JP2008121128A - Artificial leather and method for producing the same - Google Patents

Artificial leather and method for producing the same Download PDF

Info

Publication number
JP2008121128A
JP2008121128A JP2006303536A JP2006303536A JP2008121128A JP 2008121128 A JP2008121128 A JP 2008121128A JP 2006303536 A JP2006303536 A JP 2006303536A JP 2006303536 A JP2006303536 A JP 2006303536A JP 2008121128 A JP2008121128 A JP 2008121128A
Authority
JP
Japan
Prior art keywords
fiber
artificial leather
polymer elastic
woven
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006303536A
Other languages
Japanese (ja)
Inventor
Shoji Meguro
将司 目黒
Hisao Yoneda
久夫 米田
Yasuhiro Yoshida
康弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006303536A priority Critical patent/JP2008121128A/en
Publication of JP2008121128A publication Critical patent/JP2008121128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an artificial leather using ultra fine fibers comprising polylactic acid which is a raw material originated from plants, thereby reducing the employment of petroleum raw materials. <P>SOLUTION: This artificial leather which comprises an interlaced fiber product prepared by integrally laminating a nonwoven fabric comprising ultra fine fiber bundles to a woven or knitted fabric and an elastic polymer impregnated in the interlaced fiber product is characterized by satisfying the following (1) to (3). (1) The ultra fine fibers comprise polylactic acid. (2) The strength of single fibers constituting the woven or knitted fabric is 2.0 to 4.5 cN/dtex. (3) The elastic polymer is partially fused to the outer peripheries of the ultra fine fiber bundles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、人工皮革を構成する原料の一部に石油代替物を使用し、石油製品の使用を抑えて得られる人工皮革に関するものである。さらに詳しくは、石油代替物として、ポリ乳酸を用いても、天然皮革調の充実感や柔軟性と十分な実用強度を兼ね備えた人工皮革に関するものである。   The present invention relates to an artificial leather obtained by using a petroleum substitute as a part of raw materials constituting an artificial leather and suppressing the use of petroleum products. More specifically, the present invention relates to an artificial leather having natural leather-like fullness and flexibility and sufficient practical strength even when polylactic acid is used as a petroleum substitute.

人工皮革は、軽量性や取り扱いの容易さ、品質安定性などの特徴が消費者に認められ、靴、鞄、小物入れに代表される雑貨分野、ソファーの上張り材や車両内装材等のインテリア分野および衣料分野などの幅広い用途で天然皮革の代替素材として使用されている。その一方で近年、地球環境保全および石油代替の見地から、これら人工皮革に対しても環境負荷を低減し、脱石油が求められるようになってきた。このような背景から現在、石油代替物として植物由来プラスチックを使用した人工皮革が求められている。   Artificial leather is recognized by consumers for its light weight, ease of handling, quality stability, etc., and is used in household goods such as shoes, bags and accessories, interiors such as sofa upholstery materials and vehicle interior materials. It is used as a substitute for natural leather in a wide range of applications such as fields and clothing. On the other hand, in recent years, from the viewpoint of global environmental conservation and oil replacement, these artificial leathers have also been required to reduce the environmental load and to remove oil. From such a background, artificial leather using plant-derived plastics is now being demanded as a substitute for petroleum.

植物由来プラスチックとしては現在、トウモロコシ、バナナ、竹、海藻など様々な植物に含まれるでんぷんを酵素でグルコースに分解した後、乳酸を取り出し人工的に重合させたポリ乳酸がその代表例として用いられ、その耐熱性や強度の面で注目されている。ポリ乳酸は融点が約170℃で溶融紡糸が可能であり、得られたポリ乳酸繊維の強度はポリエステルに匹敵するものである。さらに、ポリ乳酸繊維は焼却の際には燃焼ガス中にNOx等が発生せず、また燃焼熱はポリエチレンやポリプロピレンなどの1/2〜1/3程度である。そして生分解性としても注目されている。   As a plant-derived plastic, polylactic acid obtained by degrading starch contained in various plants such as corn, banana, bamboo, seaweed, etc. into glucose with an enzyme and taking out lactic acid artificially is used as a representative example. It is attracting attention in terms of its heat resistance and strength. Polylactic acid can be melt-spun at a melting point of about 170 ° C., and the strength of the obtained polylactic acid fiber is comparable to that of polyester. Furthermore, polylactic acid fibers do not generate NOx or the like in the combustion gas during incineration, and the combustion heat is about 1/2 to 1/3 of polyethylene or polypropylene. And it is also attracting attention as biodegradability.

このような状況の下でポリ乳酸を材料とする繊維構造物もこれまでに多く商品化が試みられているが、生分解性極細繊維束からなる絡合不織布と高分子弾性体を使用した、天然皮革調の充実感と柔軟性および十分な実用強度を有する人工皮革は未だ上市されていないのが現状である。例えば、ポリ乳酸繊維よりなるニードルパンチ不織布を使用した靴中敷が提案されている(例えば、特許文献1参照)。しかしながら、該発明では短繊維を使用し、かつ高分子弾性体を使用していないため不織布の強力が弱く、このままでは染色工程に耐えられない。また、染色しない場合でも不織布の強力が不十分なため、接着剤を介して織編物等の補強材と積層する必要があり、得られたシート材は充実感に乏しく、表面の折れ皺として挫屈感が大きく、ペーパーライクな物になり易い。
一方で、ポリ乳酸短繊維を使用し、カード、ニードルパンチ処理を施して得られた不織布にポリウレタンバインダーを含浸し、起毛し、次いで、分散染料で染色して得られるシート材では、ポリウレタン中に取り込まれた分散染料が剥落し易い。また、染色堅牢度が不十分であるため、アルカリ条件下で還元・洗浄する必要がある。しかしながら、ポリ乳酸繊維はアルカリ条件下で容易に加水分解されるため、このような方法では実用強度として十分な人工皮革は得られ難い。つまり、ポリ乳酸繊維を短繊維の形状で使用する場合、ウレタンバインダーの使用の有無に関わらず、天然皮革調の充実感と柔軟性および十分な実用強度を兼ね備えた人工皮革は得られ難いものであり、結局商品として上市されていないのが実情である。
Under such circumstances, there have been many attempts to commercialize fiber structures made of polylactic acid, but using entangled non-woven fabrics composed of biodegradable ultrafine fiber bundles and polymer elastic bodies, At present, artificial leather having natural leather-like fullness and flexibility and sufficient practical strength has not yet been put on the market. For example, a shoe insole using a needle punched nonwoven fabric made of polylactic acid fiber has been proposed (see, for example, Patent Document 1). However, in this invention, since the short fiber is used and the polymer elastic body is not used, the strength of the nonwoven fabric is weak, and the dyeing process cannot be endured as it is. In addition, even if not dyed, the strength of the nonwoven fabric is insufficient, so it is necessary to laminate it with a reinforcing material such as a woven or knitted fabric through an adhesive, and the obtained sheet material has a poor sense of fullness. It is easy to become a paper-like thing.
On the other hand, in a sheet material obtained by impregnating a polyurethane binder into a nonwoven fabric obtained by using polylactic acid short fibers, card and needle punching treatment, raising and then dyeing with a disperse dye, The incorporated disperse dye is easy to peel off. Moreover, since the dyeing fastness is insufficient, it is necessary to reduce and wash under alkaline conditions. However, since polylactic acid fibers are easily hydrolyzed under alkaline conditions, it is difficult to obtain artificial leather sufficient as practical strength by such a method. In other words, when using polylactic acid fibers in the form of short fibers, it is difficult to obtain artificial leather that combines natural leather-like fullness and flexibility with sufficient practical strength, regardless of whether or not a urethane binder is used. There is a fact that it is not put on the market as a product after all.

その他にも、融点が130℃以上の脂肪族ポリエステルを島成分とする海島型断面複合
繊維から得られる単糸繊度が0.01〜1dtexの極細繊維を使用した織編物が提案さ
れており(例えば、特許文献2参照)、さらにはポリ−L乳酸とポリ−D乳酸のブレンド物
からなるポリ乳酸繊維を用いてなる黒発色性に優れた繊維構造物およびその製造方法が提
案されている(例えば、特許文献3および4参照)。しかしながら、これらはいずれも織布、
編布の製造に適した、実質的に高分子バインダーを含まないポリ乳酸繊維構造物に関する
ものであり、衣料用途でのソフト感や発色性は有するものの、天然皮革特有の丸みのある
充実感や自然な外観を有する人工皮革を製造することはできなかった。
In addition, a woven or knitted fabric using ultrafine fibers having a single yarn fineness of 0.01 to 1 dtex obtained from a sea-island cross-section composite fiber containing an aliphatic polyester having an melting point of 130 ° C. or higher as an island component has been proposed (for example, Patent Document 2), and further, a fiber structure excellent in black color development using a polylactic acid fiber composed of a blend of poly-L lactic acid and poly-D lactic acid and a method for producing the same are proposed (for example, And Patent Documents 3 and 4). However, these are all woven fabrics,
It relates to polylactic acid fiber structures that are substantially free of polymer binders, suitable for the manufacture of knitted fabrics. Artificial leather having a natural appearance could not be produced.

特開2004− 49725号公報JP 2004-49725 A 特開2000−226734号公報JP 2000-226734 A 特開2002−227034号公報JP 2002-227034 A 特開2002−227035号公報JP 2002-227035 A

本発明は、上述の課題を解決するものであり、植物由来原料であるポリ乳酸からなる極細繊維を用いることによって、石油原料の使用を低減した人工皮革に関する。さらに詳しくは、天然皮革調の充実感や柔軟性と十分な実用強度を兼ね備えた人工皮革を提供するものである。   This invention solves the above-mentioned subject and relates to the artificial leather which reduced the use of a petroleum raw material by using the ultrafine fiber which consists of polylactic acid which is a plant-derived raw material. More specifically, the present invention provides an artificial leather that combines natural leather-like fullness and flexibility with sufficient practical strength.

すなわち本発明は、極細繊維束から構成された不織布と織編物が積層一体化されてなる繊維絡合体とその内部に高分子弾性体が含浸された人工皮革であって、以下(1)〜(3)を満足することを特徴とする人工皮革である。
(1)極細繊維がポリ乳酸からなること
(2)織編物を構成する単繊維の強度が2.0cN/dtex〜4.5cN/dtexであること
(3)高分子弾性体の一部が極細繊維束の外周部と密着していること
そして、下記(1)〜(5)の工程を順次行うことを特徴とする人工皮革の製造方法である。
(1)ポリ乳酸を島成分、水溶性高分子成分を海成分とした極細繊維発生型繊維から構成されたウェブまたは不織布を単繊維の強度が2.0cN/dtex〜4.5cN/dtexからなる織編物と積層一体化して繊維絡合体を製造する工程
(2)繊維絡合体を面積収縮率で5%以上30%以下で乾熱収縮する工程
(3)繊維絡合体の内部に高分子弾性体水分散液を含浸する工程
(4)赤外線を照射し、繊維絡合体の表面温度を高分子弾性体水分散液のゲル化温度より10℃以上高い温度まで昇温した状態で繊維絡合体の水分率を50%以下とした後、残りの水分を乾燥除去して高分子弾性体を凝固する工程
(5)水溶性高分子成分を熱水で抽出除去し、極細繊維束化する工程
That is, the present invention is a fiber entangled body obtained by laminating and integrating a nonwoven fabric composed of ultrafine fiber bundles and a woven or knitted fabric, and an artificial leather impregnated with a polymer elastic body therein, the following (1) to ( It is an artificial leather characterized by satisfying 3).
(1) The ultrafine fiber is made of polylactic acid (2) The strength of the single fiber constituting the woven or knitted fabric is 2.0 cN / dtex to 4.5 cN / dtex (3) A part of the polymer elastic body is extremely fine It is in close contact with the outer peripheral portion of the fiber bundle. And, it is a method for producing artificial leather, characterized by sequentially performing the following steps (1) to (5).
(1) A web or non-woven fabric composed of ultrafine fiber-generating fibers having polylactic acid as an island component and water-soluble polymer component as a sea component has a single fiber strength of 2.0 cN / dtex to 4.5 cN / dtex. A process of producing a fiber entangled body by laminating and integrating with a woven or knitted fabric (2) A process of dry-heat shrinking the fiber entangled body at an area shrinkage rate of 5% to 30% (3) A polymer elastic body inside the fiber entangled body Step of impregnating aqueous dispersion (4) Irradiation with infrared rays, moisture in fiber entangled body in a state where surface temperature of fiber entangled body is raised to a temperature higher by 10 ° C. or more than the gelation temperature of polymer elastic water dispersion (5) Step of extracting and removing water-soluble polymer components with hot water to form ultrafine fiber bundles

本発明は、石油原料を用いず植物由来プラスチックを用いても、天然皮革調の充実感、柔軟性に優れ、さらに十分な実用強度を兼ね備えた人工皮革を得ることができる。   The present invention can provide an artificial leather that is excellent in natural leather-like texture and flexibility and has sufficient practical strength even when a plant-derived plastic is used without using petroleum raw materials.

