydrogen addition amount actually injected from the hydrogen fuel port injection valve 28 is determined based on the target hydrogen addition ratio determined in steps S12 and S14. Specifically, the hydrogen addition amount is determined by multiplying the load factor obtained from the accelerator opening and the engine speed by the target hydrogen addition ratio and further multiplying by a predetermined coefficient. Then, the internal combustion engine 10 is operated with the determined hydrogen addition amount.

次に、図4に基づいて図3のステップS13で使用する水素添加割合の下限値を算出する処理を説明する。先ず、ステップS21では、始動直後から2秒が経過しているか否かを判定し、現在の運転がファーストアイドル時の運転であるか否かを判定する。始動後から2秒以内の場合はファーストアイドル時の運転であるため、ステップS12へ進む。一方、始動後から2秒を超えている場合は、処理を終了する(RETURN)。   Next, processing for calculating the lower limit value of the hydrogen addition ratio used in step S13 of FIG. 3 will be described based on FIG. First, in step S21, it is determined whether or not 2 seconds have passed since the start, and it is determined whether or not the current operation is an operation at the time of first idle. If it is within 2 seconds after the start, it is the operation at the time of the first idle, so that the process proceeds to step S12. On the other hand, if it has exceeded 2 seconds since the start, the process is terminated (RETURN).

ステップS22へ進んだ場合、図3のステップS12〜S15の処理によって、水素添加割合の初期値に基づいて水素ガスが添加されている。ステップS22では、水素添加割合の初期値に基づいて水素が添加されている状態で、ガソリン噴射量を増減することによってアイドリング回転数を制御する。   When the process proceeds to step S22, hydrogen gas is added based on the initial value of the hydrogen addition ratio by the processes of steps S12 to S15 in FIG. In step S22, the idling speed is controlled by increasing or decreasing the gasoline injection amount in a state where hydrogen is added based on the initial value of the hydrogen addition ratio.

次のステップS23では、アイドリング回転数が所望の値に安定した時点で、このときのガソリン噴射量の増加量Δfを求める。ガソリンの性状が重質の場合、ガソリンの霧化の度合いが低いため、ファーストアイドル時におけるΔfの値は通常よりも大きくなる。   In the next step S23, when the idling speed is stabilized at a desired value, an increase amount Δf of the gasoline injection amount at this time is obtained. When the property of gasoline is heavy, since the degree of atomization of gasoline is low, the value of Δf at the time of first idling becomes larger than usual.

次のステップS24では、ステップS23で求めた増加量Δfに基づいて、増加量Δfとガソリンの性状の重質度合い(重質指数)との関係を規定したマップから重質指数を算出する。ここで、増加量Δfが大きいほど重質度合いが高いため、重質指数の値は大きくなる。   In the next step S24, based on the increase amount Δf obtained in step S23, a heavy index is calculated from a map defining the relationship between the increase amount Δf and the degree of heavy gasoline property (heavy index). Here, since the degree of weight is higher as the increase amount Δf is larger, the value of the weight index becomes larger.

次のステップS25では、重質指数と冷却水温に基づいて、水素添加割合の下限値を算出する。ここで、重質指数が大きいほどガソリンの性状の重質度合いが高く、水素の添加量を多くして燃焼を安定させる必要があるため、下限値は大きな値に設定される。また冷却水温が低いほど、水素の添加量を多くして燃焼を良好にする必要があるため、下限値は大きな値に設定される。ステップS25の後は処理を終了する。   In the next step S25, a lower limit value of the hydrogen addition ratio is calculated based on the heavy index and the cooling water temperature. Here, the higher the heavy index, the higher the degree of heavy gasoline properties, and it is necessary to stabilize the combustion by increasing the amount of hydrogen added, so the lower limit is set to a large value. Further, the lower the cooling water temperature is, the more hydrogen must be added to improve the combustion, so the lower limit value is set to a large value. After step S25, the process ends.

図4の処理によれば、ファーストアイドル時のガソリン噴射量の増加量Δfに基づいて水素添加割合の下限値を求めることができる。そして、求めた水素添加割合の下限値には、ガソリンの性状が考慮されているため、図3の処理によりファーストアイドル時以降は下限値以上の水素を添加することで、ガソリンの性状に起因して燃焼が不安定になることを抑止できる。従って、エミッション、ドライバビリティを良好にすることが可能となる。   According to the process of FIG. 4, the lower limit value of the hydrogen addition ratio can be obtained based on the increase amount Δf of the gasoline injection amount at the time of first idling. And since the property of gasoline is taken into consideration for the lower limit value of the obtained hydrogen addition ratio, it is attributed to the property of gasoline by adding more hydrogen than the lower limit value after the first idle by the processing of FIG. This can prevent the combustion from becoming unstable. Therefore, it is possible to improve the emission and drivability.

