JP2008119726A - Light rolling reduction method for vicinity of solidification completion position in continuously cast slab - Google Patents

Light rolling reduction method for vicinity of solidification completion position in continuously cast slab Download PDF

Info

Publication number
JP2008119726A
JP2008119726A JP2006306910A JP2006306910A JP2008119726A JP 2008119726 A JP2008119726 A JP 2008119726A JP 2006306910 A JP2006306910 A JP 2006306910A JP 2006306910 A JP2006306910 A JP 2006306910A JP 2008119726 A JP2008119726 A JP 2008119726A
Authority
JP
Japan
Prior art keywords
reduction
slab
value
segment
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006306910A
Other languages
Japanese (ja)
Other versions
JP4948977B2 (en
Inventor
Norimasa Yamasaki
伯公 山崎
Shozo Shima
省三 嶋
Yosuke Oka
洋介 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006306910A priority Critical patent/JP4948977B2/en
Publication of JP2008119726A publication Critical patent/JP2008119726A/en
Application granted granted Critical
Publication of JP4948977B2 publication Critical patent/JP4948977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light rolling reduction method for the vicinity of the solidification completion position in a continuously cast slab where quality control for segregation or the like and rolling reduction control for an unsolidified part can be securely performed. <P>SOLUTION: In the method for performing light rolling reduction while controlling the rolling draft in a plurality of rolling reduction rolls arranged in the vicinity of the solidification completion position based on the conditions of the unsolidified part and solidified part of a slag cross-section in the vicinity of the solidification completion position, the central solid phase ratio shown by the ratio of the solid phase part to the whole width in the slab width direction at the center in the slab thickness direction is obtained, and, in accordance with the width direction distribution of the central solid phase ratio, the rolling draft is controlled. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は連続鋳造により製造した鋳片の凝固完了点近傍において鋳片幅方向に凝固の不均一が生成した場合等にそれらの生成状態に合わせて鋳片を圧下するための技術に関する。   The present invention relates to a technique for reducing the slab according to the state of solidification in the case where non-uniform solidification occurs in the slab width direction in the vicinity of the solidification completion point of the slab produced by continuous casting.

連続鋳造鋳片の製造技術において、冷却制御、偏析などの品質管理、凝固完了点の圧下管理などのため、鋳片の凝固完了点の位置やその状態を把握することが重要とされている。通常、鋳片内部の凝固開始、凝固完了は中心部で最も遅く、凝固完了点は連続鋳造鋳片の下流側に伸びるように形成される傾向がある。このような連続鋳造鋳片の凝固完了点の近傍において、全厚みの凝固完了点をクレータエンドと称している。また、鋳片において単位体積あたりの固相の質量割合を固相率と定義することができる。   In the continuous casting slab manufacturing technology, it is important to grasp the position and state of the solidification completion point of the slab for quality control such as cooling control and segregation and reduction control of the solidification completion point. Usually, solidification start and solidification completion in the slab is the slowest at the center, and the solidification completion point tends to be formed to extend downstream of the continuous cast slab. In the vicinity of the solidification completion point of such a continuous cast slab, the solidification completion point of the full thickness is called a crater end. Further, the mass ratio of the solid phase per unit volume in the slab can be defined as the solid phase ratio.

図10〜図12は上述のクレータエンドの3つの代表的な形状の模式図である。図10に示すように、鋳片101の縦断面を上から見ると、鋳片コーナー側、換言すると鋳片幅方向両端部側の凝固完了点102が鋳片幅方向中央部側の凝固部103よりも鋳造方向下流側に角状に伸びた形状となる場合と、図11に示す如く鋳片幅方向中央部側の凝固部105が鋳片幅方向でほぼ同一位置で全幅Wに近い平滑な幅広形状となる場合と、図12に示す如く鋳片両端側の凝固部107よりも幅広の凝固部108が形成された後に鋳片中央部側に鋳片の全幅Wの半分程度の凝固部109が形成されるという凝固完了点が舌状に伸びた形状となる3つの代表的な形状が知られている。   10 to 12 are schematic diagrams of three typical shapes of the crater end described above. As shown in FIG. 10, when the vertical cross section of the slab 101 is viewed from above, the solidification completion points 102 on the slab corner side, in other words, on both ends of the slab width direction are solidified portions 103 on the center side of the slab width direction. 11, the solidified portion 105 on the central side of the slab width direction is smooth and close to the full width W at substantially the same position in the slab width direction as shown in FIG. In the case of a wide shape, and as shown in FIG. 12, after the solidified portion 108 wider than the solidified portion 107 on both ends of the slab is formed, the solidified portion 109 about half of the entire width W of the slab is formed on the center side of the slab. There are known three typical shapes in which the solidification completion point of the formation of the shape becomes a tongue-like shape.

これらクレータエンド形状の差異は、鋳型内部における溶鋼の流動の影響、冷却ゾーンにおけるノズルからの水量密度の影響により鋳片両端部を冷却し過ぎてしまう影響、鋳片に接触する各ロールに熱を奪われることによる影響等、種々の鋳造条件が相互に関連して生じると考えられる。
前記3つの代表的なクレータエンド形状において、図11に示すクレータエンド形状であれば良好な冷却状態として問題ないが、図12に示すクレータエンド形状であると、コーナー部の過冷により、鋳片両端面にコーナー割れが入り易い。また、図10に示すクレータエンド形状ではコーナー割れは生じないものの、凝固完了点の末端の一部が、その他の凝固部分に対して出入りしている形状であるので偏析の発生、ポロシティの発生など、冷却管理上問題があると言われており、通常はこのようなクレータエンド形状が発生しないように冷却条件を含めた種々の鋳造条件を制御してこれらの問題を解消しようとしている。また、これらの鋳造条件の制御とは別に、圧下ロールを用いてクレータエンドの軽圧下を行ない、前述の偏析の問題解消に対処しているので、図10あるいは図12に示す状態が出現した場合であっても、軽圧下は行っているものである。(以降、軽圧下を行う際に使用している圧下ロールを軽圧下ロールと記載することがある。)
この軽圧下方法とは、先の偏析などの鋳片内部欠陥を防止するため、鋳片の凝固完了点近傍に僅かな塑性変形を伴う圧下を施す鋳造法として知られている。
These differences in the shape of the crater end are due to the influence of the flow of molten steel inside the mold, the effect of excessive cooling of both ends of the slab due to the influence of the water density from the nozzle in the cooling zone, It is thought that various casting conditions, such as the effects of being deprived, occur in relation to each other.
In the three representative crater end shapes, there is no problem as a good cooling state if the crater end shape shown in FIG. 11 is used. However, if the crater end shape shown in FIG. It is easy for corner cracks to enter both ends. In addition, although the corner break does not occur in the crater end shape shown in FIG. 10, the part of the end of the solidification completion point is a shape that goes in and out of the other solidified portion, so that segregation occurs, porosity occurs, etc. It is said that there are problems in cooling management. Usually, various casting conditions including cooling conditions are controlled so as not to generate such a crater end shape, and these problems are attempted to be solved. In addition to the control of these casting conditions, the crater end is lightly reduced using a reduction roll, and the above-mentioned problem of segregation is addressed, so the situation shown in FIG. 10 or FIG. 12 appears. Even so, light reduction is what you are doing. (Hereafter, the reduction roll used when performing the light reduction may be referred to as a light reduction roll.)
This light reduction method is known as a casting method in which a reduction with a slight plastic deformation is applied in the vicinity of the solidification completion point of the slab in order to prevent internal defects such as segregation.

以上の如くクレータエンド形状の解析は連続鋳造鋳片を製造しようとする場合の重要な検討事項であるため、従来、例えば、2つ以上の異なったエネルギースペクトルを有する放射線の、鋳片厚さ方向の透過度の鋳片幅方向分布に基づいて、鋳片断面の凝固完了点近傍の形状を求めようとする技術が提供されている。(特許文献1参照)
また、連続鋳造機のシミュレーション装置として、ロールRi,Ri+1によって連続的に案内されて冷却水等を吹き付けられる鋳片の有限要素モデルMjから雰囲気への熱伝達率hwが、前回演算された有限要素モデルMj−1からの熱伝達率hwより求められた鋳片の表面温度と、上記冷却水等の吹き付け量に関する操業上の実測データである吹付量分布とに基づいて演算されることにより、鋳造中の鋳片の熱的挙動を精度良くシミュレーションすることができる方法が提供されている。(特許文献2参照)
As described above, the analysis of the crater end shape is an important consideration when trying to produce a continuous cast slab. Conventionally, for example, in the slab thickness direction of radiation having two or more different energy spectra. Based on the slab width direction distribution of the slab, there is provided a technique for obtaining the shape of the slab cross section near the solidification completion point. (See Patent Document 1)
As a continuous casting machine simulation device, the heat transfer coefficient hw from the finite element model Mj of the slab that is continuously guided by the rolls Ri and Ri + 1 and sprayed with cooling water or the like to the atmosphere is the previously calculated finite element. By calculating based on the surface temperature of the slab obtained from the heat transfer coefficient hw from the model Mj-1 and the spray amount distribution which is actual measurement data regarding the spray amount of the cooling water or the like, There is provided a method capable of accurately simulating the thermal behavior of the slab inside. (See Patent Document 2)

更に、鋳造方向に複数個に分割された冷却ゾーンからなる2次冷却帯にて、鋳片短辺面から距離Lnの範囲の鋳片長辺面には2次冷却水を噴霧しないで鋳造する鋼の連続鋳造方法において、第n番目の冷却ゾーンでの距離(mm)をLn、第n番目の冷却ゾーン入り側での鋳片短辺の凝固シェル厚み(mm)をTnin、第n番目の冷却ゾーン出側での鋳片短辺の凝固シェル厚み(mm)をTnoutとした場合に、(Tnin+Tnout)/4≦Ln≦(Tnin+Tnout)/2とする式に入るように制御する技術が知られている。(特許文献3参照)
特開平10−325714号公報 特開平04−231158号公報 特開2000−15412号公報
Furthermore, in the secondary cooling zone composed of a plurality of cooling zones divided in the casting direction, the steel is cast without spraying the secondary cooling water on the long side surface of the slab in the range of the distance Ln from the short side surface of the slab. In the continuous casting method, the distance (mm) at the n-th cooling zone is Ln, the solidified shell thickness (mm) at the short side of the slab at the entry side of the n-th cooling zone is Tn in , When the solidified shell thickness (mm) at the short side of the slab at the cooling zone exit side is Tn out , the equation is (Tn in + Tn out ) / 4 ≦ Ln ≦ (Tn in + Tn out ) / 2. Techniques for controlling the above are known. (See Patent Document 3)
Japanese Patent Laid-Open No. 10-325714 Japanese Patent Laid-Open No. 04-231158 Japanese Patent Laid-Open No. 2000-15412

しかし、前述の放射線透過度の鋳片幅方向分布に基づく連続鋳造方法では、クレータエンド形状の特定を行うことができたとしても、特定のクレータエンド形状に見合うような鋳造方法や処理方法を提供できるものではなく、計測によりクレータエンド形状を特定することができる程度の技術であった。
また、前述の2次冷却帯にて2次冷却水を噴霧しないゾーンを前記(Tnin+Tnout)/4≦Ln≦(Tnin+Tnout)/2とする式に従って形成する方法では、鋳片の冷却状態を制御することによりクレータエンド形状を制御しようとする技術であるが、冷却水を噴霧しないゾーンでの冷却が不足し、やはりクレータエンド形状を十分には制御できず、図10に示す凝固形態になるという問題があった。
However, in the continuous casting method based on the slab width direction distribution of the above-mentioned radiation transmittance, even if the crater end shape can be specified, a casting method and a processing method suitable for the specific crater end shape are provided. It was not a technique that could be used, but it was a technique that could identify the crater end shape by measurement.
In the method of forming the zone in which the secondary cooling water is not sprayed in the above-described secondary cooling zone according to the formula of (Tn in + Tn out ) / 4 ≦ Ln ≦ (Tn in + Tn out ) / 2, Although it is a technique to control the crater end shape by controlling the cooling state of the water, the cooling in the zone where the cooling water is not sprayed is insufficient, and the crater end shape cannot be sufficiently controlled as shown in FIG. There was a problem of solidification.

本発明は前記背景に鑑みてなされたもので、連続鋳造鋳片のクレータエンド側の未凝固部分と凝固部分の状態、即ち凝固完了点近傍の状態が凝固状態として望ましくない状態を呈した場合であっても支障なく軽圧下することができ、偏析などの品質管理、凝固完了点近傍の圧下管理を確実に行い得る連続鋳造鋳片の凝固完了点近傍の軽圧下方法の提供を目的とする。   The present invention has been made in view of the background described above, and is a case where the state of the unsolidified portion and the solidified portion on the crater end side of the continuous cast slab, that is, the state in the vicinity of the solidification completion point exhibits an undesirable state as the solidified state. It is an object of the present invention to provide a light reduction method in the vicinity of the solidification completion point of a continuous cast slab that can be lightly reduced without any problem and can reliably perform quality control such as segregation and reduction control in the vicinity of the solidification completion point.

