JP2008118038A - Epitaxial wafer for light emitting element, its manufacturing method, and light emitting element - Google Patents

Epitaxial wafer for light emitting element, its manufacturing method, and light emitting element Download PDF

Info

Publication number
JP2008118038A
JP2008118038A JP2006301701A JP2006301701A JP2008118038A JP 2008118038 A JP2008118038 A JP 2008118038A JP 2006301701 A JP2006301701 A JP 2006301701A JP 2006301701 A JP2006301701 A JP 2006301701A JP 2008118038 A JP2008118038 A JP 2008118038A
Authority
JP
Japan
Prior art keywords
layer
cladding layer
epitaxial
light emitting
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006301701A
Other languages
Japanese (ja)
Inventor
Takashi Takeuchi
隆 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006301701A priority Critical patent/JP2008118038A/en
Publication of JP2008118038A publication Critical patent/JP2008118038A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epitaxial wafer for a light emitting element capable of obtaining many light emitting element chips which keep Iop at a constant value for extended hours, in other words, provide high reliability. <P>SOLUTION: An epitaxial layer 3 containing an n-type clad layer 6, active layer 8, p-type first clad layer 10, and p-type second clad layer 12 is grown on a substrate 2 using group III and group V material gas, in an epitaxial wafer 1 for a light emitting element. Here, the average value of hydrogen concentration of the epitaxial layer 3 is 9.2×10<SP>16</SP>atoms/cm<SP>3</SP>or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主にLD(Laser Diode:半導体レーザ)、LED(Light Emitted Diode:発光ダイオード)などの発光素子用のエピタキシャルウェハ(以下エピウェハと呼ぶ)及びその製造方法並びに発光素子に関する。   The present invention mainly relates to an epitaxial wafer (hereinafter referred to as an epi-wafer) for a light-emitting element such as an LD (Laser Diode: semiconductor laser) and an LED (Light Emitted Diode), a method for manufacturing the same, and a light-emitting element.

AlGaInP系の化合物半導体結晶を用いたLDは、デジタルバーサタイルディスク(DVD)やコンパクトディスク(CD)などの光ディスクシステムにおいて、読み取り用光源や書き込み用光源として広く用いられている。   LDs using AlGaInP-based compound semiconductor crystals are widely used as reading light sources and writing light sources in optical disc systems such as digital versatile discs (DVD) and compact discs (CD).

化合物半導体結晶を成長させる方法の一つに有機金属気相成長法(Metal Organic Vapor Phase Epitaxy、以下MOVPE法)がある。MOVPE法は、III族有機金属原料ガスとV族原料ガスを、高純度水素キャリアガスとの混合ガスとして成長炉内に導入し、成長炉内で加熱された基板付近で原料が熱分解されることで、基板上に化合物半導体結晶をエピタキシャル成長させる方法である。基板上に半導体結晶をエピタキシャル成長させたものをエピウェハという。   One method for growing a compound semiconductor crystal is a metal organic vapor phase epitaxy (hereinafter referred to as MOVPE method). In the MOVPE method, a group III organometallic source gas and a group V source gas are introduced into a growth reactor as a mixed gas of high-purity hydrogen carrier gas, and the source material is pyrolyzed in the vicinity of the substrate heated in the growth reactor. In this way, the compound semiconductor crystal is epitaxially grown on the substrate. An epitaxial wafer is obtained by epitaxially growing a semiconductor crystal on a substrate.

なお、この出願の発明に関連する先行技術文献情報としては、次のものがある。   The prior art document information related to the invention of this application includes the following.

特開平10−270797号公報JP-A-10-270797

近年、DVDの書き込み速度の倍速化、2層書込への倍速化などにより、LDの高出力化が求められている。   In recent years, there has been a demand for higher output of LD by increasing the writing speed of DVD and increasing the speed to double-layer writing.

LDの特性の一つ、動作電流(Iop)はレーザの規定の光出力を得るための順電流(例えば、バイアス電流やしきい値電流)である。Iopは、長期間動作させても一定に保たれなければならないのは言うまでもないが、数百時間以上の動作をさせると、徐々に大きくなってしまう場合がある。これではLDが商品として使い物にならない。   One of the characteristics of the LD, the operating current (Iop), is a forward current (for example, a bias current or a threshold current) for obtaining a prescribed optical output of the laser. It goes without saying that Iop must be kept constant even if it is operated for a long period of time, but if it is operated for several hundred hours or more, it may gradually increase. With this, LD is not useful as a product.

