JP2008120681A - Bioactive glass composition - Google Patents

Bioactive glass composition Download PDF

Info

Publication number
JP2008120681A
JP2008120681A JP2008007010A JP2008007010A JP2008120681A JP 2008120681 A JP2008120681 A JP 2008120681A JP 2008007010 A JP2008007010 A JP 2008007010A JP 2008007010 A JP2008007010 A JP 2008007010A JP 2008120681 A JP2008120681 A JP 2008120681A
Authority
JP
Japan
Prior art keywords
bioactive
glass
particles
composition
tooth structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008007010A
Other languages
Japanese (ja)
Other versions
JP5020833B2 (en
Inventor
Leonard J Litkowski
ジェイ. リトコウスキー,レオナード
Gary D Hack
ディー. ハック,ゲイリー
David C Greenspan
シー. グリーンスパン,デビッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USBiomaterials Corp
University of Maryland at Baltimore
Original Assignee
USBiomaterials Corp
University of Maryland at Baltimore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USBiomaterials Corp, University of Maryland at Baltimore filed Critical USBiomaterials Corp
Publication of JP2008120681A publication Critical patent/JP2008120681A/en
Application granted granted Critical
Publication of JP5020833B2 publication Critical patent/JP5020833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass
    • C03C4/0021Compositions for glass with special properties for biologically-compatible glass for dental use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • A61K6/17Particle size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/807Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising magnesium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/836Glass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/22Peroxides; Oxygen; Ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition which is easily applicable and immediately adheres to a tooth structure, and chemically and physically interacting with the tooth structure. <P>SOLUTION: A novel silica-based bioactive glass composition that can be used in conjunction with a delivery agent such as a toothpaste and gel has a particle size range of smaller than 90 μm, and forms a rapid and continuous reaction with body fluids by virtue of the immediate and long-term ionic release of Ca and P from the core silica particles, to produce a stable crystalline hydroxy carbonate apatite layer deposited onto and into the dentin tubules for the immediate and long-term recovery-from dentin hypersensitivity and tooth surface remineralization. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本出願は同時係属出願の米国特許出願第08/597,936号(出願日1996年2月7日)の一部継続出願であり、その開示は引用によりここに組み入れられる。本出願はさらに同時係属出願の米国仮特許出願第60/010,795号(出願日1996年1月29日)の一部継続出願であり、その開示は引用によりここに組み入れられる。
(発明の分野)
本発明は生理活性ガラス組成物に関する。さらに詳細には、本発明は従来の組成物よりも著しく低い粒径範囲の組み合わせを有する粒子を含む改良された生理活性ガラスの組成物に関する。本発明はまたそのような生理活性ガラス組成物の使用を含むいろいろな治療方法に関する。
This application is a continuation-in-part of co-pending US patent application Ser. No. 08 / 597,936 (filing date Feb. 7, 1996), the disclosure of which is incorporated herein by reference. This application is further a continuation-in-part of co-pending US Provisional Patent Application No. 60 / 010,795 (filing date 29 Jan. 1996), the disclosure of which is hereby incorporated by reference.
(Field of Invention)
The present invention relates to a bioactive glass composition. More particularly, the present invention relates to an improved bioactive glass composition comprising particles having a combination of particle size ranges that are significantly lower than conventional compositions. The present invention also relates to various treatment methods including the use of such bioactive glass compositions.

