JP2008120631A - Manufacturing process of hydrogen peroxide with anthraquinone method - Google Patents

Manufacturing process of hydrogen peroxide with anthraquinone method Download PDF

Info

Publication number
JP2008120631A
JP2008120631A JP2006306767A JP2006306767A JP2008120631A JP 2008120631 A JP2008120631 A JP 2008120631A JP 2006306767 A JP2006306767 A JP 2006306767A JP 2006306767 A JP2006306767 A JP 2006306767A JP 2008120631 A JP2008120631 A JP 2008120631A
Authority
JP
Japan
Prior art keywords
solvent
hydrogen peroxide
organic
working solution
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006306767A
Other languages
Japanese (ja)
Other versions
JP4760677B2 (en
JP2008120631A5 (en
Inventor
Shinjiro Sawamoto
眞次郎 澤本
Norikazu Okuda
典和 奥田
Isao Hagiwara
猪佐夫 萩原
Katsuhiro Iura
克弘 井浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006306767A priority Critical patent/JP4760677B2/en
Publication of JP2008120631A publication Critical patent/JP2008120631A/en
Publication of JP2008120631A5 publication Critical patent/JP2008120631A5/ja
Application granted granted Critical
Publication of JP4760677B2 publication Critical patent/JP4760677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for manufacturing hydrogen with the anthraquinone method by which hydrogen peroxide having a reduced content of organic matters is obtained without lowering manufacturing efficiency and with a continued stable plant operation by removing degenerated matter derived from the organic solvent constituting of the working solution. <P>SOLUTION: The manufacturing process of hydrogen peroxide with the anthraquinone method involves (1) separating organic phase 1 and water phase 1 by washing the bottom liquid obtained from the solvent distillation step and (2) removing the solvent-degenerated matter by treating separated water phase 1 in order to remove the solvent-degenerated matter accumulated in the working solution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、作動溶液中に蓄積する不純物を除去して、効率的に過酸化水素を製造する方法に関する。   The present invention relates to a method for efficiently producing hydrogen peroxide by removing impurities accumulated in a working solution.

現在、工業的な過酸化水素の製造は、アントラキノン類を反応媒体とする方法でアントラキノン法と呼ばれる。アルキル置換基を持つアントラキノンや、アルキル置換基を持つ5,6,7,8−テトラヒドロアントラキノン(以下、両者を「アントラキノン類」と称することがある)を有機溶媒に溶解した溶液は、作動溶液と呼ばれ、有機溶媒は、通常、非極性有機溶媒と極性有機溶媒の2種類の混合物が用いられる。   At present, industrial production of hydrogen peroxide is a method using anthraquinones as a reaction medium and is called an anthraquinone method. A solution obtained by dissolving an anthraquinone having an alkyl substituent or 5,6,7,8-tetrahydroanthraquinone having an alkyl substituent (hereinafter sometimes referred to as “anthraquinones”) in an organic solvent is a working solution. The organic solvent is usually a mixture of two types, a nonpolar organic solvent and a polar organic solvent.

アントラキノン法では、アントラキノン類を触媒の存在下で水素により還元する還元工程、生成したアントラヒドロキノン類を酸化してアントラキノン類に再度転化し、同時に過酸化水素を生成させる酸化工程、生成した過酸化水素を水で抽出する抽出工程から構成され、抽出後の作動溶液は、再び還元工程に戻され、循環プロセスを形成する。   In the anthraquinone method, a reduction step of reducing anthraquinones with hydrogen in the presence of a catalyst, an oxidation step of oxidizing the generated anthrahydroquinones and converting them back to anthraquinones, and simultaneously generating hydrogen peroxide, The working solution after extraction is returned to the reduction step again to form a circulation process.

ここで、アントラキノン類が還元・酸化を繰り返すうちに、副生物が生成・蓄積し、過酸化水素の生産性を低下させる原因となっており、またプラントの安定運転の障害にもなっている。また、アントラキノン類の変性物だけではなく、作動溶液中の有機溶媒も変性物が生成され、生産性に悪影響が出ている。   Here, as the anthraquinones are repeatedly reduced and oxidized, by-products are generated and accumulated, which causes a reduction in the productivity of hydrogen peroxide, and also hinders stable operation of the plant. Further, not only the modified product of anthraquinones but also a modified product is produced in the organic solvent in the working solution, which adversely affects the productivity.

この問題に対し、種々の副生物の除去・再生方法が提案されている。特許文献1では、還元されたアントラキノン類にアルカリ水溶液で抽出操作を施し、過酸化水素生成に寄与しない無効アントラキノン類を除去する方法が記載されている。この方法のように薬品を用いて処理を行うと、大量のアルカリ廃液が発生する問題がある。   To solve this problem, various by-product removal / regeneration methods have been proposed. Patent Document 1 describes a method in which reduced anthraquinones are extracted with an alkaline aqueous solution to remove ineffective anthraquinones that do not contribute to hydrogen peroxide production. When processing is performed using chemicals as in this method, there is a problem that a large amount of alkaline waste liquid is generated.

特許文献2では、同様に薬品による処理を行なうものとして、アルミニウム、アンモニウム等のハロゲン化物の固体または水溶液を用い、100−170℃にて作動溶液を処理し、無効アントラキノン類を再生する方法が記載されている。特許文献3には、作動溶液をオゾンで処理し、ついでアルカリ金属水酸化物水溶液で抽出し、抽出分離後の作動溶液を活性アルミナまたは活性マグネシアと接触させる方法が記載されている。   Patent Document 2 describes a method of regenerating ineffective anthraquinones by treating a working solution at 100-170 ° C. using a solid or aqueous solution of a halide such as aluminum or ammonium, as a similar chemical treatment. Has been. Patent Document 3 describes a method in which a working solution is treated with ozone, then extracted with an aqueous alkali metal hydroxide solution, and the working solution after extraction and separation is brought into contact with activated alumina or activated magnesia.