特にLDが高出力になれば、通常状態でのIopも高く、熱的にも厳しい環境での動作となるため、高出力のLDには、よりシビアな特性が要求される。   In particular, if the LD has a high output, the Iop in the normal state is high, and the operation is performed in a severely thermal environment. Therefore, a severer characteristic is required for the high output LD.

Iopが不安定になる理由の一つに、エピウェハのエピタキシャル層中の水素濃度が高いと、添加したドーパントが不活性化されるため、Iopが不安定になることが知られている。   As one of the reasons why Iop becomes unstable, it is known that when the hydrogen concentration in the epitaxial layer of the epi-wafer is high, the added dopant is inactivated, so that Iop becomes unstable.

そこで、本発明の目的は、Iopを長時間一定の値に保つ、つまり信頼性が高い発光素子チップを多く取ることができる発光素子用エピウェハ及びその製造方法並びに発光素子を提供することにある。   Accordingly, an object of the present invention is to provide a light-emitting element epi-wafer that can maintain Iop at a constant value for a long time, that is, can take many light-emitting element chips with high reliability, a method for manufacturing the same, and a light-emitting element.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、基板上に、III族およびV族原料ガスを用いてn型クラッド層、活性層、p型クラッド層を含むエピタキシャル層を成長させた発光素子用エピタキシャルウェハにおいて、上記エピタキシャル層の水素濃度の平均値を9.2×1016atoms/cm3 以下にした発光素子用エピタキシャルウェハである。 The present invention has been devised to achieve the above object, and the invention of claim 1 provides an n-type cladding layer, an active layer, and a p-type cladding layer on a substrate using a group III and group V source gas. An epitaxial wafer for light-emitting elements, in which an epitaxial layer containing light is grown, wherein an average value of hydrogen concentration of the epitaxial layers is 9.2 × 10 16 atoms / cm 3 or less.

請求項2の発明は、上記n型クラッド層、活性層、p型クラッド層の水素濃度をいずれも9.2×1016atoms/cm3 以下にした請求項1記載の発光素子用エピタキシャルウェハである。 The invention according to claim 2 is the epitaxial wafer for light emitting device according to claim 1, wherein the hydrogen concentrations of the n-type cladding layer, the active layer, and the p-type cladding layer are all 9.2 × 10 16 atoms / cm 3 or less. is there.

請求項3の発明は、上記n型クラッド層、活性層、p型クラッド層はAlGaInPからなる請求項1または2記載の発光素子用エピタキシャルウェハである。   The invention according to claim 3 is the epitaxial wafer for light emitting device according to claim 1 or 2, wherein the n-type cladding layer, the active layer, and the p-type cladding layer are made of AlGaInP.

請求項4の発明は、上記n型クラッド層、活性層、p型クラッド層はAlGaAsからなる請求項1または2記載の発光素子用エピタキシャルウェハである。   A fourth aspect of the present invention is the light-emitting element epitaxial wafer according to the first or second aspect, wherein the n-type cladding layer, the active layer, and the p-type cladding layer are made of AlGaAs.

請求項5の発明は、加熱した基板上にIII族およびV族原料ガス、ドーピング原料およびキャリアガスを供給し、上記基板上に、n型クラッド層、活性層、p型クラッド層を含むエピタキシャル層を成長させる発光素子用エピタキシャルウェハの製造方法において、III族原料の供給を一時的に停止し、基板上にV族原料ガスのみを供給して、上記エピタキシャル層の水素濃度の平均値を低下させる発光素子用エピタキシャルウェハの製造方法である。   The invention according to claim 5 is an epitaxial layer including a group III and group V source gas, a doping source and a carrier gas supplied onto a heated substrate, and an n-type cladding layer, an active layer, and a p-type cladding layer on the substrate. In the method for manufacturing an epitaxial wafer for a light-emitting element, the supply of the group III source material is temporarily stopped, and only the group V source gas is supplied onto the substrate to reduce the average value of the hydrogen concentration of the epitaxial layer. It is a manufacturing method of the epitaxial wafer for light emitting elements.