発明の背景
ヒトの歯のエナメル質は自然に鉱物質除去の過程を経ることになる。エナメル質の唾液および食物への露出は歯から鉱物質を徐々に浸出して、結局は腐食し易くする。この鉱物質除去の過程は結果として初期の虫歯をもたらすが、この初期の虫歯は典型的なエナメル質表面の極く小さな欠損であり、従ってこれまでは通常治療されないままに放置される。虫歯の象牙質の鉱物質除去もまた、セメント−エナメル質接合の下の欠損から生ずる象牙質の露出された区域を有する患者において起こることがある。従って、フッ化物の塗布およびその他の局所治療を含めて、この自然の鉱物質除去の過程を遅くさせることに関連する多くの研究がなされた。
例えば、米国特許第5,427,768号明細書は、リン酸カルシウム固形物と二酸化炭素に関して過飽和されているリン酸カルシウム溶液を開示している。その溶液は歯の腐食部、露出した歯根、または象牙質のような歯の弱い部分の上または中にフッ化物を含むまたは含まないリン酸カルシウムを析出する。米国特許第5,268,167号および同第5,037,639号明細書は無定形カルシウム化合物、例えば、無定形リン酸カルシウム、無定形フッ化リン酸カルシウム、および無定形炭酸リン酸カルシウム、を歯の再鉱物質化における用途のため使用することを開示している。これらの無定形化合物は、歯の組織に適用されると、歯の弱化を防ぐおよび/または補修する。これらの方法は、(1)適用のために刺激性になり得る低いpHを必要とする、(2)速い反応が結果として非常に短い期間の効果をもたらす、(3)これらの方法は溶液を使用するので、現実の反応は患者から患者へ調節することが難しい、および(4)それらの反応は速やかでありかつ持続の短いものであるから、その効果を維持するために手順を繰り返さなければならない、などの不利な点を含む。また両方法は混合投与の前に少なくとも1種の溶液を加圧二酸化炭素と共に維持することを必要とするので、それはこの方法を処方箋なしの過程に組み入れることを難しくする。
鉱物質除去は結局エナメル質被覆の空洞化を導き、下にある歯の構造体の露出を来す。通例、この型の腐食はその腐食した区域を削りとって半永久的な充填材を挿入することにより処置されている。しかし、腐食の進行を抑えかつ逆進させる、侵害のより少ない方法が求められている。
予防のための穴と裂け目の充填材が、特に腐食の危険にある区域の腐食を予防するために広く使われるようになった。これらの充填材に含まれるのは、乾式塗布と固定材の使用を必要とするポリマーまたはその他のセメントであった。ライナーとベースは、穿孔により露出された表面のような新しく露出された歯の表面を処置するために使用される材料である。空洞が作られた後、空洞に充填材を詰める前にライナーまたはベースを塗布することが慣習である。ライナーは材料の薄い皮膜であり、ベースは比較的厚い皮膜である。ライナーおよびベース材料は歯材界面における象牙質の透過性を低下させかつ充填材の周囲からおよびこれを通過する微小な漏れを防ぎ、象牙質細管を封入するように設計される。初期のライナーまたは「空洞用ワニス」の例は有機溶媒に溶かされた有機「ガム」のような材料を含む。有機溶媒が蒸発すると、そのガムは後に残される。これらの有機ガムに伴われる不利な点はしばしば文献に記載されており、結合部が漏れ易い、付着力に欠ける、酸に侵され易いなどの弱点を含む。他の一つのライニング方法が米国特許第4,538,990号明細書に開示されており、1〜30%w/vの中性シュウ酸塩、例えばシュウ酸二カリウム、を塗層に塗り、次にその層へ0.5〜3%w/vのシュウ酸一水素一カリウムのような酸性シュウ酸塩の溶液を塗布することが記載されている。研究によると、この方法による細管の封入閉塞は貧弱であることが示された。
米国特許第5,296,026号はガラスリン酸塩セメントおよびそれらを骨の中の空洞および歯における溝を充填するための外科用埋め込み材料として使用する方法を記載している。それらのセメント組成物はP、CaO、SrOおよびNaOを、治療薬を含むまたは含まない水性液と組み合わせて含む。その粉と液を混合すると硬化反応を生ずる。そのセメントが硬組織の中に埋め込まれると、それは充填材/移植材料として役立ち、そして浸出性成分の放出と共にそれは健康な骨の治療と保全に役立つ。
いろいろな生理活性および生体適合性のガラスが骨の代替材料として既に開発されてきた。若干の研究は、これらのガラスが生理機能系における骨形成を誘導または援助するであろうことを示した。Hench et al., J. Biomed.Mater. Res. 5:117-141(1971).その骨とガラスの間に発現された結合は極めて強くかつ安定であることが証明された。Piotrowsky et al., J. Biomed.Mater. Res. 9:47-61(1975).それらのガラスの毒物学評価は多数の生体外および生体内モデルにおいて骨または軟組織に毒性効果を示さなかった。Wilson et al., J. Biomed. Mater. Res. 805-817 (1981).ガラスは、多分ガラスの表面からのイオンの溶解により誘導されたpHの変化およびガラス表面への細菌の粘着性の欠如に関連して細菌発育抑制性または殺菌性であることが報告された。Stoort al., Bioceramics Vol. 8, p. 253-258 Wilsonet al.(1995).
ガラスの骨への結合はそのガラスの水溶液への露出と共に始まる。ガラス内のNaは体液からのHと交換してpHの増加を生ずる。CaとPはガラスから移動してCa−Pに富む表面層を形成する。このCa−Pに富む表面層の下にあるのは、Na,CaおよびPイオンの損失のためにますますシリカに富むようになる層である(米国特許第4,851,046号明細書)。
歯科用の固体埋め込み材としての生理活性ガラスの作用が、Stanley et al., Journal of Prostetic Dentistry, Vol. 58, pp. 607-613 (1987)により報告された。複製の歯型が製作されて、成長したヒヒの抜歯された切歯の穴の中に埋め込まれた。それらの埋め込み物の周囲の骨への成功した付着が6ケ月における組織学的検査の後に見られた。この技術の臨床的応用は現在人体用に利用できる。Endosseous Ridge Maintenance Implant ERMI (登録商標)。微粒子の生理活性ガラスが歯根骨の欠損の修繕のために使用されたが(米国特許第4,851,046号明細書)、その際90〜710μmの粒径範囲および次の表に記載された組成範囲が用いられた。
成分重量百分率
SiO 40−55
CaO 10−30
NaO 10−35
2−8
CaF 0−25
0−10
前記のデータは、60%のシリカは生理活性な溶融物に由来するガラスの限界を越えることを示した。Okasuki et al., Nippon Seramikbusu Kyokai Gakijutsu Konbuski, Vol. 99, pp. 1-6 (1991).
前記の90〜710μmの粒径範囲は、骨と直接に接触するとき周期的に使用するために最も有効であることが測定された。しかし、90μm以下の粒径範囲はその高度の反応性と人体部位における速やかな吸収のために効果がなかった。さらに、90μm以下の粒径範囲は、これまた比較的小さな粒子が大食細胞により除去されると推定されるので、軟組織部位においては効果がないことが測定された(米国特許第4,851,046号明細書参照)。200μm以下の粒径範囲はまた高度の反応性のためにある骨の欠損において効果がないことも発見された(米国特許第5,204,106号明細書参照)。
米国特許第4,239,113号明細書(「113特許」)もまた骨セメントの使用を記載している。113特許は10−200ミクロンの粒径範囲を有する生理活性ガラス粉を開示しているのみである。さらに、113特許はまたメチルメタクリレート(コ)ポリマーおよびガラス質の鉱物繊維の使用を必要とする。
前述の方法または組成物のどれも、容易に適用できることと非常に小さな歯構造の欠損の中への浸透を含む歯構造へ付着することおよび適用の後に歯構造との化学的および物理的相互作用を継続するための適当な条件の両者の結合されることによる利益を与えるものはない。
Background of the Invention Human tooth enamel naturally undergoes a mineral removal process. Enamel saliva and food exposure gradually leach out minerals from the teeth, eventually making them susceptible to corrosion. This process of demineralization results in an initial caries, which is a tiny defect in the typical enamel surface and is thus usually left untreated until now. Carious dentin demineralization may also occur in patients with exposed areas of dentin resulting from defects under the cement-enamel junction. Thus, much research has been done relating to slowing this natural mineral removal process, including fluoride application and other topical treatments.
For example, US Pat. No. 5,427,768 discloses a calcium phosphate solution that is supersaturated with respect to calcium phosphate solids and carbon dioxide. The solution deposits calcium phosphate with or without fluoride on or in tooth decay, exposed roots, or weak parts of the tooth such as dentin. U.S. Pat. Nos. 5,268,167 and 5,037,639 describe an amorphous calcium compound such as amorphous calcium phosphate, amorphous calcium fluorophosphate, and amorphous calcium carbonate phosphate remineralization material. It is disclosed for use in applications. These amorphous compounds, when applied to tooth tissue, prevent and / or repair tooth weakening. These methods (1) require a low pH that can be irritating for application, (2) fast reaction results in a very short period of time, (3) these methods Because actual responses are difficult to adjust from patient to patient, and (4) they are rapid and short-lived, the procedure must be repeated to maintain their effects Including disadvantages such as Both methods also require that at least one solution be maintained with pressurized carbon dioxide prior to mixed administration, which makes it difficult to incorporate this method into a prescription-free process.
Mineral removal eventually leads to the hollowing out of the enamel coating, resulting in the exposure of the underlying tooth structure. Typically, this type of corrosion is treated by scraping the corroded area and inserting a semi-permanent filler. However, there is a need for a less invasive method that suppresses and reverses the progress of corrosion.
Preventive hole and tear fillers have become widely used to prevent corrosion, especially in areas at risk of corrosion. Included in these fillers were polymers or other cements that required dry application and use of fixing materials. The liner and base are materials used to treat newly exposed tooth surfaces such as those exposed by drilling. After the cavity is created, it is customary to apply a liner or base before filling the cavity with filler. The liner is a thin film of material and the base is a relatively thick film. The liner and base material are designed to encapsulate the dentinal tubules by reducing the permeability of the dentin at the tooth interface and preventing minute leaks from and around the filler. Examples of early liners or “cavity varnishes” include materials such as organic “gum” dissolved in organic solvents. As the organic solvent evaporates, the gum is left behind. The disadvantages associated with these organic gums are often described in the literature and include weaknesses such as the joints being prone to leakage, lack of adhesion, and acid attack. Another lining method is disclosed in U.S. Pat. No. 4,538,990, where 1-30% w / v neutral oxalate, such as dipotassium oxalate, is applied to the coating layer, It is then described that an acid oxalate solution such as 0.5-3% w / v monopotassium monohydrogen oxalate is applied to the layer. Studies have shown that tubule occlusion by this method is poor.
US Pat. No. 5,296,026 describes glass phosphate cements and methods of using them as surgical implants for filling cavities in bones and grooves in teeth. These cement compositions contain P 2 O 5 , CaO, SrO and Na 2 O in combination with an aqueous liquid with or without a therapeutic agent. When the powder and liquid are mixed, a curing reaction occurs. When the cement is embedded in hard tissue, it serves as a filler / implant and, along with the release of leachable components, it helps in the treatment and maintenance of healthy bones.
A variety of bioactive and biocompatible glasses have already been developed as bone replacement materials. Some studies have shown that these glasses will induce or assist bone formation in the physiologic system. Hench et al., J. Biomed. Mater. Res. 5: 117-141 (1971). The bond developed between the bone and the glass proved to be very strong and stable. Piotrowsky et al., J. Biomed. Mater. Res. 9: 47-61 (1975). The toxicological evaluation of these glasses showed no toxic effects on bone or soft tissue in a number of in vitro and in vivo models. Wilson et al., J. Biomed. Mater. Res. 805-817 (1981). Glass is probably a pH change induced by the dissolution of ions from the glass surface and the lack of bacterial adhesion to the glass surface. In connection with, it was reported to be bacterial growth inhibitory or bactericidal. Stoort al., Bioceramics Vol. 8, p. 253-258 Wilson et al. (1995).
Bonding of glass to bone begins with exposure of the glass to an aqueous solution. Na + in the glass exchanges with H + from the body fluid and causes an increase in pH. Ca and P move from the glass to form a surface layer rich in Ca-P. Underneath this Ca-P rich surface layer is a layer that becomes increasingly rich in silica due to the loss of Na, Ca and P ions (US Pat. No. 4,851,046).
The action of bioactive glass as a dental solid implant was reported by Stanley et al., Journal of Prostetic Dentistry, Vol. 58, pp. 607-613 (1987). Duplicate tooth molds were fabricated and embedded in the extracted incisor holes of the grown baboons. Successful attachment of these implants to the surrounding bone was seen after histological examination at 6 months. The clinical application of this technology is currently available for the human body. Endosseous Ridge Maintenance Implant ERMI (registered trademark). Fine-grained bioactive glass was used for repairing the root bone defect (US Pat. No. 4,851,046), with a particle size range of 90-710 μm and listed in the following table A composition range was used.
Ingredient weight percentage
SiO 2 40-55
CaO 10-30
Na 2 O 10-35
P 2 O 5 2-8
CaF 2 0-25
B 2 O 3 0-10
The above data indicated that 60% silica exceeded the limits of glass derived from bioactive melts. Okasuki et al., Nippon Seramikbusu Kyokai Gakijutsu Konbuski, Vol. 99, pp. 1-6 (1991).
The 90-710 μm particle size range was determined to be most effective for periodic use when in direct contact with bone. However, a particle size range of 90 μm or less was ineffective due to its high reactivity and rapid absorption at human sites. Furthermore, a particle size range of 90 μm or less has been determined to be ineffective at soft tissue sites since it is estimated that relatively small particles are also removed by macrophages (US Pat. No. 4,851, No. 046). It has also been discovered that particle size ranges below 200 μm are ineffective in certain bone defects due to the high degree of reactivity (see US Pat. No. 5,204,106).
US Pat. No. 4,239,113 (“ 113 patent”) also describes the use of bone cement. The 113 patent only discloses a bioactive glass powder having a particle size range of 10-200 microns. In addition, the 113 patent also requires the use of methyl methacrylate (co) polymers and glassy mineral fibers.
Any of the foregoing methods or compositions can be easily applied and adhere to the tooth structure, including penetration into very small tooth structure defects, and chemical and physical interaction with the tooth structure after application There is nothing that benefits from the combination of both of the appropriate conditions to continue.

従って、本発明の目的は、容易に適用されかつ歯構造にすぐに付着するものであって、歯構造と化学的および物理的相互作用できる組成物を提供することである。
さらに本発明の一つの目的は、いろいろな歯のおよびその他の病状を治療するためにそのような生理活性ガラス組成物を使用する方法を提供することである。
Accordingly, it is an object of the present invention to provide a composition that is easily applied and readily adheres to the tooth structure and that can chemically and physically interact with the tooth structure.
It is a further object of the present invention to provide methods for using such bioactive glass compositions to treat various dental and other medical conditions.

(発明の要約)
本発明は、例えば、下記の重量百分率により、
SiO 40−60
CaO 10−30
NaO 10−35
2−8
CaF 0−25
0−10
O 0−8
MgO 0−5
を含む微粒子の生理活性および生体適合性のガラス、そして90μmより小さい粒子および有効な再鉱物質化量の10μmより小さい粒子を含む微粒子の生理活性および生体適合性のガラスに関する。本発明はまた、再鉱物質化、割れ目および/または穴の密閉、歯構造の被覆、腐食の処置、歯髄の蓋かぶせ、敏感な手術後の歯構造の処置、象牙質細管および組織再生のための表面の密封などを含むいろいろな歯の治療方法に関する。
(Summary of the Invention)
The present invention, for example, by the following weight percentage:
SiO 2 40-60
CaO 10-30
Na 2 O 10-35
P 2 O 5 2-8
CaF 2 0-25
B 2 O 3 0-10
K 2 O 0-8
MgO 0-5
The bioactive and biocompatible glass of microparticles comprising, and the bioactive and biocompatible glass of microparticles comprising particles smaller than 90 μm and an effective remineralization amount of particles smaller than 10 μm. The invention also provides for remineralization, crack and / or hole sealing, dental structure coating, erosion treatment, pulp capping, sensitive post-operative dental structure treatment, dentinal tubule and tissue regeneration The present invention relates to various tooth treatment methods including sealing of the surface of the teeth.