特許文献4では、作動溶液中の溶剤を分離する第1段蒸留、次いでアントラキノン類及びモノアントラセン系の軽質物質を分離する第2段蒸留をする際に、留出物の結晶化閉塞を防止する為に第2段蒸留の溜出蒸気を冷溶剤の液膜上で凝縮させることを特徴とする方法が記載されている。この作動溶液中には、溶剤、アントラキノン類、重質分解物(ポリアントラセン)、軽質分解物及び場合によってヒドロキシ化合物を含有するとしている。この方法では、軽質分解物はハイドロキノン類の溶解性助剤として有用であるので除去せず、有害な重質分解物のみを除去することを目的としている。   In Patent Document 4, when the first-stage distillation for separating the solvent in the working solution and the second-stage distillation for separating the anthraquinones and light substances of monoanthracene are prevented, the crystallization clogging of the distillate is prevented. For this purpose, a method is described in which the distilled vapor of the second stage distillation is condensed on a liquid film of cold solvent. The working solution contains a solvent, anthraquinones, a heavy decomposition product (polyanthracene), a light decomposition product, and, in some cases, a hydroxy compound. In this method, the light degradation product is useful because it is useful as a solubility aid for hydroquinones, and the purpose is to remove only harmful heavy degradation products.

以上のように、提案されている技術では、アントラキノン類単量体副生物やアントラキノン類の溶剤付加物、アントラキノン類の重合物など、アントラキノン類変性物を除去・再生する方法はあるものの、溶媒変性物を除去する方法は報告されていない。溶媒変性物は作動溶液の比重や粘度、表面張力等の物性を変化させてしまうため、作動溶液の還元・酸化・抽出工程の効率低下や安定運転への障害の原因となる。溶剤ロスの少ない環境に配慮したプラントでは、溶剤を環境に排出する量が極少量であり、溶媒変性物も排出されないので蓄積の問題が顕在化する。   As described above, although there are methods for removing and regenerating modified anthraquinones such as anthraquinone monomer by-products, solvent addition products of anthraquinones, and polymers of anthraquinones in the proposed technology, solvent modification There has been no report on how to remove objects. Since the solvent-modified product changes the physical properties such as the specific gravity, viscosity, and surface tension of the working solution, it causes a reduction in efficiency of the reduction / oxidation / extraction process of the working solution and an obstacle to stable operation. In an environment-friendly plant with little solvent loss, the amount of solvent discharged into the environment is very small, and solvent-modified products are not discharged, so the problem of accumulation becomes obvious.

また、アントラキノン法では、抽出工程で得られた粗製過酸化水素水は、溶剤で洗浄され、溶解している作動溶液成分が除去され、次いで濃度調整を兼ねた蒸留工程において、溶解している有機成分が除去されている。しかし、この方法では、水溶性の極性溶媒変性物の除去が難しい問題がある。   In the anthraquinone method, the crude hydrogen peroxide solution obtained in the extraction step is washed with a solvent to remove dissolved working solution components, and then dissolved in a distillation step that also serves to adjust the concentration. Ingredients have been removed. However, this method has a problem that it is difficult to remove the water-soluble polar solvent-modified product.

近年、半導体の集積度が上がる中で、洗浄剤として使われる過酸化水素への要求も厳しくなってきており、過酸化水素中の残留有機物の低減が望まれている。有機物の低減化方法としては、吸着樹脂や逆浸透膜による方法があるが、原料となる過酸化水素中の有機物が多い場合は、樹脂や膜の劣化が激しく交換頻度が高い問題を抱えていた。
以上のような観点から、残留有機物の低い精製の容易な過酸化水素が得られる方法が望まれている。
特開平6−135705号公報 特公昭41−18497号公報 特公昭45−19164号公報 特公昭55−23762号公報
In recent years, as the degree of integration of semiconductors has increased, the demand for hydrogen peroxide used as a cleaning agent has become stricter, and reduction of residual organic substances in hydrogen peroxide is desired. As a method for reducing organic substances, there are methods using adsorption resins and reverse osmosis membranes, but when there are many organic substances in hydrogen peroxide as a raw material, there was a problem that resin and membranes deteriorated and replacement frequency was high. .
In view of the above, there is a demand for a method capable of obtaining hydrogen peroxide with low residual organic matter and easy purification.
JP-A-6-135705 Japanese Patent Publication No.41-18497 Japanese Examined Patent Publication No. 45-19164 Japanese Patent Publication No.55-23762

本発明の目的は、従来技術における上記のような課題を解決し、作動溶液を構成する有機溶媒由来の変性物を除去することにより、生産効率を低下させることなく、プラントの安定運転を継続させ、かつ有機物濃度の低減された過酸化水素を製造する方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems in the prior art, and to remove the denatured product derived from the organic solvent constituting the working solution, thereby continuing the stable operation of the plant without reducing the production efficiency. Another object of the present invention is to provide a method for producing hydrogen peroxide having a reduced organic substance concentration.