請求項6の発明は、請求項1〜4いずれかに記載した発光素子用エピタキシャルウェハを用いて作製した発光素子である。   The invention of claim 6 is a light emitting device manufactured using the epitaxial wafer for light emitting device according to any one of claims 1 to 4.

本発明によれば、発光素子特性の一つであるIopを安定化させ、信頼性向上を達成することができる。   According to the present invention, it is possible to stabilize Iop, which is one of the characteristics of the light emitting element, and to improve reliability.

以下、本発明の好適な実施形態を添付図面にしたがって説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.

図1は、本発明の好適な実施形態を示す発光素子用エピタキシャルウェハの構造図である。   FIG. 1 is a structural diagram of an epitaxial wafer for light emitting devices showing a preferred embodiment of the present invention.

図1に示すように、本実施形態に係る発光素子用エピタキシャルウェハ1は、LDエピウェハであり、基板2上に、III族およびV族原料ガスを用いて、III−V族化合物半導体結晶を成長させてなるエピタキシャル層3を形成したものである。   As shown in FIG. 1, an epitaxial wafer 1 for a light emitting device according to this embodiment is an LD epiwafer, and a group III-V compound semiconductor crystal is grown on a substrate 2 using a group III and group V source gas. An epitaxial layer 3 is formed.

エピタキシャル層3は、バッファ層4、第2バッファ層5、n型クラッド層6、ガイド層7、活性層8、第2ガイド層9、p型第1クラッド層10、エッチングストップ層11、p型第2クラッド層12、中間層13、コンタクト層14を順次積層してなる。   The epitaxial layer 3 includes a buffer layer 4, a second buffer layer 5, an n-type cladding layer 6, a guide layer 7, an active layer 8, a second guide layer 9, a p-type first cladding layer 10, an etching stop layer 11, and a p-type. The second cladding layer 12, the intermediate layer 13, and the contact layer 14 are sequentially stacked.

バッファ層4と第2バッファ層5は、基板2とn型クラッド層6の格子不整を緩和するために形成する。n型クラッド層6、p型第1クラッド層10、p型第2クラッド層12は、活性層8に隣接あるいは近接して形成される屈折率が低く、バンドギャップエネルギーが高い半導体層である。ガイド層7は活性層8を成長させる際の、第2ガイド層9はp型第1クラッド層10を成長させる際のバッファ層として働く。中間層13は、p型第2クラッド層12とコンタクト層14の格子不整を緩和するために形成する。コンタクト層14は、キャリア密度が高く、電極とオーミック接触を得るために形成する。   The buffer layer 4 and the second buffer layer 5 are formed in order to alleviate the lattice mismatch between the substrate 2 and the n-type cladding layer 6. The n-type cladding layer 6, the p-type first cladding layer 10, and the p-type second cladding layer 12 are semiconductor layers having a low refractive index and a high band gap energy formed adjacent to or close to the active layer 8. The guide layer 7 serves as a buffer layer when the active layer 8 is grown, and the second guide layer 9 serves as a buffer layer when the p-type first cladding layer 10 is grown. The intermediate layer 13 is formed in order to mitigate lattice irregularities between the p-type second cladding layer 12 and the contact layer 14. The contact layer 14 has a high carrier density and is formed to obtain ohmic contact with the electrode.

さて、本実施形態に係るエピウェハ1は、エピタキシャル層3中の水素濃度の平均値が9.2×1016atoms/cm3 以下である。コンタクト層14はLDの特性にあまり影響を与えないので、水素濃度が9.2×1016atoms/cm3 を超えてもよい。 Now, in the epitaxial wafer 1 according to this embodiment, the average value of the hydrogen concentration in the epitaxial layer 3 is 9.2 × 10 16 atoms / cm 3 or less. Since the contact layer 14 does not significantly affect the characteristics of the LD, the hydrogen concentration may exceed 9.2 × 10 16 atoms / cm 3 .

特に、LDエピウェハの場合、これから得られるLDの特性がn型クラッド層6、活性層8、p型第1クラッド層10、p型第2クラッド層12の水素濃度でほぼ決まるため、各層6,8,10,12中の水素濃度をいずれも9.2×1016atoms/cm3 以下にするとよい。 In particular, in the case of an LD epi-wafer, the characteristics of the LD obtained from this are almost determined by the hydrogen concentration of the n-type cladding layer 6, the active layer 8, the p-type first cladding layer 10, and the p-type second cladding layer 12. The hydrogen concentration in 8, 10, and 12 is preferably 9.2 × 10 16 atoms / cm 3 or less.