(発明の詳細な説明)
本発明は、例えば、エナメル質の再鉱物質化(remineralization)、初期の虫歯の再鉱物質化、腐食象牙質の再鉱物質化、虫歯の予防、腐食の抑止、腐食の回復、虫歯予防剤、穴と裂け目の充填材、予防用ペースト、フッ化物処理、象牙質充填材などにおいて役に立つ生理活性ガラス組成物を提供する。それはまた練り歯磨き、ライナー、ベース、ゲル、および修復材料、例えば、パッキング、間接歯髄被覆剤など、の中に含まれることができる。本発明の組成物はまた、象牙質の感受性(感度)を減少させかつ組織の付着を強めるために歯根手術後の表面の処置に有用である。それらの組成物は多様な歯のおよびその他の病状に関連するいろいろな欠損の治療およびそれにより歯構造を再鉱物質化して歯に実際に化学的および物理的に結合することに有効である。
ここで言及されるとき、再鉱物質化とはヒドロキシアパタイトの形成である。ヒドロキシアパタイトの形成は生理活性ガラス組成物の水溶液への露出と共に始まる。生理活性ガラス内のナトリウムイオン(Na)は体液の中のHイオンと交換してpHを増加させると信じられている。カルシウムとリンはそれから生理活性ガラスより移動してカルシウムとリンに富んだ表面を形成する。生理活性ガラス内のナトリウムイオンが溶液の水素イオンと交換を続けるに従って下にあるシリカに富む帯域が徐々に増加する。ある時間の後、カルシウムとリンに富んだ層は結晶してヒドロキシアパタイト材になる。コラーゲンはアパタイト凝集体に構造的に統合されることができる。これ以後言及されるとき、有効な再鉱物質化量とはヒドロキシアパタイトを形成できるいかなる量のことである。
用語「歯構造」はここで使用されるとき、エナメル質、象牙質、歯髄、歯根構造、セメント質、歯根象牙質、冠状象牙質、すべての歯の構成物などを含むがそれらに限定されない歯のすべての造作に言及することが意図されている。
本発明の生理活性ガラス組成物は、模擬体液の中に置かれたとき生体外でヒドロキシ炭酸アパタイトの層を形成することになるガラス組成物である。例えば、次の重量による組成は生理活性ガラスを提供するであろう。
SiO 40−60
CaO 10−30
NaO 10−35
2−8
CaF 0−25
0−10
O 0−8
MgO 0−5
これらの特性を有する生理活性ガラスは歯構造との相互作用のためさらに有効な材料を提供する。本発明の生体適合性のガラスは圧倒的に逆方向の免疫反応を誘発しないものである。
本発明により、特定の粒径を有する生理活性ガラスは前記の病状の治療に特に有効であることが発見された。特に、小さな粒子と非常に小さな粒子が組み合わされる場合には驚くべき結果が本発明により得られる。例えば、歯構造と結合することのできる小さな粒子(例えば、約90ミクロンより小さい)並びにそれより小さな粒子(約10ミクロンより小さい)を含む組成物が組み合わせて使用されるとき、これらの粒子の比較的大きい粒子は歯構造に付着してイオン貯蔵所の役をするが、比較的小さい粒子はいろいろな歯構造表面の凹凸の内側に宿る。これらの粒子のより大きなものは付加されたカルシウムとリンの貯蔵所を提供するので、鉱物質化、すなわち小さい粒子により始められたリン酸カルシウム層の析出が継続できる。付加されたカルシウムとリンはすべての歯構造に並びに歯細管のような歯構造表面の凹凸の内側または穴のところに付着した粒子に浸出されることができる。これは引き続いて全反応の継続およびそのような表面の凹凸の内側または穴の上に宿ったこれらの粒子の比較的小さいものの継続した成長を与え、そして有効に表面の凹凸の被覆または充填をもたらすことができる。このカルシウムとリンの過剰濃度はこれらの粒子の比較的小さいものの継続した反応が起こるために必要であるが、それは比較的小さい粒子がそれらの比較的高い表面積の結果としてそれらのイオンを速やかに消耗させるからである。これらの粒子の比較的大きいものは長期の効果としてよりゆっくりと反応してそれらのイオンを放出するであろう。さらに、これらの粒子の比較的大きいものは歯の表面を機械的にすり減らして様々な表面の凹凸を開き、小さい粒子を入らせて表面の凹凸と反応させるであろう。
この効果は多種多様の用途において有益である。例えば、虫歯または腐食の予防において、本発明の組成物は最も小さい表面の凹凸の深みに侵入することができ、また近傍の比較的大きい粒子から継続したイオンの供給を受けるのでその蓄えられたイオンの貯蔵を枯渇させた後も成長することができる。これはまた穴と裂け目に封をするのに非常に役立ち、そしてさらにより有効なかつ永続する密封が得られる。
本発明の若干の実施態様において、極めて小さい粒子が使用される。例えば、2μmからサブミクロンの範囲内にある粒子は約1−2μmの直径である歯の細管の内側にぴったりはまる。これらの細管の閉塞は、例えば、周期的手術の後の感受性の著しい減少に導く。より好ましくは、直径で2ミクロンより小さい粒子と45ミクロンより大きい粒子の混合物が使用される。この組み合わせは特に有効な組成物をもたらすことが発見された。
本発明の組成物は一般に凝固するために時間を必要としない。従来の組成物は歯ブラシをかけることにより生ずる機械的摩擦、食物中の弱い酸への露出、唾液の流れまたは通常歯と接触するその他の液体によって容易に洗い去られた。しかし、本発明による組成物は一般に著しい攪拌、水によるすすぎ洗いおよび模擬唾液の中に5日間の長期浸漬に耐えることができた。さらに、本発明の小さい粒子の多くは凝固時間を必要としないが、それはそれらが歯構造の表面および口の中に自然に存在する液体と接触するやいなや歯構造に化学的に反応して付着し始めるからである。本発明の組成物は一回の適用で効果があるが、数回重ねて適用すればさらに有効になることは事実らしい。
驚くべきことに、本発明の比較的小さい生理活性微粒子ガラスは著しい免疫応答を発生しない。さらに、それは一般に大食細胞により呑み込まれないのでこの適用において不活性にされる。
本発明の組成物は、歯構造の継続する再鉱物質化である新しい層を形成することになる生理活性層を提供することができる。このことは、本発明の組成物による処理の後に象牙質表面上にヒドロキシ炭酸アパタイト層が再形成されることによるものであると、フーリエ変換赤外分光法(FTIR)により証明された。
本発明の一実施態様において、その粒子は約30%の10ミクロンより小さい粒子を含めて約20ミクロンの粒径を有する。本発明の他の一つの実施態様においては、その粒子は少なくとも25%の2ミクロンより小さい粒子を含めて10ミクロンの平均粒径を有する。
本発明の組成物は練り歯磨きに配合されることができよう。実際に、それらの粒子は現在練り歯磨きの中に使用されているシリカに取って代わることがあろう。このガラス組成物中にフッ化物を添加すると歯構造を強化することもあろう。その生理活性ガラスを歯に直接適用することに加えて、本発明の生理活性ガラス組成物は食塩水または蒸留水に基づく媒体の中で適用されることもできる。
本発明の組成物はまた口内洗剤、ゲルに配合されることもあり、またはそれらは歯科医師によりペーストとして適用されることもある。
(Detailed description of the invention)
The present invention includes, for example, enamel remineralization, initial caries remineralization, corrosive dentin remineralization, caries prevention, corrosion inhibition, corrosion recovery, caries preventive agent The present invention provides a bioactive glass composition useful in hole and tear fillers, preventive pastes, fluoride treatments, dentin fillers, and the like. It can also be included in toothpastes, liners, bases, gels, and restorative materials such as packing, indirect pulp coatings, and the like. The compositions of the present invention are also useful for the treatment of surfaces after root surgery to reduce dentin sensitivity and increase tissue adhesion. These compositions are effective in treating various defects associated with a variety of dental and other medical conditions and thereby remineralizing the tooth structure and actually chemically and physically binding the tooth.
As referred to herein, remineralization is the formation of hydroxyapatite. Hydroxyapatite formation begins with exposure of the bioactive glass composition to an aqueous solution. It is believed that sodium ions (Na + ) in the bioactive glass exchange with H + ions in body fluids to increase pH. Calcium and phosphorus then migrate from the bioactive glass to form a calcium and phosphorus rich surface. As the sodium ions in the bioactive glass continue to exchange with the hydrogen ions in the solution, the underlying silica-rich zone gradually increases. After some time, the calcium and phosphorus rich layer crystallizes into a hydroxyapatite material. Collagen can be structurally integrated into apatite aggregates. As referred to hereinafter, an effective amount of remineralization is any amount capable of forming hydroxyapatite.
The term “dental structure” as used herein includes teeth, including but not limited to enamel, dentin, pulp, root structure, cementum, root dentin, coronary dentin, all tooth components, etc. It is intended to mention all the features of.
The bioactive glass composition of the present invention is a glass composition that forms a hydroxycarbonate apatite layer in vitro when placed in a simulated body fluid. For example, the following composition by weight would provide a bioactive glass.
SiO 2 40-60
CaO 10-30
Na 2 O 10-35
P 2 O 5 2-8
CaF 2 0-25
B 2 O 3 0-10
K 2 O 0-8
MgO 0-5
Bioactive glasses having these properties provide a more effective material for interaction with the tooth structure. The biocompatible glass of the present invention does not induce an immune response in the opposite direction.
According to the present invention, it has been discovered that a bioactive glass having a specific particle size is particularly effective for the treatment of the above-mentioned pathological conditions. In particular, surprising results are obtained with the present invention when small particles and very small particles are combined. For example, when compositions containing small particles (eg, less than about 90 microns) that can be combined with a tooth structure as well as smaller particles (less than about 10 microns) are used in combination, a comparison of these particles Larger particles adhere to the tooth structure and act as an ion reservoir, while smaller particles stay inside the irregularities of various tooth structure surfaces. The larger of these particles provides an added calcium and phosphorus reservoir so that mineralization, i.e. deposition of the calcium phosphate layer initiated by the small particles, can continue. The added calcium and phosphorus can be leached into all tooth structures as well as particles adhering to the inside of the irregularities of the tooth structure surface such as tubules or at the holes. This in turn gives a continuation of the whole reaction and a continuous growth of relatively small ones of these particles dwelling inside or over the surface irregularities and effectively results in a coating or filling of the surface irregularities be able to. This excess concentration of calcium and phosphorus is necessary for the relatively small but continued reaction of these particles to occur, but that relatively small particles quickly deplete their ions as a result of their relatively high surface area. It is because it makes it. The relatively large of these particles will react more slowly and release their ions as a long-term effect. Furthermore, the relatively large of these particles will mechanically abrade the tooth surface to open various surface irregularities and allow small particles to enter and react with the surface irregularities.
This effect is beneficial in a wide variety of applications. For example, in the prevention of dental caries or corrosion, the composition of the present invention can penetrate the depth of the smallest surface irregularities and receives a continuous supply of ions from nearby relatively large particles so that the stored ions It can grow after depleting its storage. This is also very useful for sealing holes and tears, and even more effective and lasting seals are obtained.
In some embodiments of the invention, very small particles are used. For example, particles in the range of 2 μm to sub-micron will fit inside a dental tubule that is approximately 1-2 μm in diameter. These tubule occlusions, for example, lead to a significant decrease in sensitivity after periodic surgery. More preferably, a mixture of particles smaller than 2 microns in diameter and particles larger than 45 microns is used. It has been discovered that this combination results in a particularly effective composition.
The compositions of the present invention generally do not require time to solidify. Prior compositions were easily washed away by mechanical friction caused by toothbrushing, exposure to weak acids in food, saliva flow or other liquids that normally contact the teeth. However, the compositions according to the invention were generally able to withstand significant stirring, rinsing with water and long-term immersion for 5 days in simulated saliva. In addition, many of the small particles of the present invention do not require clotting time, but they chemically react and adhere to the tooth structure as soon as they come in contact with the liquid naturally present in the surface and mouth of the tooth structure. Because it starts. The composition of the present invention is effective in a single application, but it seems to be more effective if applied several times.
Surprisingly, the relatively small bioactive particulate glass of the present invention does not generate a significant immune response. Furthermore, it is rendered inactive in this application because it is generally not swallowed by macrophages.
The composition of the present invention can provide a bioactive layer that will form a new layer that is a continuous remineralization of the tooth structure. This was proved by Fourier transform infrared spectroscopy (FTIR) to be due to the re-formation of the hydroxycarbonate apatite layer on the dentin surface after treatment with the composition of the present invention.
In one embodiment of the invention, the particles have a particle size of about 20 microns, including about 30% of particles less than 10 microns. In another embodiment of the invention, the particles have an average particle size of 10 microns, including at least 25% of particles smaller than 2 microns.
The composition of the present invention could be formulated in a toothpaste. In fact, the particles may replace the silica currently used in toothpaste. Adding fluoride to the glass composition may strengthen the tooth structure. In addition to applying the bioactive glass directly to the teeth, the bioactive glass composition of the present invention can also be applied in a medium based on saline or distilled water.
The compositions of the present invention may also be formulated into mouthwashes, gels, or they may be applied as a paste by a dentist.