本発明者らは、溶媒変性物の除去について鋭意研究を重ねた結果、溶剤蒸留工程の缶出液に極性溶媒変性物が濃縮されていることを見出し、更にこの缶出液から極性溶媒変成物を効率よく除去する方法を見出し、本発明を完成するに至った。
すなわち、本発明は、アントラキノン法による過酸化水素の製造方法において、作動溶液に蓄積する溶媒変成物を除去するために、(1)溶剤蒸留工程で得られた缶出液を水で洗浄して、有機相1と水相1に分離し、(2)分離した水相1を処理して溶媒変成物を除去することを特徴とする過酸化水素の製造方法に関するものである。
As a result of intensive research on the removal of the solvent-modified product, the present inventors have found that the polar solvent-modified product is concentrated in the bottoms of the solvent distillation step. As a result, the present inventors have completed a method for efficiently removing the water.
That is, in the method for producing hydrogen peroxide by the anthraquinone method, the present invention includes (1) washing the bottoms obtained in the solvent distillation step with water in order to remove the solvent modification product accumulated in the working solution. The present invention relates to a method for producing hydrogen peroxide, characterized by separating into an organic phase 1 and an aqueous phase 1 and (2) treating the separated aqueous phase 1 to remove solvent modification products.

本発明により、作動用液中に蓄積していた極性溶媒変性物の除去が可能となり、溶剤ロスの少ない環境に配慮されたプロセスにより、効率的に過酸化水素を製造することができ、また、有機物濃度の低減された過酸化水素水を得ることができる。   According to the present invention, it is possible to remove the denatured polar solvent accumulated in the working liquid, and it is possible to efficiently produce hydrogen peroxide by an environment-friendly process with little solvent loss. A hydrogen peroxide solution with a reduced organic matter concentration can be obtained.

本発明の実施態様の一例である図1のフローによって説明する。作動溶液は、還元工程1、酸化工程2及び抽出工程3を循環しており(ライン11)、抽出工程3より粗製過酸化水素水が得られる。   The flow of FIG. 1 which is an example of the embodiment of the present invention will be described. The working solution circulates through the reduction process 1, the oxidation process 2 and the extraction process 3 (line 11), and a crude hydrogen peroxide solution is obtained from the extraction process 3.

本発明で使用するアントラキノンは、アルキル置換基を有するエチルアントラキノン、t−ブチルアントラキノン、アミルアントラキノンなどが例示される。これらは単独で用いてもよく、2種以上を混合して用いてもよい。また、アルキル置換基を有するテトラヒドロアントラキノンとしては、エチルテトラヒドロアントラキノン、t−ブチルテトラヒドロアントラキノン、アミルテトラヒドロアントラキノンなどが例示される。これらは単独で用いてもよく、2種以上を混合して用いてもよい。   Examples of the anthraquinone used in the present invention include ethyl anthraquinone, t-butylanthraquinone, and amylanthraquinone having an alkyl substituent. These may be used alone or in combination of two or more. Examples of the tetrahydroanthraquinone having an alkyl substituent include ethyltetrahydroanthraquinone, t-butyltetrahydroanthraquinone, amyltetrahydroanthraquinone and the like. These may be used alone or in combination of two or more.

本発明において作動溶液を調製するために用いられる有機溶媒は、特に限定されるものではない。好ましい有機溶媒として、非極性溶媒は芳香族炭化水素が挙げられる。例えばベンゼンまたは炭素数1〜5のアルキル置換基を含むベンゼン誘導体などである。極性溶媒は高級アルコール、カルボン酸エステル、四置換尿素、環状尿素、トリオクチルりん酸などが例示される。   The organic solvent used for preparing the working solution in the present invention is not particularly limited. Preferred organic solvents include aromatic hydrocarbons as nonpolar solvents. For example, benzene or a benzene derivative containing an alkyl substituent having 1 to 5 carbon atoms. Examples of the polar solvent include higher alcohols, carboxylic acid esters, tetrasubstituted ureas, cyclic ureas, and trioctyl phosphoric acid.

溶媒変性物は、主として溶媒成分の酸化物、分解物である。具体的にはカルボン酸類、ポリオール類、フェノール類などが例示される。これらの化合物の一部は、水添工程において触媒被毒物として作用するため、作動溶液中に蓄積すると、触媒活性の悪化による水添効率低下の原因となる。また、これらの溶媒成分変性物は作動溶液の比重や粘度、表面張力等の物性を変化させてしまうため、作動溶液の還元・酸化・抽出工程の効率低下や安定運転への障害の原因となる。作動溶液中の溶媒変性物の一部は過酸化水素に溶解するため、製品過酸化水素水中に有機不純物として残留し、過酸化水素の品質を低下させる。   Solvent-modified products are mainly oxides and decomposition products of solvent components. Specific examples include carboxylic acids, polyols, and phenols. Since some of these compounds act as catalyst poisons in the hydrogenation step, accumulation in the working solution causes a reduction in hydrogenation efficiency due to deterioration in catalyst activity. In addition, these solvent component-modified products change physical properties such as the specific gravity, viscosity, and surface tension of the working solution, which causes a reduction in the efficiency of the reduction / oxidation / extraction process of the working solution and an obstacle to stable operation. . A part of the solvent-modified product in the working solution is dissolved in hydrogen peroxide, so that it remains as an organic impurity in the product hydrogen peroxide water, thereby degrading the quality of hydrogen peroxide.