以下、本発明を詳細に説明する。
前記した通り、本発明は石油代替物を用い、風合いや物性に優れた人工皮革を得ることである。このため本発明の繊維絡合体を構成する極細繊維は、強度がポリエステルに匹敵する植物由来プラスチックのポリ乳酸である必要がある。本発明に用いるポリ乳酸は、L−乳酸とD−乳酸の光学異性体の共重合体を主成分とするものであるが、ポリL−乳酸を用いることが一般的である。なお本発明においてポリL−乳酸を用いる場合、光学純度は90.0〜99.5%が好ましい。光学異性体であるD−乳酸の含有量が増加すると結晶性が低下するとともに融点が下がり耐熱性に劣る場合がある。また、D体比率が下がると生分解し難くなる傾向がある。一般実用繊維として用いる場合は、耐熱性が必要なことが多く、かかる観点から光学純度は96.0〜99.5%がより好ましい。その他、D−乳酸とヒドロキシカルボン酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体が挙げられる。ポリ乳酸の融点は80℃以上であることが好ましい。前記ヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げられる。紡糸性および得られる繊維強度の点で、ポリ乳酸の数平均分子量は、約20,000〜100,000が好ましく、より好ましくは40,000〜100,000、さらに好ましくは60,000〜100,000である。数平均分子量が20,000未満の場合は、繊維として十分な強度が得られない。逆に100,000を超える場合は、ポリマーの流動性が悪く紡糸し難くなる。
ポリ乳酸繊維には、加水分解抑制剤をポリ乳酸に対し0.1〜15質量%添加していることが好ましい。即ち、ポリ乳酸繊維は耐アルカリ加水分解性が十分でないこと、特に本発明の人工皮革の表面を起毛処理し分散染料で染色してスエード調人工皮革とした場合、染色して得られる人工皮革は、ポリウレタンで代表される高分子弾性体中に取り込まれた染料が剥落し易く、染色堅牢度が不充分となるため、アルカリ条件下で還元・洗浄する必要があるが、ポリ乳酸繊維はアルカリ条件下で加水分解され易く強度低下を招く恐れを解消する点で加水分解抑制剤を添加する。
そして、0.1質量%以上とすることで耐アルカリ加水分解抑制効果と糸物性が優れる。また、15質量%以下とすることで、紡糸安定性に優れる。
加水分解抑制剤としては一般のポリエステルの末端封鎖剤、すなわち末端カルボン酸と反応するカルボジイミドやグリシジル基を有するようなものが好ましく、その中でもカルボジイミドが効果的な点でより好ましく用いられる。加水分解抑制剤の添加方法としては、加水分解抑制剤と樹脂を溶融混練する方法が好ましく用いられる。
本発明の人工皮革の不織布を構成する単繊維繊度は、人工皮革の用途によって任意に選択でき特に制限されるものではないが、得られる人工皮革の風合やスエード調人工皮革としたときの表面外観を向上させる点、から0.0001〜0.5デシテックスが好ましく、0.001〜0.45デシテックスがより好ましく、発色性や高分子弾性体の把持性の点で0.002〜0.3デシテックスが特に好ましい。それらの繊維を得る方法としては極細繊維発生型繊維から極細繊維束と変換する方法が効率的に極細繊維束が得られる点で好ましく用いられる。
Hereinafter, the present invention will be described in detail.
As described above, the present invention is to obtain an artificial leather excellent in texture and physical properties using a petroleum substitute. For this reason, the ultrafine fiber which comprises the fiber entanglement body of this invention needs to be the polylactic acid of the plant origin plastics whose intensity | strength is comparable to polyester. The polylactic acid used in the present invention is mainly composed of a copolymer of optical isomers of L-lactic acid and D-lactic acid, and poly L-lactic acid is generally used. In the present invention, when poly L-lactic acid is used, the optical purity is preferably 90.0 to 99.5%. When the content of optical isomer D-lactic acid is increased, the crystallinity is lowered and the melting point is lowered, which may be inferior in heat resistance. In addition, when the D-body ratio decreases, biodegradation tends to be difficult. When used as a general practical fiber, heat resistance is often required, and from this viewpoint, the optical purity is more preferably 96.0 to 99.5%. Other examples include a copolymer of D-lactic acid and hydroxycarboxylic acid, and a copolymer of L-lactic acid and hydroxycarboxylic acid. The melting point of polylactic acid is preferably 80 ° C. or higher. Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid, and hydroxyoctanoic acid. In terms of spinnability and fiber strength to be obtained, the number average molecular weight of polylactic acid is preferably about 20,000 to 100,000, more preferably 40,000 to 100,000, still more preferably 60,000 to 100,000. 000. When the number average molecular weight is less than 20,000, sufficient strength as a fiber cannot be obtained. Conversely, when it exceeds 100,000, the fluidity of the polymer is poor and spinning becomes difficult.
It is preferable that 0.1 to 15% by mass of a hydrolysis inhibitor is added to the polylactic acid fiber with respect to the polylactic acid. That is, polylactic acid fibers are not sufficiently resistant to alkali hydrolysis. In particular, when the surface of the artificial leather of the present invention is brushed and dyed with a disperse dye to form a suede-like artificial leather, the artificial leather obtained by dyeing is The dye incorporated in the polymer elastic body represented by polyurethane is easy to peel off and the dyeing fastness is insufficient, so it is necessary to reduce and wash under alkaline conditions. A hydrolysis inhibitor is added in that it is easily hydrolyzed underneath and eliminates the fear of causing a decrease in strength.
And by setting it as 0.1 mass% or more, the alkaline hydrolysis-resistant inhibitory effect and thread | yarn physical property are excellent. Moreover, it is excellent in spinning stability by setting it as 15 mass% or less.
The hydrolysis inhibitor is preferably a general polyester end-capping agent, that is, one having a carbodiimide or glycidyl group that reacts with a terminal carboxylic acid, and among them, carbodiimide is more preferably used in terms of effectiveness. As a method for adding the hydrolysis inhibitor, a method of melt-kneading the hydrolysis inhibitor and the resin is preferably used.
The monofilament fineness constituting the nonwoven fabric of the artificial leather of the present invention is not particularly limited and can be arbitrarily selected depending on the use of the artificial leather, but the surface of the resulting artificial leather texture or suede-like artificial leather From the point of improving the appearance, 0.0001 to 0.5 dtex is preferable, 0.001 to 0.45 dtex is more preferable, and 0.002 to 0.3 in terms of color developability and gripping property of the polymer elastic body. Decitex is particularly preferred. As a method for obtaining these fibers, a method of converting an ultrafine fiber generating fiber into an ultrafine fiber bundle is preferably used in that an ultrafine fiber bundle can be obtained efficiently.

極細繊維発生型繊維は、海島型複合紡糸繊維、海島型混合紡糸繊維などで代表される海島型繊維や、花弁型や積層型繊維等の多成分系複合繊維のいずれも使用できる。そして、極細繊維化を安定的に行うことが可能な点で海島型繊維を用いることが好ましい。海島型繊維の島成分としては、前述のポリ乳酸を用いるが、海成分としては、溶剤を用いず極細繊維を発生させることが可能であり環境に配慮する点、またポリ乳酸が熱による物性低下を生じ易いことから抽出時の熱付加時間を低減可能な抽出成分として水溶性高分子成分であって紡糸可能な成分であることが重要である。例えば、水溶性高分子成分としては、水溶液(以下、水系溶剤と称することもある。)で抽出処理できるポリマーであれば、公知のポリマーが使用できるが、水系溶剤で溶解可能なポリビニルアルコール共重合体類(以下、PVAと略することもある。)を用いることが好ましい。PVAは容易に熱水で溶解除去が可能であり、抽出処理する際に極細繊維成分や高分子弾性体成分の分解反応が実質的に起こらないため極細繊維成分に用いる熱可塑性樹脂および高分子弾性体成分の限定が無い点、更には環境に配慮した点等から好適に用いられる。   As the ultrafine fiber-generating fiber, any of sea-island type fibers typified by sea-island type composite spun fibers, sea-island type mixed spun fibers, and multicomponent composite fibers such as petal-type and laminated-type fibers can be used. And it is preferable to use a sea island type fiber at the point which can perform ultrafine fiber formation stably. The above-mentioned polylactic acid is used as the island component of the sea-island fiber, but as the sea component, it is possible to generate ultrafine fibers without using a solvent, and the environment is considered, and polylactic acid is deteriorated by heat. Therefore, it is important that the extractable component is a water-soluble polymer component that can be spun as an extractable component that can reduce the heat application time during extraction. For example, as the water-soluble polymer component, a known polymer can be used as long as it is a polymer that can be extracted with an aqueous solution (hereinafter sometimes referred to as an aqueous solvent), but a polyvinyl alcohol copolymer that can be dissolved in an aqueous solvent can be used. It is preferable to use a compound (hereinafter sometimes abbreviated as PVA). PVA can be easily dissolved and removed with hot water, and since the decomposition reaction of the ultrafine fiber component and the elastic polymer component does not substantially occur during the extraction process, the thermoplastic resin and the high polymer elasticity used for the ultrafine fiber component It is preferably used from the point that there is no limitation on body components, and further in consideration of the environment.