次の実施例は限定するものではない。
生体外の実験は抜かれた歯からの人間の歯の象牙質の標準化された板を用いて行われた。これらの円板は抜かれた歯からイソメット(Isomet)ダイアモンド鋸(Buchler Ltd.)を使用して切り取られた。円板は1.0mmの厚さで歯の大きさであった。それらの咬合面は一連の320〜600粗粒範囲の湿った炭化ケイ素紙やすり上で磨かれた。これは試験表面を標準化するために行われた。それらの表面は磨きの過程の間に造られた汚れ層を除くためおよび象牙質細管を開いて広げるために37%リン酸で60秒間処理された(図1および2参照)。その表面は蒸留水で20秒間すすぎ洗いしてから、油を含まない空気流で乾燥された。それぞれの板は半分に割られてから、実験材料が各例に記載のようにその半分に割られた試料の1つの上に置かれた。開いて広げられた細管を有する未処理の板が図1および2に示されている。
走査電子顕微鏡検査が各グループにおいて前記の板の表面上で行われた。それらの板は銀ペーストを用いて走査電子顕微鏡のスタブ上に装着された。すべての試料は真空乾燥され、スパッターコーティングされてから、JEOL−T200走査電子顕微鏡で検査された。
例 1
出発生成物は
SiO 45
CaO 24.5
NaO 24.5

を含む混合物(重量%)であった。その混合物を蓋をした白金坩堝の中で1350℃で2時間溶融して均質化を達成した。その混合物を0℃の脱イオン水の中で急冷した。フリット化したガラスをボールミル、インパクトミルを含む適当な粉砕装置の中に置いた。そのガラスを2時間粉砕してからいくつかの適当な粒径範囲に分離した。
90μmより小さい粒径範囲はこの方法を用いて得られ、そして走査電子顕微鏡とレーザー光散乱法(Coulter LS 100)により確認された。これらの混合物を前記の象牙質板の上に置いた。
象牙質に対する露出時間は液体で洗いながらの2分間から攪拌しないで3日間までの間でいろいろ変わった。細管の閉塞が図3−7に描かれている。図3−7に見ることができるのは存在するいろいろな粒径の小さい(1−5μm)粒子による象牙質細管の全体的および部分的閉塞である。さらに、化学組成物のための貯蔵庫として働くことになる比較的大きい粒子が見える。ヒドロキシアパタイト結晶の初期の形成が象牙質の上で始まっていることがFTIRにより確認されている。
例 2
図8および9は例1に従って造られたサブミクロン粒子を使用することにより得られる結果を示す。図8および9の試料は、リン酸により酸エッチングされ、生理活性ガラスと共に2分間処理されてからリン酸塩緩衝塩類液の中に5日間浸漬された象牙質表面である。貯蔵庫の活動のための大きな粒子に欠けているので、FTIRにより確認されたように改造はより不完全であった。
例 3
例3は本発明による組成物の多重適用に伴われる利点を例証するために行われた。まず初めに、酸エッチングされた象牙質表面は2分間の生理活性微粒子ガラスの1回処理を受けたもので、そして図10に描かれている。酸エッチングされてから2分間づつ3回処理された象牙質表面が図11に描かれている。
図10は象牙質の表面上の結合による著しい浸透と細管の閉塞を示している。図10では大きい粒子は多く見られない。図11では、さらに多くの著しい細管の浸透と閉塞があり、かつより多数の粒子が存在する。これは細管を含む多重適用ならびにCaおよびPイオンの比較的大きい貯蔵庫の増加された存在に伴われた利点を証明する。これはまた既に表面に結合された比較的小さい粒子に対する比較的大きい粒子の粒子間溶接も証明している。
例 4
例4は粒径にして2ミクロン以下の粒子を45ミクロンより大きい粒子と組み合わせて使用することに結びついた利点を例示している。
次の試料についてのFTIRスペクトルは、再鉱物化を例示するために図12に含まれている。
試料番号1 対照(未処理の象牙質表面)
試料番号2 酸エッチングされた象牙質表面
試料番号3 粒径2ミクロンより小さい生理活性ガラスの粒
子と共に2分間処理されたもの
試料番号4 その内40%は2ミクロン未満であり、
15%は8〜2ミクロンの範囲内にあり、
15%は8〜20ミクロンの範囲内にあり、
15%は20〜38ミクロンの範囲内にあり、
そして15%は38〜90ミクロンの範囲内に
ある生理活性ガラスの粒子と共に処理されたも
の。
図12に例示されたように、対照試料はヒドロキシ炭酸アパタイト(HCA)のスペクトルの代表的な図を与える。波数1150〜500の間のピークの形はHCAにつき非常に特徴的なものである。試料2において、それらのピークは酸エッチングによる処理の後に、特に1150〜500の範囲において、分裂している。これは歯構造の鉱物質成分、カルシウムとリン、の損失を示す。試料3は歯構造上のCaとPの部分的再鉱物質化を示す。試料4は最適の粒径と形の生理活性ガラス混合物と共に処理されたもので、殆ど完全な再鉱物質化を示している。試料4の写真は図11として含まれている。
例 5
比較例5は、2ミクロンより小さいまたは53−90μの適当な粒子の使用に比較して、粒径で45ミクロンより大きい粒子と組み合わせて10ミクロンより小さい粒子の使用に関連した利点を示す。下記のように未処理の象牙質表面の対照試料が処理された表面のほかに使用された。