<溶剤蒸留工程4>
酸化工程2の排ガスからの回収溶剤、過酸化水素洗浄工程7からの回収溶剤、触媒洗浄工程からの回収溶剤、フィルター洗浄に使用された回収溶剤等を溶剤蒸留工程4で蒸留する。
<Solvent distillation process 4>
The solvent recovered from the exhaust gas in the oxidation process 2, the solvent recovered from the hydrogen peroxide cleaning process 7, the solvent recovered from the catalyst cleaning process, the recovery solvent used for filter cleaning, and the like are distilled in the solvent distillation process 4.

酸化工程2の排ガスに含まれる溶剤は、排ガスを冷却して溶剤蒸気を液化する深冷分離法や、溶剤蒸気を活性炭に吸着させて捕集し、スチーミング処理を行うことで脱着させる活性炭吸着法などにより回収される。   The solvent contained in the exhaust gas of the oxidation step 2 is a cryogenic separation method in which the exhaust gas is cooled to liquefy the solvent vapor, or activated carbon adsorption in which the solvent vapor is adsorbed on the activated carbon to be collected and desorbed by performing a steaming treatment. Collected by law.

作動溶液から抽出された粗製過酸化水素水には、極微量の作動溶液成分(アントラキノン類など)が含まれており、過酸化水素洗浄工程7において作動溶液成分の回収と過酸化水素水を精製することを目的として溶剤で洗浄する。   The crude hydrogen peroxide solution extracted from the working solution contains a very small amount of working solution components (such as anthraquinones). In the hydrogen peroxide cleaning step 7, the working solution components are recovered and the hydrogen peroxide solution is purified. For the purpose of washing with a solvent.

触媒を入れ替える際に触媒に付着した作動溶液成分を除去するために、触媒洗浄工程において溶剤で洗浄される。また、作動溶液を使用する工程におけるフィルターなどのメンテナンスの際に付着した作動用液成分を除去することを目的として、フィルター洗浄工程において溶剤で洗浄される。このような洗浄溶媒には、少量であるがアントラキノン類や極性溶媒変成物が含まれている。   In order to remove the working solution component adhering to the catalyst when the catalyst is replaced, the catalyst is washed with a solvent in the catalyst washing step. In addition, the filter is washed with a solvent in the filter washing step for the purpose of removing the working liquid component adhering during maintenance of the filter in the step of using the working solution. Such washing solvents contain a small amount of anthraquinones and modified polar solvents.

蒸留装置としては、一般的に用いられる蒸留設備が使用でき、特に制限は無い。たとえば、バッチ蒸留装置、連続蒸留装置、薄膜蒸留装置などが挙げられる。酸化塔排ガス回収溶剤、過酸化水素洗浄溶剤などは定常的に回収されているため、連続蒸留装置が好適である。蒸留の条件は、作動溶液に用いられている有機溶媒により適宜選択されるので一概には規定できないが、以下のような条件が選択される。即ち、圧力としては1〜100kPa(大気圧)が好ましく、5〜30kPaがより好ましい。温度は50〜200℃が好適である。   As the distillation apparatus, generally used distillation equipment can be used, and there is no particular limitation. For example, a batch distillation apparatus, a continuous distillation apparatus, a thin film distillation apparatus, etc. are mentioned. Since the oxidation tower exhaust gas recovery solvent, the hydrogen peroxide cleaning solvent and the like are constantly recovered, a continuous distillation apparatus is preferable. Distillation conditions are appropriately selected depending on the organic solvent used in the working solution, and thus cannot be defined unconditionally, but the following conditions are selected. That is, the pressure is preferably 1 to 100 kPa (atmospheric pressure), and more preferably 5 to 30 kPa. The temperature is preferably 50 to 200 ° C.

溶剤蒸留の留出液(ライン13)は、精製溶剤として過酸化水素洗浄工程7や、触媒洗浄工程、フィルター洗浄工程に再利用される。また、精製溶剤の一部は作動溶液調製工程を経由して、または直接循環ライン11に戻される。戻す場所は、還元工程1前、酸化工程2前、抽出工程3前のいずれでもよい。各工程で使用されたアントラキノン類を少量含む溶剤(使用後の精製溶剤)は、溶剤蒸留工程4に戻されリサイクルされる。   The solvent distillation distillate (line 13) is reused as a purification solvent in the hydrogen peroxide washing step 7, the catalyst washing step, and the filter washing step. A part of the purification solvent is returned to the circulation line 11 via the working solution preparation step or directly. The place to be returned may be before the reduction step 1, before the oxidation step 2, or before the extraction step 3. The solvent containing a small amount of anthraquinones used in each step (purified solvent after use) is returned to the solvent distillation step 4 and recycled.

<缶出液洗浄工程5>
溶剤蒸留の缶出液(ライン12)は、缶出液洗浄工程5で水洗により有機相1(ライン14)と水相1(ライン15)に分離し、極性溶媒変成物を除去された有機相1は、ライン11へ戻される。戻す場所は、還元工程1前、酸化工程2前、抽出工程3前のいずれでもよい。極性溶媒変成物を含んだ水相1は、洗浄水処理工程6で、極性溶媒変性物を除去してリサイクルされる。洗浄工程で使用される装置は、特に制限はなく、例えば、ミキサーセトラー、遠心抽出器、向流式の液/液抽出塔などが使用できるが、ミキサーセトラー方式が好適である。
<Bottom liquid washing process 5>
The bottoms of solvent distillation (line 12) is separated into organic phase 1 (line 14) and aqueous phase 1 (line 15) by washing with water in bottoms washing step 5, and the organic phase from which the polar solvent denatured product has been removed. 1 is returned to line 11. The place to be returned may be before the reduction step 1, before the oxidation step 2, or before the extraction step 3. The aqueous phase 1 containing the polar solvent modification product is recycled after removing the polar solvent modification product in the washing water treatment step 6. The apparatus used in the washing step is not particularly limited, and for example, a mixer settler, a centrifugal extractor, a counter-current liquid / liquid extraction tower, and the like can be used. A mixer-settler system is preferable.