上記PVAはホモポリマーであっても共重合単位を導入した変性ポリビニルアルコールであってもよいが、溶融紡糸性、水溶性、繊維物性および抽出処理時の収縮特性などの観点から、共重合単位を導入したPVAであることが好ましく、エチレン、プロピレン、1−ブテン、イソブテン等の炭素数4以下のα―オレフィン類、メチルビニルエーテル、エチレンビニルエーテル、n−プロピルビニルエーテル、i−プロピルビニルエーテル、n−ブチルビニルエーテル等のビニルエーテル類がより好ましい。また炭素数4以下のα−オレフィン類および/またはビニルエーテル類に由来する単位は、PVA中に1〜20モル%存在していることが好ましい。さらに、α−オレフィンがエチレンである場合において、繊維物性が高くなることから、特にエチレン単位が4〜15モル%変成されたPVAを使用することがより好ましい。
またけん化度は90〜99.99モル%が好ましく、92〜99.98モル%がより好ましく、94〜99.96モル%がさらに好ましく、95〜99.95モル%が特に好ましい。けん化度が90モル%未満の場合には、PVAの熱安定性が悪く熱分解やゲル化によって満足な複合溶融紡糸を行うことができない。一方、けん化度が99.99モル%よりも大きいPVAは安定に製造することが困難である。
The PVA may be a homopolymer or a modified polyvinyl alcohol introduced with a copolymer unit. However, from the viewpoints of melt spinnability, water solubility, fiber properties, and shrinkage characteristics during extraction processing, the copolymer unit may be Preferably, the introduced PVA is an α-olefin having 4 or less carbon atoms such as ethylene, propylene, 1-butene, isobutene, methyl vinyl ether, ethylene vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether. More preferred are vinyl ethers such as Moreover, it is preferable that 1-20 mol% of units derived from α-olefins having 4 or less carbon atoms and / or vinyl ethers are present in PVA. Furthermore, when the α-olefin is ethylene, the fiber physical properties are improved, and therefore, it is more preferable to use PVA in which 4 to 15 mol% of ethylene units are particularly modified.
The saponification degree is preferably 90 to 99.99 mol%, more preferably 92 to 99.98 mol%, further preferably 94 to 99.96 mol%, and particularly preferably 95 to 99.95 mol%. When the saponification degree is less than 90 mol%, the thermal stability of PVA is poor and satisfactory composite melt spinning cannot be performed by thermal decomposition or gelation. On the other hand, PVA having a saponification degree larger than 99.99 mol% is difficult to produce stably.

また、極細繊維発生型繊維を構成する水溶性高分子成分とポリ乳酸成分の質量比率としては、10/90〜60/40の範囲が、極細繊維発生型繊維の断面における水溶性高分子成分とポリ乳酸の分散安定性が良好であることから、発生する極細繊維および極細繊維束が均一となり、得られる人工皮革の風合いに優れる点、スエード調人工皮革とした際に、均一な立毛感が得られる点で好ましい。   Moreover, as a mass ratio of the water-soluble polymer component and the polylactic acid component constituting the ultrafine fiber generating fiber, the range of 10/90 to 60/40 is the range of the water soluble polymer component in the cross section of the ultrafine fiber generating fiber. Since the dispersion stability of polylactic acid is good, the generated ultrafine fibers and ultrafine fiber bundles are uniform, the texture of the resulting artificial leather is excellent, and when it is made a suede-like artificial leather, a uniform raised feeling is obtained. This is preferable.

本発明の極細繊維束を構成するポリ乳酸繊維は、顔料を添加していても良い。また、顔料の添加方法としては、極細繊維を構成するポリ乳酸中における顔料の分散性を良好にするため、極細繊維を構成するポリ乳酸と顔料を押出機などのコンパウンド設備を用いて混練した後ペレット化したマスターバッチ方式で顔料を添加する方法を採用するのが好ましい。また、極細繊維成分には本発明の目的や効果を損なわない範囲で、銅化合物などの安定剤、着色剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、難燃剤、可塑剤、潤滑剤、結晶化速度遅延剤を重合反応時、またはその後の工程で添加しても良い。微粒子の種類は特に限定されず、また、ポリ乳酸には、必要に応じて平均粒子径が10μm以下の微粒子を0.1〜5質量%、重合時又は重合後に添加することができる。例えば、シリカゲル(コロイダルシリカ)微粒子、乾式法シリカ微粒子、酸化アルミニウムを含有する乾式法シリカ微粒子、粒子表面にアルキル基を有し、かつ粒子表面のシラノール基を封鎖した乾式法シリカ微粒子、アルミナゾル(コロイダルアルミナ)微粒子、アルミナ微粒子、酸化チタン微粒子、炭酸カルシウムゾル(コロイダル炭酸カルシウム)微粒子、硫酸バリウムなどの不活性微粒子、およびリン化合物と金属化合物とを析出せしめた内部析出系微粒子等を好ましく例示できる。これらは単独で使用しても2種類以上併用しても良く、紡糸性、延伸性が向上する場合がある。   The polylactic acid fiber constituting the ultrafine fiber bundle of the present invention may contain a pigment. Also, as a method for adding the pigment, in order to improve the dispersibility of the pigment in the polylactic acid constituting the ultrafine fiber, the polylactic acid constituting the ultrafine fiber and the pigment are kneaded using a compound facility such as an extruder. It is preferable to employ a method of adding a pigment by a master batch method in which pellets are formed. In addition, a stabilizer such as a copper compound, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a flame retardant, and a plasticizer are included in the ultrafine fiber component as long as the purpose and effect of the present invention are not impaired. Further, a lubricant and a crystallization rate retarder may be added during the polymerization reaction or in the subsequent steps. The kind of the fine particles is not particularly limited, and the polylactic acid may contain 0.1 to 5% by mass of fine particles having an average particle size of 10 μm or less, if necessary, at the time of polymerization or after polymerization. For example, silica gel (colloidal silica) fine particles, dry method silica fine particles, dry method silica fine particles containing aluminum oxide, dry method silica fine particles having an alkyl group on the particle surface and blocking silanol groups on the particle surface, alumina sol (colloidal) Preferable examples include alumina) fine particles, alumina fine particles, titanium oxide fine particles, calcium carbonate sol (colloidal calcium carbonate) fine particles, inert fine particles such as barium sulfate, and internal precipitation fine particles in which a phosphorus compound and a metal compound are precipitated. These may be used alone or in combination of two or more, and the spinnability and stretchability may be improved.

上記の極細繊維発生型繊維の紡糸方法は、公知の方法であれば特に限定することはないが、海島型繊維の海成分として水溶性高分子成分を用いる場合、例えば紡糸温度160〜260℃、紡糸速度100〜1000m/分で紡糸することが紡糸安定性の点で好ましい。次に紡出した後通常延伸するが、紡糸ノズルから吐出された後一旦捲き取りその後延伸する場合と、捲き取る前に延伸する場合があり、いずれの方法でもよい。延伸方法は通常熱延伸されるが、熱風、熱板、熱ローラー、水浴などのいずれを用いて行ってもよい。ただし、極細繊維発生型繊維の一成分を水溶性高分子成分とする場合は、水溶性高分子成分への水分の影響の少ない熱風で延伸することが好ましい。
延伸条件は、十分な強度を有する人工皮革が得られる点で切断延伸倍率の0.55倍以上、さらに0.7倍以上であることが好ましい。
The spinning method of the ultrafine fiber generating fiber is not particularly limited as long as it is a known method, but when a water-soluble polymer component is used as the sea component of the sea-island fiber, for example, a spinning temperature of 160 to 260 ° C, Spinning at a spinning speed of 100 to 1000 m / min is preferable from the viewpoint of spinning stability. Next, the film is usually stretched after spinning, but it may be drawn once after being discharged from the spinning nozzle and then drawn, or it may be drawn before being drawn, and either method may be used. The stretching method is usually hot stretching, but may be performed using any of hot air, a hot plate, a hot roller, a water bath, and the like. However, when one component of the ultrafine fiber-generating fiber is a water-soluble polymer component, it is preferable to draw with hot air that is less affected by moisture on the water-soluble polymer component.
The stretching conditions are preferably 0.55 times or more and more preferably 0.7 times or more of the cutting stretch ratio in that an artificial leather having sufficient strength can be obtained.

本発明の繊維絡合体の製造方法は、例えば、上記で得られる極細繊維発生型繊維を捲縮付与した後ステープル化し、カード処理を行い、クロスラッパーあるいはランダムウエバー等により短繊維ウェブを形成する方法やスパンボンドウエブ等で代表される長繊維ウェブから形成する方法等の公知の方法を用いることができる。ウェブの目付けは100〜1000g/mであることが工程通過性の点で好ましい。
また本発明では、前記した通り、不織布を構成する極細繊維は、強度がポリエステルに匹敵する植物由来プラスチックのポリ乳酸を使用している。しかしながら染色、アルカリ条件下の還元・洗浄等或いはその後の加水分解による物性低下を起こし易い。
そこで本発明では、物性を補強し、それでいて天然皮革様の充実感および柔軟性を損なわないような特定の織編物を挿入する。これによって高温、高湿状況下での処理においても、実用強度を維持することが可能となる。
使用する織編物を構成する繊維は、例えば人工皮革とした場合に、目的の用途における実用上の強度が得られるものを用いることが好ましく、公知のポリマーからなる繊維を選ぶことができ、染色性、物性および風合い等からポリエステル系ポリマーが好ましく用いられる。但し、本発明ではポリ乳酸繊維を補強し、かつ人工皮革としての風合いを損なわないために織編物を構成する単繊維の強度が2.0cN/dtex〜4.5cN/dtexであることが重要である。2.0cN/dtex未満では補強効果が十分でなく、また4.5cN/dtexを超える場合、繊維が硬くなる傾向にあり人工皮革の風合いを損なう。なお、上記強度の範囲は、例えば原料のポリエステル系ポリマーの重合度や、紡糸速度、延伸速度等を適宜調整することにより所望の範囲にすることができる。
また、繊維を複数本束ねた糸により織編物を構成する際には、糸の撚り数は特に制限は無いが、織編物は極細発生型繊維と一体構造を形成させるため、撚数10〜650T/mが好ましく、15〜500T/mがより好ましい。10T/m未満では上記ウェブと絡合した場合に織編物の単糸が崩れ易く、損傷した糸が表面へ大きく露出してしまい、外観を悪化させる恐れがある。また撚数が650T/mを超えると上記ウェブと強固に絡合した一体構造が得られ難く、また天然皮革様の充実感および柔軟性を損ない易い。
織編物の目付けは、目的に応じて適宜設定可能であるが、20〜200g/mであることが好ましく、30〜150g/mがより好ましい。目付けが20g/m未満になると織編物としての形態が極めてルーズになり、目ずれなど布帛の安定性に欠け、また、目付けが200g/mを超えると織編物を構成する糸の間隔が密になり、ウェブを構成する繊維の貫通が不充分で、ウェブと織編物の高絡合化が進まず、不離一体化した構造物を作るのが困難になり、天然皮革様の充実感および柔軟性が得られ難い。
また、織編物の種類としては、経編、トリコット編で代表される緯編、レース編およびそれらの編み方を基本とした各種の編物、あるいは平織、綾織、朱子織およびそれらの織り方を基本とした各種の織物など特に限定されるものではない。組織、密度などいずれを選ぶかは目的により適宜決定すればよい。
The method for producing a fiber entangled body according to the present invention is, for example, a method of forming a short fiber web by cross-wrapping or random webber, etc. A known method such as a method of forming from a long fiber web represented by a spunbond web or the like can be used. The basis weight of the web is preferably 100 to 1000 g / m 2 from the viewpoint of process passability.
Moreover, in this invention, as above-mentioned, the ultrafine fiber which comprises a nonwoven fabric uses the polylactic acid of the plant origin plastics whose intensity | strength is comparable to polyester. However, physical properties are likely to deteriorate due to dyeing, reduction / washing under alkaline conditions, or subsequent hydrolysis.
Therefore, in the present invention, a specific woven or knitted fabric is inserted so as to reinforce the physical properties and yet not impair the natural leather-like sense of fullness and flexibility. This makes it possible to maintain practical strength even in processing under high temperature and high humidity conditions.
The fibers constituting the woven or knitted fabric to be used are, for example, artificial leather, and those that can obtain practical strength in the intended use are preferably used. Fibers made of known polymers can be selected, and dyeability From the viewpoint of physical properties and texture, polyester polymers are preferably used. However, in the present invention, it is important that the strength of the single fiber constituting the woven or knitted fabric is 2.0 cN / dtex to 4.5 cN / dtex in order to reinforce the polylactic acid fiber and not impair the texture as the artificial leather. is there. If it is less than 2.0 cN / dtex, the reinforcing effect is not sufficient, and if it exceeds 4.5 cN / dtex, the fiber tends to be hard and the texture of the artificial leather is impaired. The range of the strength can be set to a desired range by appropriately adjusting, for example, the degree of polymerization of the raw material polyester polymer, the spinning speed, and the stretching speed.
Further, when a woven or knitted fabric is constituted by a yarn in which a plurality of fibers are bundled, the number of twists of the yarn is not particularly limited. However, since the woven or knitted fabric forms an integral structure with the ultrafine generation type fiber, the number of twists is 10 to 650 T. / M is preferable, and 15 to 500 T / m is more preferable. If it is less than 10 T / m, the single yarn of the knitted or knitted fabric tends to collapse when entangled with the web, and the damaged yarn is greatly exposed to the surface, which may deteriorate the appearance. On the other hand, if the twist number exceeds 650 T / m, it is difficult to obtain an integral structure firmly intertwined with the web, and the natural leather-like solidity and flexibility are likely to be impaired.
Of woven or knitted fabric basis weight can be set as appropriate depending on the purpose, is preferably 20~200g / m 2, 30~150g / m 2 is more preferable. If the basis weight is less than 20 g / m 2 , the shape of the woven or knitted fabric becomes very loose, and the fabric is not stable such as misalignment. If the basis weight exceeds 200 g / m 2 , the interval between the yarns constituting the woven or knitted fabric is too small. It becomes dense, the penetration of the fibers that make up the web is inadequate, the high entanglement between the web and the woven or knitted fabric does not progress, it is difficult to make a structure that is separated and integrated, Flexibility is difficult to obtain.
As the types of woven and knitted fabrics, weft knitting represented by warp knitting and tricot knitting, lace knitting and various knittings based on these knitting methods, or plain weaving, twill weaving, satin weaving and weaving these The various woven fabrics are not particularly limited. Which one to select, such as tissue or density, may be determined appropriately according to the purpose.