Figure 2008120681

上の表におけるすべての試料は湿った環境に24時間さらされてから、次に48時間乾燥された。
上記に見られるように、2ミクロンより小さい粒子と53〜90μの粒子の組み合わせは最良の結果を与えた。両粒径範囲の粒子の存在は、細管の中に宿った比較的小さい粒子をして、それらが自身所有のCaとPイオンを消耗しきった後に成長を継続することを可能ならしめ、そしてCaとPイオンの貯蔵庫の役をつとめる近くの他の比較的大きい粒子からそのようなイオンを利用することができるものと信じられている。
その他の例
次の諸例のための出発生成物は、SiOの水準が45%、55%および60%であったことを除いて、例1と同じであった。また、調製の方法は異なった。その混合物は蓋のある白金坩堝の中に1350℃で2時間溶融されて均質化を達成した。その混合物は平板の形に流し込まれ、室温まで冷却させられてからハンマーで砕かれた。砕かれたガラスの砕片は次に標準篩を通すふるい分けにより分別された。砕片はそれから分別されて保存された。
90μm未満の粒径範囲はこの方法を用いて得られ、そして走査電子顕微鏡とレーザー光散乱法(Coulter LS 100)により確認された。これらの混合物は前述の象牙質板の上に置かれた。
それぞれ45%,55%,および60%のSiOを含む試料がサンプル調製において利用され例1に見られたものと同じ結果を得た。またもや、このデータの理解の手掛かりは粒径範囲の存在であった。これらの例に存在するものは、象牙質表面に例1と同様な反応を示すサブミクロンから90ミクロンまでの粒子に粒径範囲を有するシリカの60%までの範囲である。
本発明は一つまたはより多くの実施態様において記述されたが、この記述はどのみち特許請求の範囲を限定するために意図されているものではない。 The following examples are not limiting.
In vitro experiments were performed using standardized plates of human tooth dentin from extracted teeth. These discs were cut from the extracted teeth using an Isomet diamond saw (Buchler Ltd.). The disc was 1.0 mm thick and tooth size. Their occlusal surfaces were polished on a series of 320-600 coarse grain wet silicon carbide sandpaper. This was done to standardize the test surface. Their surfaces were treated with 37% phosphoric acid for 60 seconds to remove the soil layer created during the polishing process and to open and widen the dentinal tubules (see FIGS. 1 and 2). The surface was rinsed with distilled water for 20 seconds and then dried with an oil-free air stream. Each plate was split in half and then the experimental material was placed on one of the split samples as described in each example. An untreated plate with open and unrolled capillaries is shown in FIGS.
Scanning electron microscopy was performed on the surface of the plate in each group. The plates were mounted on a scanning electron microscope stub using silver paste. All samples were vacuum dried, sputter coated and then examined with a JEOL-T200 scanning electron microscope.
Example 1
The starting product is
SiO 2 45
CaO 24.5
Na 2 O 24.5
P 2 O 5 6
It was a mixture (weight%) containing. Homogenization was achieved by melting the mixture in a covered platinum crucible at 1350 ° C. for 2 hours. The mixture was quenched in deionized water at 0 ° C. The fritted glass was placed in a suitable grinding apparatus including a ball mill and an impact mill. The glass was ground for 2 hours and then separated into several appropriate particle size ranges.
A particle size range of less than 90 μm was obtained using this method and confirmed by scanning electron microscopy and laser light scattering (Coulter LS 100). These mixtures were placed on the dentin board.
The exposure time for dentin varied from 2 minutes washing with liquid to 3 days without stirring. Capillary occlusion is depicted in FIGS. 3-7. What can be seen in FIGS. 3-7 is the total and partial occlusion of the dentinal tubules with various small (1-5 μm) particles present. Furthermore, relatively large particles are visible that will serve as a reservoir for the chemical composition. It has been confirmed by FTIR that the initial formation of hydroxyapatite crystals has begun on the dentin.
Example 2
8 and 9 show the results obtained by using submicron particles made according to Example 1. The samples of FIGS. 8 and 9 are dentin surfaces that have been acid etched with phosphoric acid, treated with bioactive glass for 2 minutes, and then immersed in phosphate buffered saline for 5 days. The retrofit was more incomplete as confirmed by FTIR because it lacks large particles for storage activity.
Example 3
Example 3 was performed to illustrate the advantages associated with multiple applications of the composition according to the invention. First, the acid-etched dentin surface has been subjected to a single treatment of the bioactive particulate glass for 2 minutes and is depicted in FIG. The dentin surface treated with acid etching three times every 2 minutes is depicted in FIG.
FIG. 10 shows significant penetration and tubule occlusion due to bonding on the dentin surface. In FIG. 10, many large particles are not seen. In FIG. 11, there is more significant tubule penetration and blockage, and there are more particles. This demonstrates the benefits associated with multiple applications involving tubules and the increased presence of relatively large reservoirs of Ca and P ions. This also demonstrates interparticle welding of relatively large particles to relatively small particles already bonded to the surface.
Example 4
Example 4 illustrates the advantages associated with using particles less than 2 microns in size in combination with particles greater than 45 microns.
The FTIR spectrum for the next sample is included in FIG. 12 to illustrate remineralization.
Sample number 1 control (untreated dentin surface)
Sample No. 2 Acid-etched dentin surface
Sample number 3 Particles of bioactive glass smaller than 2 microns
Processed for 2 minutes with the child
Sample number 4 of which 40% is less than 2 microns,
15% is in the range of 8-2 microns,
15% is in the range of 8-20 microns,
15% is in the range of 20-38 microns,
And 15% is in the range of 38-90 microns
Treated with some bioactive glass particles
of.
As illustrated in FIG. 12, the control sample gives a representative view of the spectrum of hydroxycarbonate apatite (HCA). The shape of the peak between wave numbers 1150-500 is very characteristic for HCA. In sample 2, these peaks are split after treatment by acid etching, particularly in the range of 1150-500. This represents the loss of mineral components of the tooth structure, calcium and phosphorus. Sample 3 shows partial remineralization of Ca and P on the tooth structure. Sample 4 was processed with a bioactive glass mixture of optimal particle size and shape and shows almost complete remineralization. A photograph of Sample 4 is included as FIG.
Example 5
Comparative Example 5 shows the advantages associated with the use of particles smaller than 10 microns in combination with particles larger than 45 microns in size compared to the use of suitable particles smaller than 2 microns or 53-90μ. A control sample of untreated dentin surface was used in addition to the treated surface as described below.
Figure 2008120681

All samples in the table above were exposed to a moist environment for 24 hours and then dried for 48 hours.
As seen above, the combination of particles smaller than 2 microns and 53-90μ gave the best results. The presence of particles in both size ranges allows for relatively small particles in the capillaries to allow them to continue growing after they have exhausted their own Ca and P ions, and Ca It is believed that such ions can be utilized from other relatively large particles nearby that serve as reservoirs of P ions.
Other Examples The starting products for the following examples were the same as Example 1 except that the SiO 2 levels were 45%, 55% and 60%. Also, the method of preparation was different. The mixture was melted in a platinum crucible with a lid at 1350 ° C. for 2 hours to achieve homogenization. The mixture was poured into a flat plate, allowed to cool to room temperature and then crushed with a hammer. The crushed glass pieces were then fractionated by sieving through a standard sieve. The debris was then separated and stored.
A particle size range of less than 90 μm was obtained using this method and confirmed by scanning electron microscopy and laser light scattering (Coulter LS 100). These mixtures were placed on the aforementioned dentin board.
45%, respectively, 55%, and 60% of the sample containing SiO 2 was obtained the same results as those observed in the utilized Example 1 in sample preparation. Again, the key to understanding this data was the existence of a particle size range. Present in these examples is a range of up to 60% of silica having a particle size range of sub-micron to 90 micron particles that exhibit similar reactions to Example 1 on the dentin surface.
While this invention has been described in one or more embodiments, this description is not intended to limit the scope of the claims in any way.