洗浄に用いる水は、実質的に酸・アルカリ・有機物を含まない水であればよい。イオン交換水・蒸留水・超純水等は問題なく使用できる。経済的にはスチーム凝縮水を使用するのが好ましい。スチーム凝縮水には、金属分、スケール等が混入しているので、10μm以下、好ましくは1μm以下のフィルターにてろ過するのが好ましい。また、必要に応じてイオン交換処理や逆浸透膜処理を行ってもよい。洗浄水量は、缶出液に対して多量に用いるほど極性溶媒変性物の除去量が増えるが、抽出後の水の処理量も増えてしまうので通常、1〜10倍が適当であり、3〜7倍量が好適である。   The water used for washing may be water that does not substantially contain acid, alkali, or organic matter. Ion exchange water, distilled water, ultrapure water, etc. can be used without problems. Economically, it is preferable to use steam condensate. Since metal components, scales, and the like are mixed in the steam condensed water, it is preferably filtered with a filter of 10 μm or less, preferably 1 μm or less. Moreover, you may perform an ion exchange process and a reverse osmosis membrane process as needed. The amount of water to be washed increases as the amount of the denatured product is removed as it is used in a large amount with respect to the bottoms. However, since the amount of water after extraction also increases, 1 to 10 times is usually appropriate. A 7-fold amount is preferred.

<洗浄水処理工程6>
水相1は、高濃度の有機物を含んでおり、そのまま廃水として処理するのは環境への負荷から好ましくない。そこで、水相1に含まれる極性溶媒変成物を有機溶媒により洗浄することにより、廃水の処理負担を低減させる。有機溶媒としては、水への溶解性が低く、極性溶媒変成物の分配係数が大きく、極性溶媒変成物との沸点差が50℃以上あるものが望ましい。具体的には、ジクロロメタン、クロロホルムが好適である。この洗浄には例えば、ミキサーセトラー、蒸気ストリッピング、遠心抽出機、交流式の液/液抽出塔等の装置が使用できる。有機溶媒の使用量は、分配係数の大小により適宜選択されるが、少なくとも水洗後洗浄水1mあたり0.01mである。好ましくは水洗後洗浄水1mあたり0.1m以上である。
<Washing water treatment process 6>
The aqueous phase 1 contains a high concentration of organic matter, and it is not preferable to treat it as waste water as it is because of environmental burden. Therefore, the treatment load of waste water is reduced by washing the polar solvent modified product contained in the aqueous phase 1 with an organic solvent. As the organic solvent, those having low solubility in water, a large partition coefficient of the polar solvent modified product, and a boiling point difference from the polar solvent modified product of 50 ° C. or more are desirable. Specifically, dichloromethane and chloroform are preferable. For this cleaning, for example, an apparatus such as a mixer settler, steam stripping, centrifugal extractor, AC liquid / liquid extraction tower or the like can be used. The amount of the organic solvent is appropriately selected according to the magnitude of the partition coefficient is at least rinsing after cleaning water 1 m 3 per 0.01 m 3. It is preferably 0.1 m 3 or more per 1 m 3 of washing water after washing with water.

<有機相蒸留工程8>
洗浄処理工程6により水相1から有機相2(ライン16)へ分離した極性溶媒変成物は、有機相蒸留工程8により濃縮・分離される(ライン19)。蒸留装置は、特に制限はなく、バッチ蒸留装置、連続蒸留装置、薄膜蒸留装置などが使用できる。圧力としては、50〜100kPaが好適である。温度は50〜80℃が好適である。ここで留出液に含まれる有機溶媒(ライン17)は、水洗液の洗浄へリサイクルされる。また缶出液として得られる極性溶媒変性物は、廃棄処理される。
<Organic phase distillation step 8>
The polar solvent modified product separated from the aqueous phase 1 to the organic phase 2 (line 16) by the washing treatment step 6 is concentrated and separated by the organic phase distillation step 8 (line 19). The distillation apparatus is not particularly limited, and a batch distillation apparatus, a continuous distillation apparatus, a thin film distillation apparatus, or the like can be used. As a pressure, 50-100 kPa is suitable. The temperature is preferably 50 to 80 ° C. Here, the organic solvent (line 17) contained in the distillate is recycled to the washing of the water washing liquid. In addition, the polar solvent-modified product obtained as the bottoms is discarded.

<水相処理工程9>
一方、極性溶媒変性物が除去された水相2(ライン18)は、水相処理工程9により有機溶媒を水蒸気蒸留で除去することにより、缶出液洗浄工程に使用される水として再利用できる。
<Aqueous phase treatment process 9>
On the other hand, the aqueous phase 2 (line 18) from which the polar solvent-modified product has been removed can be reused as water used in the bottoms washing process by removing the organic solvent by steam distillation in the aqueous phase treatment process 9. .