以上説明したように実施の形態2によれば、ファーストアイドル時に水素添加割合の初期値を高く設定して水素の添加量を増大させるようにしたため、ファーストアイドル時の燃焼状態がガソリンの性状によって悪化してしまうことを抑止できる。これにより、安定したアイドリングを行うことが可能となり、エミッション、ドライバビリティを良好にすることができる。また、ファーストアイドル時以降は必要なレベルまで水素添加量を減少させるため、水素の使用量を最小限に抑えることができ、システム効率を高めることが可能となる。   As described above, according to the second embodiment, the initial value of the hydrogen addition ratio is set high at the time of first idling to increase the amount of hydrogen addition, so that the combustion state at the time of first idling is deteriorated due to the properties of gasoline. Can be prevented. As a result, stable idling can be performed, and emission and drivability can be improved. Further, since the amount of hydrogen addition is reduced to a necessary level after the first idle, the amount of hydrogen used can be minimized, and the system efficiency can be increased.

実施の形態3.
次に、この発明の実施の形態3について説明する。実施の形態3は、ガソリンの性状に起因して始動直後の燃焼状態が不安定になった場合の他、その他の要因で始動直後の燃焼が不安定になった場合に、水素の添加量を増加することで筒内の燃焼状態を良好にするものである。なお、実施の形態3におけるシステム構成は図1に示したものと同様である。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described. In the third embodiment, when the combustion state immediately after starting becomes unstable due to the properties of gasoline, or when the combustion immediately after starting becomes unstable due to other factors, the amount of hydrogen added is reduced. This increases the combustion state in the cylinder. The system configuration in the third embodiment is the same as that shown in FIG.

ガソリンの性状以外の要因で始動時の燃焼が不安定になる場合として、例えば点火プラグに液滴状のガソリンが付着して燃料への着火性が低下した場合が挙げられる。また、高温時などに、ガソリン噴射弁26による噴射前のガソリンに気泡が生じ、ガソリン噴射弁26から噴射されるガソリンの量が指示値よりも減少した場合にも、やはり燃焼が不安定になる。   As a case where combustion at start-up becomes unstable due to a factor other than the property of gasoline, for example, a case where droplet-like gasoline adheres to a spark plug and the ignitability of the fuel decreases. In addition, when air bubbles are generated in the gasoline before being injected by the gasoline injection valve 26 at a high temperature or the like, and the amount of gasoline injected from the gasoline injection valve 26 is reduced below the indicated value, the combustion is also unstable. .

実施の形態3は、ガソリンの性状、または上記の要因を含む他の要因によって筒内の燃焼が不安定になった場合に、水素ガスの添加量を増加することで燃焼状態を良好にするものである。   In the third embodiment, when the in-cylinder combustion becomes unstable due to gasoline properties or other factors including the above factors, the amount of hydrogen gas added is increased to improve the combustion state. It is.

以下、図5のフローチャートに基づいて、本実施形態のシステムにおける処理の手順を説明する。先ず、ステップS31では、始動直後の機関回転数に基づいて筒内の燃焼状態を判定する。ガソリンの性状による要因、または上述した要因で筒内の燃焼状態が悪化している場合は、始動直後の機関回転数が低下するため、ステップS31では、燃焼状態を判定するためのしきい値を予め定めておき、始動直後の機関回転数がしきい値よりも低下した場合は筒内の燃焼状態が悪化しているものと判定する。   Hereinafter, a processing procedure in the system of the present embodiment will be described based on the flowchart of FIG. First, in step S31, the in-cylinder combustion state is determined based on the engine speed immediately after starting. If the in-cylinder combustion state has deteriorated due to the gasoline characteristics or the above-mentioned factors, the engine speed immediately after starting decreases, so in step S31, a threshold value for determining the combustion state is set. It is determined in advance, and it is determined that the in-cylinder combustion state has deteriorated when the engine speed immediately after starting falls below a threshold value.

また、筒内の燃焼状態の悪化に起因して始動直後の回転数が低下した場合は、点火時期を進角させる制御、またはガソリンの噴射量を増大させる制御によってフィードバック補正が行われる。従って、ステップS31では、点火時期の補正量、またはガソリン噴射量の補正量に基づいて筒内の燃焼状態を判定してもよい。   Further, when the rotation speed immediately after the start is reduced due to the deterioration of the combustion state in the cylinder, feedback correction is performed by control for advancing the ignition timing or control for increasing the injection amount of gasoline. Therefore, in step S31, the combustion state in the cylinder may be determined based on the correction amount of the ignition timing or the correction amount of the gasoline injection amount.