(1)本発明の連続鋳造鋳片の凝固完了点近傍の軽圧下方法は、鋳型内に溶鋼を注入し、該溶鋼を冷却して形成した凝固シェルを鋳型下方に連続的に引き抜き、更に鋳型下流側の冷却帯で凝固シェル表面を冷却して鋳片の凝固を完了させる際に、鋳片の凝固完了点近傍の未凝固部分と凝固部分の状態を基に凝固完了点近傍に複数配置した圧下ロールの圧下量を制御しながら軽圧下する方法であり、鋳片厚み方向の中心固相率を求めて、該中心固相率の幅方向分布に応じて、圧下量を調整することを特徴とする。
(2)本発明の連続鋳造鋳片の凝固完了点近傍の軽圧下方法は、(1)に記載の軽圧下方法において、メニスカスからの鋳造方向距離に応じた鋳型内での抜熱量と、鋳型下流側の冷却帯における冷却ノズルから鋳片に吹き付ける冷却水による抜熱量と、連続鋳造用ロールによる抜熱量と、未冷却部の輻射による抜熱量を基に、鋳造方向に垂直な鋳片断面における伝熱凝固計算を行い、凝固完了点近傍における鋳片厚み方向の中心固相率を算出することを特徴とする
(3)本発明の連続鋳造鋳片の凝固完了点近傍の軽圧下方法は、(1)に記載の軽圧下方法において、非接触式のセンサーにより鋳片の凝固完了点近傍の鋳片厚み方向の中心固相率を測定することを特徴とする
(1) The light reduction method in the vicinity of the solidification completion point of the continuous cast slab of the present invention is such that molten steel is poured into the mold, and the solidified shell formed by cooling the molten steel is continuously drawn below the mold. When the solidification shell surface is cooled in the cooling zone on the downstream side to complete solidification of the slab, multiple pieces are arranged near the solidification completion point based on the state of the unsolidified part and solidification part near the solidification completion point of the slab It is a method of lightly rolling while controlling the rolling amount of the rolling roll, characterized by obtaining the central solid fraction in the slab thickness direction and adjusting the rolling amount according to the width direction distribution of the central solid fraction. And
(2) The light reduction method in the vicinity of the solidification completion point of the continuous cast slab of the present invention is the light reduction method according to (1), in which the amount of heat removed in the mold according to the casting direction distance from the meniscus, In the cross section of the slab perpendicular to the casting direction, based on the amount of heat removed by the cooling water sprayed from the cooling nozzle in the downstream cooling zone to the slab, the amount of heat removed by the continuous casting roll, and the amount of heat removed by radiation of the uncooled part (3) A light reduction method in the vicinity of the solidification completion point of the continuous cast slab of the present invention is characterized in that heat transfer solidification calculation is performed to calculate the central solid fraction in the slab thickness direction in the vicinity of the solidification completion point. In the light reduction method described in (1), the central solid fraction in the slab thickness direction near the solidification completion point of the slab is measured by a non-contact sensor.

(4)本発明の連続鋳造鋳片の凝固完了点近傍の軽圧下方法は、(1)〜(3)のいずれかに記載の軽圧下方法において、幅Wの連続鋳造鋳片の幅方向の任意の位置をyとし、前記連続鋳造鋳片の鋳造方向の任意の位置をxとし、連続鋳造鋳片の任意の点(x,y)における鋳片厚み方向の中心固相率をfs(x,y)と定義して、この中心固相率fs(x,y)が所定の範囲内の場合を0以外の値とし、それ以外の範囲の場合を0に2値化する関数をg(x,y)と定義し、該g(x,y)で示される関数を連続鋳造鋳片の幅方向に0からWまで積分したB(x)を求め、このB(x)の値が0以外の値の場合で、かつ、鋳片幅中心における鋳片厚み方向の中心固相率fs(x,W/2)の値が所定値以上の場合に、前記圧下ロールにより凝固完了点近傍を圧下することを特徴とする
(5)本発明の連続鋳造鋳片の凝固完了点近傍の軽圧下方法は、(4)に記載の軽圧下方法において、前記複数配置した圧下ロールの圧下量を制御する際に、複数の圧下ロールが同一の圧下用セグメント内に配置され、該セグメントの圧下勾配により圧下量を調整する場合、該セグメント内の各圧下ロール位置でのB(x)の値のうち少なくとも1つが0以外の値の場合で、かつ、該セグメント内の各圧下ロール位置での鋳片幅中心における鋳片厚み方向の中心固相率fs(x,W/2)の値のうち少なくとも1つが所定値以上の場合に、該セグメントで鋳片を圧下することを特徴とする
(4) The light reduction method in the vicinity of the solidification completion point of the continuous cast slab of the present invention is the light reduction method according to any one of (1) to (3), in the width direction of the continuous cast slab of width W. An arbitrary position is y, an arbitrary position in the casting direction of the continuous cast slab is x, and a central solid fraction in the slab thickness direction at an arbitrary point (x, y) of the continuous cast slab is fs (x , Y), and a function for binarizing a value other than 0 when the central solid phase ratio fs (x, y) is within a predetermined range and binarizing to 0 when the other range is within the predetermined range g ( x (y) is defined, and B (x) obtained by integrating the function indicated by g (x, y) from 0 to W in the width direction of the continuous cast slab is obtained, and the value of B (x) is 0. And when the value of the center solid phase ratio fs (x, W / 2) in the slab thickness direction at the center of the slab width is equal to or greater than a predetermined value, (5) The light reduction method in the vicinity of the solidification completion point of the continuous cast slab according to the present invention is characterized in that the reduction completion point is reduced in the light reduction method according to (4). When controlling the reduction amount of the roll, when a plurality of reduction rolls are arranged in the same reduction segment and the reduction amount is adjusted by the reduction gradient of the segment, the B (x at each reduction roll position in the segment is adjusted. ) And at least one value other than 0, and the center solid phase ratio fs (x, W / 2) in the slab thickness direction at the center of the slab width at each rolling roll position in the segment When at least one of the values is equal to or greater than a predetermined value, the slab is crushed by the segment.

(6)本発明の連続鋳造鋳片の凝固完了点近傍の軽圧下方法は、(5)に記載の軽圧下方法において、鋳片厚み方向の中心固相率の幅方向分布に応じて圧下量を調整する際に、前記中心固相率fs(x,y)のx方向の勾配を対象ロール位置(任意のx位置)で鋳片の幅方向(y方向)に求め、その値の平均値あるいは最大値を求め、
前記幅方向に求めた前記勾配の平均値について複数配置した対象セグメント内での圧下ロールのそれぞれに求めた値の平均値から、
前記幅方向に求めた前記勾配の最大値について複数配置した対象セグメント内での圧下ロールのそれぞれに求めた値の最大値まで、
の範囲内の任意の値から、鋳片の凝固収縮量を換算し、
該収縮量に応じた圧下勾配で圧下量を調整することを特徴とする。
(7)本発明の連続鋳造鋳片の凝固完了点近傍の軽圧下方法は、(5)または(6)に記載の軽圧下方法において、鋳片厚み方向の中心固相率の幅方向分布に応じて圧下量を調整する際に、前記中心固相率fs(x,y)の圧下ロール位置での幅方向積分値のセグメント内各圧下ロールでの合計値応じたセグメントの圧下力以下の範囲で圧下力を制御することを特徴とする。
(6) The light reduction method in the vicinity of the solidification completion point of the continuous cast slab of the present invention is the light reduction method according to (5), in which the reduction amount depends on the width direction distribution of the central solid fraction in the slab thickness direction. Is adjusted, the gradient in the x direction of the central solid fraction fs (x, y) is obtained in the width direction (y direction) of the slab at the target roll position (arbitrary x position), and the average value of the values Or find the maximum value,
From the average value of the values obtained for each of the rolling rolls in the target segment arranged in plural for the average value of the gradient obtained in the width direction,
Up to the maximum value of the values determined for each of the rolling rolls in the target segment that is arranged in plural for the maximum value of the gradient determined in the width direction,
Convert the solidification shrinkage of the slab from any value within the range of
The amount of reduction is adjusted with a reduction gradient corresponding to the amount of contraction.
(7) The light reduction method in the vicinity of the solidification completion point of the continuous cast slab of the present invention is the light reduction method described in (5) or (6). When adjusting the amount of reduction in accordance with this, the range below the reduction force of the segment according to the total value of each of the reduction rolls in the segment in the width direction integral value at the reduction roll position of the central solid phase ratio fs (x, y). It is characterized by controlling the rolling force with.

(8)本発明の連続鋳造鋳片の凝固完了点近傍の軽圧下方法は、連続鋳造鋳片の凝固完了点近傍の軽圧下を行う際に、(6)に記載の方法により所望の圧下量を求めておき、該圧下量を事前にセットして圧下を行うことを特徴とする。
(9)本発明の連続鋳造鋳片の凝固完了点近傍の軽圧下方法は、(8)に記載の軽圧下方法において、所望の圧下量を事前にセットして圧下を行う方法として、セグメントの勾配を一定に保持する機能を有する装置にセグメントを押し当てて、所望の圧下量となる様に、セグメントの圧下勾配を一定値に設定することを特徴とする。
(10)本発明の連続鋳造鋳片の凝固完了点近傍の軽圧下方法は、(8)または(9)に記載の軽圧下方法において、所望の圧下量を事前にセットして圧下を行う方法として、所望の圧下量となる様に、圧下力を制御することにより、セグメントの圧下勾配を一定値に調整することを特徴とする。
ここで、鋳片厚み方向の中心固相率とは、鋳片厚み方向中心の任意の位置における固相率である。(以降、鋳片厚み方向の中心固相率を、単に「中心固相率」と記載することがある。)
(8) The light reduction method in the vicinity of the solidification completion point of the continuous cast slab according to the present invention is a desired reduction amount according to the method described in (6) when performing the light reduction in the vicinity of the solidification completion point of the continuous cast slab. , And the reduction is performed by setting the amount of reduction in advance.
(9) The light reduction method near the solidification completion point of the continuous cast slab of the present invention is the light reduction method described in (8). The segment is pressed against a device having a function of keeping the gradient constant, and the segment rolling gradient is set to a constant value so as to obtain a desired rolling amount.
(10) The light reduction method in the vicinity of the solidification completion point of the continuous cast slab of the present invention is the light reduction method according to (8) or (9), in which a desired reduction amount is set in advance and the reduction is performed. As described above, the rolling gradient of the segment is adjusted to a constant value by controlling the rolling force so as to obtain a desired rolling amount.
Here, the center solid phase ratio in the slab thickness direction is a solid phase ratio at an arbitrary position in the center of the slab thickness direction. (Hereinafter, the central solid fraction in the slab thickness direction may be simply referred to as “central solid fraction”.)