本発明に関して、更に以下の内容を開示する。
(1)下記の重量百分率により、
SiO 40−60
CaO 10−30
NaO 10−35
2−8
CaF 0−25
0−10
O 0−8
MgO 0−5
を含む微粒子の生理活性および生体適合性のガラスから成り、そして前記の微粒子の生理活性および生体適合性のガラスは90μmより小さい粒子および有効な再鉱物質化量の約10μmより小さい粒子を含む生理活性ガラス組成物。
(2)(1)に記載の組成物と歯構造を接触させることから成る歯の腐食を防ぐ方法。
(3)(1)に記載の組成物と歯構造を接触させることから成る歯の腐食を治療する方法。
(4)(1)に記載の組成物と歯構造を接触させることから成る初期の虫歯を予防する方法。
(5)(1)に記載の組成物と歯構造を接触させることから成るエナメル質を再鉱物質化する方法。
(6)(1)に記載の組成物と歯構造を接触させることから成る初期の虫歯を再鉱物質化する方法。
(7)(1)に記載の組成物と歯構造を接触させることから成る歯構造における裂け目を密閉する方法。
(8)(1)に記載の組成物と歯構造を接触させることから成る歯構造における穴を密閉する方法。
(9)(1)に記載の組成物と歯構造を接触させることから成る歯構造にライニングを施す方法。
(10)(1)に記載の組成物と歯構造を接触させることから成る歯髄に蓋を被せる方法。
(11)(1)に記載の組成物と歯構造を接触させることから成る歯の過敏症を治療する方法。
(12)(1)に記載の組成物と歯構造を接触させることから成る歯根の手術後に歯構造を処置する方法。
(13)(1)に記載の組成物および練り歯磨き、ライナー、ベース、ゲル、補強材料、グリセリンゲル、口内洗剤、予防用ペースト、または間接歯髄被覆剤、またはそれらの混合物から成る歯を治療するための組成物。
(14)下記の重量百分率により、
SiO 40−60
CaO 10−30
NaO 10−35
2−8
CaF 0−25
0−10
O 0−8
MgO 0−5
を含む微粒子の生理活性および生体適合性のガラスから成り、そして前記の微粒子の生理活性および生体適合性のガラスは45μmと90μmの間の粒子および有効な再鉱物質化量の約10μmより小さい粒子を含む生理活性ガラス組成物。
(15)(14)に記載の組成物と歯構造を接触させることから成る歯の腐食を防ぐ方法。
(16)(14)に記載の組成物と歯構造を接触させることから成る歯の腐食を治療する方法。
(17)(14)に記載の組成物と歯構造を接触させることから成る初期の虫歯を予防する方法。
(18)(14)に記載の組成物と歯構造を接触させることから成るエナメル質を再鉱物質化する方法。
(19)(14)に記載の組成物と歯構造を接触させることから成る初期の虫歯を再鉱物質化する方法。
(20)(14)に記載の組成物と歯構造を接触させることから成る歯構造における裂け目を密閉する方法。
(21)(14)に記載の組成物と歯構造を接触させることから成る歯構造における穴を密閉する方法。
(22)(14)に記載の組成物と歯構造を接触させることから成る歯構造にライニングを施す方法。
(23)(14)に記載の組成物と歯構造を接触させることから成る歯髄に蓋を被せる方法。
(24)(14)に記載の組成物と歯構造を接触させることから成る歯の過敏症を治療する方法。
(25)(14)に記載の組成物と歯構造を接触させることから成る歯根の手術後に歯構造を処置する方法。
(26)(14)に記載の組成物および練り歯磨き、ライナー、ベース、ゲル、補強材料、グリセリンゲル、口内洗剤、予防用ペースト、または間接歯髄被覆剤、またはそれらの混合物から成る歯を治療するための組成物。
(27)90μmより小さい粒子および有効な再鉱物質化量の約10μmより小さい粒子を含む微粒子の生理活性および生体適合性のガラスから成る生理活性ガラス組成物。
(28)90μmより小さい粒子および有効な再鉱物質化量の約5μmより小さい粒子を含む微粒子の生理活性および生体適合性のガラスから成る生理活性ガラス組成物。
(29)90μmより小さい粒子および有効な再鉱物質化量の約2μmより小さい粒子を含む微粒子の生理活性および生体適合性のガラスから成る生理活性ガラス組成物。
(30)(27)に記載の組成物と歯構造を接触させることから成る歯の腐食を防ぐ方法。
(31)(27)に記載の組成物と歯構造を接触させることから成る歯の腐食を治療する方法。
(32)(27)に記載の組成物と歯構造を接触させることから成る初期の虫歯を予防する方法。
(33)(27)に記載の組成物と歯構造を接触させることから成るエナメル質を再鉱物質化する方法。
(34)(27)に記載の組成物と歯構造を接触させることから成る初期の虫歯を再鉱物質化する方法。
(35)(27)に記載の組成物と歯構造を接触させることから成る歯構造における裂け目を密閉する方法。
(36)(27)に記載の組成物と歯構造を接触させることから成る歯構造における穴を密閉する方法。
(37)(27)に記載の組成物と歯構造を接触させることから成る歯構造にライニングを施す方法。
(38)(27)に記載の組成物と歯構造を接触させることから成る歯髄に蓋を被せる方法。
(39)(27)に記載の組成物と歯構造を接触させることから成る歯の過敏症を治療する方法。
(40)(27)に記載の組成物と歯構造を接触させることから成る歯根の手術後に歯構造を処置する方法。
(41)(27)に記載の組成物および練り歯磨き、ライナー、ベース、ゲル、補強材料、グリセリンゲル、口内洗剤、予防用ペースト、または間接歯髄被覆剤、またはそれらの混合物から成る歯を治療するための組成物。
(42)90μmより小さい粒子および約2μmより小さい粒子を含む微粒子の生理活性および生体適合性のガラスから成る生理活性ガラス組成物。
(43)再鉱物質化に有効な量の約90μmより小さい粒子を含む生理活性ガラス組成物と再鉱物質化の必要ある歯構造を接触させることから成る歯構造を再鉱物質化する方法。
(44)下記の重量百分率により、
SiO 40−60
CaO 10−30
NaO 10−35
2−8
CaF 0−25
0−10
O 0−8
MgO 0−5
を含む微粒子の生理活性および生体適合性のガラスから成り、そして前記の微粒子の生理活性および生体適合性のガラスは53μmと90μmの間の粒子および有効な再鉱物質化量の約2μmより小さい粒子を含む生理活性ガラス組成物。
(45)90μmより小さい粒径範囲を有する新規なシリカを主成分とする生理活性ガラス組成物であり、この組成物は練り歯磨き、ゲルなどのようなデリバリー剤と共に使用されることができ、中核のシリカ粒子からCaとPの即時および長期のイオン放出による体液との速やかなかつ連続的な反応を起こして、歯の細管の上および中へ析出される安定な結晶性ヒドロキシ炭酸アパタイト層を生成させ、歯の過敏症の即時および長期の回復および歯の表面の再鉱物質化のためになる新規な生理活性ガラス組成物。
The following content is further disclosed regarding the present invention.
(1) By the following weight percentage:
SiO 2 40-60
CaO 10-30
Na 2 O 10-35
P 2 O 5 2-8
CaF 2 0-25
B 2 O 3 0-10
K 2 O 0-8
MgO 0-5
A bioactive and biocompatible glass of microparticles comprising said microparticles, wherein said bioactive and biocompatible glass of microparticles comprises a physiology comprising particles smaller than 90 μm and an effective remineralized amount of particles smaller than about 10 μm. Active glass composition.
(2) A method for preventing tooth corrosion comprising contacting the tooth structure with the composition according to (1).
(3) A method for treating dental corrosion comprising contacting a dental structure with the composition according to (1).
(4) A method for preventing early caries comprising contacting the tooth structure with the composition according to (1).
(5) A method of remineralizing enamel comprising contacting the tooth structure with the composition according to (1).
(6) A method for remineralizing initial caries comprising contacting the tooth structure with the composition according to (1).
(7) A method for sealing a tear in a tooth structure, comprising contacting the tooth structure with the composition according to (1).
(8) A method for sealing a hole in a tooth structure comprising contacting the tooth structure with the composition according to (1).
(9) A method for lining a tooth structure comprising contacting the tooth structure with the composition according to (1).
(10) A method of covering a dental pulp comprising contacting the dental structure with the composition according to (1).
(11) A method for treating dental hypersensitivity comprising contacting the tooth structure with the composition according to (1).
(12) A method for treating a tooth structure after operation of a tooth root comprising contacting the tooth structure with the composition according to (1).
(13) Treating a tooth comprising the composition according to (1) and toothpaste, liner, base, gel, reinforcing material, glycerin gel, mouthwash, preventive paste, or indirect pulp coating, or a mixture thereof Composition for.
(14) By the following weight percentage:
SiO 2 40-60
CaO 10-30
Na 2 O 10-35
P 2 O 5 2-8
CaF 2 0-25
B 2 O 3 0-10
K 2 O 0-8
MgO 0-5
The bioactive and biocompatible glass of microparticles comprising, wherein the bioactive and biocompatible glass of microparticles is between 45 μm and 90 μm and an effective remineralized particle of less than about 10 μm A bioactive glass composition comprising:
(15) A method for preventing tooth corrosion comprising contacting the tooth structure with the composition according to (14).
(16) A method for treating dental corrosion comprising contacting a dental structure with the composition according to (14).
(17) A method for preventing early caries comprising contacting a tooth structure with the composition according to (14).
(18) A method for remineralizing enamel comprising contacting the tooth structure with the composition according to (14).
(19) A method for remineralizing an initial caries comprising contacting a tooth structure with the composition according to (14).
(20) A method for sealing a tear in a tooth structure comprising contacting the tooth structure with the composition according to (14).
(21) A method for sealing a hole in a tooth structure comprising contacting the tooth structure with the composition according to (14).
(22) A method for lining a tooth structure comprising contacting the tooth structure with the composition according to (14).
(23) A method of covering a dental pulp comprising contacting the tooth structure with the composition according to (14).
(24) A method for treating dental hypersensitivity comprising contacting a dental structure with the composition according to (14).
(25) A method for treating a tooth structure after a root surgery comprising contacting the tooth structure with the composition according to (14).
(26) Treating a tooth comprising the composition according to (14) and toothpaste, liner, base, gel, reinforcing material, glycerin gel, mouthwash, preventive paste, or indirect pulp coating, or a mixture thereof Composition for.
(27) A bioactive glass composition comprising a bioactive and biocompatible glass of fine particles comprising particles smaller than 90 μm and particles having an effective remineralization amount of less than about 10 μm.
(28) A bioactive glass composition comprising finely divided bioactive and biocompatible glass comprising particles smaller than 90 μm and an effective remineralized amount of particles smaller than about 5 μm.
(29) A bioactive glass composition comprising finely divided bioactive and biocompatible glass comprising particles smaller than 90 μm and an effective remineralization amount of particles smaller than about 2 μm.
(30) A method for preventing tooth corrosion comprising contacting the tooth structure with the composition according to (27).
(31) A method for treating dental corrosion comprising contacting a tooth structure with the composition according to (27).
(32) A method for preventing early caries comprising contacting a tooth structure with the composition according to (27).
(33) A method for remineralizing enamel comprising contacting the tooth structure with the composition according to (27).
(34) A method for remineralizing initial caries comprising contacting the tooth structure with the composition according to (27).
(35) A method for sealing a tear in a tooth structure, comprising contacting the tooth structure with the composition according to (27).
(36) A method for sealing a hole in a tooth structure comprising contacting the tooth structure with the composition according to (27).
(37) A method for lining a tooth structure comprising contacting the tooth structure with the composition according to (27).
(38) A method of covering the dental pulp comprising contacting the dental structure with the composition according to (27).
(39) A method for treating dental hypersensitivity comprising contacting a dental structure with the composition according to (27).
(40) A method for treating a tooth structure after operation of a tooth root comprising contacting the tooth structure with the composition according to (27).
(41) Treating a tooth comprising the composition according to (27) and a toothpaste, liner, base, gel, reinforcing material, glycerin gel, mouthwash, preventive paste, or indirect pulp coating, or a mixture thereof Composition for.
(42) A bioactive glass composition comprising finely divided bioactive and biocompatible glass comprising particles smaller than 90 μm and particles smaller than about 2 μm.
(43) A method for remineralizing a tooth structure comprising contacting a physiologically active glass composition containing an amount effective for remineralization of particles smaller than about 90 μm with a tooth structure in need of remineralization.
(44) By the following weight percentage:
SiO 2 40-60
CaO 10-30
Na 2 O 10-35
P 2 O 5 2-8
CaF 2 0-25
B 2 O 3 0-10
K 2 O 0-8
MgO 0-5
The bioactive and biocompatible glass of microparticles comprising, wherein the bioactive and biocompatible glass of microparticles is between 53 μm and 90 μm particles and particles having an effective remineralization amount of less than about 2 μm A bioactive glass composition comprising:
(45) A novel silica-based bioactive glass composition having a particle size range of less than 90 μm, which can be used with a delivery agent such as toothpaste, gel, etc. Cause a rapid and continuous reaction of bodily fluids with immediate and long-term ion release of Ca and P from silica particles to form a stable crystalline hydroxycarbonate apatite layer deposited on and into dental tubules A novel bioactive glass composition that is for immediate and long term recovery of tooth sensitivity and remineralization of the tooth surface.