得られたウェブは、ウェブの表層、下層、あるいは中間層に上記した織編物を積層しニードルパンチにより繊維を絡ませる必要がある。
但し、予めウェブを仮絡合させて、不織布としておくことが工程通過性に優れる点で好ましい。仮絡合の条件としては、不織布と織物を積層一体化する場合の公知の仮絡合条件を用いることができる。次に本発明では、不織布と織編物を積層するが、積層方法は公知の方法で行い特に限定しない。積層の比率としては、得られる人工皮革の用途により変動するが、人工皮革としたときに不織布と織編物の質量比で95/5〜70/30であることが、天然皮革様の充実感および柔軟性および機械的物性を兼ね備える点で好ましい。
ニードルパンチ条件としては、ニードル針のバーブが不織布から積層した織編物の表面まで貫通するような条件を含めトータルのニードルパンチ数が400〜5000パンチ/cmの条件が好ましく、より好ましくは1000〜2000パンチ/cmの条件である。
不織布と織編物を積層、絡合一体化して得られた繊維絡合体の密度は0.20〜0.80g/cmが好ましく、0.25〜0.70g/cmがより好ましい。0.20g/cm未満ではスエード調人工皮革としたときの繊維の立毛感や機械物性が不足し、0.80g/cmを超えると風合いが硬くなってしまう。そして繊維絡合体の厚みは該目付範囲および密度範囲を満たしていれば特に限定されない。
In the obtained web, it is necessary to laminate the woven or knitted fabric described above on the surface layer, lower layer or intermediate layer of the web and entangle the fibers by needle punching.
However, it is preferable that the web is pre-entangled to make a nonwoven fabric in terms of excellent process passability. As the conditions for temporary entanglement, known temporary entanglement conditions when a nonwoven fabric and a woven fabric are laminated and integrated can be used. Next, in the present invention, the nonwoven fabric and the woven or knitted fabric are laminated, but the lamination method is performed by a known method and is not particularly limited. The ratio of lamination varies depending on the use of the artificial leather to be obtained. When artificial leather is used, the mass ratio of the nonwoven fabric to the woven / knitted fabric is 95/5 to 70/30. This is preferable in that it has both flexibility and mechanical properties.
As the needle punch conditions, the total needle punch number is preferably 400 to 5000 punches / cm 2 including the condition that the barb of the needle needle penetrates from the nonwoven fabric to the surface of the woven or knitted fabric, more preferably 1000 to The condition is 2000 punch / cm 2 .
Nonwoven and woven or knitted fabric lamination, density of the obtained fiber-entangled body integrally entangled is preferably 0.20~0.80g / cm 3, 0.25~0.70g / cm 3 is more preferable. If it is less than 0.20 g / cm 3 , the nap feeling and mechanical properties of the fiber when it is made into a suede-like artificial leather are insufficient, and if it exceeds 0.80 g / cm 3 , the texture becomes hard. And the thickness of a fiber entangled body will not be specifically limited if the said fabric weight range and the density range are satisfy | filled.

次に繊維の毛羽密度を増加させ、外観、風合いの良好なものを得るため、またスエード調人工皮革とした際の耐表面磨耗性の点から繊維絡合体の乾熱収縮を行う。
繊維絡合体を乾熱処理し熱収縮処理を行うことで、繊維絡合体中の繊維密度を増加させ、緻密な立毛外観や風合いの良好なものを得ることができる。さらに熱収縮後は必要に応じ人工皮革表面の平滑性を向上するため熱プレスを行ってもよい。ここで、本発明ではポリ乳酸極細繊維を発生させる極細繊維発生型繊維の抽出成分として水溶性高分子成分を使用している場合、熱水収縮処理を行うと抽出成分が全て溶出し、その後に付与する高分子弾性体がポリ乳酸極細繊維全てに固着することから、風合いを損なう恐れがあるため、乾熱収縮処理することが好ましい。なお、本発明に使用するポリ乳酸の融点未満の温度で行うこと、特に20℃以下の条件下で乾熱収縮処理を行うことが熱による劣化を生じ難いことから好ましい。特に繊維絡合体を面積収縮率が5%以上30%以下となるような条件で乾熱収縮することが好ましい。5%以上とすることで、工程通過性を向上するとともに得られる人工皮革の物性および充実感のある風合いとすることが可能であり、30%以下とすることで、柔軟で充実感のある風合いとすることができる。
得られた繊維絡合体の目付は得られる人工皮革の用途によって任意に選択でき特に制限されるものではないが、300〜1500g/mであることが好ましい。また見掛け密度は0.25〜0.80g/cmが好ましく。0.26〜0.70g/cmが好ましい。0.25g/cm以上とすることで人工皮革の機械物性や充実感ある風合いが得られやすく、更にスエード調人工皮革としたときの繊維の緻密な立毛感が得られる。0.80g/cm以下とすることで風合いを柔軟とすることができる。そして繊維絡合体の厚みは該目付範囲および密度範囲を満たしていれば特に限定されない。
Next, in order to increase the fluff density of the fiber so as to obtain a good appearance and texture, the fiber entangled body is subjected to dry heat shrinkage from the viewpoint of surface abrasion resistance when it is made into a suede-like artificial leather.
By subjecting the fiber entangled body to a heat treatment and a heat shrinking treatment, the fiber density in the fiber entangled body can be increased, and a dense napped appearance and a good texture can be obtained. Further, after heat shrinkage, hot pressing may be performed as necessary to improve the smoothness of the artificial leather surface. Here, in the present invention, when a water-soluble polymer component is used as an extraction component of an ultrafine fiber-generating fiber that generates polylactic acid ultrafine fibers, when the hot water shrinkage treatment is performed, all the extracted components are eluted, and thereafter Since the polymer elastic body to be applied is fixed to all the polylactic acid ultrafine fibers, there is a possibility that the texture may be impaired. In addition, it is preferable to perform at a temperature lower than the melting point of the polylactic acid used in the present invention, in particular, to perform a dry heat shrinkage treatment under a condition of 20 ° C. or less because deterioration due to heat hardly occurs. In particular, the fiber entangled body is preferably subjected to dry heat shrinkage under such a condition that the area shrinkage rate is 5% or more and 30% or less. By setting it to 5% or more, it is possible to improve the process passability and to obtain a texture with the physical properties and fulfillment of the artificial leather obtained, and by setting it to 30% or less, it is a flexible and fulfilling texture. It can be.
The basis weight of the obtained fiber entangled body can be arbitrarily selected depending on the use of the obtained artificial leather and is not particularly limited, but is preferably 300 to 1500 g / m 2 . The apparent density is preferably 0.25 to 0.80 g / cm 3 . 0.26 to 0.70 g / cm 3 is preferable. By setting it to 0.25 g / cm 3 or more, it is easy to obtain mechanical properties and a texture with a sense of fulfillment of artificial leather, and further, it is possible to obtain a dense raised feeling of fibers when made into a suede-like artificial leather. A texture can be made flexible by setting it as 0.80 g / cm < 3 > or less. And the thickness of a fiber entangled body will not be specifically limited if the said fabric weight range and the density range are satisfy | filled.