次に、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、作動溶液および溶剤に用いた溶媒は極性溶媒、非極性溶媒としてそれぞれジイソブチルカルビノールおよびプソイドクメンを用いた。極性溶媒変性物として2,6−ジメチル−2,4−ヘプタンジオール濃度を定量した。分析機器にFID−GC、内部標準物質に1−ノナノールを用いて定量を行った。なお、実施例では極性溶媒変性物の除去量を比較する為に代表物質として2,6−ジメチル−2,4−ヘプタンジオールを定量したが、含まれる極性溶媒変性物は、種々の混合物である。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these. In addition, the solvent used for the working solution and the solvent was diisobutylcarbinol and pseudocumene as a polar solvent and a nonpolar solvent, respectively. The 2,6-dimethyl-2,4-heptanediol concentration was quantified as a polar solvent modified product. Quantification was performed using FID-GC as an analytical instrument and 1-nonanol as an internal standard. In the examples, 2,6-dimethyl-2,4-heptanediol was quantified as a representative substance in order to compare the removal amount of the polar solvent-modified product. However, the polar solvent-modified products are various mixtures. .

実施例1
還元・酸化・抽出の循環プロセスを有するアントラキノン法による過酸化水素製造装置で使用していた作動溶液を用い、小スケールの過酸化水素製造装置を用いて連続運転を行った。酸化工程の排ガスより回収した溶剤は、還元工程の触媒洗浄工程、過酸化水素洗浄工程に用いた。2つの洗浄工程から回収された溶剤は溶剤蒸留工程で蒸留し、留出液は精製溶剤としてリサイクルし、その一部を循環作動溶液へ戻した。
缶出液は、向流式5段ミキサーセトラー抽出器を用いて体積比5倍の純水を用いて缶出液洗浄工程で洗浄を行った。洗浄後の有機相は、循環作動溶液へ戻した。水相は、廃棄した。小スケールの過酸化水素製造装置を3ヶ月間運転した。
運転開始時と運転終了時の各工程における2,6−ジメチル−2,4−ヘプタンジオール濃度および取得した過酸化水素水の全有機炭素濃度は表1の通りであった。缶出液の水洗により、作動溶液に含まれる極性溶媒変性物が減少し、得られた過酸化水素水の全有機炭素濃度も減少した。
Example 1
Using the working solution used in the hydrogen peroxide production system by the anthraquinone method having a reduction, oxidation, and extraction circulation process, continuous operation was performed using a small-scale hydrogen peroxide production system. The solvent recovered from the exhaust gas in the oxidation process was used in the catalyst cleaning process and the hydrogen peroxide cleaning process in the reduction process. The solvent recovered from the two washing steps was distilled in the solvent distillation step, the distillate was recycled as a purified solvent, and part of it was returned to the circulating working solution.
The bottoms were washed in a bottoms washing step using pure water with a volume ratio of 5 times using a countercurrent 5-stage mixer / settler extractor. The organic phase after washing was returned to the circulating working solution. The aqueous phase was discarded. A small-scale hydrogen peroxide production unit was operated for 3 months.
Table 1 shows the 2,6-dimethyl-2,4-heptanediol concentration and the total organic carbon concentration of the obtained hydrogen peroxide solution in each step at the start and end of operation. By washing the bottoms with water, the denatured polar solvent contained in the working solution decreased, and the total organic carbon concentration of the resulting hydrogen peroxide solution also decreased.

Figure 2008120631
Figure 2008120631

実施例2
<洗浄水処理工程6>
実施例1で缶出液を洗浄した洗浄水100リットルを向流式5段ミキサー・セトラー抽出器用いてクロロホルム10リットルで洗浄を行った。洗浄後の水相として2,6−ジメチル−2,4−ヘプタンジオール濃度=0.05g/lを得た。クロロホルム層として2,6−ジメチル−2,4−ヘプタンジオール濃度=7.8g/lを得た 。
Example 2
<Washing water treatment process 6>
100 liters of the wash water from which the bottoms were washed in Example 1 was washed with 10 liters of chloroform using a countercurrent 5-stage mixer / settler extractor. As an aqueous phase after washing, 2,6-dimethyl-2,4-heptanediol concentration = 0.05 g / l was obtained. As the chloroform layer, 2,6-dimethyl-2,4-heptanediol concentration = 7.8 g / l was obtained.

実施例3
<有機相蒸留工程8>
実施例2で得られたクロロホルム層10リットルをロータリーエバポレーターを用いて、50kPa、50℃にて仕込み液の95%を目標に留去した。留出率96%まで蒸留を行い、留出液のクロロホルム純度を測定したところ99%以上であった。
Example 3
<Organic phase distillation step 8>
Using a rotary evaporator, 10 liters of the chloroform layer obtained in Example 2 was distilled off at a target of 95% of the charged solution at 50 kPa and 50 ° C. Distillation was carried out to a distillation rate of 96%, and the chloroform purity of the distillate was measured and found to be 99% or more.

実施例4
<水相処理工程>
実施例2で得られた洗浄後の水層10リットルにスチームを吹き込み、クロロホルムを留去した。留出率10%まで留去を行い、水層中のクロロホルム濃度を測定したところ、1ppm以下であった。
Example 4
<Water phase treatment process>
Steam was blown into 10 liters of the washed aqueous layer obtained in Example 2, and chloroform was distilled off. Distillation was carried out to a distillation rate of 10%, and the chloroform concentration in the aqueous layer was measured and found to be 1 ppm or less.

比較例1
実施例1の運転開始時に得られた溶剤蒸留缶出液洗浄水を蒸留原料に用いた以外は、実施例4と同様に処理を行った。水層中の2,6−ジメチル−2,4−ヘプタンジオール濃度を測定したところ0.7g/lであった。
Comparative Example 1
The treatment was carried out in the same manner as in Example 4 except that the solvent distillation can effluent washing water obtained at the start of operation in Example 1 was used as the distillation raw material. The 2,6-dimethyl-2,4-heptanediol concentration in the aqueous layer was measured and found to be 0.7 g / l.