本発明によれば、鋳片のクレータエンド側の中心固相率の幅方向分布に応じて圧下ロールによる圧下量を制御しながら軽圧下するので、凝固完了点近傍における未凝固部と凝固部がクレータエンド側において混じった種々の形態のクレータエンド形状となっていても、部位毎に望ましい軽圧下を行うことができ、偏析抑制ができる望ましい凝固状態の管理ができる。
また、伝熱凝固計算に基づく中心固相率の算出結果から、あるいは、センサーによる中心固相率の計測結果から中心固相率を求めるため、これらを基に、いずれのクレータエンド形状であっても部位毎に望ましい軽圧下を行うことができる。
更に、具体的な軽圧下の状態制御として、中心固相率fs(x,y)から鋳片幅方向での積分値としてのB(x)を求め、B(x)の値が0よりも大きい場合、かつ、鋳片幅中心の中心固相率fs(x,W/2)が所定値以上の場合に前記ロールにより凝固完了部近傍を圧下するため、確実な軽圧下状態の把握ができる。
また、実際の軽圧下においては、通常、複数の圧下ロールが同一の圧下用セグメント内に配置されているため、セグメントの圧下勾配により圧下量を調整するが、セグメント内の各圧下ロールのB(x)の値の少なくとも1つが0よりも大きい場合、かつ、鋳片幅中心の中心固相率fs(x,W/2)の値の少なくとも1つが所定値以上の場合に、前記圧下ロールにより凝固完了部近傍を圧下するため、やはり確実な軽圧下状態の把握ができる。
更に、鋳片の鋳造方向への各圧下ロール位置における中心固相率fs(x,y)のx方向勾配の平均値について複数配置した対象セグメント内での圧下ロールのそれぞれに求めた値の平均値から、前記x方向勾配の最大値について複数配置した対象セグメント内での圧下ロールのそれぞれに求めた値の最大値まで、の範囲内の任意の値から鋳片の凝固収縮量を換算し、この凝固収縮量に応じた圧下勾配で前記ロールによる圧下量調整を行うため、クレータエンド形状に合わせたより好ましい条件の軽圧下ができる。
更に、本発明は、圧下量を調整する際に、中心固相率の圧下ロール位置での幅方向積分値のセグメント内各圧下ロールでの合計値に応じてセグメントの圧下力を制御することにより、既設の軽圧下設備の可能な範囲内で操業できているかどうかを把握しながら軽圧下を行うことができる。また、操業条件に応じて、事前にセグメントの必要剛性等を設計することもできる。
According to the present invention, since light reduction is performed while controlling the amount of reduction by the reduction roll in accordance with the distribution in the width direction of the central solid phase ratio on the crater end side of the slab, the unsolidified portion and the solidified portion in the vicinity of the solidification completion point are Even if the crater end shape is mixed in various forms on the crater end side, a desirable light reduction can be performed for each part, and a desirable solidification state that can suppress segregation can be managed.
In addition, in order to obtain the central solid fraction from the calculation result of the central solid fraction based on the heat transfer solidification calculation or from the measurement result of the central solid fraction by the sensor, The desired light reduction can be performed for each part.
Furthermore, as specific state control under light pressure, B (x) as an integral value in the slab width direction is obtained from the central solid phase ratio fs (x, y), and the value of B (x) is more than zero. When it is large and the solid phase ratio fs (x, W / 2) at the center of the slab width is equal to or greater than a predetermined value, the vicinity of the solidification completion portion is crushed by the roll, so that it is possible to reliably grasp the lightly crushed state. .
Further, in actual light reduction, since a plurality of reduction rolls are usually arranged in the same reduction segment, the reduction amount is adjusted by the reduction gradient of the segment. When at least one of the values of x) is greater than 0, and when at least one of the values of the central solid fraction fs (x, W / 2) at the center of the slab width is equal to or greater than a predetermined value, Since the vicinity of the solidification completion part is reduced, it is possible to grasp the light reduction state surely.
Further, the average of the values obtained for each of the rolling rolls in the target segment arranged in plural with respect to the average value of the gradient in the x direction of the central solid fraction fs (x, y) at each rolling roll position in the casting direction of the slab. From the value, the solidification shrinkage amount of the slab is converted from any value within the range from the value to the maximum value obtained for each of the reduction rolls in the target segment arranged for the maximum value of the x-direction gradient, Since the amount of reduction by the roll is adjusted with a reduction gradient corresponding to the amount of solidification shrinkage, it is possible to perform light reduction under more preferable conditions according to the shape of the crater end.
Furthermore, in the present invention, when adjusting the amount of reduction, the rolling force of the segment is controlled according to the total value of each of the rolling rolls in the segment of the integrated value in the width direction at the central solid fraction reduction roll position. It is possible to perform light reduction while grasping whether the existing light reduction facility can be operated within the possible range. Also, the required rigidity of the segment can be designed in advance according to the operating conditions.

次に本発明は、予め計算で所望の圧下量を求めておき、その圧下量を事前にセットしておいて圧下を行うことにより、実操業において容易に適用することができる。
また、圧下量を事前にセットする際、セグメントの勾配を一定に保持する機能を有する装置にセグメントを押し当てて、所望の圧下量となる様に、セグメントの圧下勾配を一定値に設定するため、実操業への適用性が容易であり、かつ、確実に一定の圧下勾配を保持できる。
更に、圧下量を事前にセットする際に、セグメントの勾配を一定に保持する機能を有する装置にセグメントを押し当てて、所望の圧下量となる様に、セグメントの圧下勾配を一定値に設定しながら、圧下力を制御することにより、セグメントの圧下勾配を一定値に調整するため、中心固相率に応じて必要な圧下力で圧下されるため、精度良く圧下勾配を一定値に制御できる。また、セグメントの勾配を一定に保持する機能を有する装置にセグメントを押し当てることなく、圧下力のみで制御できる場合は、セグメントの勾配を一定に保持する機能を有する装置が不要なため、簡便な装置とすることができる。
Next, the present invention can be easily applied in actual operation by obtaining a desired reduction amount by calculation in advance, setting the reduction amount in advance, and performing the reduction.
Also, when setting the amount of rolling reduction in advance, the segment is pressed against a device that has a function of keeping the segment gradient constant, and the segment rolling gradient is set to a constant value so that the desired rolling amount is obtained. The applicability to actual operation is easy, and a certain rolling gradient can be reliably maintained.
Furthermore, when setting the reduction amount in advance, the segment is pressed against a device that has the function of keeping the segment gradient constant, and the segment reduction gradient is set to a constant value so that the desired reduction amount is obtained. However, by controlling the rolling force, the rolling gradient of the segment is adjusted to a constant value. Therefore, the rolling gradient is controlled with a necessary rolling force according to the central solid phase ratio, so that the rolling gradient can be accurately controlled to a constant value. In addition, if the device can be controlled only by the rolling force without pressing the segment against the device having the function of keeping the segment gradient constant, a device having the function of keeping the segment gradient constant is unnecessary, so it is simple. It can be a device.

以下に本発明に係る連続鋳造鋳片の凝固完了点近傍の軽圧下方法の最良の形態について説明するが、本発明方法は以下の最良の形態に制限されるものではない。
図1は本発明が適用される垂直曲げ型の連続鋳造機について鋳片が製造されている状態における鋳片幅方向中央位置における側断面略図である。
図1においてタンデイッシュ1の下方に鋳型2が設けられ、タンデイッシュ1の底部中央にその下方に向いて延出する浸漬ノズル3が設けられ、前記タンデイッシュ1に収容されている溶鋼5を前記浸漬ノズル3を介して鋳型2に供給できるように構成されている。
The best mode of the light reduction method in the vicinity of the solidification completion point of the continuous cast slab according to the present invention will be described below, but the method of the present invention is not limited to the following best mode.
FIG. 1 is a schematic side sectional view at the center position in the slab width direction in a state where a slab is being manufactured in a vertical bending type continuous casting machine to which the present invention is applied.
In FIG. 1, a mold 2 is provided below the tundish 1, an immersion nozzle 3 extending downward is provided at the center of the bottom of the tundish 1, and the molten steel 5 accommodated in the tundish 1 is It is configured so that it can be supplied to the mold 2 through the immersion nozzle 3.

図1の構成において鋳型2の下方側には、サポートロール6とガイドロール7、8と駆動ロール9からなる鋳片案内ロールが設置され、これらの鋳片案内ロールには鋳型2の直下側から下方に向かって、第1冷却ゾーン10a、第2冷却ゾーン10b、第3冷却ゾーン10c、第4冷却ゾーン10d、第5冷却ゾーン10e、第6冷却ゾーン10fの6つに分割された2次冷却ゾーン10が形成されている。各冷却ゾーン10a〜10fは、例えば前記鋳片案内ロール間に複数のスプレーノズル(図示略)を鋳片の上下に位置するように複数配置することにより、鋳片を目的の水量密度で冷却できるように構成されている。これらのスプレーノズルは必要に応じて冷却水の噴出位置を調整することができるように構成され、鋳片の幅方向両端部側の冷却状態を制御できるように構成されていることが望ましい。   In the configuration of FIG. 1, a slab guide roll comprising a support roll 6, guide rolls 7, 8 and a drive roll 9 is installed on the lower side of the mold 2. Secondary cooling divided downward into six parts, namely, a first cooling zone 10a, a second cooling zone 10b, a third cooling zone 10c, a fourth cooling zone 10d, a fifth cooling zone 10e, and a sixth cooling zone 10f. A zone 10 is formed. Each of the cooling zones 10a to 10f can cool the slab at a desired water density by, for example, arranging a plurality of spray nozzles (not shown) between the slab guide rolls so as to be positioned above and below the slab. It is configured as follows. These spray nozzles are preferably configured such that the cooling water ejection position can be adjusted as necessary, and can be configured to control the cooling state at both ends in the width direction of the slab.

例えば、鋳片両端部側における水量密度を低下させるか、鋳片両端部側に冷却水を噴出しない領域を設ける技術として知られている幅切りを行って先に説明した図12に示すような凝固部108が生じないようにすることができる構成とすることが望ましいが、本発明ではこれらスプレーノズルの構成や機能を特に制限するものではなく、鋳片に目的の冷却条件を付与できるものであればスプレーノズルの構成は特に問わない。   For example, as shown in FIG. 12 described above by performing width cutting, which is known as a technique for reducing the water density at both ends of the slab or providing a region where the cooling water is not ejected at both ends of the slab. Although it is desirable to have a configuration that can prevent the solidified portion 108 from being generated, the present invention does not particularly limit the configuration and function of these spray nozzles, and can impart desired cooling conditions to the slab. If there is, the structure of the spray nozzle is not particularly limited.

前記タンデイッシュ1の溶鋼5は浸漬ノズル3を介して鋳型2内に連続供給されるが、浸漬ノズル3の下端部は鋳型2内の溶鋼のメニスカス11に達するように配置されている。鋳型2内に供給された溶鋼5は、鋳型2の内面に接触して冷却され、外周に凝固層(凝固シェル)12を形成し、次いで凝固層12はサポートロール6、ガイドロール7、ガイドロール8、軽圧下ロール17、駆動ロール9を通り、下方に連続的に引き抜かれる。この引き抜きの途中、凝固層12の表面は2次冷却ゾーン10において徐々に冷却され、凝固層12の内側の未凝固部13の厚みが徐々に減少され、クレータエンド15にて凝固が完了されて鋳片16とされる。以下、前記連続鋳造機により製造する鋳片16において便宜的に鋳型2に近い側を上流側、鋳型2から離れる側を下流側と呼称する。   The molten steel 5 of the tundish 1 is continuously supplied into the mold 2 through the immersion nozzle 3, and the lower end portion of the immersion nozzle 3 is disposed so as to reach the meniscus 11 of the molten steel in the mold 2. The molten steel 5 supplied into the mold 2 contacts the inner surface of the mold 2 and is cooled to form a solidified layer (solidified shell) 12 on the outer periphery, and the solidified layer 12 is then a support roll 6, a guide roll 7, and a guide roll. 8. It passes through the light pressure lower roll 17 and the drive roll 9 and is continuously pulled out downward. During this drawing, the surface of the solidified layer 12 is gradually cooled in the secondary cooling zone 10, the thickness of the unsolidified portion 13 inside the solidified layer 12 is gradually reduced, and solidification is completed at the crater end 15. It is a slab 16. Hereinafter, in the slab 16 manufactured by the continuous casting machine, a side close to the mold 2 is called an upstream side and a side away from the mold 2 is called a downstream side for convenience.

図1に示す連続鋳造機において、鋳片16のクレータエンド15の生成領域の上流側と下流側に位置するように軽圧下ロール17が複数配置されている。これらの軽圧下ロール17は、例えば4基以上の必要数(例えば図1の構成では4基)、鋳片16の上下を対のロールが挟むように設置されて1つのセグメントとして構成され、鋳片16のクレータエンド15が図1の上流側あるいは下流側に多少ずれた場合であっても支障なくクレータエンド部分の前後を圧下できるように配置されている。前記軽圧下ロール17は上下に対になっているものが接近離間自在に配置されており、鋳片16をその厚み方向(上下方向)に若干塑性変形できる構成であれば良い。   In the continuous casting machine shown in FIG. 1, a plurality of light reduction rolls 17 are arranged so as to be located on the upstream side and the downstream side of the generation region of the crater end 15 of the slab 16. These lightly rolling rolls 17 are, for example, a required number of four or more (for example, four in the configuration of FIG. 1), and are configured as one segment with a pair of rolls sandwiched between the upper and lower sides of the slab 16. Even if the crater end 15 of the piece 16 is slightly displaced to the upstream side or the downstream side in FIG. The light pressure lowering rolls 17 may be arranged so that the upper and lower pairs are arranged so as to be close to and away from each other and the slab 16 can be slightly plastically deformed in the thickness direction (vertical direction).