臨床感受性(clinical sensitivity) にエミュレート(emulate) するために切断および研磨の後にすべての汚れ層を除去するため37%リン酸と共に30秒間処理された象牙質の対照表面である。その表面は本発明に従って生理活性ガラスと共に処理されていなかった(2000倍拡大)。Dentine control surface treated for 30 seconds with 37% phosphoric acid to remove all soil layers after cutting and polishing to emulate clinical sensitivity. The surface was not treated with bioactive glass according to the present invention (magnification 2000 times). 臨床感受性にエミュレートするために切断および研磨の後にすべての汚れ層を除去するため37%リン酸と共に30秒間処理された象牙質の対照表面である。その表面は本発明に従って生理活性ガラスと共に処理されていなかった(3000倍拡大)。Control surface of dentin treated with 37% phosphoric acid for 30 seconds to remove all soil layers after cutting and polishing to emulate clinical sensitivity. Its surface was not treated with bioactive glass according to the present invention (magnification 3000 times). 酸エッチングにより処理されてから水およびグリセリンの中で本発明に従って生理活性ガラス組成物と共に2分間処理された象牙質表面である(粒径範囲サブミクロン〜90μm、1000倍拡大)。Dentin surface treated by acid etching and then treated with water and glycerin for 2 minutes with a bioactive glass composition according to the present invention (particle size range submicron to 90 μm, 1000 times magnification). 酸エッチングされてから次に水およびグリセリンの中で本発明に従って生理活性ガラス組成物と共に処理された象牙質表面である。それらの表面はその後攪拌されてから2分間水ですすぎ洗いされた(粒径範囲サブミクロン〜20μm、2000倍拡大)。A dentin surface that has been acid etched and then treated with a bioactive glass composition in accordance with the present invention in water and glycerin. The surfaces were then stirred and rinsed with water for 2 minutes (particle size range submicron to 20 μm, 2000 times magnification). 酸エッチングされてから次に水およびグリセリンの中で本発明に従って生理活性ガラス組成物と共に処理され、そして3日間水中に置かれた象牙質表面である。その後攪拌はしなかったが、しかしその表面は2分間水ですすぎ洗いされた(粒径範囲サブミクロン〜90μm、2000倍拡大)。A dentin surface that has been acid etched and then treated with a bioactive glass composition in water and glycerin according to the present invention and placed in water for 3 days. After that, it was not stirred, but the surface was rinsed with water for 2 minutes (particle size range submicron to 90 μm, 2000 times magnification). 酸エッチングされてから次に水と練り歯磨きの中で本発明に従って生理活性ガラス組成物と共に攪拌しながら2分間処理され、その後2分間水ですすぎ洗いされた象牙質表面である(粒径範囲サブミクロン〜3μm、3000倍拡大)。A dentin surface that has been acid etched and then treated in water and toothpaste for 2 minutes with agitation with the bioactive glass composition according to the invention and then rinsed with water for 2 minutes (particle size range sub Micron to 3 μm, 3000 times magnification). 酸エッチングされてから次に水と練り歯磨きの中で本発明に従って生理活性ガラス組成物と共に攪拌しながら2分間処理され、そして2分間水ですすぎ洗いされた象牙質表面である(粒径範囲サブミクロン〜3μm、3000倍拡大)。A dentin surface that has been acid etched and then treated in water and toothpaste for 2 minutes with agitation with the bioactive glass composition according to the present invention and rinsed with water for 2 minutes (particle size range sub Micron to 3 μm, 3000 times magnification). リン酸で酸エッチングされ、本発明に従い生理活性ガラス組成物と共に2分間処理され、そしてリン酸塩緩衝の塩類溶液の中に5日間浸漬された象牙質表面を含む(粒径範囲サブミクロン)。It includes a dentin surface that has been acid etched with phosphoric acid, treated with a bioactive glass composition for 2 minutes in accordance with the present invention, and soaked in phosphate buffered saline for 5 days (particle size range submicron). リン酸で酸エッチングされ、本発明に従い生理活性ガラス組成物と共に2分間処理され、そしてリン酸塩緩衝の塩類溶液の中に5日間浸漬された象牙質表面を含む(粒径範囲サブミクロン)。It includes a dentin surface that has been acid etched with phosphoric acid, treated with a bioactive glass composition for 2 minutes in accordance with the present invention, and soaked in phosphate buffered saline for 5 days (particle size range submicron). 酸エッチングされてから次に本発明に従って生理活性ガラス組成物の1回の適用により処理された象牙質表面を描いている。Figure 3 depicts a dentin surface that has been acid etched and then treated with a single application of a bioactive glass composition in accordance with the present invention. 酸エッチングされてから本発明に従って生理活性ガラス組成物の3回別々の適用により処理された象牙質表面を描いている。Figure 2 depicts a dentin surface that has been acid etched and then treated by three separate applications of a bioactive glass composition in accordance with the present invention. 最適の粒径を有しかつ成形された微粒子の生理活性ガラスと共に処理された試料に行われたフーリエ変換分光法(FTIR)のグラフである。4 is a graph of Fourier transform spectroscopy (FTIR) performed on a sample having an optimal particle size and treated with shaped particulate bioactive glass.

Claims (6)

下記の重量百分率により、
SiO 40−60
CaO 10−30
NaO 10−35
2−8
CaF 0−25
0−10
O 0−8
MgO 0−5
を含む微粒子の生理活性および生体適合性のガラスから成り、そして前記の微粒子の生理活性および生体適合性のガラスは90μmより小さい粒子および有効な再鉱物質化量の10μmより小さい粒子を含む生理活性ガラス組成物。
By weight percentage below:
SiO 2 40-60
CaO 10-30
Na 2 O 10-35
P 2 O 5 2-8
CaF 2 0-25
B 2 O 3 0-10
K 2 O 0-8
MgO 0-5
The bioactive and biocompatible glass of microparticles comprising, and wherein the bioactive and biocompatible glass of microparticles comprises particles smaller than 90 μm and an effective remineralized amount of particles smaller than 10 μm Glass composition.
90μmより小さい粒子および有効な再鉱物質化量の10μmより小さい粒子を含む微粒子の生理活性および生体適合性のガラスから成る生理活性ガラス組成物。   A bioactive glass composition comprising microparticle bioactive and biocompatible glass comprising particles smaller than 90 μm and an effective remineralization amount of particles smaller than 10 μm. 90μmより小さい粒子および有効な再鉱物質化量の5μmより小さい粒子を含む微粒子の生理活性および生体適合性のガラスから成る生理活性ガラス組成物。   A bioactive glass composition comprising finely divided bioactive and biocompatible glass comprising particles smaller than 90 μm and an effective remineralization amount of particles smaller than 5 μm. 90μmより小さい粒子および有効な再鉱物質化量の2μmより小さい粒子を含む微粒子の生理活性および生体適合性のガラスから成る生理活性ガラス組成物。   A bioactive glass composition comprising finely divided bioactive and biocompatible glass comprising particles smaller than 90 μm and an effective remineralized amount of particles smaller than 2 μm. 請求項2に記載の組成物および練り歯磨き、ライナー、ベース、ゲル、補強材料、グリセリンゲル、口内洗剤、予防用ペースト、または間接歯髄被覆剤、またはそれらの混合物から成る歯を治療するための組成物。   A composition for treating teeth comprising the composition of claim 2 and a toothpaste, liner, base, gel, reinforcing material, glycerin gel, mouthwash, prophylactic paste, or indirect pulp coating, or mixtures thereof. object. 90μmより小さい粒子および2μmより小さい粒子を含む微粒子の生理活性および生体適合性のガラスから成る生理活性ガラス組成物。   A bioactive glass composition comprising finely divided bioactive and biocompatible glass comprising particles smaller than 90 μm and particles smaller than 2 μm.
JP2008007010A 1996-01-29 2008-01-16 Bioactive glass composition Expired - Lifetime JP5020833B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US1079596P 1996-01-29 1996-01-29
US60/010,795 1996-01-29
US59793696A 1996-02-07 1996-02-07
US08/597,936 1996-02-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52713197A Division JP4180657B2 (en) 1996-01-29 1997-01-29 Bioactive glass composition

Publications (2)

Publication Number Publication Date
JP2008120681A true JP2008120681A (en) 2008-05-29
JP5020833B2 JP5020833B2 (en) 2012-09-05

Family

ID=26681603

Family Applications (2)

Application Number Title Priority Date Filing Date
JP52713197A Expired - Lifetime JP4180657B2 (en) 1996-01-29 1997-01-29 Bioactive glass composition
JP2008007010A Expired - Lifetime JP5020833B2 (en) 1996-01-29 2008-01-16 Bioactive glass composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP52713197A Expired - Lifetime JP4180657B2 (en) 1996-01-29 1997-01-29 Bioactive glass composition

Country Status (4)

Country Link
JP (2) JP4180657B2 (en)
HU (1) HUP9901760A3 (en)
PT (1) PT877716E (en)
WO (1) WO1997027148A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509895A (en) * 2008-11-25 2012-04-26 ザ プロクター アンド ギャンブル カンパニー Oral antimicrobial care composition having fused silica
JP2020088189A (en) * 2018-11-27 2020-06-04 ショット日本株式会社 Glass substrate with biocompatibility through electrode and biocompatibility compact electronic device
US10865133B2 (en) 2016-07-15 2020-12-15 Gc Corporation Dental glass and dental composition