ステップS31で燃焼状態が悪化していると判定された場合は、ステップS32へ進む。ステップS32では、燃焼状態の悪化の度合い、および冷却水温など運転状態を表すパラメータに基づいて、目標水素添加割合を算出する。具体的には、燃焼状態が悪化している場合に使用するマップを用いて、機関回転数の低下量、点火時期の補正量、またはガソリン噴射量の補正量と、冷却水温などの運転状態を表すパラメータをマップに当てはめて目標水素添加割合を算出する。このとき、機関回転数の低下量又は上記補正量が大きいほど目標水素添加割合が高く設定される。また、冷却水温が低いほど燃焼状態が低下するため、目標水素添加割合は高く設定される。   If it is determined in step S31 that the combustion state has deteriorated, the process proceeds to step S32. In step S32, the target hydrogen addition ratio is calculated based on parameters representing the operating state such as the degree of deterioration of the combustion state and the coolant temperature. Specifically, using the map used when the combustion state is worsening, the engine speed reduction amount, ignition timing correction amount, or gasoline injection amount correction amount, and the operating state such as cooling water temperature The target hydrogen addition ratio is calculated by applying the parameter to the map. At this time, the target hydrogen addition ratio is set higher as the reduction amount of the engine speed or the correction amount is larger. Further, since the combustion state decreases as the cooling water temperature decreases, the target hydrogen addition ratio is set high.

一方、ステップS31で燃焼状態が正常と判定された場合は、ステップS33へ進む。この場合は、通常のマップを用いて、マップに冷却水温などの運転状態を表すパラメータを当てはめて目標水素添加割合を算出する。   On the other hand, if it is determined in step S31 that the combustion state is normal, the process proceeds to step S33. In this case, using a normal map, a target hydrogen addition ratio is calculated by applying a parameter representing an operation state such as cooling water temperature to the map.

ステップS32,S33の後はステップS34へ進む。ステップS34では、ステップS32,S33で決定した目標水素添加割合に基づいて、実際に水素燃料ポート噴射弁28から噴射する水素添加量を決定する。具体的には、アクセル開度と機関回転数から求めた負荷率に目標水素添加割合を乗算し、更に所定の係数を乗算することで水素添加量が決定される。そして、決定した水素添加量によって内燃機関10が運転される。   After steps S32 and S33, the process proceeds to step S34. In step S34, the hydrogen addition amount actually injected from the hydrogen fuel port injection valve 28 is determined based on the target hydrogen addition ratio determined in steps S32 and S33. Specifically, the hydrogen addition amount is determined by multiplying the load factor obtained from the accelerator opening and the engine speed by the target hydrogen addition ratio and further multiplying by a predetermined coefficient. Then, the internal combustion engine 10 is operated with the determined hydrogen addition amount.

以上説明したように実施の形態3によれば、始動直後の機関回転数の低下量、点火時期の補正量、またはガソリン噴射量の補正量が所定値を超えている場合は、水素ガスの添加量を増加することができる。従って、始動時における燃焼状態の悪化を確実に抑えることができ、エミッション、ドライバビリティを良好にすることが可能となる。   As described above, according to the third embodiment, when the reduction amount of the engine speed immediately after the start, the correction amount of the ignition timing, or the correction amount of the gasoline injection amount exceeds a predetermined value, the addition of hydrogen gas The amount can be increased. Therefore, it is possible to reliably suppress the deterioration of the combustion state at the start, and to improve the emission and drivability.

本発明の各実施形態に係る水素添加内燃機関のシステムを示す模式図である。It is a mimetic diagram showing a system of a hydrogenation internal-combustion engine concerning each embodiment of the present invention. 実施の形態1の処理の手順を示すフローチャートである。3 is a flowchart illustrating a processing procedure according to the first embodiment. 実施の形態2の処理の手順を示すフローチャートである。10 is a flowchart illustrating a processing procedure according to the second embodiment. 実施の形態2の処理の手順を示すフローチャートである。10 is a flowchart illustrating a processing procedure according to the second embodiment. 実施の形態3の処理の手順を示すフローチャートである。10 is a flowchart illustrating a processing procedure according to the third embodiment.

符号の説明Explanation of symbols

10 水素添加内燃機関
26 ガソリン噴射弁
28 水素燃料ポート噴射弁
50 ECU
DESCRIPTION OF SYMBOLS 10 Hydrogen addition internal combustion engine 26 Gasoline injection valve 28 Hydrogen fuel port injection valve 50 ECU

Claims (1)