本発明において、繊維絡合体の内部に含有する高分子弾性体は人工皮革に用いられる公知の樹脂を用いることが可能である。そして、付与方法は特に制限は無いが、極細繊維発生型繊維の一成分としてポリビニルアルコールに代表される水溶性高分子成分を用いる場合、高分子弾性体の水分散液として含浸することが好ましい。これにより、高分子弾性体を繊維絡合体内部に含浸後ゲル化凝固し乾燥する際に、極細繊維発生型繊維の外周部を構成する水溶性高分子成分を高分子弾性体水分散液中の水によって特定の範囲溶解させることで極細繊維束の外周から繊維束内部に高分子弾性体が浸透し、乾燥後に固化した高分子弾性体の一部を極細繊維束の外周部に密着させることができ、さらに極細繊維束の内部に特定の範囲で固着存在させることが可能となる。そして、最終的に人工皮革さらにはスエード調人工皮革として仕上げた場合、風合いが柔らかく、高分子弾性体による極細繊維の把持性が良好であり、毛羽抜けなどによる品質低下が大幅に抑制できるものを得ることができる。さらには、極細繊維としてポリ乳酸を用いているため極細繊維が軟化し易く、極細繊維束の外周部に密着した高分子弾性体とポリ乳酸が強固に固着するため、その後の乾燥処理、染色処理を通過した後も高分子弾性体がポリ乳酸から脱落し難く、その結果、得られる人工皮革を構成する不織布内部のポリ乳酸繊維と高分子弾性体からなる不織布層が非常に緻密な構造を形成する。一方、織編物は織編物を構成する繊維の軟化温度がポリ乳酸の軟化温度より高いことが好ましく、30℃以上高いことがより好ましく、50℃以上高いことが特に好ましい。上限は特に限定しないが250℃以下とする。ポリ乳酸繊維より軟化温度を高くすることで、織編物に固着した高分子弾性体は含浸以降の乾燥処理や染色処理を行うことによって特に脱落し易く、高分子弾性体が織編物を構成する糸と空隙を有して存在する。その結果、極細繊維が緻密で毛羽密度は向上するものの、風合いは柔らかく品位に優れた人工皮革を得ることが可能となる。
その他、織編物を構成する糸をPVA等でコーティングして高分子弾性体を付与後に糸にコーティングしたPVAを除去することでより空隙を大きくすることができる。
そして、この空隙を有することで、表面側は緻密構造、裏面側は粗な構造となり、人工皮革の厚み方向の密度斑が形成され、より天然皮革様の風合いと表面物性あるいはスエード調人工皮革としたときの優れたライティング効果を両立することが可能となる。
ここで記載している空隙とは、織編物を構成する糸の外周と高分子弾性体の間に存在する空間のことをいい、高分子弾性体が織編物を構成する糸の内部に浸透している割合として浸透率1%未満の状態をいう。そして、部分的にも浸透していない状態が好ましく。実質的に糸に対し接着していない状態がより好ましい。
これらの状態は電子顕微鏡写真にて空隙の存在を観察することで確認ができる。
浸透率とは、高分子弾性体の一部が織編物を構成する糸の外周部(糸を構成する繊維束断面において、糸の最外周を構成する繊維の糸内部から最も離れた箇所をそれぞれ線で結んでなる周囲)から糸の内部に浸透する比率を面積比((該外周部の内部に浸透している高分子弾性体の面積)/(該外周部の内部の面積)×100%)として求めることができる。
In the present invention, a known resin used for artificial leather can be used as the polymer elastic body contained in the fiber entangled body. The application method is not particularly limited, but when a water-soluble polymer component typified by polyvinyl alcohol is used as one component of the ultrafine fiber-generating fiber, it is preferably impregnated as an aqueous dispersion of a polymer elastic body. As a result, when the polymer elastic body is impregnated into the fiber entangled body and then gelled, solidified and dried, the water-soluble polymer component constituting the outer periphery of the ultrafine fiber-generating fiber is dispersed in the polymer elastic body aqueous dispersion. By dissolving in a specific range with water, the polymer elastic body penetrates from the outer periphery of the ultrafine fiber bundle into the fiber bundle, and a part of the polymer elastic body solidified after drying can be adhered to the outer periphery of the ultrafine fiber bundle. In addition, it is possible to make it stick within a specific range inside the ultrafine fiber bundle. And when it is finally finished as artificial leather or suede-like artificial leather, the texture is soft, the gripping property of the ultrafine fibers by the polymer elastic body is good, and the quality degradation due to fluffing etc. can be greatly suppressed Obtainable. Furthermore, since polylactic acid is used as the ultrafine fiber, the ultrafine fiber is easily softened, and the polymer elastic body and the polylactic acid firmly adhered to the outer peripheral portion of the ultrafine fiber bundle are firmly fixed, so that subsequent drying treatment and dyeing treatment are performed. The polymer elastic body does not easily fall off from polylactic acid even after passing through, and as a result, the non-woven fabric layer composed of the polylactic acid fiber and the polymer elastic body inside the non-woven fabric constituting the resulting artificial leather forms a very dense structure To do. On the other hand, in the woven or knitted fabric, the softening temperature of the fibers constituting the woven or knitted fabric is preferably higher than the softening temperature of polylactic acid, more preferably 30 ° C or higher, and particularly preferably 50 ° C or higher. Although an upper limit is not specifically limited, it shall be 250 degrees C or less. By making the softening temperature higher than that of polylactic acid fiber, the polymer elastic body fixed to the woven or knitted fabric is particularly easy to fall off by performing drying treatment or dyeing treatment after impregnation, and the polymer elastic body constitutes the woven or knitted fabric. Exist with voids. As a result, although the fine fibers are dense and the fluff density is improved, it is possible to obtain an artificial leather having a soft texture and excellent quality.
In addition, the voids can be made larger by coating the yarn constituting the knitted or knitted fabric with PVA or the like to give the polymer elastic body and then removing the PVA coated on the yarn.
And by having this void, the surface side becomes a dense structure, the back side becomes a rough structure, density spots in the thickness direction of artificial leather are formed, more natural leather-like texture and surface properties or suede-like artificial leather This makes it possible to achieve both excellent lighting effects.
The void described here refers to a space existing between the outer periphery of the yarn constituting the woven or knitted fabric and the polymer elastic body, and the polymer elastic body penetrates into the yarn constituting the woven or knitted fabric. The rate of penetration is less than 1%. And the state which has not penetrated partially is preferred. A state in which it is not substantially adhered to the yarn is more preferable.
These states can be confirmed by observing the presence of voids in an electron micrograph.
Permeability is the outer periphery of a yarn in which a part of the polymer elastic body constitutes a woven or knitted fabric (in the cross section of the fiber bundle constituting the yarn, the part farthest from the inside of the yarn constituting the outermost circumference of the yarn, respectively) Area ratio ((area of polymer elastic body permeating into the outer periphery) / (area inside the outer perimeter)) × 100% ).

繊維絡合体の内部に高分子弾性体水分散液を含浸する場合、ディップニップ方式などの公知の技術を用いることができるが、繊維絡合体が水溶性高分子成分とポリ乳酸からなる海島型繊維から構成された不織布を用いた繊維絡合体の内部に高分子弾性体水分散液を含浸する場合、ニップ処理による圧力のため海島型繊維中の水溶性高分子成分が搾り出され、高分子弾性体水分散液が汚染されてしまう。このため、該組み合せにおいては、ディップニップ方式ではなく、水溶性高分子成分に対する高分子弾性体水分散液の浸透性を利用し、高分子弾性体水分散液を大きく加圧供給することなく、繊維絡合体への高分子弾性体水分散液の供給量および濃度を制御するだけで所定量の樹脂量が含浸可能である樹脂含浸方法、例えばリップコーター等で含浸する方法を用いることが好ましい。   When the polymer entangled body is impregnated with the polymer elastic aqueous dispersion, a known technique such as a dip nip method can be used, but the sea entangled fiber is composed of a water-soluble polymer component and polylactic acid. In the case of impregnating a polymer elastic body aqueous dispersion inside a fiber entangled body using a nonwoven fabric composed of a water-soluble polymer component in the sea-island fiber due to pressure by the nip treatment, the polymer elasticity The body water dispersion is contaminated. For this reason, in the combination, not using the dip nip method, but utilizing the permeability of the polymer elastic water dispersion to the water-soluble polymer component, without greatly pressing and supplying the polymer elastic water dispersion, It is preferable to use a resin impregnation method in which a predetermined amount of resin can be impregnated only by controlling the supply amount and concentration of the polymer elastomer aqueous dispersion to the fiber entanglement, for example, a lip coater.

また含浸される高分子弾性体水分散液は、凝固後に高分子弾性体が繊維絡合体の内部に実質的に非連続に存在することが、高分子弾性体による繊維の把持性と柔軟な風合を兼ね備える点で好ましく、高分子弾性体:繊維絡合体=5:95〜60:40の質量比となるように付与することが好ましい。人工皮革とする場合、高分子弾性体は繊維を結束するバインダーとしての効果を得るものであり、高分子弾性体の比率が5以上の場合、バインダー効果が充分となり、また60以下場合、引裂強力や引張強力などの物性に優れ、柔軟な風合いとなる傾向がある。   Further, the water dispersion of the polymer elastic body to be impregnated indicates that the polymer elastic body is substantially discontinuously present inside the fiber entangled body after solidification, which indicates that the polymer elastic body can hold the fiber and the flexible wind. It is preferable at the point which combines, and it is preferable to provide so that it may become mass ratio of polymeric elastic body: fiber entanglement body = 5: 95-60: 40. In the case of artificial leather, the polymer elastic body obtains an effect as a binder for binding fibers. When the ratio of the polymer elastic body is 5 or more, the binder effect is sufficient, and when it is 60 or less, the tear strength is high. Excellent in physical properties such as tensile strength and tend to be flexible.

本発明では、繊維絡合体へ高分子弾性体水分散液を含浸した後、マイグレーションを抑制し、かつ製品の風合いを保持しつつ高分子弾性体による不織布を構成するポリ乳酸極細繊維の把持性を保つために、水分が完全に蒸発する前に不織布を構成する海島型繊維の海成分を構成する水溶性高分子成分の一部を溶解させつつ高分子弾性体水分散液を急激にゲル化させる。なお、外観品位をより向上させ、かつ極細繊維束と密着し過ぎて製品の風合いを損なわないため、高分子弾性体の一部が極細繊維束の外周部(極細繊維束の束断面において、極細繊維束の最外周を構成する極細繊維の極細繊維束内部から最も離れた箇所をそれぞれ線で結んでなる周囲)から束の内部に面積比((該外周部の内部に浸透している高分子弾性体の面積)/(該外周部の内部の面積)×100%)で1〜30%の範囲で浸透して存在していることが好ましい。さらにスエード調人工皮革として仕上げた場合、表面の極細繊維が素抜けないよう高分子弾性体で極細繊維束をしっかりと把持しつつ、外観品位上、表面物性上および風合いの点で適度に極細繊維がばらける必要がある点から、1.5〜25%であることがより好ましく、2〜20%であることが特に好ましい。そこで本発明では、水溶性高分子成分を海成分およびポリ乳酸を島成分としてなる海島型繊維から構成された不織布及び織編物の内部に高分子弾性体水分散液を付与した繊維絡合体を急激に加熱昇温し、同時に水溶性高分子成分を一部溶解するため、赤外線の照射処理を行う。本発明で用いる赤外線は、繊維絡合体の表面と内部の昇温に有利である点、水の赤外線吸収波長2.6μmを含んでいるため高分子弾性体水分散液の昇温に非常に有利である点および高分子弾性体水分散液を付与した該繊維絡合体の赤外線の吸収と透過のバランスが良い点で最大エネルギー波長2〜6μmの赤外線を用いることが好ましい。そして、赤外線を照射し、繊維絡合体特に不織布側の表面温度を高分子弾性体水分散液のゲル化温度より10℃以上高い温度まで昇温した状態で繊維絡合体の水分率を50%以下とした後、残りの水分を乾燥除去して高分子弾性体を凝固する。   In the present invention, after the fiber entangled body is impregnated with an aqueous dispersion of a polymer elastic body, the gripping property of the polylactic acid ultrafine fiber constituting the nonwoven fabric made of the polymer elastic body is suppressed while suppressing the migration and maintaining the texture of the product. In order to keep the water, the polymer elastic water dispersion is rapidly gelled while dissolving a part of the water-soluble polymer component of the sea component of the sea-island fiber that forms the nonwoven fabric before the water completely evaporates. . Since the appearance quality is further improved and the texture of the product is not impaired due to excessive adhesion with the ultrafine fiber bundle, a part of the polymer elastic body is part of the outer periphery of the ultrafine fiber bundle (in the bundle cross section of the ultrafine fiber bundle). The area ratio (the polymer penetrating into the inside of the outer peripheral portion) from the inside of the ultra fine fiber bundle constituting the outermost circumference of the fiber bundle to the inside of the bundle from the area farthest from the inside of the ultra fine fiber bundle. It is preferable to permeate in the range of 1 to 30% by (area of elastic body) / (area inside the outer peripheral portion) × 100%). In addition, when finished as a suede-like artificial leather, the ultrafine fiber bundle is firmly gripped with a polymer elastic body so that the ultrafine fibers on the surface do not fall out, and the fine fibers are reasonably fine in terms of appearance quality, surface properties and texture. Is preferably 1.5 to 25%, particularly preferably 2 to 20%, from the viewpoint that it is necessary to disperse. Therefore, in the present invention, the fiber entanglement obtained by applying the polymer elastic water dispersion to the inside of the nonwoven fabric and the woven or knitted fabric composed of the sea-island fiber having the water-soluble polymer component as the sea component and polylactic acid as the island component is rapidly applied. In order to dissolve the water-soluble polymer component at the same time, an infrared irradiation treatment is performed. The infrared rays used in the present invention are advantageous for raising the temperature of the surface and the inside of the fiber entangled body, and are very advantageous for raising the temperature of the polymer elastic aqueous dispersion because it contains an infrared absorption wavelength of 2.6 μm of water. It is preferable to use infrared rays having a maximum energy wavelength of 2 to 6 μm in view of the above and a good balance between absorption and transmission of infrared rays of the fiber entangled body to which the polymer elastic water dispersion is applied. Then, the moisture content of the fiber entangled body is 50% or less in a state where the surface temperature of the fiber entangled body, particularly the nonwoven fabric side is raised to a temperature higher by 10 ° C. or more than the gelling temperature of the polymer elastic water dispersion. After that, the remaining water is dried and removed to solidify the elastic polymer.