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI104881B (en) * 1994-10-06 2000-04-28 Bioxid Oy Process for the preparation of novel compositions containing bioactive silicon glass
CN1103750C (en) 1996-01-29 2003-03-26 巴尔的摩的马里兰大学 Bioactive glass compositions and methods of treatment using bioactive glass
US5735942A (en) 1996-02-07 1998-04-07 Usbiomaterials Corporation Compositions containing bioactive glass and their use in treating tooth hypersensitivity
IN191261B (en) * 1997-09-18 2003-10-18 Univ Maryland
US6423343B1 (en) * 1998-01-23 2002-07-23 Usbiomaterials Corporation Bioactive glass treatment of inflammation in skin conditions
AU6244799A (en) 1998-09-10 2000-04-03 Us Biomaterials Corporation Anti-inflammatory and antimicrobial uses for bioactive glass compositions
US6517863B1 (en) 1999-01-20 2003-02-11 Usbiomaterials Corporation Compositions and methods for treating nails and adjacent tissues
US6190643B1 (en) 1999-03-02 2001-02-20 Patricia Stoor Method for reducing the viability of detrimental oral microorganisms in an individual, and for prevention and/or treatment of diseases caused by such microorganisms; and whitening and/or cleaning of an individual's teeth
AU4219100A (en) * 1999-04-07 2000-10-23 W.R. Grace & Co.-Conn. Additives for desensitizing and remineralizing dentifrice compositions
US7628997B1 (en) 1999-07-09 2009-12-08 Schott Ag Preservatives for perishable preparations, in particular for cosmetic and pharmaceutical preparations
WO2001072262A2 (en) * 2000-03-27 2001-10-04 Schott Glas New cosmetic, personal care, cleaning agent, and nutritional supplement compositions comprising bioactive glass and methods of making and using the same
DE10111449A1 (en) * 2001-03-09 2002-09-26 Schott Glas Use of bioactive glass in tooth filling material
US7597900B2 (en) 2001-03-27 2009-10-06 Schott Ag Tissue abrasives
WO2002079108A1 (en) 2001-03-30 2002-10-10 King's College London Use of bioactive glass for cutting bioactive glasses
WO2003018498A1 (en) 2001-08-22 2003-03-06 Schott Glas Antimicrobial, anti-inflammatory, wound-healing and disinfecting glass and use thereof
DE50207515D1 (en) 2001-08-22 2006-08-24 Schott Glas Antimicrobial, anti-inflammatory, wound-healing glass powder and its use
DE10141230A1 (en) * 2001-08-22 2003-03-13 Schott Glas Color additive including a glass with an antimicrobial effect
DE10141117A1 (en) 2001-08-22 2003-03-13 Schott Glas Antimicrobial silicate glass and its use
JP4557546B2 (en) * 2001-12-12 2010-10-06 ショット アクチエンゲゼルシャフト Dental care, ie the use of antibacterial glass ceramics for oral hygiene
US20030167967A1 (en) * 2002-03-01 2003-09-11 Timo Narhi Glass ionomers for enhancing mineralization of hard tissue
DE10214273A1 (en) * 2002-03-28 2003-10-23 Schott Glas Use of glass and/or glass ceramic powder and/or fiber for time- and quantity-controlled ion release is useful cosmetic or medicinal formulation as skin care cream and for healing or covering wound and treating chronic wound
KR100496458B1 (en) * 2002-09-02 2005-06-23 재단법인서울대학교산학협력재단 Biodegradable And Bioactive Glass-Ceramics, Fabricating Method Thereof
BRPI0300644B8 (en) * 2003-02-20 2022-04-26 Fundacao Univ Federal De Sao Carlos Process of preparing particulate, bioactive and resorbable biosilicates, compositions for preparing said biosilicates and bioactive and resorbable particulate biosilicates.
EP1811942B1 (en) * 2004-11-16 2011-10-05 3M Innovative Properties Company Dental compositions with calcium phosphorus releasing glass
DE102005001078A1 (en) * 2005-01-08 2006-07-20 Schott Ag Glass powder, in particular biologically active glass powder and process for the production of glass powder, in particular biologically active glass powder
MX2010014243A (en) * 2008-06-27 2011-03-25 Novamin Tech Inc Star Composition and method for enhancing flouride uptake using bioactive glass.
US20100086497A1 (en) * 2008-10-08 2010-04-08 Biofilm Limited Tooth remineralisation
TWI469795B (en) * 2009-04-01 2015-01-21 Colgate Palmolive Co Dual action dentifrice compositions to prevent hypersensitivity and promote remineralization
GB0911365D0 (en) * 2009-06-30 2009-08-12 Bioceramic Therapeutics Ltd Multicomponent glasses for use as coatings and in personal care products
WO2013034421A2 (en) 2011-09-08 2013-03-14 Unilever N.V. Tooth remineralizing dentifrice
BR112014024873B1 (en) 2012-04-05 2019-12-03 Unilever Nv composition for non-aqueous oral treatment and process for preparing the composition
WO2014056824A2 (en) 2012-10-12 2014-04-17 Unilever N.V. Oral care composition
CN104248775B (en) * 2014-09-22 2015-11-25 片仔癀(上海)生物科技研发有限公司 A kind of hydroxyapatite-chitosan plural gel and preparation technology thereof and purposes
US10647962B2 (en) 2016-05-27 2020-05-12 Corning Incorporated Bioactive aluminoborate glasses
US20170342383A1 (en) 2016-05-27 2017-11-30 Corning Incorporated Lithium disilicate glass-ceramic compositions and methods thereof
US10751367B2 (en) 2016-05-27 2020-08-25 Corning Incorporated Bioactive glass microspheres
US20190365615A1 (en) 2016-06-20 2019-12-05 Helicon Medical, S.L. Composition of materials for tooth remineralisation
WO2019034325A1 (en) 2017-08-18 2019-02-21 Unilever N.V. Oral care composition
CN110997072B (en) 2017-08-18 2022-11-08 联合利华知识产权控股有限公司 Oral care compositions
WO2019108558A1 (en) 2017-11-28 2019-06-06 Corning Incorporated High liquidus viscosity bioactive glass
EP3717428A1 (en) 2017-11-28 2020-10-07 Corning Incorporated Bioactive borate glass and methods thereof
US10857259B2 (en) 2017-11-28 2020-12-08 Corning Incorporated Chemically strengthened bioactive glass-ceramics
EP3717030A1 (en) * 2017-11-28 2020-10-07 Corning Incorporated Bioactive glass compositions and dentin hypersensitivity remediation
GB201721001D0 (en) 2017-12-15 2018-01-31 Glaxosmithkline Consumer Healthcare (Uk) Ip Ltd Novel Composition
CN111494218A (en) * 2019-01-30 2020-08-07 广东东阳光药业有限公司 Bioactive glass
US11266576B2 (en) 2019-08-01 2022-03-08 Vivekananda Ramana Dental enamel compositions with anti-inflammatory agents
US11351019B2 (en) 2019-08-01 2022-06-07 Vivekananda Ramana Dental enamel compositions with anti-inflammatory agents for animals
CN113975185B (en) * 2021-09-27 2023-06-23 深圳小爱大爱科技有限责任公司 Toothpaste containing bioactive glass particles and preparation method thereof
CN113754556B (en) * 2021-09-29 2022-10-25 中国科学院过程工程研究所 Glass based on amino acid, preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250164A (en) * 1990-07-26 1992-09-07 Thera G Fur Patentverwelt Mbh Use of glass ionomer cement for reproduction of induction tissue
JPH06157230A (en) * 1992-11-19 1994-06-03 Tokuyama Soda Co Ltd Production of inorganic filler and dental filling/ repairing material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057621A (en) * 1976-05-24 1977-11-08 Pashley David H Desensitizing oxalate dental composition and method of treatment
DE2724814C3 (en) * 1977-06-02 1980-03-27 Kulzer & Co Gmbh, 6380 Bad Homburg Preliminary product for the preparation of bone cement
ES8507345A1 (en) * 1982-12-02 1985-09-01 Wallone Region Bioreactive materials
US4851046A (en) * 1985-06-19 1989-07-25 University Of Florida Periodontal osseous defect repair
JPS6267008A (en) * 1985-09-20 1987-03-26 G C Dental Ind Corp Fluoroaluminosilicate glass powder for dental glass ionomer cement
JPS6272540A (en) * 1985-09-26 1987-04-03 Nippon Electric Glass Co Ltd Alkaliless crystallized glass for organism and its production
FR2646084B1 (en) * 1989-04-20 1994-09-16 Fbfc International Sa BIOREACTIVE MATERIAL FOR FILLING BONE CAVITES
FR2651439B1 (en) * 1989-09-06 1994-09-23 Fbfc International Sa Nv BIOREACTIVE MATERIAL FOR PROSTHESIS OR COMPOSITE IMPLANTS.
JPH06116114A (en) * 1992-10-09 1994-04-26 Nikon Corp Bone-filling material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250164A (en) * 1990-07-26 1992-09-07 Thera G Fur Patentverwelt Mbh Use of glass ionomer cement for reproduction of induction tissue
JPH06157230A (en) * 1992-11-19 1994-06-03 Tokuyama Soda Co Ltd Production of inorganic filler and dental filling/ repairing material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509895A (en) * 2008-11-25 2012-04-26 ザ プロクター アンド ギャンブル カンパニー Oral antimicrobial care composition having fused silica
US10865133B2 (en) 2016-07-15 2020-12-15 Gc Corporation Dental glass and dental composition
JP2020088189A (en) * 2018-11-27 2020-06-04 ショット日本株式会社 Glass substrate with biocompatibility through electrode and biocompatibility compact electronic device
WO2020110790A1 (en) * 2018-11-27 2020-06-04 ショット日本株式会社 Biocompatible glass substrate with through electrode and biocompatible small electronic device
JP7028755B2 (en) 2018-11-27 2022-03-02 ショット日本株式会社 Glass substrates with biocompatible through silicon vias and small biocompatible electronic devices
US20220089474A1 (en) * 2018-11-27 2022-03-24 Schott Japan Corporation Biocompatible glass substrate with through electrode and biocompatible small electronic device

Also Published As

Publication number Publication date
HUP9901760A3 (en) 1999-11-29
HUP9901760A2 (en) 1999-10-28
JP2001525779A (en) 2001-12-11
JP4180657B2 (en) 2008-11-12
PT877716E (en) 2005-02-28
JP5020833B2 (en) 2012-09-05
WO1997027148A1 (en) 1997-07-31

Similar Documents

Publication Publication Date Title
JP5020833B2 (en) Bioactive glass composition
KR100491275B1 (en) Bioactive Glass Compositions and Methods of Treatment Using Bioactive Glass
US5735942A (en) Compositions containing bioactive glass and their use in treating tooth hypersensitivity
WO1997027148A9 (en) Bioactive glass compositions and methods of treatment using bioactive glass
RU2152778C1 (en) Preparation for alleviating pulp irritation and/or reinforcing tooth structure
JP5838524B2 (en) Dentin hypersensitivity inhibitor and method for producing the same
Han et al. A comparative study of fluoride-releasing adhesive resin materials
JP2005325102A (en) Dental canaliculus filler
JP2011520947A (en) Abrasive
Sabbah Microleakage of cavity Class V restored by glass ionomer restorations in primary molars conditioned by Er, Cr: YSGG laser versus conventional method (an in vitro study)
MXPA98006105A (en) Bioactive glass compositions and treatment methods that use bioact glass
JP2007513149A (en) Compositions and methods for the prevention and treatment of dental caries
Haridy et al. Micro Hardness Of Bleached Human Enamel Following Application Of Conventional Versus Nano Active Bioglass: An Invitro Study
Sherif et al. REMINERALIZATION EFFICIENCY OF NANOHYDROXYAPATITE, NANO-BIOACTIVE GLASS, AND SODIUM FLUORIDE ON INITIAL ENAMEL CARIES OF PRIMARY TEETH
JP2024005110A (en) Dental curable calcium phosphate cement
Zeiger The effects of bioactive glass on bonding to dentin
GONZALEZ Long-term caries inhibitory effects of fluoride releasing tooth-colored restorative materials

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110405

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110613

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120112

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term