水素濃度を9.2×1016atoms/cm3 以下にしたのは、水素濃度が9.2×1016atoms/cm3 を超えると、添加したドーパントが不活性化されるため、Iopが不安定になるからである。 The hydrogen concentration was reduced to 9.2 × 10 16 atoms / cm 3 or less because when the hydrogen concentration exceeded 9.2 × 10 16 atoms / cm 3 , the added dopant was inactivated, so This is because it becomes stable.

n型クラッド層6、活性層8、p型第1クラッド層10、p型第2クラッド層12は、AlGaInPあるいはAlGaAsからなる。   The n-type cladding layer 6, the active layer 8, the p-type first cladding layer 10, and the p-type second cladding layer 12 are made of AlGaInP or AlGaAs.

このエピウェハ1をチップ化し、コンタクト層14上に電極を形成すると、発光素子としてのLDが得られる。   When this epi-wafer 1 is made into a chip and an electrode is formed on the contact layer 14, an LD as a light emitting element is obtained.

次に、エピウェハ1の製造方法を説明する。   Next, a method for manufacturing the epi wafer 1 will be described.

まず、MOVPE装置などの慣用の半導体製造装置の炉(反応炉)内に基板2をセットする。半導体製造装置には、III族およびV族原料ガス、ドーピング原料およびキャリアガスを炉内にそれぞれ供給するガス供給手段を接続しておく。   First, the substrate 2 is set in a furnace (reaction furnace) of a conventional semiconductor manufacturing apparatus such as a MOVPE apparatus. The semiconductor manufacturing apparatus is connected with gas supply means for supplying a group III and group V source gas, a doping source and a carrier gas into the furnace.

この状態で、基板2を加熱し、加熱した基板2上に、ガス供給手段からIII族およびV族原料ガス、ドーピング原料およびキャリアガスを供給し、上述した各層4〜14を順次成長させて積層するMOVPE法などの結晶成長法により、エピタキシャル層3を形成する。   In this state, the substrate 2 is heated, and a group III and group V source gas, a doping source and a carrier gas are supplied from the gas supply means on the heated substrate 2, and the above-described layers 4 to 14 are sequentially grown and stacked. The epitaxial layer 3 is formed by a crystal growth method such as the MOVPE method.

このエピタキシャル層3の成長中あるいは成長直後(少なくともn型クラッド層6、活性層8、p型第1クラッド層10、p型第2クラッド層12の成長中あるいは成長直後)に、炉内の温度を結晶成長時の温度以上に保持したまま、III族原料の炉内への供給を一時的に停止し、基板2上にV族原料ガスのみを供給して、エピタキシャル層3中の水素濃度の平均値を9.2×1016atoms/cm3 以下に低下させる。 The temperature in the furnace during the growth of the epitaxial layer 3 or immediately after the growth (at least during the growth of the n-type cladding layer 6, the active layer 8, the p-type first cladding layer 10 and the p-type second cladding layer 12). Is maintained at a temperature equal to or higher than the temperature at the time of crystal growth, and the supply of the group III source material into the furnace is temporarily stopped, and only the group V source gas is supplied onto the substrate 2 to increase the hydrogen concentration in the epitaxial layer 3. The average value is lowered to 9.2 × 10 16 atoms / cm 3 or less.

ただし、この時供給するV族ガス中に、直前に成長したエピタキシャル層3中に含まれるV族元素が含まれるようにする。例えば、直前にAlGaInP層を成長したなら、P元素を含むPH3 などを流し、AlGaAs層の場合はAsH3 を流す。また、この時、V族ガスと一緒にキャリアガス(H2 を除くAr、N2 、Heなどの不活性ガス)を流してもよい。 However, the group V gas contained in the epitaxial layer 3 grown immediately before is included in the group V gas supplied at this time. For example, if an AlGaInP layer is grown immediately before, PH 3 containing P element or the like is flowed, and AsH 3 is flowed in the case of an AlGaAs layer. At this time, a carrier gas (an inert gas such as Ar, N 2 , and He other than H 2 ) may be supplied together with the group V gas.