繊維絡合体特に不織布側の表面温度の昇温時間としては、1分以内に繊維絡合体の表面温度が高分子弾性体水分散液のゲル化温度より10℃以上高い温度まで昇温させることが好ましい。赤外線照射時の不織布側の表面温度が高分子弾性体水分散液のゲル化温度+10℃以上であれば繊維絡合体内部の温度が高分子弾性体水分散液のゲル化温度以上に到達しており高分子弾性体の感熱ゲル化を促進させ易い。そして、不織布側の表面温度を高分子弾性体水分散液のゲル化温度+10℃以上に昇温する時間を1分以内に抑えることが、高分子弾性体水分散液がマイグレーションを引き起す前に容易に感熱ゲル化し易い点で好ましい。また該処理では昇温中に高分子弾性体水分散液の水分により水溶性高分子成分が一部溶解し、その結果極細繊維成分が適度に露出し高分子弾性体が直接接触できるため、実質的に不織布全層に渡り高分子弾性体の一部が極細繊維束の外周部から束の内部に面積比で1〜30%の範囲で浸透した構造が得られ易い点からも好ましい。
そして、赤外線照射によって繊維絡合体を昇温させた状態で該繊維絡合体が含有する水分率を50%以下とする必要がある。50%以下とすることで、後の加熱乾燥時に繊維絡合体の不織布を構成する海島型繊維の水溶性高分子成分が適度に溶解するため、高分子弾性体が直接極細繊維束の内部に前述の面積比で1〜30%の範囲で浸透する割合が高くなり、また後の加熱乾燥時にマイグレーションを生じ難くすることで、人工皮革の風合いが柔軟なものとなる。また、水分率の下限は特に限定しないが、乾燥効率の点で10%以上とすることが好ましい。
なお、ここでいう水分率は、以下の計算方法によって求めることができる。
[水分率]
H=(I−J)/J×100
H : 水分率(%)
I : 高分子弾性体水分散液を含浸し、赤外線照射後の繊維絡合体の目付(g/m
J : 高分子弾性体水分散液を含浸し、凝固乾燥後の繊維絡合体の目付(g/m
また、赤外線照射を行う際は、繊維絡合体の両表面を均等に加熱するため、両面から同一条件で照射することが好ましく、両面から揮発する水分揮発状態を均一とするため、縦型であることがより好ましい。
As the temperature rise time of the surface temperature of the fiber entangled body, particularly the nonwoven fabric, the surface temperature of the fiber entangled body may be raised to a temperature higher by 10 ° C. or more than the gelation temperature of the polymer elastic body aqueous dispersion within 1 minute. preferable. If the surface temperature on the nonwoven fabric side during infrared irradiation is equal to or higher than the gelling temperature of the polymer elastic water dispersion + 10 ° C., the temperature inside the fiber entangled body reaches or exceeds the gelling temperature of the polymer elastic water dispersion. It is easy to promote thermal gelation of the polymer elastic body. And, it is possible to suppress the time for raising the surface temperature of the nonwoven fabric side to the gelling temperature of the polymer elastic water dispersion + 10 ° C. or more within 1 minute before the polymer elastic water dispersion causes migration. This is preferable because it is easily heat-sensitive gelled. Further, in this treatment, a part of the water-soluble polymer component is dissolved by the water of the polymer elastic body aqueous dispersion during the temperature rise, and as a result, the ultrafine fiber component is appropriately exposed and the polymer elastic body can be directly contacted. In particular, it is preferable because a structure in which a part of the polymer elastic body penetrates from the outer peripheral portion of the ultrafine fiber bundle to the inside of the bundle in an area ratio of 1 to 30% over the entire nonwoven fabric layer is preferable.
And it is necessary to make the moisture content which this fiber entanglement body contains in the state heated up by infrared irradiation to 50% or less. By setting the amount to 50% or less, the water-soluble polymer component of the sea-island fiber constituting the nonwoven fabric of the fiber entangled body is appropriately dissolved at the time of subsequent heating and drying, so that the polymer elastic body is directly inside the ultrafine fiber bundle. The ratio of penetrating in an area ratio of 1 to 30% is increased, and the texture of the artificial leather becomes flexible by making migration difficult during subsequent heating and drying. The lower limit of the moisture content is not particularly limited, but is preferably 10% or more in terms of drying efficiency.
The moisture content here can be determined by the following calculation method.
[Moisture percentage]
H = (I−J) / J × 100
H: Moisture content (%)
I: Weight of fiber entangled body after impregnating polymer elastic water dispersion and infrared irradiation (g / m 2 )
J: Weight of fiber entangled body impregnated with polymer elastic water dispersion and coagulated and dried (g / m 2 )
Moreover, when performing infrared irradiation, in order to heat both surfaces of a fiber entangled body uniformly, it is preferable to irradiate from the both surfaces under the same conditions, and in order to make the water volatile state volatile from both surfaces uniform, it is a vertical type. It is more preferable.

赤外線照射処理後、繊維絡合体中に残った50%以下の水分を蒸発させるために、また含浸凝固させた高分子弾性体をより強固に不織布繊維に密着させることを目的に加熱乾燥処理を行う。加熱乾燥処理を行わず得られた繊維絡合体の樹脂固着物を用いてスエード調人工皮革として仕上げる場合、水溶性高分子成分を抽出除去する極細繊維化処理や染色処理時の熱水により高分子弾性体が膨潤、脱落し、表層の繊維が高分子弾性体で不充分に把持された状態であり、外観品位が劣ったものとなってしまう。
なお、加熱乾燥処理方法としては、熱風乾燥、湿熱乾燥など公知の方法でよく、加熱乾燥処理温度としては、高分子弾性体の凝固特性に応じて任意に設定できる。
After the infrared irradiation treatment, a heat drying treatment is performed in order to evaporate 50% or less of the water remaining in the fiber entangled body and to firmly adhere the impregnated and solidified polymer elastic body to the nonwoven fabric fiber. . When finished as a suede-like artificial leather using the resin entangled fiber entangled resin obtained without heat drying treatment, the polymer is extracted with hot fiber during extraction and removal of water-soluble polymer components and hot water during dyeing treatment. The elastic body swells and falls off, and the fibers in the surface layer are inadequately held by the polymer elastic body, resulting in poor appearance quality.
The heat drying treatment method may be a known method such as hot air drying or wet heat drying, and the heat drying treatment temperature can be arbitrarily set according to the solidification characteristics of the polymer elastic body.

次に、水溶性高分子成分およびポリ乳酸からなる極細繊維発生型繊維から構成される繊維絡合体へ高分子弾性体水分散液を含浸・凝固した後、極細繊維および高分子弾性体の非溶剤であり且つ抽出除去成分の溶剤である処理液、即ち水溶液で水溶性高分子成分を抽出除去し、極細繊維発生型繊維を極細繊維束化する。
特に水溶性高分子成分を抽出除去する場合、環境問題の点から熱水などで抽出除去成分を除去して極細繊維発生型繊維を極細化する方法が好ましい。特に熱水抽出する場合は、熱水温度として60〜100℃の温度が好ましく、80〜95℃がより好ましい。60℃以上で水溶性高分子成分の除去を行うことで抽出時間を短縮することが可能である。したがって、熱水温度は高いほど好ましい。また、100℃以下とすることで、付与した高分子弾性体と極細繊維の結束がゆるみ難く、高分子弾性体が有する繊維把持性が維持される易くなる。
極細繊維束化するための設備としては、特に限定はしないが、前述の織編物に付着している高分子弾性体を脱落させ易い点で、液流処理装置が好ましく、サーキュラーやウインス装置を使用することが好ましい。
Next, after impregnating and coagulating an aqueous dispersion of a polymer elastic body into a fiber entanglement composed of an ultrafine fiber generating fiber composed of a water-soluble polymer component and polylactic acid, a non-solvent for the ultrafine fiber and the polymer elastic body is obtained. In addition, the water-soluble polymer component is extracted and removed with a treatment solution, ie, an aqueous solution, which is a solvent of the extraction and removal component, and the ultrafine fiber generation type fibers are bundled into ultrafine fibers.
In particular, when extracting and removing water-soluble polymer components, from the viewpoint of environmental problems, a method of removing ultrafine fiber-generating fibers by removing the extracted and removed components with hot water or the like is preferable. When extracting with hot water especially, the temperature of 60-100 degreeC is preferable as hot water temperature, and 80-95 degreeC is more preferable. It is possible to shorten the extraction time by removing the water-soluble polymer component at 60 ° C. or higher. Therefore, the higher the hot water temperature, the better. Moreover, by setting it as 100 degrees C or less, the binding of the provided polymer elastic body and an ultrafine fiber is hard to loosen, and it becomes easy to maintain the fiber grip property which a polymer elastic body has.
The equipment for bundling ultrafine fibers is not particularly limited, but a liquid flow treatment device is preferable because a polymer elastic body adhering to the woven or knitted fabric described above is easily dropped, and a circular or winch device is used. It is preferable to do.

本発明では、染色工程の前または後に人工皮革の不織布側の面をバフィング処理等公知の起毛処理を施し、極細繊維を主体とした極細繊維立毛面を形成させてスエード調人工皮革とする。厚み調整を行う場合、極細繊維発生型繊維を極細化する前あるいは後にバフィング処理すればよいが、表面を起毛処理する場合、人工皮革の表面に高分子弾性体水分散液を付与乾燥し、極細繊維束を構成する極細繊維の一部を固着させた後、起毛処理を行うことが起毛処理の安定性、均一な毛羽長を安定的に得る点で好ましい。また必要により、揉み等の柔軟化処理、逆シールのブラッシングなどの表面仕上げ処理を行うことができる。本発明で得られるスエード調人工皮革は風合いが良好であり、かつ外観の良好な品質のものが得られる。
また、得られた人工皮革の表面に高分子弾性体を付与後、公知の表面仕上げ方法により銀面調人工皮革とすることができる。そして必要に応じて加圧加熱処理や分割処理などで所望の厚みとする。
In the present invention, before or after the dyeing step, the surface of the artificial leather on the non-woven fabric side is subjected to a known raising process such as buffing to form an ultrafine fiber raised surface mainly composed of ultrafine fibers to obtain a suede-like artificial leather. When adjusting the thickness, buffing treatment may be performed before or after the ultrafine fiber generating fiber is made ultrafine, but when the surface is raised, the polymer elastic water dispersion is applied to the surface of the artificial leather and dried. It is preferable that after raising a part of the ultrafine fibers constituting the fiber bundle, the raising treatment is performed in order to stably obtain the stability of the raising treatment and the uniform fluff length. Further, if necessary, surface finishing treatment such as softening treatment such as stagnation and reverse seal brushing can be performed. The suede-like artificial leather obtained in the present invention has a good texture and a good quality appearance.
Moreover, after giving a polymeric elastic body to the surface of the obtained artificial leather, it can be set as a silver surface artificial leather by a well-known surface finishing method. And it is set as desired thickness by pressurization heating processing, division processing, etc. as needed.