図2〜図4に前記軽圧下装置Kの具体的構成の一例を示すが、例えば、この例の軽圧下装置Kは、上下対になる盤状のセグメント基盤30、31が設けられ、これらのセグメント基盤30、31が複数の液圧装置32によって接近離間する方向に移動自在に構成されている。即ち、上方のセグメント基盤30の下面側には軸受け部33、33を介して例えば5本の軽圧下ロール17が支持され、下方のセグメント基盤31の上面側には軸受け部34、34を介して例えば5本の軽圧下ロール17が支持されている。また、各セグメント基盤30、31の両側部に複数のブラケット35が突出形成され、両セグメント基盤30、31のブラケット35に接続してピン結合するように液圧装置(油圧シリンダ装置)32が設けられ、各液圧装置32を作動させてそのシリンダロッド32aを伸縮させることにより上下のセグメント基盤30、31を接近するか離間できるようになっている。   2 to 4 show an example of a specific configuration of the light reduction device K. For example, the light reduction device K of this example is provided with disk-shaped segment bases 30 and 31 that are vertically paired. The segment bases 30 and 31 are configured to be movable in a direction of approaching and separating by a plurality of hydraulic devices 32. That is, for example, five light pressure lower rolls 17 are supported on the lower surface side of the upper segment base 30 via bearings 33, 33, and on the upper surface side of the lower segment base 31 via bearings 34, 34. For example, five lightly pressed rolls 17 are supported. Also, a plurality of brackets 35 project from both side portions of the segment bases 30 and 31, and a hydraulic device (hydraulic cylinder device) 32 is provided so as to be connected to the brackets 35 of both the segment bases 30 and 31 and pin-coupled. The upper and lower segment bases 30 and 31 can be moved closer to or away from each other by operating each hydraulic device 32 and extending and contracting the cylinder rod 32a.

図2〜図4に示す構成の軽圧下装置Kでは、液圧装置32、32の作動力を調整することによりセグメント基盤30の傾斜状態を変更しながら所望の加圧力でクレータエンド周辺の鋳片16を軽圧下できるように構成されている。
図4は左右に配置されている液圧装置32、32の作動状態を調整してセグメント基盤30を傾斜させた状態を示すが、このように液圧装置32、32を制御することにより鋳片16に対して負荷する軽圧下力を調整できるように構成されている。勿論、セグメント基盤30、31をそれらの対向面が平行状態とすることで、セグメントによる圧下を解除することも可能である。
In the light reduction device K having the configuration shown in FIGS. 2 to 4, the slab around the crater end with a desired pressure while changing the inclination state of the segment base 30 by adjusting the operating force of the hydraulic devices 32, 32. It is comprised so that 16 can be lightly reduced.
FIG. 4 shows the state in which the segment base 30 is tilted by adjusting the operating state of the hydraulic devices 32, 32 arranged on the left and right sides, and the slab is obtained by controlling the hydraulic devices 32, 32 in this way. 16 is configured so that the light reduction force applied to 16 can be adjusted. Of course, it is also possible to release the reduction by the segment by setting the segment bases 30, 31 so that their opposing surfaces are in parallel.

以下に説明する本実施の形態の軽圧下ロール17の制御形態の一例について、図5に示す如くクレータエンド15の上流側に4基の軽圧下ロール17a、17b、17c、17dを備えた場合について説明する。
本実施形態において、クレータエンド15に対してその上流側に鋳片16を上下から挟み付けるように配置した上下一対の軽圧下ロール17aと軽圧下ロール17bと軽圧下ロール17cと軽圧下ロール17dが整列配置された4基構成の軽圧下ロール装置が構成されている。
この形態の軽圧下装置においては、後述する計算等で求めた最適な圧下勾配となるように各ロール17a〜17dの位置を制御し、結果として各ロールでの圧下力が変化するようにして最適圧下勾配で鋳片を軽圧下制御することができるように構成されている。
ここでは各ロール17a〜17dの圧下量を個別に調整しても良いが、装置構成上の観点からセグメント基盤30、31に傾斜勾配をつけて圧下勾配を規定し、圧下勾配を調整することが現実的である。
As for an example of the control mode of the light pressure lowering roll 17 of the present embodiment described below, a case where four light pressure lowering rolls 17a, 17b, 17c, 17d are provided on the upstream side of the crater end 15 as shown in FIG. explain.
In this embodiment, a pair of upper and lower light pressure lowering rolls 17a, 17b, 17b, 17c, and 17d arranged so as to sandwich the slab 16 from above and below the crater end 15 are provided. A four-unit light reduction roll device arranged in an arrangement is configured.
In the light reduction device of this form, the positions of the rolls 17a to 17d are controlled so as to obtain an optimum reduction gradient obtained by calculation or the like to be described later, and as a result, the reduction force at each roll is changed optimally. The slab can be controlled lightly with a rolling gradient.
Here, the rolling amount of each of the rolls 17a to 17d may be adjusted individually. However, from the viewpoint of the apparatus configuration, the rolling gradient is regulated by providing the segment bases 30 and 31 with an inclined gradient to regulate the rolling gradient. Realistic.

図5に示す構成の軽圧下ロール17a、17b、17c、17dにより軽圧下する鋳片のクレータエンド形状は、図6に示す状態と図7に示す状態が考えられる。
図6に示す状態は中心偏析やポロシティーの問題の生じ難い、良好と思われる凝固状態であり、鋳片幅方向中央部側の凝固完了点24が鋳片幅方向でほぼ同一位置で全幅Wに近い平滑な幅広形状となり、鋳片幅方向両端部側に幅の狭い凝固部25が存在している状態であり、図7に示す状態は、鋳片幅方向両端部側の凝固完了点26が鋳片幅方向中央部側の凝固完了点27よりも鋳造方向下流側に角状に伸びた形状となる状態である。
なお、先に図12を基に記載した凝固状態も考えられるが、図12に示す凝固状態ではコーナー割れを生じる危険性があり、この状態とならないように幅切りと称される鋳片端部側をスプレーノズルで冷却しない技術を利用して図12に示す状態を回避し、この回避の結果、鋳片両端部側の凝固完了点が下流側に角状に伸びて生成しやすくなり、図7に示す状態となった場合に本発明が有効となる。
The crater end shape of the slab that is lightly reduced by the lightly rolling rolls 17a, 17b, 17c, and 17d having the configuration shown in FIG. 5 can be the state shown in FIG. 6 and the state shown in FIG.
The state shown in FIG. 6 is a solidified state that is unlikely to cause center segregation and porosity problems, and is considered to be good. 7 is a state in which solidified portions 25 having a narrow width are present on both ends of the slab width direction, and the state shown in FIG. 7 is a solidification completion point 26 on both ends of the slab width direction. Is in a state of extending in a square shape downstream of the solidification completion point 27 on the slab width direction center side in the casting direction.
The solidification state described above based on FIG. 12 is also conceivable. However, in the solidification state shown in FIG. 12, there is a risk of causing a corner crack. The state shown in FIG. 12 is avoided by using a technique in which the spray nozzle is not cooled, and as a result of this avoidance, the solidification completion points on both ends of the slab are likely to be formed in a square shape on the downstream side. The present invention becomes effective when the state shown in FIG.

ただし、クレータエンド形状は種々の形状があり、図7に模式的に記載される状態のみではなく、更に複雑な形状も考えられるので、以下に説明する方法は中心側に凝固部27が生成され、クレータエンド領域においてその凝固部27とは鋳造方向に前後した位置に凝固完了点が不定形の状態で形成された場合一般に適用できるのは勿論である。
なお、一般的な軽圧下自体は連続鋳造時に通常行うものなので、図7に示す状態となった場合に限らず、仮に図10〜図12のいずれのクレータエンド形状になっていたとしても行う操作として考える。
However, the crater end shape has various shapes, and not only the state schematically shown in FIG. 7 but also a more complicated shape is conceivable. Therefore, the method described below generates the solidified portion 27 on the center side. In the crater end region, the solidified portion 27 is of course generally applicable when the solidification completion point is formed in an indefinite shape at a position back and forth in the casting direction.
In addition, since general light reduction itself is normally performed at the time of continuous casting, it is not limited to the state shown in FIG. 7, and the operation performed regardless of the crater end shape of FIGS. 10 to 12. Think of it as

本実施形態では、図6〜図7に例示される様な鋳片の凝固完了点近傍の未凝固部分と凝固部分の状態を基に、凝固完了点近傍に複数配置した軽圧下ロールの圧下量を制御しながら軽圧下する方法であり、鋳造中において、後述の方法等により鋳片の中心固相率を求めて、この中心固相率の幅方向分布に応じて、圧下量を調整するものである。
すなわち、鋳片の中心固相率の幅方向分布に新たに着目したものであり、中心固相率の幅方向分布に応じて圧下量を調整することにより、凝固完了点が不定形の状態で形成されて、種々の形態のクレータエンド形状となっていても、部位毎に望ましい軽圧下を行うことができ、偏析抑制を可能とするものである。
尚、凝固完了点近傍とは、凝固完了点から上流側の一定の領域であれば、特に規定するものではないが、軽圧下した場合に、偏析抑制等の効果が発揮される程度の中心固相率以上の領域であることが好ましい。
具体的に、鋳片の中心固相率の幅方向分布に応じて、凝固完了点近傍における軽圧下の適用範囲を求める方法を、以下に示す。
鋳片16の全幅をWとし、その鋳片16の幅方向の任意の位置をyとし、前記鋳片16の鋳造方向の任意の位置をxとし、鋳片16の任意の点(x,y)における鋳片厚み方向の中心の固相率をfs(x,y)と定義して、この中心固相率fs(x,y)が所定の範囲内の場合を0以外の値とし、それ以外の範囲の場合を0に2値化する関数をg(x,y)と定義する。ここでは、典型的な例として、中心固相率fs(x,y)が所定の範囲内の場合を0とし、それ以外の範囲の場合を1に2値化したケースについて示している。尚、中心固相率fs(x,y)の所定の範囲とは、特に規定するものではなく、鋳片の品質の要求等により、適宜、設定すれば良い。これらの関係を以下の式で示すことができる。
In this embodiment, based on the state of the unsolidified portion and the solidified portion in the vicinity of the solidification completion point of the slab as exemplified in FIGS. This is a method of lightly rolling down while controlling the amount, and during casting, the central solid fraction of the slab is obtained by the method described later, and the amount of reduction is adjusted according to the distribution in the width direction of this central solid fraction. It is.
In other words, it is a new focus on the distribution in the width direction of the central solid fraction of the slab. By adjusting the amount of reduction according to the distribution in the width direction of the central solid fraction, the solidification completion point is in an indefinite state. Even if it is formed and has a crater end shape in various forms, a desired light reduction can be performed for each part, and segregation can be suppressed.
The vicinity of the solidification completion point is not particularly defined as long as it is a constant region upstream from the solidification completion point, but the center solidification is such that the effect of suppressing segregation is exhibited when lightly reduced. It is preferable that it is the area | region beyond a phase ratio.
Specifically, a method for obtaining an application range under light pressure near the solidification completion point in accordance with the width direction distribution of the center solid phase ratio of the slab will be described below.
An overall position of the slab 16 is W, an arbitrary position in the width direction of the slab 16 is y, an arbitrary position in the casting direction of the slab 16 is x, and an arbitrary point (x, y of the slab 16 ) Is defined as fs (x, y), and when the central solid phase ratio fs (x, y) is within a predetermined range, a value other than 0 is set. A function that binarizes to 0 in the case other than the range is defined as g (x, y). Here, as a typical example, a case where the central solid phase ratio fs (x, y) is within a predetermined range is set to 0, and a case where the center solid phase ratio fs (x, y) is other than that is binarized to 1. Note that the predetermined range of the center solid phase ratio fs (x, y) is not particularly specified, and may be set as appropriate according to the requirements of the quality of the slab. These relationships can be expressed by the following formula.