燃焼の燃料として炭化水素燃料と共に水素ガスを用いる水素添加内燃機関の制御装置であって、
始動直後の機関回転数の低下量、始動直後の点火時期進角のフィードバック補正値、又は始動直後の炭化水素燃料の噴射量増大のフィードバック補正値を取得する手段と、
前記機関回転数の低下量、前記点火時期進角のフィードバック補正値、又は前記炭化水素燃料の噴射量増大のフィードバック補正値が所定値以上の場合に、炭化水素燃料に対する水素ガスの添加割合を増加させる添加割合増加手段と、
を備えたことを特徴とする水素添加内燃機関の制御装置。
A control device for a hydrogenated internal combustion engine that uses hydrogen gas together with a hydrocarbon fuel as a combustion fuel,
Means for obtaining a reduction amount of the engine speed immediately after the start, a feedback correction value of the ignition timing advance immediately after the start, or a feedback correction value of an increase in the injection amount of hydrocarbon fuel immediately after the start;
When the amount of decrease in the engine speed, the feedback correction value for the ignition timing advance, or the feedback correction value for the increase in the injection amount of the hydrocarbon fuel is equal to or greater than a predetermined value, the proportion of hydrogen gas added to the hydrocarbon fuel is increased. Means for increasing the addition ratio,
A control device for a hydrogenated internal combustion engine, comprising:
JP2008027791A 2008-02-07 2008-02-07 Controller of hydrogen-added internal combustion engine Pending JP2008121690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027791A JP2008121690A (en) 2008-02-07 2008-02-07 Controller of hydrogen-added internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027791A JP2008121690A (en) 2008-02-07 2008-02-07 Controller of hydrogen-added internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004227811A Division JP4103867B2 (en) 2004-08-04 2004-08-04 Control device for hydrogenated internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008121690A true JP2008121690A (en) 2008-05-29

Family

ID=39506667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027791A Pending JP2008121690A (en) 2008-02-07 2008-02-07 Controller of hydrogen-added internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008121690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118008598A (en) * 2024-04-09 2024-05-10 潍柴动力股份有限公司 Control method of ammonia engine system and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221193A (en) * 1993-01-29 1994-08-09 Mazda Motor Corp Gas fuel feed engine
JP2004036538A (en) * 2002-07-04 2004-02-05 Toyota Motor Corp Internal combustion engine compressing and self-igniting mixture, and controlling method for the internal combustion engine
JP2004116398A (en) * 2002-09-26 2004-04-15 Toyota Motor Corp Internal combustion engine using hydrogen and method for operating the same
JP2004522039A (en) * 2001-03-27 2004-07-22 トヨタ自動車株式会社 Fuel supply system for internal combustion engine having a membrane for separating gasoline into high octane fuel and low octane fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221193A (en) * 1993-01-29 1994-08-09 Mazda Motor Corp Gas fuel feed engine
JP2004522039A (en) * 2001-03-27 2004-07-22 トヨタ自動車株式会社 Fuel supply system for internal combustion engine having a membrane for separating gasoline into high octane fuel and low octane fuel
JP2004036538A (en) * 2002-07-04 2004-02-05 Toyota Motor Corp Internal combustion engine compressing and self-igniting mixture, and controlling method for the internal combustion engine
JP2004116398A (en) * 2002-09-26 2004-04-15 Toyota Motor Corp Internal combustion engine using hydrogen and method for operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118008598A (en) * 2024-04-09 2024-05-10 潍柴动力股份有限公司 Control method of ammonia engine system and vehicle

Similar Documents

Publication Publication Date Title
JP4103867B2 (en) Control device for hydrogenated internal combustion engine
EP2906799B1 (en) Fuel system protection in a multi-fuel internal combustion engine
US8918268B2 (en) Malfunction detecting device for internal combustion engine
KR20080070751A (en) Control apparatus for internal combustion engine
US7444994B2 (en) Control system for internal combustion engine
US20100145596A1 (en) Control apparatus and control method for internal combustion engine
JP4453524B2 (en) Control device for internal combustion engine
JP4816466B2 (en) Internal combustion engine control apparatus and method
JP2009121364A (en) Fuel injection control device
JP5867441B2 (en) Control device for internal combustion engine
JP2008121690A (en) Controller of hydrogen-added internal combustion engine
JP4863119B2 (en) Internal combustion engine operation control method and apparatus
JP2006105088A (en) Hydrogenation internal combustion engine
JP7157556B2 (en) Control device and control method
JP2010038142A (en) Injection amount control device for internal combustion engine
KR100726751B1 (en) Control system for hydrogen addition internal combustion engine
JP2013032778A (en) Fuel injection control device for engine
JP2008064055A (en) Fuel injection control unit for multi-fuel internal combustion engine
JP2006046077A (en) Controller for hydrogen-added internal combustion engine
JP2007040128A (en) Fuel injection control device for direct injection internal combustion engine
JP2006132490A (en) Hydrogen addition internal combustion engine
JP2024088240A (en) Fuel injection control device
JP2010144642A (en) Control device for internal combustion engine
JP2008121582A (en) Control device for internal combustion engine
JP2000186597A (en) Direct injection type internal combustion engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706