得られた人工皮革の染色は、分散染料を用い、必要に応じ分散剤、pH調整剤および金属イオン封鎖剤等を用い、高温高圧染色機により行う。染料としてカチオン染料やその他反応性染料を使用しても染色は可能である。染色の際の浴比は人工皮革の質量に対し10〜40倍が好ましい。また、染料濃度は、発色性の点で1〜35%owfの範囲が好ましい。上記にすることで染色摩擦堅牢度や洗濯堅牢度等の実用物性上と発色性を兼ね備えた人工皮革を得ることができる。染色温度は115〜150℃、好ましくは120〜140℃の温度範囲で行う。115℃以上とすることで、ポリ乳酸繊維中に分散染料が充分に拡散し易い。150℃以下とすることで、人工皮革を構成しているポリウレタン等で代表される高分子弾性体の加水分解が起こり難く、得られるスエード調人工皮革の強度低下、毛羽脱落およびピリング等が発生し難くなる。
次いで、2〜10g/lの還元剤および還元剤と等量の還元助剤を用いてアルカリ剤存在下で、50〜80℃の温度で該人工皮革中の過剰染料を還元分解、洗浄除去する。50℃未満の場合、高分子弾性体中の余剰染料の洗浄が不十分となり易い。また、80℃を越えると繊維中の染料まで還元洗浄してしまうこととなる。そして、還元剤は二酸化チオ尿素やハイドロサルファイト等のポリエステルの還元洗浄に一般的に用いられるものが好ましく使用できる。還元剤量が2g/lより少ない場合、充分に高分子弾性体中の染料を分解、洗浄しにくく、色斑の発生や色目の再現性低下を引き起こしやすい。また、10g/lを越える場合には染料の分解、洗浄効果は変わらずコスト的に不利となる。
次いで、公知の方法によって酸化、中和処理を行い、染色を完了させる。
The obtained artificial leather is dyed with a high-temperature and high-pressure dyeing machine using a disperse dye and, if necessary, a dispersant, a pH adjuster and a sequestering agent. Dyeing is possible even if a cationic dye or other reactive dye is used as the dye. The bath ratio during dyeing is preferably 10 to 40 times the mass of the artificial leather. The dye concentration is preferably in the range of 1 to 35% owf in terms of color developability. By setting it as the above, the artificial leather which has color development and practical physical properties, such as dyeing fastness and washing fastness, can be obtained. The dyeing temperature is 115 to 150 ° C, preferably 120 to 140 ° C. By setting the temperature to 115 ° C. or higher, the disperse dye can be easily diffused into the polylactic acid fiber. By setting the temperature to 150 ° C. or lower, hydrolysis of a polymer elastic body typified by polyurethane constituting the artificial leather hardly occurs, and the resulting suede artificial leather has reduced strength, fluff loss, pilling, etc. It becomes difficult.
Subsequently, the excess dye in the artificial leather is reductively decomposed and washed away at a temperature of 50 to 80 ° C. in the presence of an alkaline agent using 2 to 10 g / l of a reducing agent and a reducing agent equivalent to the reducing agent. . When the temperature is lower than 50 ° C., washing of excess dye in the polymer elastic body tends to be insufficient. When the temperature exceeds 80 ° C., the dye in the fiber is reduced and washed. As the reducing agent, those generally used for reducing and washing polyester such as thiourea dioxide and hydrosulfite can be preferably used. When the amount of the reducing agent is less than 2 g / l, it is difficult to sufficiently decompose and wash the dye in the polymer elastic body, and color spots are likely to occur and color reproducibility tends to be reduced. On the other hand, if it exceeds 10 g / l, the decomposition and cleaning effects of the dye are not changed, which is disadvantageous in terms of cost.
Next, oxidation and neutralization are performed by a known method to complete the dyeing.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.

実施例1
ポリ乳酸(カーギル社製 融点170℃)に加水分解抑制剤としてカルボジイミドを有するスタバクゾールP(ラインケミー社製)をポリ乳酸固形分に対し2質量%添加したものを島成分とし、エチレン単位10モル%含有し、けん化度98.4モル%、融点210℃のポリビニルアルコール共重合体(株式会社クラレ製 エクセバール)を海成分とし、質量比を海/島=30/70とした64島の海島型繊維を紡糸温度240℃、紡糸速度800m/分で複合紡糸した後、切断延伸倍率の0.75倍の条件で延伸することで単繊度4.6dtex、極細化後の島繊維0.043dexの繊維を得た。この繊維を捲縮処理した後繊維長51mmにカットし、カード処理することで短繊維ウェブを作成した。
次に、56dtex/24fの仮撚り加工を施したポリエステル(軟化温度240℃、単繊維の強度3.5cN/dtex)製の糸に、600T/mの追加撚糸加工をした後、織り密度127本×95本/inchで織り加工を行い、目付55g/mの平織物を得た。上記ウェブと平織物を積層した後1500パンチ/cmの条件でニードル処理し、150℃の乾熱収縮により約15%程度面積収縮させ、目付け380g/m、見掛け密度0.288g/cm、厚み1.45mmの繊維絡合体を得た。
Example 1
Polylactic acid (Cargill's melting point 170 ° C) with 2% by mass of Stavaxol P (made by Rhein Chemie) having carbodiimide as a hydrolysis inhibitor added to the polylactic acid solid content is an island component, containing 10 mol% of ethylene units 64 islands-type fibers having a saponification degree of 98.4 mol% and a melting point of 210 ° C. as a sea component and a mass ratio of sea / island = 30/70 After composite spinning at a spinning temperature of 240 ° C. and a spinning speed of 800 m / min, a fiber having a single fineness of 4.6 dtex and an ultrathinned island fiber of 0.043 dex is obtained by drawing at a cutting draw ratio of 0.75 times. It was. This fiber was crimped, cut to a fiber length of 51 mm, and carded to create a short fiber web.
Next, a yarn made of polyester (softening temperature 240 ° C., single fiber strength 3.5 cN / dtex) subjected to false twisting of 56 dtex / 24f was subjected to additional twisting of 600 T / m, and then a weave density of 127 Weaving was performed at × 95 pieces / inch to obtain a plain fabric with a basis weight of 55 g / m 2 . After laminating the web and plain woven fabric, needle processing was performed under the condition of 1500 punch / cm 2 , and the area was shrunk by about 15% by dry heat shrinkage at 150 ° C., the basis weight was 380 g / m 2 , and the apparent density was 0.288 g / cm 3. A fiber entangled body having a thickness of 1.45 mm was obtained.

次にポリカ/エーテル系ポリウレタン水分散エマルジョン (日華化学株式会社製 エバファノール APC−28)に増粘剤(日華化学株式会社製ネオステッカー)、耐光剤(日華化学株式会社製 NKアシストHAL)をエマルジョンに添加して水で希釈し、濃度10質量%、密度1.02g/cmである高分子弾性体水分散液を得た。この高分子弾性体水分散液のゲル化温度は60℃であった。 Next, a polycarbonate / ether polyurethane aqueous dispersion emulsion (Evaphanol APC-28, manufactured by Nikka Chemical Co., Ltd.), a thickener (Neo sticker manufactured by Nikka Chemical Co., Ltd.), and a light resistant agent (NK assist HAL, manufactured by Nikka Chemical Co., Ltd.) Was added to the emulsion and diluted with water to obtain an aqueous dispersion of a polymer elastic body having a concentration of 10% by mass and a density of 1.02 g / cm 3 . The gelation temperature of this polymer elastic water dispersion was 60 ° C.

次に含浸設備としてリップコーター設備(株式会社ヒラノテクシード製 リップダイレクト方式)を用い、高分子弾性体水分散液を(極細繊維化された繊維絡合体+織編物繊維)/高分子弾性体=80/20の質量比となるように含浸した。高分子弾性体水分散液含浸後、最大エネルギー波長2.6μmの赤外線を97Vで60秒間照射し、繊維絡合体表面温度を1分以内に100℃まで上昇させた。また赤外線照射60秒後の水分率は約40%であった。その後、155℃の熱風乾燥機で5分20秒間加熱乾燥し、水分を完全に蒸発させると共に高分子弾性体をキュアリングし繊維絡合体に固着した。その後、90℃の熱水でポリビニルアルコール共重合体を抽出すると同時に織物に付着していたポリウレタンを脱落させることで人工皮革を得た。得られた人工皮革はシワ、伸びの発生が無く良好な外観であり、皮革様の均一な風合いや優れた物性を有するものであった。   Next, a lip coater equipment (Hipano Techseed's lip direct system) is used as the impregnation equipment, and an aqueous dispersion of polymer elastic body (fiber entangled fiber + woven / knitted fiber) / polymer elastic body = 80 / Impregnation was performed so that the mass ratio was 20. After impregnation with the polymer elastic water dispersion, infrared rays having a maximum energy wavelength of 2.6 μm were irradiated at 97 V for 60 seconds, and the fiber entangled surface temperature was raised to 100 ° C. within 1 minute. The moisture content after 60 seconds of infrared irradiation was about 40%. Then, it was heated and dried with a hot air dryer at 155 ° C. for 5 minutes and 20 seconds to completely evaporate the moisture and cure the polymer elastic body to fix it to the fiber entangled body. Thereafter, the polyvinyl alcohol copolymer was extracted with hot water at 90 ° C., and at the same time, the polyurethane adhering to the fabric was removed to obtain an artificial leather. The obtained artificial leather had a good appearance without wrinkles and elongation, and had a leather-like uniform texture and excellent physical properties.

次に表面を平滑化した後、分散染料としてSumikaron UL染料(住友化学株式会社製)のYellow 3RF 0.24owf%、Red GF 0.34owf%、Blue GF 0.70owf%、アンチフェードMC−500(明成化学株式会社製)、2owf%、ディスパーTL(明成化学株式会社製)1g/Lを用い105℃で30分高圧染色を行った。その後、ソーダ灰を用い60℃、15分還元処理を行い、60℃、20分モノゲン洗浄を行った。得られた染色品を400番手のペーパーを用いバフィング処理によって表層の繊維を整毛させ、スエード調人工皮革を得た。得られた人工皮革は高分子弾性体の一部がポリ乳酸極細繊維束の外周部と密着し、高分子弾性体の一部が極細繊維束の外周部から束の内部に面積比で3%の範囲で浸透して存在し、ポリ乳酸極細繊維からなる不織布層が非常に緻密な構造を有し、かつ織編物を構成する糸の周囲は空隙を有して存在していた。この人工皮革の強力は、タテ35.9kg/2.5cm、ヨコ28.5kg/2.5cm、引裂強力がタテ1.9kg、ヨコ2.0kgであり機械物性の優れたものであった。この人工皮革を70℃−95%RHのジャングルテストを行った後の強力はタテ34.5kg/2.5cm、ヨコ28.0kg/2.5cm、引裂強力がタテ1.5kg、ヨコ2.1kgであり、物性が大きく低下することなく、実用に耐える機械物性の優れたものであった。また、折れ、シワなどがなく天然皮革調の充実感や柔軟性が非常に良好であり、かつ毛羽長が揃い、良好な外観を有していた。   Next, after smoothing the surface, Yellow 3RF 0.24owf%, Red GF 0.34owf%, Blue GF 0.70owf%, antifade MC-500 (Sumikaron UL dye (manufactured by Sumitomo Chemical Co., Ltd.)) as a disperse dye. High pressure dyeing was performed at 105 ° C. for 30 minutes using 2 owf%, Disper TL (manufactured by Meisei Chemical Co., Ltd.) 1 g / L. Thereafter, reduction treatment was performed at 60 ° C. for 15 minutes using soda ash, and monogen washing was performed at 60 ° C. for 20 minutes. The resulting dyed product was subjected to buffing treatment using 400-th paper and the surface fibers were trimmed to obtain a suede-like artificial leather. In the obtained artificial leather, a part of the polymer elastic body is in close contact with the outer peripheral part of the polylactic acid ultrafine fiber bundle, and a part of the polymer elastic body is 3% in area ratio from the outer peripheral part of the ultrafine fiber bundle to the inside of the bundle. The nonwoven fabric layer made of polylactic acid ultrafine fibers had a very dense structure, and the periphery of the yarn constituting the woven or knitted fabric had voids. The artificial leather had excellent mechanical properties with a vertical strength of 35.9 kg / 2.5 cm, a horizontal size of 28.5 kg / 2.5 cm, and a tear strength of vertical length of 1.9 kg and a horizontal size of 2.0 kg. The strength after performing a jungle test of this artificial leather at 70 ° C.-95% RH is 34.5 kg / 2.5 cm in length, 28.0 kg / 2.5 cm in width, 1.5 kg in tear strength, 2.1 kg in width. Thus, the physical properties were excellent and the mechanical properties that can withstand practical use were not greatly deteriorated. In addition, there were no creases, wrinkles, etc., the natural leather-like sense of fullness and flexibility were very good, the fluff length was uniform, and the appearance was good.