Figure 2008119726
Figure 2008119726

Figure 2008119726
Figure 2008119726

Figure 2008119726
Figure 2008119726

ここでは、典型的な例として、中心固相率fs(x,y)が所定の範囲内の場合を0とし、それ以外の範囲の場合を1に2値化したケースについて示している。尚、中心固相率fs(x,y)の所定の範囲とは、特に規定するものではなく、鋳片の品質の要求等により、適宜、設定すれば良い。従って、中心固相率fs(x,y)としては、0超で1未満の範囲から、任意に設定することができる。但し、前記の中心固相率が0.2未満の場合、軽圧下しても偏析抑制やポロシティーの解消の面で、効果がない場合があるため、前記の中心固相率は0.2以上が好ましい。但し、全て固相の場合は軽圧下できないため、前記の中心固相率の上限は1.0未満とする。さらに、中心固相率が大きすぎる場合、軽圧下しづらい場合があるため、前記の中心固相率は0.2以上0.7以下がより好ましい。
また、鋳片幅中心の中心固相率fs(x,W/2)を所定値以上とするのは、凝固完了点近傍を判別するためである。但し、この所定値についても、特に規定するものではなく、鋳片の品質の要求等により、適宜、設定すれば良い。但し、鋳片幅中心の中心固相率fs(x,W/2)が0.2未満では、軽圧下した場合に、偏析抑制等の効果が発揮されにくくなる場合があるため、0.2以上が好ましい。但し、全て固相の場合は軽圧下による偏析抑制等の効果がほとんどないため、前記鋳片幅中心の中心固相率の上限は1.0未満とする。
従って、上記(3)式に従い、B(x)>0の時、かつ、凝固完了点近傍を判別できる鋳片幅中心の中心固相率fs(x,W/2)が所定値以上の時に、軽圧下を実施すれば良い。
Here, as a typical example, a case where the central solid phase ratio fs (x, y) is within a predetermined range is set to 0, and a case where the center solid phase ratio fs (x, y) is other than that is binarized to 1. Note that the predetermined range of the center solid phase ratio fs (x, y) is not particularly specified, and may be set as appropriate according to the requirements of the quality of the slab. Therefore, the central solid phase ratio fs (x, y) can be arbitrarily set from the range of more than 0 and less than 1. However, when the central solid fraction is less than 0.2, the central solid fraction may be 0.2 because the effect of suppressing segregation or eliminating porosity may be ineffective even when lightly reduced. The above is preferable. However, in the case of all solid phases, since the light pressure cannot be reduced, the upper limit of the central solid phase ratio is less than 1.0. Furthermore, if the central solid phase ratio is too large, it may be difficult to lightly reduce the pressure, so the central solid phase ratio is more preferably 0.2 or more and 0.7 or less.
The reason why the central solid phase ratio fs (x, W / 2) at the center of the slab width is set to a predetermined value or more is to determine the vicinity of the solidification completion point. However, this predetermined value is not particularly specified, and may be set as appropriate according to the requirement of the quality of the slab. However, if the center solid phase ratio fs (x, W / 2) at the center of the slab width is less than 0.2, the effect of suppressing segregation may be difficult to be exerted when the pressure is lightly reduced. The above is preferable. However, in the case of all solid phases, since there is almost no effect of suppressing segregation by light pressure, the upper limit of the central solid fraction at the center of the slab width is set to less than 1.0.
Therefore, according to the above equation (3), when B (x)> 0 and the center solid phase ratio fs (x, W / 2) at the center of the slab width at which the vicinity of the solidification completion point can be determined is equal to or greater than a predetermined value. What is necessary is just to carry out light pressure reduction.

ここで、複数の軽圧下ロールが同一の圧下用セグメント内に配置され、セグメントの圧下勾配により圧下量を調整する場合、軽圧下ロール一本ごとに圧下量を調整するのではなく、セグメントの圧下勾配を規定して、圧下勾配により圧下量を制御することになるので、セグメント内の軽圧下ロールの中の少なくとも1本の位置において、B(x)>0の時、かつ、セグメント内の軽圧下ロールの中の少なくとも1本の位置において、凝固完了点近傍を判別できる鋳片幅中心の中心固相率fs(x,W/2)が所定値以上の時に、軽圧下を実施することができる。
尚、B(x)を求める際の中心固相率fs(x,y)の所定の範囲や、鋳片幅中心の中心固相率fs(x,W/2)の所定値以上については、前記と同様である。
Here, when multiple light reduction rolls are placed in the same reduction segment and the amount of reduction is adjusted by the segment's reduction gradient, the reduction of the segment is not adjusted for each light reduction roll. Since the slope is defined and the amount of reduction is controlled by the reduction slope, at least one position in the light reduction roll in the segment, when B (x)> 0, and the light reduction in the segment. When at least one position in the reduction roll has a center solid phase ratio fs (x, W / 2) at the center of the slab width that can determine the vicinity of the solidification completion point is a predetermined value or more, light reduction may be performed. it can.
Incidentally, for a predetermined range of the central solid fraction fs (x, y) when obtaining B (x) and a predetermined value of the central solid fraction fs (x, W / 2) at the center of the slab width, Same as above.

次に、鋳片16の任意の点(x,y)における鋳片厚み方向の中心固相率をfs(x,y)の求め方の例について説明する。
「fs(x,y)を計算により求める場合」
鋳片16の鋳造方向に垂直な断面(横断面)において伝熱凝固計算を行う場合、計算の境界条件として、鋳型2内は以下の公知の(4)式により鋳型への抜熱量qを求めることができる。以下の(4)式において、Xはメニスカスからの鋳造方向距離、α、βは定数を示す。
Next, an example of how to obtain the central solid fraction in the slab thickness direction at an arbitrary point (x, y) of the slab 16 as fs (x, y) will be described.
“When calculating fs (x, y) by calculation”
When heat transfer solidification calculation is performed in a cross section (transverse cross section) perpendicular to the casting direction of the slab 16, as a boundary condition of the calculation, the amount of heat removal q to the mold is obtained by the following well-known formula (4). be able to. In the following formula (4), X is a casting direction distance from the meniscus, and α and β are constants.

Figure 2008119726
Figure 2008119726

次に、鋳型2以降の伝熱凝固計算については、冷却ノズルから鋳片16に吹き付ける冷却水による抜熱と、連続鋳造用ロールによる抜熱と、未冷却部の輻射による抜熱を熱伝達係数として与えることができる。ここで連続鋳造用ロールとは、鋳型2以降に配設されているロールを意味している。
この係数の計算は、一例として特開平4−231158号公報に開示されている技術を適用することができる。例えば、ロールRi,Ri+1により案内されて冷却水が吹き付けられる鋳片16の有限要素モデルMjから雰囲気への熱伝達率hwが、先に演算された有限要素モデルMj−1からの熱伝達率hwより求められた鋳片の表面温度と、冷却水の吹き付け量に関する操業上の実測データである吹付量分布に基づいて演算することができる。鋳片16は図9に示すように楕円形状の吹き付け領域16aに吹き付けられる実測データとしての冷却水と空気により冷却され、吹き付け領域16aにおける吹き付け量分布16b、16cも実測データが用いられる。
Next, for heat transfer solidification calculation after the mold 2, the heat transfer coefficient is the heat removal by the cooling water sprayed from the cooling nozzle to the slab 16, the heat removal by the continuous casting roll, and the heat removal by radiation of the uncooled part. Can be given as. Here, the continuous casting roll means a roll disposed after the mold 2.
The calculation of this coefficient can apply the technique currently disclosed by Unexamined-Japanese-Patent No. 4-231158 as an example. For example, the heat transfer rate hw from the finite element model Mj to the atmosphere of the slab 16 guided by the rolls Ri and Ri + 1 and sprayed with cooling water is the heat transfer rate hw from the previously calculated finite element model Mj-1. It can be calculated based on the slab surface temperature obtained more and the spray amount distribution which is actual measurement data regarding the spray amount of the cooling water. As shown in FIG. 9, the slab 16 is cooled by cooling water and air as actual measurement data sprayed onto the elliptical spray region 16a, and the measured data are also used for the spray amount distributions 16b and 16c in the spray region 16a.

ここで鋳片16からロールRi、Ri+1へ、または鋳片16の空冷部APから雰囲気へ逃げる熱の熱伝達率hr、haは、冷却水16eの影響を受けず、雰囲気の温度に依存する。また、未凝固部の溶鋼または鋳片16から鋳型2への熱伝達率hmは鋳片16の表面温度に依存せずほぼ一定である。一方、冷却水16eが吹き付けられる鋳片16aの水冷部WPから雰囲気へ逃げる熱の熱伝達率hwは水冷部WPに吹き付けられる冷却水16e及び空気の吹き付け量と水冷部WPの表面温度に依存する。   Here, the heat transfer rates hr and ha of heat escaping from the slab 16 to the rolls Ri and Ri + 1 or from the air cooling part AP of the slab 16 to the atmosphere are not affected by the cooling water 16e and depend on the temperature of the atmosphere. Further, the heat transfer rate hm from the molten steel in the unsolidified portion or the slab 16 to the mold 2 is substantially constant without depending on the surface temperature of the slab 16. On the other hand, the heat transfer rate hw of heat escaping from the water cooling part WP of the slab 16a to which the cooling water 16e is sprayed to the atmosphere depends on the cooling water 16e sprayed on the water cooling part WP, the amount of air sprayed, and the surface temperature of the water cooling part WP. .

更に、水冷部WPの位置に相当する有限要素Eに係る熱伝達率hwは、以下の式により定義され、有限要素E毎の鋳片の表面温度T、スプレーノズルの吹き付け領域及び吹き付け量分布に含まれる有限要素E毎に求められた冷却水量W及び空気量Aを適用する。
hw=hw(T,W,A)=α×T×W×A
ただし、前記の式において、α、f、g、nは各ノズルNiについて予め実験等により得られた係数であって、前記ノズル毎の吹き付け領域及び吹き付け量とともに、それぞれデータベース等に記録しておき、それを基に計算すればよい。
以上の計算により、任意の鋳造方向位置x、幅方向位置yにおける温度を求めることができる。
Furthermore, the heat transfer coefficient hw related to the finite element E corresponding to the position of the water cooling part WP is defined by the following formula, and is expressed in the surface temperature T of the slab for each finite element E, the spray area of the spray nozzle, and the spray amount distribution. The cooling water amount W and the air amount A obtained for each included finite element E are applied.
hw = hw (T, W, A) = α × T f × W g × A n
However, in the above formula, α, f, g, and n are coefficients obtained beforehand by experiments or the like for each nozzle Ni, and are recorded in a database or the like together with the spray area and spray amount for each nozzle. Calculate based on that.
By the above calculation, the temperature at any casting direction position x and width direction position y can be obtained.

上述の伝熱計算により任意の鋳造方向位置x、幅方向位置yにおける温度から「伝熱凝固計算」を行うことができ、鋳片の厚み中心の中心固相率fs(x,y)を求めることができる。
なお、伝熱凝固計算として前記特開平4−231158号公報に開示されている技術の他に、「コンピュータ伝熱、凝固解析入門、大中著、丸善株式会社刊」に記載されているエンタルピー法、等価比熱法を適用しても行っても良い。
With the above heat transfer calculation, the “heat transfer solidification calculation” can be performed from the temperature at an arbitrary casting direction position x and width direction position y, and the central solid phase ratio fs (x, y) at the thickness center of the slab is obtained. be able to.
In addition to the technique disclosed in JP-A-4-231158 as the heat transfer solidification calculation, the enthalpy method described in "Introduction to computer heat transfer, solidification analysis, written by Onchu, published by Maruzen Co., Ltd." The equivalent specific heat method may be applied or performed.

「実測により求める場合」
鋳片のクレータエンドの温度を測定するには、特開平10−325714号公報に記載されている放射線による測定方法を適用することができる。
概略を説明すると、2つ以上の異なったエネルギースペクトルを有する放射線の、鋳片の厚さ方向の透過度を測定する放射線透過度測定装置と、前記放射線透過度測定装置を鋳片幅方向に走査する幅方向走査装置と、前記放射線透過度測定装置と幅方向走査装置によって得られた透過度の鋳片幅方向の分布に基づいて、鋳片断面の凝固完了点近傍の形状を求める凝固完了点近傍の形状演算装置と、溶鋼温度、スプレー冷却水温度、冷却水ノズル状態および鋳造速度に基づいて鋳片の温度分布を求める伝熱計算装置と、前記鋳片の温度分布と前記断面の凝固完了点近傍の形状に基づいて温度分布を修正する温度修正演算装置と、前記修正された温度分布に基づいて3次元の凝固完了点近傍の形状を求める3次元凝固完了点近傍の形状演算装置とを備えた検出装置を用いる。
"When calculated by actual measurement"
In order to measure the temperature of the crater end of the slab, the measurement method using radiation described in JP-A-10-325714 can be applied.
Briefly described, a radiation transmission measuring device for measuring the transmittance in the thickness direction of a slab of radiation having two or more different energy spectra, and scanning the radiation transmission measuring device in the width direction of the slab And a solidification completion point for obtaining a shape in the vicinity of the solidification completion point of the cross section of the slab based on the distribution in the slab width direction of the transmittance obtained by the radiation transmission measuring device and the width direction scanning device. A shape calculation device in the vicinity, a heat transfer calculation device for obtaining the temperature distribution of the slab based on the molten steel temperature, spray cooling water temperature, cooling water nozzle state and casting speed, and solidification completion of the slab temperature distribution and the cross section A temperature correction calculation device that corrects the temperature distribution based on the shape near the point, and a shape calculation device near the three-dimensional solidification completion point that obtains a shape near the three-dimensional solidification completion point based on the corrected temperature distribution; A detection device that includes used.