実施例5
実施例4相当の処理を行い得られた水を洗浄水として用いた以外は、実施例1と同様に小スケールの過酸化水素製造装置の運転を実施した。運転開始時と運転終了時の各工程における2,6−ジメチル−2,4−ヘプタンジオール濃度および取得した過酸化水素水の全有機炭素濃度は以下の通りであった。水洗水の再利用を伴う缶出液の水洗により、作動溶液に含まれる極性溶媒変性物が減少し、得られる過酸化水素水の全有機炭素濃度も減少した。結果を表2に示す。
Example 5
A small-scale hydrogen peroxide production apparatus was operated in the same manner as in Example 1 except that the water obtained by performing the treatment corresponding to Example 4 was used as washing water. The 2,6-dimethyl-2,4-heptanediol concentration and the total organic carbon concentration of the obtained hydrogen peroxide solution in each step at the start and end of operation were as follows. By washing the bottoms with reuse of washing water, the polar solvent denatured product contained in the working solution was reduced, and the total organic carbon concentration of the resulting hydrogen peroxide solution was also reduced. The results are shown in Table 2.

Figure 2008120631
Figure 2008120631

本発明による製造プロセスの態様を示すフロー図である。It is a flowchart which shows the aspect of the manufacturing process by this invention.

符号の説明Explanation of symbols

1 還元工程
2 酸化工程
3 抽出工程
4 溶剤蒸留工程
5 缶出液洗浄工程
6 洗浄水処理工程
7 過酸化水素洗浄工程
8 有機相蒸留工程
9 水相処理工程
DESCRIPTION OF SYMBOLS 1 Reduction process 2 Oxidation process 3 Extraction process 4 Solvent distillation process 5 Drained liquid washing process 6 Washing water treatment process 7 Hydrogen peroxide washing process 8 Organic phase distillation process 9 Water phase treatment process

Claims (5)

アントラキノン法による過酸化水素の製造方法において、作動溶液に蓄積する溶媒変成物を除去するために、(1)溶剤蒸留工程で得られた缶出液を水で洗浄して、有機相1と水相1に分離し、(2)分離した水相1を処理して溶媒変成物を除去することを特徴とする過酸化水素の製造方法。   In the method for producing hydrogen peroxide by the anthraquinone method, in order to remove the solvent denatured product accumulated in the working solution, (1) the bottoms obtained in the solvent distillation step are washed with water, and the organic phase 1 and water A method for producing hydrogen peroxide, characterized by separating into phase 1 and (2) treating the separated aqueous phase 1 to remove solvent modification products. 分離した有機相1を作動液に添加する請求項1記載の製造方法。   The production method according to claim 1, wherein the separated organic phase 1 is added to the working fluid. 分離した水相1を有機溶媒で洗浄して、有機相2と水相2に分離し、有機相2を処理して溶媒変成物を除去する請求項1記載の製造方法。   The method according to claim 1, wherein the separated aqueous phase 1 is washed with an organic solvent, separated into an organic phase 2 and an aqueous phase 2, and the organic phase 2 is treated to remove a solvent modification product. 分離した水相2を缶出液の洗浄に用いる請求項3記載の製造方法。   The method according to claim 3, wherein the separated aqueous phase 2 is used for washing the bottoms. 溶剤蒸留工程で得られた留出液を精製溶剤として再利用する請求項1記載の製造方法。   The manufacturing method of Claim 1 which reuses the distillate obtained by the solvent distillation process as a refinement | purification solvent.
JP2006306767A 2006-11-13 2006-11-13 Production method of hydrogen peroxide by anthraquinone method Active JP4760677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306767A JP4760677B2 (en) 2006-11-13 2006-11-13 Production method of hydrogen peroxide by anthraquinone method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306767A JP4760677B2 (en) 2006-11-13 2006-11-13 Production method of hydrogen peroxide by anthraquinone method

Publications (3)

Publication Number Publication Date
JP2008120631A true JP2008120631A (en) 2008-05-29
JP2008120631A5 JP2008120631A5 (en) 2009-11-26
JP4760677B2 JP4760677B2 (en) 2011-08-31

Family

ID=39505787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306767A Active JP4760677B2 (en) 2006-11-13 2006-11-13 Production method of hydrogen peroxide by anthraquinone method

Country Status (1)

Country Link
JP (1) JP4760677B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160048077A (en) 2013-08-23 2016-05-03 미츠비시 가스 가가쿠 가부시키가이샤 Method for regenerating working solution used for production of hydrogen peroxide and method for producing hydrogen peroxide using regenerated working solution
CN108455538A (en) * 2017-02-21 2018-08-28 三菱瓦斯化学株式会社 Utilize anthraquinone process for hydrogen peroxide production and manufacture system
KR20190028289A (en) * 2017-09-08 2019-03-18 미츠비시 가스 가가쿠 가부시키가이샤 Method of producing hydrogen peroxide
KR20190028290A (en) * 2017-09-08 2019-03-18 미츠비시 가스 가가쿠 가부시키가이샤 Method of preparing working solution for hydrogen peroxide production
CN113024044A (en) * 2021-04-13 2021-06-25 南京简迪环境工程有限公司 Hydrogen peroxide production wastewater treatment process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523762B2 (en) * 1971-11-18 1980-06-25
JPH05201708A (en) * 1991-08-27 1993-08-10 Interox Internatl Method of obtaining hydrogen peroxide solution
JP2000302418A (en) * 1999-04-15 2000-10-31 Mitsubishi Gas Chem Co Inc Production of purified hydrogen peroxide aqueous solution
JP2001348210A (en) * 2000-06-02 2001-12-18 Ube Ind Ltd Method of manufacturing hydrogen peroxide aqueous solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523762B2 (en) * 1971-11-18 1980-06-25
JPH05201708A (en) * 1991-08-27 1993-08-10 Interox Internatl Method of obtaining hydrogen peroxide solution
JP2000302418A (en) * 1999-04-15 2000-10-31 Mitsubishi Gas Chem Co Inc Production of purified hydrogen peroxide aqueous solution
JP2001348210A (en) * 2000-06-02 2001-12-18 Ube Ind Ltd Method of manufacturing hydrogen peroxide aqueous solution