本実施形態では、熱処理条件を、AlGaInP層の場合、半導体製造装置に備えたヒーターの設定温度を680〜720℃で0.5〜10分、AlGaAs層の場合には、ヒーターの設定温度を750〜800℃で0.5〜10分とした。   In the present embodiment, when the heat treatment condition is an AlGaInP layer, the heater set temperature in the semiconductor manufacturing apparatus is 680 to 720 ° C. for 0.5 to 10 minutes, and in the case of the AlGaAs layer, the heater set temperature is 750. It was made into 0.5 to 10 minutes at -800 degreeC.

ここで、エピタキシャル層3中の水素濃度は、SIMS分析によって測定する。SIMSとは、Secondary Ion Mass Spectrometry=2次イオン質量分析のことである。SIMS分析は、O2+やCs+のようなイオンを質料表面に照射し、スパッタされた原子の中でイオン化された2次イオンを質量分析することにより、物質の成分、不純物の分析を行う方法である。イオンによって質料表面がスパッタされるので、試料の表面からの深さ方向の元素分布も得られる。 Here, the hydrogen concentration in the epitaxial layer 3 is measured by SIMS analysis. SIMS is Secondary Ion Mass Spectrometry = secondary ion mass spectrometry. In SIMS analysis, materials such as O 2+ and Cs + are irradiated on the surface of the material, and secondary ions ionized in the sputtered atoms are subjected to mass analysis, thereby analyzing the components and impurities of the substance. Is the method. Since the material surface is sputtered by the ions, an element distribution in the depth direction from the surface of the sample can also be obtained.

本実施形態の作用を説明する。   The operation of this embodiment will be described.

エピウェハ1は、エピタキシャル層3の水素濃度の平均値が9.2×1016atoms/cm3 以下である。 In the epitaxial wafer 1, the average value of the hydrogen concentration of the epitaxial layer 3 is 9.2 × 10 16 atoms / cm 3 or less.

本発明者は、エピタキシャル層3中の水素濃度は、上述した製造方法のように、結晶成長中あるいは成長直後に、結晶成長を行わない高温の雰囲気を保つことによって変化することを見出した。言い換えると、結晶成長の途中あるいは成長直後で、III族原料の炉内への供給を停止し、V族原料のみを炉内へ供給している状態で、数分間保つ。炉内の温度は成長時の温度以上を保持する。このV族原料雰囲気の温度保持(以下、熱処理と呼ぶ)を実施する時期と時間によって、エピタキシャル層3中の水素濃度は変化する。   The inventor has found that the hydrogen concentration in the epitaxial layer 3 is changed by maintaining a high-temperature atmosphere in which crystal growth is not performed during or immediately after crystal growth as in the manufacturing method described above. In other words, during the crystal growth or immediately after the growth, the supply of the group III raw material into the furnace is stopped, and only the group V raw material is supplied into the furnace and kept for several minutes. The temperature in the furnace is kept above the temperature at the time of growth. The hydrogen concentration in the epitaxial layer 3 varies depending on the timing and time of holding the temperature of the group V source atmosphere (hereinafter referred to as heat treatment).

これは、熱処理により、V族原料中のV族原子は3価の陰イオンになり、その陰イオンがラジカルなH+ を吸着するため、エピタキシャル層3中に不可避的に混入する水素を追い出し、エピタキシャル層3中の水素濃度を低下させるからである。 This is because heat treatment causes the group V atom in the group V raw material to become a trivalent anion, and the anion adsorbs radical H + , so that hydrogen inevitably mixed in the epitaxial layer 3 is expelled, This is because the hydrogen concentration in the epitaxial layer 3 is lowered.

これにより、エピウェハ1は、Iopが不安定になる原因である水素濃度が低いため、添加したドーパントの不活性化を防止し、LD特性の一つであるIopを長時間一定の値に保ってIopを安定化させ、エピウェハの信頼性向上を達成することができる。したがって、エピウェハ1は、信頼性が高いLDチップを多く取ることができる。   As a result, the epiwafer 1 has a low hydrogen concentration that causes the Iop to become unstable, so that the added dopant is prevented from being deactivated, and Iop, which is one of the LD characteristics, is kept at a constant value for a long time. It is possible to stabilize the Iop and improve the reliability of the epi-wafer. Therefore, the epitaxial wafer 1 can take many LD chips with high reliability.