特開平10−325714号公報に記載されている放射線による測定方法を適用し、鋳片のクレータエンドの3次元凝固完了点近傍の形状を測定することができるので、この方法により鋳片の厚み中心の中心固相率fs(x,y)を求めることができる。
なお、鋳片の厚み中心の中心固相率fs(x,y)を求める場合、特開平10−325714号公報に記載されている如くクレータエンド前後の3次元の凝固完了点近傍の形状を全て把握しなくとも、鋳片の厚み中心の中心固相率fs(x,y)を概算するのであれば、放射線透過度測定装置を鋳片のクレータエンド前後に走査して鋳片厚み方向における凝固部と未凝固部の透過度の差異から凝固部と未凝固部を区別する操作を行ない、その値を利用しても良い。
By applying the measurement method using radiation described in JP-A-10-325714, the shape of the crater end of the slab near the three-dimensional solidification completion point can be measured. The central solid phase ratio fs (x, y) of can be obtained.
When determining the central solid phase ratio fs (x, y) at the thickness center of the slab, all the shapes in the vicinity of the three-dimensional solidification completion point before and after the crater end are described as described in JP-A-10-325714. If the center solid phase ratio fs (x, y) at the thickness center of the slab is to be estimated without grasping it, the radiation transmittance measuring device is scanned before and after the crater end of the slab to solidify in the slab thickness direction. The value may be used by performing an operation of distinguishing the solidified part and the non-solidified part from the difference in permeability between the solid part and the non-solidified part.

「軽圧下量の制御方法」
軽圧下を実施するセグメント基盤20、21に図5に示す如く4本の軽圧下ロール17a、17b、17c、17dが組み込まれて1つのセグメントとされてなり、これらにより鋳片16を軽圧下する場合について各軽圧下ロールの制御方法を説明する。なお、各軽圧下ロール17a〜17dにより結果的に鋳片に圧下力を印加することになるが、この例では各軽圧下ロール17a〜17dの個々の加圧力を変更するのではなく、セグメント基盤の圧下力(クランプ力)で、各軽圧下ロール17a〜17dの圧下勾配を決める位置制御を行う。
前記軽圧下ロール17aの設置されている位置を鋳造方向におけるx1、軽圧下ロール17bの設置されている位置をx2、軽圧下ロール17cが設置されている位置をx3、軽圧下ロール17dが設置されている位置をx4とする。
先に定義した(3)式に従うB(x)を各軽圧下ロールの位置で求め、セグメント内の軽圧下ロールの中の少なくとも1本の位置においてB(x)>0の時、かつ、セグメント内の軽圧下ロールの中の少なくとも1本の位置において、鋳片幅中心の中心固相率fs(x,W/2)が所定値以上の時に、軽圧下を実施する。
その際に、中心固相率fs(x,y)のx方向勾配のy方向での最大値または平均値を求める。即ち、x1〜x4の位置(圧下する軽圧下ロールは4箇所)で各軽圧下ロールごとにfs(x,y)を計算し、∂・fs(x,y)/∂・x をy方向に計算し、その最大値または平均値を求める。
"Control method of light reduction"
As shown in FIG. 5, four light rolling rolls 17 a, 17 b, 17 c, and 17 d are incorporated into the segment bases 20 and 21 that perform light rolling to form one segment. The control method of each light rolling roll will be described. In addition, although the rolling force is applied to the slab as a result by each of the light rolling rolls 17a to 17d, in this example, the individual pressing force of each of the light rolling rolls 17a to 17d is not changed, but the segment base The position control for determining the rolling gradient of each of the light rolling rolls 17a to 17d is performed by the rolling rolling force (clamping force).
The position where the light reduction roll 17a is installed is x1 in the casting direction, the position where the light reduction roll 17b is installed is x2, the position where the light reduction roll 17c is installed is x3, and the light reduction roll 17d is installed. Let x4 be the current position.
B (x) according to the previously defined equation (3) is obtained at the position of each light rolling roll, and when B (x)> 0 at at least one of the light rolling rolls in the segment, and the segment When at least one position in the inner light rolling roll, the center solid phase ratio fs (x, W / 2) at the center of the slab width is a predetermined value or more, the light rolling is performed.
At that time, the maximum value or the average value in the y direction of the gradient in the x direction of the central solid phase ratio fs (x, y) is obtained. That is, fs (x, y) is calculated for each light rolling roll at the positions of x1 to x4 (four light rolling rolls to be rolled down), and ∂ · fs (x, y) / ∂ · x is set in the y direction. Calculate and find the maximum or average value.

次に、各軽圧下ロールそれぞれについて求めた前記∂・fs(x,y)/∂・x の値の平均値を用いて、さらにこれらの平均値を求めた値を下限値として、
また、各軽圧下ロールそれぞれについて求めた前記∂・fs(x,y)/∂・x の値の最大値を用いて、さらにこれらの最大値を上限値として、
上記の下限値から上限値までの範囲内の任意の値をCとする。
Next, using the average value of the values of ∂ · fs (x, y) / ∂ · x obtained for each of the lightly rolling rolls, the value obtained by obtaining these average values is set as the lower limit value.
Further, using the maximum value of the values of ∂ · fs (x, y) / ∂ · x obtained for each lightly-rolled roll, and using these maximum values as upper limit values,
An arbitrary value within the range from the lower limit value to the upper limit value is defined as C.

ここで、上記の下限値から上限値までの範囲内の任意の値については、特に規定するものではなく、製品品質からの要求等から、適宜、選択することができる。
例えば、中心固相率の変化量は、凝固収縮状況を示しているため、最も収縮しているものを対象として軽圧下する場合は、前記∂・fs(x,y)/∂・x の値の最大値を各軽圧下ロールごとに計算し、その最大値をCとすることが好ましい。
Here, an arbitrary value within the range from the lower limit value to the upper limit value is not particularly defined, and can be appropriately selected according to requirements from product quality.
For example, since the amount of change in the central solid phase ratio indicates the coagulation contraction state, when lightly reducing the most contracted object, the value of ∂ · fs (x, y) / ∂ · x Is preferably calculated for each roll under light pressure, and the maximum value is preferably C.

一方、軽圧下装置の押し付け能力を考慮した場合は、前記∂・fs(x,y)/∂・x の値の平均値を各軽圧下ロールごとに計算し、それらの平均値(圧下する軽圧下ロールは4箇所)をCとしても構わない。
ちなみに、上記の下限値から上限値までの範囲内の任意の値を選択可能であるが、実際には平均値や最大値を用いることが現実的である。そこで、前記した平均値と最大値の組み合わせとしては、典型的なケースとして4つのパターンを例示することができ、具体的には、中心固相率の幅方向分布に応じて圧下量を調整する際に、中心固相率fs(x,y)のx方向の勾配を対象ロール位置(任意のx位置)で鋳片の幅方向(y方向)に求め、その値の平均値あるいは最大値を求め、更に、複数配置した対象セグメント内での軽圧下ロールのそれぞれに求めた値の平均値あるいは最大値を求めるとともに、
前記幅方向に求めた前記勾配の平均値と前記軽圧下ロールのそれぞれに求めた値の平均値とから鋳片の凝固収縮量を換算するか、前記幅方向に求めた勾配の最大値と前記軽圧下ロールのそれぞれに求めた値の最大値とから鋳片の凝固収縮量を換算するか、前記幅方向に求めた勾配の最大値と前記軽圧下ロールのそれぞれに求めた値の平均値とから鋳片の凝固収縮量を換算するか、前記幅方向に求めた勾配の平均値と前記軽圧下ロールのそれぞれに求めた値の最大値とから鋳片の凝固収縮量を換算し、前記いずれかの収縮量に応じた圧下勾配で圧下量を調整することができる。
On the other hand, when the pressing capability of the light reduction device is taken into consideration, the average value of the values of ∂ · fs (x, y) / ∂ · x is calculated for each light reduction roll, and the average value thereof (light reduction) The rolling rolls may be C at four locations).
Incidentally, although any value within the range from the lower limit value to the upper limit value can be selected, it is practical to use an average value or a maximum value in practice. Therefore, as a combination of the average value and the maximum value, four patterns can be exemplified as typical cases. Specifically, the reduction amount is adjusted according to the distribution in the width direction of the central solid phase ratio. In this case, the gradient in the x direction of the central solid fraction fs (x, y) is obtained in the width direction (y direction) of the slab at the target roll position (arbitrary x position), and the average value or maximum value of the values is obtained. In addition, the average value or the maximum value of the values obtained for each of the light rolling rolls in the target segment arranged in plural,
The solidification shrinkage amount of the slab is converted from the average value of the gradient obtained in the width direction and the average value of the values obtained for each of the light rolling rolls, or the maximum value of the gradient obtained in the width direction and the The solidification shrinkage amount of the slab is converted from the maximum value obtained for each of the light rolling rolls, or the maximum value of the gradient obtained in the width direction and the average value obtained for each of the light rolling rolls, and The solidification shrinkage amount of the slab is converted from the average value of the gradient obtained in the width direction and the maximum value of the value obtained for each of the light rolling rolls. The reduction amount can be adjusted with a reduction gradient corresponding to the amount of contraction.

その後、得られたC値を凝固収縮量に換算し、この凝固収縮量に応じた圧下勾配で軽圧下を実施する。前記C値から凝固収縮への換算方法としては、例えば、Cに係数Dを乗じて、セグメント内での軽圧下ロール1本での圧下量(C×D)を求めることができる。ここで係数Dとは、鋳片の凝固収縮量とfs(x,y)の鋳造方向勾配との関係を予め計算等で求めて計算したものを、セグメントの剛性(軽圧下ロールの撓みやフレームの撓み)で補正したものとする。   Thereafter, the obtained C value is converted into a solidification shrinkage amount, and light reduction is performed with a reduction gradient corresponding to the solidification shrinkage amount. As a conversion method from the C value to the solidification shrinkage, for example, the reduction amount (C × D) of one light reduction roll in the segment can be obtained by multiplying C by a coefficient D. Here, the coefficient D is obtained by calculating in advance the relationship between the solidification shrinkage amount of the slab and the casting direction gradient of fs (x, y), and the like. ).

「軽圧下力の制御方法」
上記の様に、鋳片の凝固収縮量に応じた圧下勾配で圧下量を調整する際に、必要な圧下力を考慮することは、操業の継続可能の判断を行う上で、重要である。
そこで、前記中心固相率fs(x,y)の軽圧下ロール位置での幅方向積分値のセグメント内各軽圧下ロールでの合計値に応じて、軽圧下するために必要なセグメントの圧下力を把握することに着目した。
具体的には、前記の中心固相率fs(x,y)から、鋳片厚み方向の中心の固相率を、幅方向へ積分したものをA(x)と定義し、以下の(5)式に基づいて求める。
"Control method of light rolling force"
As described above, it is important to consider the necessary rolling force when adjusting the rolling amount with the rolling gradient according to the solidification shrinkage amount of the slab, in order to determine whether the operation can be continued.
Therefore, the rolling reduction force of the segment necessary for light reduction according to the total value of each of the light rolling rolls in the segment of the integrated value in the width direction at the light rolling roll position of the central solid phase ratio fs (x, y). Focused on grasping.
Specifically, A (x) is defined as the value obtained by integrating the solid phase ratio at the center in the slab thickness direction in the width direction from the central solid phase ratio fs (x, y), and the following (5 ) Calculate based on the formula.

Figure 2008119726
Figure 2008119726

この(5)式のA(x)は鋳片幅方向の固相率の積分値を示しており、このA(x)を用いて軽圧下するために必要なセグメントの圧下力が求まる。
即ち、固相率の積分値が小さい場合は小さな圧下力でよいが、固相率の積分値が大きくなるにつれて大きな圧下力が必要となり、その指標として固相率の積分値を把握することができる。
具体的には、圧下力F、係数Eとすると以下の(6)式にて示すことができることを本発明者は知見した。この圧下力Fが、軽圧下を行うために必要な圧下力の最大値となる。従って、この圧下力で軽圧下可能な装置を用いている場合、この圧下力以下の範囲で圧下力を制御することで、軽圧下が継続可能であることを判断できる。
A (x) in the equation (5) represents an integral value of the solid phase ratio in the slab width direction, and the rolling force of the segment necessary for lightly rolling can be obtained using this A (x).
That is, when the integral value of the solid phase ratio is small, a small reduction force is sufficient, but as the integral value of the solid phase ratio increases, a large reduction force is required, and the integral value of the solid phase ratio can be grasped as an index. it can.
Specifically, the present inventor has found that the rolling force F and the coefficient E can be expressed by the following equation (6). This reduction force F becomes the maximum value of the reduction force necessary for light reduction. Therefore, when a device capable of light reduction with this reduction force is used, it can be determined that the light reduction can be continued by controlling the reduction force within the range of the reduction force or less.