実施例2(織編物強度変更)
実施例1の織編物を構成する単繊維の強度として4.0cN/dtexのものを使用すること以外は実施例1と同様の処理を行った。その結果、得られた人工皮革の物性は大きく低下することなく、実用に耐える機械物性の優れたものであった。また、折れ、シワなどがなく天然皮革調の充実感や柔軟性が非常に良好であり、かつ毛羽長が揃い、良好な外観を有していた。
Example 2 (Weaving and knitting strength change)
The same treatment as in Example 1 was performed except that the strength of the single fiber constituting the woven or knitted fabric of Example 1 was 4.0 cN / dtex. As a result, the physical properties of the obtained artificial leather were not greatly deteriorated, and the mechanical properties withstand practical use were excellent. In addition, there were no creases, wrinkles, etc., the natural leather-like sense of fullness and flexibility were very good, the fluff length was uniform, and the appearance was good.

比較例1(織編物未挿入)
実施例1の織編物を未挿入とした以外は実施例1と同様の処理を行った。その結果、得られた人工皮革の強力は、タテ18.7kg/2.5cm、ヨコ14.1kg/2.5cmであり、機械物性に劣ったものであった。また、この人工皮革を70℃−95%RHジャングルテスト処理した後の強力はタテ6.4kg/2.5cm、ヨコ4.8kg/2.5cmと物性が大幅に低下していた。
Comparative Example 1 (no woven or knitted fabric inserted)
The same treatment as in Example 1 was performed except that the woven or knitted fabric of Example 1 was not inserted. As a result, the strength of the obtained artificial leather was 18.7 kg / 2.5 cm in length and 14.1 kg / 2.5 cm in width, and was inferior in mechanical properties. Further, the physical strength of this artificial leather after being treated at 70 ° C. and 95% RH jungle test was 6.4 kg / 2.5 cm in length and 4.8 kg / 2.5 cm in width.

比較例2(織編物物性変更)
実施例1の織編物を構成する繊維の強度として1.5cN/dtexのものを使用すること以外は実施例1と同様の処理を行った。その結果、得られた人工皮革は折れ、シワなどがなく天然皮革調の充実感や柔軟性が非常に良好であり、かつ毛羽長が揃い、良好な外観を有しているものの、物性は大きく低下しており、実用に耐える機械物性の劣ったものであった。
Comparative Example 2 (Change in physical properties of woven and knitted fabrics)
The same treatment as in Example 1 was performed except that a fiber having a strength of 1.5 cN / dtex was used as the strength of the fiber constituting the woven or knitted fabric of Example 1. As a result, the obtained artificial leather is free of creases, wrinkles, etc., and the natural leather-like feel and flexibility are very good, and the fluff length is uniform and has a good appearance, but the physical properties are large. The mechanical properties were inferior and were inferior in practical use.

Claims (8)

極細繊維束から構成された不織布と織編物が積層一体化されてなる繊維絡合体とその内部に高分子弾性体が含浸された人工皮革であって、以下(1)〜(3)を満足することを特徴とする人工皮革。
(1)極細繊維がポリ乳酸からなること
(2)織編物を構成する単繊維の強度が2.0cN/dtex〜4.5cN/dtexであること
(3)高分子弾性体の一部が極細繊維束の外周部と密着していること
A fiber entangled body formed by laminating and integrating a nonwoven fabric and a woven or knitted fabric composed of ultrafine fiber bundles, and an artificial leather impregnated with a polymer elastic body, and satisfies the following (1) to (3) Artificial leather characterized by that.
(1) The ultrafine fiber is made of polylactic acid (2) The strength of the single fiber constituting the woven or knitted fabric is 2.0 cN / dtex to 4.5 cN / dtex (3) A part of the polymer elastic body is extremely fine Close contact with the outer periphery of the fiber bundle
高分子弾性体が織編物を構成する糸と空隙を有して存在している請求項1に記載の人工皮革。   The artificial leather according to claim 1, wherein the polymer elastic body is present with a thread and a gap constituting the woven or knitted fabric. 前記ポリ乳酸が加水分解抑制剤をポリ乳酸に対し0.1〜15質量%含有している請求項1または2に記載の人工皮革。   The artificial leather according to claim 1 or 2, wherein the polylactic acid contains a hydrolysis inhibitor in an amount of 0.1 to 15 mass% with respect to the polylactic acid. 織編物を構成する繊維の軟化温度がポリ乳酸の軟化温度より30℃以上高い請求項1〜3いずれか1項に記載の人工皮革。   The artificial leather according to any one of claims 1 to 3, wherein a softening temperature of a fiber constituting the knitted or knitted fabric is 30 ° C or more higher than a softening temperature of polylactic acid. 高分子弾性体の一部が極細繊維束の外周部から束の内部に面積比で1〜30%の範囲で浸透して存在している請求項1〜4いずれか1項に記載の人工皮革。   The artificial leather according to any one of claims 1 to 4, wherein a part of the polymer elastic body is permeated in an area ratio of 1 to 30% from the outer periphery of the ultrafine fiber bundle to the inside of the bundle. . 請求項1〜5いずれか1項に記載の人工皮革の不織布側の面が起毛処理され、更に分散染料で染色およびアルカリ条件下で還元洗浄されてなるスエード調人工皮革。   A suede-like artificial leather obtained by raising a nonwoven fabric side surface of the artificial leather according to any one of claims 1 to 5, further dyeing with a disperse dye, and reducing and washing under alkaline conditions. 下記(1)〜(5)の工程を順次行うことを特徴とする人工皮革の製造方法。
(1)ポリ乳酸を島成分、水溶性高分子成分を海成分とした極細繊維発生型繊維から構成されたウェブまたは不織布を単繊維の強度が2.0cN/dtex〜4.5cN/dtexからなる織編物と積層一体化して繊維絡合体を製造する工程
(2)繊維絡合体を面積収縮率で5%以上30%以下で乾熱収縮する工程
(3)繊維絡合体の内部に高分子弾性体水分散液を含浸する工程
(4)赤外線を照射し、繊維絡合体の表面温度を高分子弾性体水分散液のゲル化温度より10℃以上高い温度まで昇温した状態で繊維絡合体の水分率を50%以下とした後、残りの水分を乾燥除去して高分子弾性体を凝固する工程
(5)水溶性高分子成分を熱水で抽出除去し、極細繊維束化する工程
The manufacturing method of artificial leather characterized by sequentially performing the following steps (1) to (5).
(1) A web or non-woven fabric composed of ultrafine fiber-generating fibers having polylactic acid as an island component and water-soluble polymer component as a sea component has a single fiber strength of 2.0 cN / dtex to 4.5 cN / dtex. A process of producing a fiber entangled body by laminating and integrating with a woven or knitted fabric (2) A process of dry-heat shrinking the fiber entangled body at an area shrinkage rate of 5% to 30% (3) A polymer elastic body inside the fiber entangled body Step of impregnating aqueous dispersion (4) Irradiation with infrared rays, moisture in fiber entangled body in a state where surface temperature of fiber entangled body is raised to a temperature higher by 10 ° C. or more than the gelation temperature of polymer elastic water dispersion (5) Step of extracting and removing water-soluble polymer components with hot water to form ultrafine fiber bundles
請求項7で得られた人工皮革の不織布側の面を起毛処理し、分散染料で染色した後アルカリ条件下で還元洗浄を行うスエード調人工皮革の製造方法。
A method for producing a suede-like artificial leather in which the surface of the artificial leather obtained in claim 7 is subjected to brushing treatment, dyed with a disperse dye, and then subjected to reduction cleaning under alkaline conditions.
JP2006303536A 2006-11-09 2006-11-09 Artificial leather and method for producing the same Pending JP2008121128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303536A JP2008121128A (en) 2006-11-09 2006-11-09 Artificial leather and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303536A JP2008121128A (en) 2006-11-09 2006-11-09 Artificial leather and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008121128A true JP2008121128A (en) 2008-05-29

Family

ID=39506189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303536A Pending JP2008121128A (en) 2006-11-09 2006-11-09 Artificial leather and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008121128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104761923A (en) * 2015-03-10 2015-07-08 绍兴文理学院 A disperse dye compound, and a preparing method and uses thereof
CN112195654A (en) * 2020-09-10 2021-01-08 江苏华峰超纤材料有限公司 Composite non-woven fabric for PU synthetic leather and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104761923A (en) * 2015-03-10 2015-07-08 绍兴文理学院 A disperse dye compound, and a preparing method and uses thereof
CN112195654A (en) * 2020-09-10 2021-01-08 江苏华峰超纤材料有限公司 Composite non-woven fabric for PU synthetic leather and preparation method thereof
CN112195654B (en) * 2020-09-10 2023-06-30 江苏华峰超纤材料有限公司 Composite non-woven fabric for PU synthetic leather and preparation method thereof

Similar Documents

Publication Publication Date Title
EP2006439B1 (en) Artificial leather and method for producing the same
JP4955673B2 (en) Artificial leather base material and silver-tone artificial leather
JP4869228B2 (en) Substrate for artificial leather and method for producing the same
JP2008025041A (en) Dyed biodegradable leathery sheet and method for producing the same
WO2005124002A1 (en) Process for producing intertwined ultrafine filament sheet
JP4967627B2 (en) Leather-like sheet and method for producing the same
KR102375461B1 (en) Composite sheet-like article and manufacturing method thereof
JP4770228B2 (en) Leather-like sheet and manufacturing method thereof
JP2008121128A (en) Artificial leather and method for producing the same
JP2011153389A (en) Artificial leather, and method for producing the same
JP2008280643A (en) Suede-like artificial leather and method for producing the same
JP4549886B2 (en) Method for producing dense entangled nonwoven fabric
JP2007002350A (en) Leather-like sheet
JP4602001B2 (en) Method for producing ultra-thin fiber entangled sheet
JP6065440B2 (en) Artificial leather
US20200263351A1 (en) Napped artificial leather
JP3742215B2 (en) Artificial leather base
JP6087073B2 (en) Silver-like artificial leather and method for producing the same
JP4602002B2 (en) Leather-like sheet manufacturing method
JP2006187976A (en) Manufacturing method of sheetlike article
JP5201667B2 (en) Leather-like sheet and method for producing the same
JP2005330595A (en) Method for producing sheet-like material
JP2006002286A (en) Method for producing fibrous sheet-like product
JP3430852B2 (en) Method of manufacturing nap sheet
JPWO2020138029A1 (en) Strings and knit products for knitting