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160048077A (en) 2013-08-23 2016-05-03 미츠비시 가스 가가쿠 가부시키가이샤 Method for regenerating working solution used for production of hydrogen peroxide and method for producing hydrogen peroxide using regenerated working solution
JPWO2015025735A1 (en) * 2013-08-23 2017-03-02 三菱瓦斯化学株式会社 Method for regenerating working solution used for hydrogen peroxide production, and method for producing hydrogen peroxide using regenerated working solution
US10138123B2 (en) 2013-08-23 2018-11-27 Mitsubishi Gas Chemical Company, Inc. Method for regenerating working solution used for production of hydrogen peroxide and method for producing hydrogen peroxide using regenerated working solution
KR102242074B1 (en) 2013-08-23 2021-04-19 미츠비시 가스 가가쿠 가부시키가이샤 Method for regenerating working solution used for production of hydrogen peroxide and method for producing hydrogen peroxide using regenerated working solution
CN108455538A (en) * 2017-02-21 2018-08-28 三菱瓦斯化学株式会社 Utilize anthraquinone process for hydrogen peroxide production and manufacture system
JP2019048740A (en) * 2017-09-08 2019-03-28 三菱瓦斯化学株式会社 Method for producing hydrogen peroxide
KR20190028290A (en) * 2017-09-08 2019-03-18 미츠비시 가스 가가쿠 가부시키가이샤 Method of preparing working solution for hydrogen peroxide production
JP2019048739A (en) * 2017-09-08 2019-03-28 三菱瓦斯化学株式会社 Method for preparing working solution for hydrogen peroxide production
KR20190028289A (en) * 2017-09-08 2019-03-18 미츠비시 가스 가가쿠 가부시키가이샤 Method of producing hydrogen peroxide
KR102610949B1 (en) 2017-09-08 2023-12-06 미츠비시 가스 가가쿠 가부시키가이샤 Method of preparing working solution for hydrogen peroxide production
KR102617500B1 (en) * 2017-09-08 2023-12-22 미츠비시 가스 가가쿠 가부시키가이샤 Method of producing hydrogen peroxide
CN113024044A (en) * 2021-04-13 2021-06-25 南京简迪环境工程有限公司 Hydrogen peroxide production wastewater treatment process
CN113024044B (en) * 2021-04-13 2024-04-26 南京简迪环境工程有限公司 Hydrogen peroxide production wastewater treatment process

Also Published As

Publication number Publication date
JP4760677B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4760677B2 (en) Production method of hydrogen peroxide by anthraquinone method
KR20000006244A (en) Process and plant for manufacturing an aqueous hydrogen peroxide solution, and aqueous hydrogen peroxide solution
KR102617500B1 (en) Method of producing hydrogen peroxide
JP2007297248A (en) Activation method for hydrogenation catalyst, and production method for hydrogen peroxide comprising the method
KR101362495B1 (en) Process for hydrogen peroxide production including step for regeneration of working solution
JP4735500B2 (en) Production method of hydrogen peroxide by anthraquinone method
JP6428622B2 (en) Method for regenerating working solution used for hydrogen peroxide production, and method for producing hydrogen peroxide using regenerated working solution
TW299301B (en)
JP7327414B2 (en) How to treat the working solution
CN109467057B (en) Process for producing working solution for use in producing hydrogen peroxide
JP5973438B2 (en) Increasing terephthalic acid purge filtration rate by controlling the percentage of water in the filter feed slurry
JPH01215704A (en) Purification of operating compound
JPH11347536A (en) Method for treating wastewater containing phenols
JP2016506354A (en) Method for producing purified aqueous hydrogen peroxide solution
JP2000302418A (en) Production of purified hydrogen peroxide aqueous solution
JP2018135230A (en) Production method and production system of hydrogen peroxide by anthraquinone process
JP2013537548A (en) Increasing the terephthalic acid purge filtration rate by controlling the percentage of water in the filter feed slurry
JP2988573B2 (en) Purification method of boric acid for hydrocarbon oxidation
JP2007063153A (en) Method for recovering acetic acid in process for producing aromatic carboxylic acid
JP2004043434A (en) Method for refining high-purity dimethyl sulfoxide and mixture of dimethyl sulfoxide with amines
JP2009504647A (en) Method for removing benzoic acid from an oxidant purge stream
JP5003172B2 (en) Purification method of β-phenylethyl alcohol
CN114852978A (en) Preparation system and method for directly producing electronic-grade nitric acid from ammonia gas
WO2005115957A1 (en) Method for producing high purity terephthalic acid
MX2008000765A (en) Process for removal of benzoic acid from an oxidizer purge stream

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4760677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3