Figure 2008119726
Figure 2008119726

また、A(x)で示す固相率の積分値の軽圧下対象セグメント内の合計値より、セグメントの最大必要圧下力を計算出来、セグメントの必要剛性等の設計が可能になった。
さらに、既設の軽圧下セグメントにおいては、該合計値より、軽圧下可能範囲、圧下勾配の限界値の検討も可能になった。
In addition, the maximum required rolling force of the segment can be calculated from the total value in the light reduction target segment of the integral value of the solid phase ratio indicated by A (x), and the required rigidity of the segment can be designed.
Furthermore, in the existing light reduction segment, it is possible to examine the possible light reduction range and the limit value of the reduction gradient from the total value.

前述の構成の軽圧下装置Kにより鋳片16のクレータエンド部分を具体的に軽圧下する場合の例を、図7を用いて説明する。従来の方法の様に、鋳片幅中心における鋳片厚み方向の中心固相率を管理指標とした場合、F1位置からF2位置まで軽圧下を行うだけとなってしまう。従って、鋳片幅方向両端部側の凝固完了点が、中央部の凝固部よりも鋳造方向下流側に角状に伸びた部分については、軽圧下されないため、不純物の偏析が顕著な部位が生じる。
これに対して、本発明の方法は、中心固相率の幅方向分布を考慮して、クレータエンド形状に応じて、望ましい軽圧下を行うものであるため、図7のクレータエンドの形状からは、F1位置からF4位置まで軽圧下を行えば良いことになる。しかし、F4ではほとんどが固相であるため、現実的には軽圧下できないため、軽圧下が可能な範囲である領域(例えば、固相率が0.7以下)であるF1位置からF3位置を軽圧下することにより、F1位置からF3位置までの圧下では、顕著な偏析部位は生じない。すなわち、中心固相率の幅方向分布に応じて、広い範囲で軽圧下できるため、偏析が防止できるため、良好な品質の鋳片を製造することができる。
An example in which the crater end portion of the slab 16 is specifically lightly reduced by the light reduction device K having the above-described configuration will be described with reference to FIG. When the central solid phase ratio in the slab thickness direction at the center of the slab width is used as a management index as in the conventional method, only light reduction is performed from the F1 position to the F2 position. Therefore, a portion where the solidification completion points on both ends in the width direction of the slab extend in a square shape downstream of the solidification portion in the casting direction from the central portion is not lightly reduced. .
On the other hand, the method of the present invention performs desirable light reduction according to the shape of the crater end in consideration of the distribution in the width direction of the central solid fraction, and therefore, from the shape of the crater end in FIG. The light pressure may be reduced from the F1 position to the F4 position. However, since most of F4 is in a solid phase, it cannot actually be lightly reduced, so the F1 position from the F1 position, which is a region in which light pressure can be reduced (for example, the solid phase ratio is 0.7 or less), is changed. By lightly reducing, no significant segregation site is generated when the pressure is reduced from the F1 position to the F3 position. That is, since it can be lightly reduced in a wide range according to the distribution in the width direction of the central solid phase ratio, segregation can be prevented, and a slab of good quality can be manufactured.

また、鋳造中の圧下量の調整方法の別の形態として、最適な圧下量を予め求めておいて、この圧下量を一定値に鋳造前に事前にセットしておくことも可能である。
すなわち、鋳造中の操業データ等から計算して制御するのではなく、計画している操業条件等から、所望の圧下量を予め求めておき、この圧下量を一定値に鋳造前に事前にセットし、その状態で操業を行うものである。
尚、所望の圧下量については、計画している操業条件等を用いて、前述の通り、一連の計算により中心固相率を凝固収縮量に換算して求めても良い。
また、計画している操業条件と同様の操業条件での実測結果を用いて所望の圧下量を求めても良く、あるいは、計画している操業条件を模擬した実験により所望の圧下量を求めても良い。
Further, as another form of the method for adjusting the amount of reduction during casting, it is possible to obtain an optimum amount of reduction in advance and set the amount of reduction to a constant value before casting.
That is, rather than calculating and controlling from operation data during casting, etc., the desired reduction amount is obtained in advance from the planned operation conditions, etc., and this reduction amount is set to a constant value before casting. In this state, the operation is performed.
Note that the desired amount of reduction may be obtained by converting the central solid phase ratio into the amount of solidification shrinkage by a series of calculations as described above using the planned operating conditions and the like.
In addition, the desired reduction amount may be obtained by using an actual measurement result under the same operation condition as the planned operation condition, or the desired reduction amount may be obtained by an experiment simulating the planned operation condition. Also good.

尚、具体的に、所望の圧下量を事前にセットして圧下を行う方法としては、セグメントの勾配を一定に保持する機能を有する装置にセグメントを押し当てて、所望の圧下量となる様に、セグメントの圧下勾配を一定値に設定する方法を採用しても良い。尚、セグメントの勾配を一定に保持する機能を有する装置としては、ジャッキ等が例示できる。   Specifically, as a method of performing the reduction by setting a desired reduction amount in advance, the segment is pressed against a device having a function of keeping the segment gradient constant so that the desired reduction amount is obtained. Alternatively, a method of setting the segment rolling gradient to a constant value may be employed. An example of a device having a function of keeping the segment gradient constant is a jack or the like.

また、所望の圧下量を事前にセットして圧下を行う別の方法としては、セグメントの勾配を一定に保持する機能を有する装置として、例えばジャッキ等にセグメントを押し当てながら、所望の圧下量の設定として一定値となる様に、圧下力を一定値に制御することにより、セグメントの圧下勾配を一定値に調整することでも良い。
但し、高度な制御が可能であれば、セグメントの勾配を一定に保持する機能を有する装置として、例えばジャッキ等にセグメントを押し当てることなく、所望の圧下量になる様に事前にセグメントの圧下勾配を一定値に設定し、この圧下勾配を保持する様に、セグメントの圧下力を制御することで実施できる。
In addition, as another method for performing the reduction by setting the desired reduction amount in advance, as a device having a function of keeping the segment gradient constant, for example, while pressing the segment against a jack or the like, the desired reduction amount is reduced. It is also possible to adjust the rolling gradient of the segment to a constant value by controlling the rolling force to a constant value so that the setting becomes a constant value.
However, if a high degree of control is possible, as a device having a function of keeping the segment gradient constant, for example, without pressing the segment against a jack or the like, the segment rolling gradient is adjusted in advance so that the desired rolling amount is obtained. Is set to a constant value, and the reduction force of the segment is controlled so as to maintain this reduction gradient.

以上、述べてきた通り、本発明では種々の形態のクレータエンド形状となっていても、部位毎に望ましい軽圧下を行うものである。従って、従来よりも大きな圧下力が必要となる場合が生じる可能性もあるが、その場合は、例えば、軽圧下ロールの本数を増加させること、または、セグメントフレームの剛性を上げること、等で実施できる。   As described above, in the present invention, even if the crater end shape has various forms, desired light reduction is performed for each part. Therefore, there is a possibility that a larger rolling force may be required than before. In that case, for example, the number of light rolling rolls is increased or the rigidity of the segment frame is increased. it can.

図1は本発明が適用される垂直曲げ型の連続鋳造機について鋳片が製造されている状態における鋳片幅方向中央位置における側断面略図。FIG. 1 is a schematic side sectional view at the center position in the width direction of a slab in a state where a slab is manufactured for a vertical bending type continuous casting machine to which the present invention is applied. 図2は連続鋳造機に付設される軽圧下装置の一例を示す断面図。FIG. 2 is a cross-sectional view showing an example of a light reduction device attached to the continuous casting machine. 図3は同軽圧下装置の部分平面図。FIG. 3 is a partial plan view of the light reduction device. 図4は同軽圧下装置の側面図。FIG. 4 is a side view of the light reduction device. 図5は本発明で使用される軽圧下装置の軽圧下ロールの概略構成を示す説明図。FIG. 5 is an explanatory view showing a schematic configuration of a light reduction roll of the light reduction apparatus used in the present invention. 図6は本発明が適用される鋳片のクレータエンド形状の一例を示す説明図。FIG. 6 is an explanatory view showing an example of a crater end shape of a slab to which the present invention is applied. 図7は本発明が適用される鋳片のクレータエンド形状の他の例を示す説明図。FIG. 7 is an explanatory view showing another example of a crater end shape of a slab to which the present invention is applied. 図8は有限要素モデルを基にした鋳片の凝固伝熱計算の一例を説明するためのもので、図8(A)は鋳片とノズルの位置関係を鋳片鋳造方向に対し側面から見た説明図、図8(B)は鋳片鋳造方向から見た説明図。FIG. 8 is a diagram for explaining an example of solidification heat transfer calculation of a slab based on a finite element model. FIG. 8A shows the positional relationship between the slab and the nozzle as viewed from the side with respect to the slab casting direction. FIG. 8B is an explanatory view seen from the casting direction. 図9は有限要素モデルを基にした鋳片の凝固伝熱計算の一例を説明するために鋳片を平面視した説明図。FIG. 9 is an explanatory diagram viewed from above the slab in order to explain an example of solidification heat transfer calculation of the slab based on the finite element model. 図10はクレータエンド形状の一例を示し、鋳片両端側の未凝固部が鋳片中央部の凝固部よりも鋳造方向下流側に延出した状態を示す断面図。FIG. 10 shows an example of a crater end shape, and is a cross-sectional view showing a state in which unsolidified portions on both ends of the slab are extended to the downstream side in the casting direction with respect to the solidified portion at the center of the slab. 図11はクレータエンド形状の他の例を示し、鋳片幅方向中央部の凝固部が幅広く形成された状態を示す図。FIG. 11 shows another example of the crater end shape, and shows a state in which the solidified portion at the center in the slab width direction is formed widely. 図12はクレータエンド形状の更に別の例を示し、鋳片幅方向中央部に凝固部が形成され、その両側に斜め勾配の凝固部が形成された状態を示す図。FIG. 12 is a view showing still another example of the crater end shape, in which a solidified portion is formed at the center portion in the slab width direction, and a solidified portion having an oblique gradient is formed on both sides thereof.

符号の説明Explanation of symbols

2 鋳型、
5 溶鋼、
11 メニスカス、
12 凝固層(凝固シェル)、
15 クレータエンド、
16 鋳片、
17 軽圧下ロール、
17a〜17d 軽圧下ロール、
20、21 セグメント基盤、
26 未凝固部、
27 凝固部、
30、31 セグメント基盤、
32 液圧装置、
2 molds,
5 Molten steel,
11 Meniscus,
12 Solidified layer (solidified shell),
15 Crater end,
16 slab,
17 Light pressure roll,
17a-17d roll under light pressure,
20, 21 segment base,
26 Unsolidified part,
27 Solidification part,
30, 31 segment base,
32 hydraulic device,

Claims (10)

鋳型内に溶鋼を注入し、該溶鋼を冷却して形成した凝固シェルを鋳型下方に連続的に引き抜き、更に鋳型下流側の冷却帯で凝固シェル表面を冷却して鋳片の凝固を完了させる際に、鋳片の凝固完了点近傍の未凝固部分と凝固部分の状態を基に凝固完了点近傍に複数配置した圧下ロールの圧下量を制御しながら軽圧下する方法であり、鋳片厚み方向の中心固相率を求めて、該中心固相率の幅方向分布に応じて、圧下量を調整することを特徴とする連続鋳造鋳片の凝固完了点近傍の軽圧下方法。   When the molten steel is poured into the mold, and the solidified shell formed by cooling the molten steel is continuously drawn below the mold, and the solidified shell surface is cooled in the cooling zone downstream of the mold to complete the solidification of the slab. In addition, based on the state of the unsolidified part and the solidified part near the solidification completion point of the slab, a method of lightly rolling down while controlling the reduction amount of the reduction rolls arranged near the solidification completion point, in the slab thickness direction A light reduction method in the vicinity of a solidification completion point of a continuous cast slab, wherein a central solid fraction is obtained and a reduction amount is adjusted in accordance with a distribution in the width direction of the central solid fraction. メニスカスからの鋳造方向距離に応じた鋳型内での抜熱量と、
鋳型下流側の冷却帯における冷却ノズルから鋳片に吹き付ける冷却水による抜熱量と、連続鋳造用ロールによる抜熱量と、未冷却部の輻射による抜熱量を基に、
鋳造方向に垂直な鋳片断面における伝熱凝固計算を行い、凝固完了点近傍における鋳片厚み方向の中心固相率を算出することを特徴とする請求項1に記載の連続鋳造鋳片の凝固完了点近傍の軽圧下方法。
The amount of heat removed in the mold according to the casting direction distance from the meniscus,
Based on the amount of heat removed by the cooling water sprayed from the cooling nozzle in the cooling zone on the downstream side of the mold to the slab, the amount of heat removed by the continuous casting roll, and the amount of heat removed by radiation of the uncooled part,
The solidification of the continuous cast slab according to claim 1, wherein the heat transfer solidification calculation is performed on a cross section of the slab perpendicular to the casting direction, and the central solid fraction in the slab thickness direction in the vicinity of the solidification completion point is calculated. Light reduction method near the completion point.
非接触式のセンサーにより鋳片の凝固完了点近傍の鋳片厚み方向の中心固相率を測定することを特徴とする請求項1に記載の連続鋳造鋳片の凝固完了点近傍の軽圧下方法。   2. The method of light reduction near the solidification completion point of a continuous cast slab according to claim 1, wherein the central solid fraction in the slab thickness direction near the solidification completion point of the slab is measured by a non-contact type sensor. . 幅Wの連続鋳造鋳片の幅方向の任意の位置をyとし、前記連続鋳造鋳片の鋳造方向の任意の位置をxとし、連続鋳造鋳片の任意の点(x,y)における鋳片厚み方向の中心固相率をfs(x,y)と定義して、この中心固相率fs(x,y)が所定の範囲内の場合を0以外の値とし、それ以外の範囲の場合を0に2値化する関数をg(x,y)と定義し、該g(x,y)で示される関数を連続鋳造鋳片の幅方向に0からWまで積分したB(x)を求め、このB(x)の値が0以外の値の場合で、かつ、鋳片幅中心における鋳片厚み方向の中心固相率fs(x,W/2)の値が所定値以上の場合に、前記圧下ロールにより凝固完了点近傍を圧下することを特徴とする請求項1〜3のいずれかに記載の連続鋳造鋳片の凝固完了点近傍の軽圧下方法。   An arbitrary position in the width direction of the continuous cast slab of width W is y, an arbitrary position in the casting direction of the continuous cast slab is x, and a slab at an arbitrary point (x, y) of the continuous cast slab When the central solid fraction in the thickness direction is defined as fs (x, y), the central solid fraction fs (x, y) is a value other than 0 when the central solid fraction fs (x, y) is within a predetermined range. Is defined as g (x, y), and B (x) obtained by integrating the function indicated by g (x, y) from 0 to W in the width direction of the continuous cast slab is defined as g (x, y). When the value of B (x) is a value other than 0, and the value of the central solid fraction fs (x, W / 2) in the slab thickness direction at the slab width center is equal to or greater than a predetermined value. The light reduction method near the solidification completion point of the continuous cast slab according to any one of claims 1 to 3, wherein the solidification completion point vicinity is reduced by the reduction roll 前記複数配置した圧下ロールの圧下量を制御する際に、複数の圧下ロールが同一の圧下用セグメント内に配置され、該セグメントの圧下勾配により圧下量を調整する場合、該セグメント内の各圧下ロール位置でのB(x)の値のうち少なくとも1つが0以外の値の場合で、かつ、該セグメント内の各圧下ロール位置での鋳片幅中心における鋳片厚み方向の中心固相率fs(x,W/2)の値のうち少なくとも1つが所定値以上の場合に、該セグメントで鋳片を圧下することを特徴とする請求項4に記載の連続鋳造鋳片の凝固完了点近傍の軽圧下方法。   When controlling the reduction amount of the plurality of reduction rolls arranged, when a plurality of reduction rolls are arranged in the same reduction segment and the reduction amount is adjusted by the reduction gradient of the segments, each reduction roll in the segment The central solid phase ratio fs (in the thickness direction of the slab at the center of the slab width at each rolling roll position in the segment when at least one of the B (x) values at the position is a value other than 0. The light cast near the solidification completion point of the continuous cast slab according to claim 4, wherein when at least one of the values of x, W / 2) is equal to or greater than a predetermined value, the slab is crushed by the segment. Reduction method. 鋳片厚み方向の中心固相率の幅方向分布に応じて圧下量を調整する際に、前記中心固相率fs(x,y)のx方向の勾配を対象ロール位置(任意のx位置)で鋳片の幅方向(y方向)に求め、その値の平均値あるいは最大値を求め、
前記幅方向に求めた前記勾配の平均値について複数配置した対象セグメント内での圧下ロールのそれぞれに求めた値の平均値から、
前記幅方向に求めた前記勾配の最大値について複数配置した対象セグメント内での圧下ロールのそれぞれに求めた値の最大値まで、
の範囲内の任意の値から、鋳片の凝固収縮量を換算し、
該収縮量に応じた圧下勾配で圧下量を調整することを特徴とする請求項5に記載の連続鋳造鋳片の凝固完了点近傍の軽圧下方法。
When adjusting the amount of reduction according to the distribution in the width direction of the central solid fraction in the slab thickness direction, the gradient in the x direction of the central solid fraction fs (x, y) is determined as the target roll position (arbitrary x position). In the width direction (y direction) of the slab, find the average value or the maximum value of the values,
From the average value of the values obtained for each of the rolling rolls in the target segment arranged in plural for the average value of the gradient obtained in the width direction,
Up to the maximum value of the values determined for each of the rolling rolls in the target segment that is arranged in plural for the maximum value of the gradient determined in the width direction,
Convert the solidification shrinkage of the slab from any value within the range of
6. The light reduction method near the solidification completion point of the continuous cast slab according to claim 5, wherein the reduction amount is adjusted with a reduction gradient corresponding to the shrinkage amount.
鋳片厚み方向の中心固相率の幅方向分布に応じて圧下量を調整する際に、前記中心固相率fs(x,y)の圧下ロール位置での幅方向積分値のセグメント内各圧下ロールでの合計値に応じたセグメントの圧下力以下の範囲で圧下力を制御することを特徴とする請求項5または6に記載の連続鋳造鋳片の凝固完了点近傍の軽圧下方法。   When adjusting the reduction amount according to the distribution in the width direction of the central solid fraction in the slab thickness direction, each reduction in the segment of the integral value in the width direction at the reduction roll position of the central solid fraction fs (x, y). The light reduction method near the solidification completion point of the continuous cast slab according to claim 5 or 6, wherein the reduction force is controlled within a range equal to or less than the reduction force of the segment according to the total value in the roll. 連続鋳造鋳片の凝固完了点近傍の軽圧下を行う際に、請求項6に記載の方法により所望の圧下量を求めておき、該圧下量を事前にセットして圧下を行うことを特徴とする連続鋳造鋳片の凝固完了点近傍の軽圧下方法。   When performing light reduction near the solidification completion point of the continuous cast slab, a desired reduction amount is obtained by the method according to claim 6, and the reduction is performed by setting the reduction amount in advance. A light reduction method near the solidification completion point of a continuous cast slab. 所望の圧下量を事前にセットして圧下を行う方法として、セグメントの勾配を一定に保持する機能を有する装置にセグメントを押し当てて、所望の圧下量となる様に、セグメントの圧下勾配を一定値に設定することを特徴とする請求項8に記載の連続鋳造鋳片の凝固完了点近傍の軽圧下方法。   As a method of performing a reduction by setting a desired reduction amount in advance, the segment is pressed against a device having a function of keeping the segment gradient constant, and the segment reduction gradient is kept constant so that the desired reduction amount is obtained. The light reduction method near the solidification completion point of the continuous cast slab according to claim 8, wherein the value is set to a value. 所望の圧下量を事前にセットして圧下を行う方法として、所望の圧下量となる様に、圧下力を制御することにより、セグメントの圧下勾配を一定値に調整することを特徴とする請求項8または9に記載の連続鋳造鋳片の凝固完了点近傍の軽圧下方法。   The method of performing a reduction by setting a desired reduction amount in advance, and adjusting a reduction gradient of a segment to a constant value by controlling a reduction force so as to obtain a desired reduction amount. A light reduction method in the vicinity of the solidification completion point of the continuous cast slab according to 8 or 9.
JP2006306910A 2006-11-13 2006-11-13 Light reduction method near the solidification completion point of continuous cast slab Active JP4948977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306910A JP4948977B2 (en) 2006-11-13 2006-11-13 Light reduction method near the solidification completion point of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306910A JP4948977B2 (en) 2006-11-13 2006-11-13 Light reduction method near the solidification completion point of continuous cast slab

Publications (2)

Publication Number Publication Date
JP2008119726A true JP2008119726A (en) 2008-05-29
JP4948977B2 JP4948977B2 (en) 2012-06-06

Family

ID=39505048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306910A Active JP4948977B2 (en) 2006-11-13 2006-11-13 Light reduction method near the solidification completion point of continuous cast slab

Country Status (1)

Country Link
JP (1) JP4948977B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022640A (en) * 2011-07-26 2013-02-04 Jfe Steel Corp Continuous casting method for metal piece
WO2023087633A1 (en) * 2021-11-19 2023-05-25 中天钢铁集团有限公司 Method for verifying accuracy of secondary cooling solidification model

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6897583B2 (en) * 2018-01-22 2021-06-30 日本製鉄株式会社 Method for measuring the central solid phase ratio of slabs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137356A (en) * 1984-07-30 1986-02-22 Kawasaki Steel Corp Rolling down method of crater end in continuous casting
JPH06218510A (en) * 1993-01-28 1994-08-09 Sumitomo Metal Ind Ltd Method for continuously casting steel
JPH08132203A (en) * 1994-11-10 1996-05-28 Sumitomo Metal Ind Ltd Continuous casting method
JPH10325714A (en) * 1997-05-23 1998-12-08 Sumitomo Metal Ind Ltd Method and apparatus for detection of shape of unsolidified part of continuous-casting cast piece
JP2003025053A (en) * 2001-07-12 2003-01-28 Kobe Steel Ltd Method for continuously casting steel slab
JP2005193265A (en) * 2004-01-06 2005-07-21 Nippon Steel Corp Equipment for continuously casting steel and continuous casting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137356A (en) * 1984-07-30 1986-02-22 Kawasaki Steel Corp Rolling down method of crater end in continuous casting
JPH06218510A (en) * 1993-01-28 1994-08-09 Sumitomo Metal Ind Ltd Method for continuously casting steel
JPH08132203A (en) * 1994-11-10 1996-05-28 Sumitomo Metal Ind Ltd Continuous casting method
JPH10325714A (en) * 1997-05-23 1998-12-08 Sumitomo Metal Ind Ltd Method and apparatus for detection of shape of unsolidified part of continuous-casting cast piece
JP2003025053A (en) * 2001-07-12 2003-01-28 Kobe Steel Ltd Method for continuously casting steel slab
JP2005193265A (en) * 2004-01-06 2005-07-21 Nippon Steel Corp Equipment for continuously casting steel and continuous casting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022640A (en) * 2011-07-26 2013-02-04 Jfe Steel Corp Continuous casting method for metal piece
WO2023087633A1 (en) * 2021-11-19 2023-05-25 中天钢铁集团有限公司 Method for verifying accuracy of secondary cooling solidification model

Also Published As

Publication number Publication date
JP4948977B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
KR101781805B1 (en) Method for the continuous casting of metal strand
KR102635630B1 (en) Continuous casting method of steel
JP4948977B2 (en) Light reduction method near the solidification completion point of continuous cast slab
JP2009050913A (en) Method for predicting surface crack in continuously cast slab
JP4556720B2 (en) Cooling method of slab in continuous casting
KR20210123383A (en) Continuous casting method of slab cast steel
JP2007245168A (en) Method and apparatus for detecting completion of solidification in continuous casting, and method and apparatus for continuous casting
JP5131229B2 (en) Slab continuous casting method
JP2002079356A (en) Secondary cooling method in continuous casting
JP3958787B1 (en) Continuous casting method
JP5939002B2 (en) Solidification state estimation device, solidification state estimation method, and steel continuous casting method
JP7073932B2 (en) Solidification completion position detection method for slabs and solidification completion position detection device for slabs
CN111199119B (en) Temperature simulation method for continuous casting special-shaped blank head
JP4417899B2 (en) Continuous casting method
JP5413284B2 (en) Method for detecting the complete solidification position of continuous cast slabs
KR100332645B1 (en) Method for manufacturing continuous cast slab of austenitic stainless steel
JP2009233703A (en) Continuous casting method
JP2009034712A (en) Continuous casting method for steel
JP3062723B2 (en) Measurement method of slab surface dent shape due to solidification shrinkage in mold
CA3219626A1 (en) Nosetip design for high-performance continuous casting
KR100910459B1 (en) Mold for Continuous Casting Steel
JP2024035081A (en) Continuous casting mold
KR101105933B1 (en) Method for manufacturing the austenitic stainless steel with reduced roll-defect
JP2000190058A (en) Light pressurizing method for cast piece
KR101505159B1 (en) Methods for manufacturing coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4948977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350