特に、n型クラッド層6、活性層8、p型第1クラッド層10、p型第2クラッド層12の水素濃度をいずれも9.2×1016atoms/cm3 以下にすれば、Iopがより安定化し、エピウェハ1の信頼性をより向上できる。 In particular, if the hydrogen concentration of the n-type cladding layer 6, the active layer 8, the p-type first cladding layer 10, and the p-type second cladding layer 12 are all 9.2 × 10 16 atoms / cm 3 or less, Iop is reduced. It is possible to further stabilize and improve the reliability of the epi-wafer 1.

上記実施形態では、エピウェハ1としてLDエピウェハの例で説明したが、本実施形態に係るエピウェハ1及びその製造方法は、MOVPE成長法により製造するLED用のエピタキシャルウェハにも利用できる。   In the above-described embodiment, an example of an LD epi-wafer has been described as the epi-wafer 1. However, the epi-wafer 1 and its manufacturing method according to this embodiment can also be used for an LED epitaxial wafer manufactured by the MOVPE growth method.

また、本実施形態に係るエピウェハ1及びその製造方法は、AlGaInPやAlGaAsに限らず、青紫色LDや青色LEDなどに用いられるGaN系のエピウェハにも応用できる。   The epiwafer 1 and the manufacturing method thereof according to the present embodiment can be applied not only to AlGaInP and AlGaAs, but also to GaN epiwafers used for blue-violet LDs, blue LEDs, and the like.

(実施例)
III族有機金属原料ガスとV族原料ガスを、高純度水素キャリアガスとの混合ガスとして反応炉内に導入し、反応炉内で加熱された基板2付近で原料が熱分解されることで、MOVPE法により基板2上にエピタキシャル層3をエピタキシャル成長させ、図2に示す構造のエピウェハを作製した。ここではn型、p型をそれぞれn−,p−で示す。また不純物を添加しないものはアンドープと呼び、un−で示した。
(Example)
By introducing a group III organometallic source gas and a group V source gas into the reaction furnace as a mixed gas of high-purity hydrogen carrier gas, the source is thermally decomposed near the substrate 2 heated in the reaction furnace, The epitaxial layer 3 was epitaxially grown on the substrate 2 by the MOVPE method to produce an epitaxial wafer having the structure shown in FIG. Here, n-type and p-type are denoted by n- and p-, respectively. Those not added with impurities are called undoped and indicated by un-.

Ga原料としてTMG(トリメチルガリウム)、Al原料としてTMA(トリメチルアルミニウム)、In原料としてTMI(トリメチルインジウム)、As原料としてAsH3 (アルシン)、P原料としてPH3 (ホスフィン)、Si原料としてSi26 (ジシラン)、p型の不純物であるZn原料としてDMZ(ジメチル亜鉛)を用いた。 TMG (trimethylaluminum) as the Al source, TMI (trimethylindium) as the In source, AsH 3 (arsine) as the As source, PH 3 (phosphine) as the P source, Si 2 as the Si source DMZ (dimethylzinc) was used as a Zn source which is H 6 (disilane) and p-type impurities.

より詳細には、n型導電性GaAs基板上に、バッファ層として厚さ200nmのn型GaAs(キャリア濃度1×1018cm-3)、さらに第2バッファ層として厚さ200nmのn型Ga0.51In0.49P(キャリア濃度1×1018cm-3)を成長させた。その上にn型クラッド層として厚さ2500nmのn型(Al0.68Ga0.320.51In0.49P(キャリア濃度7.5×1017cm-3)、アンドープガイド層として厚さ35nmの不純物を添加しない(Al0.7Ga0.30.51In0.49Pを成長させた。活性層はGa0.51In0.49Pをウェル、(Al0.5Ga0.50.51In0.49Pをバリアとして多重カンタムウェル(MQW:量子井戸)構造とし、不純物は添加しない。アンドープガイド層と同様の結晶を厚さ70nmで活性層上に第2アンドープガイド層として成長させた。そしてp型第1クラッド層として厚さ300nmの(Al0.7Ga0.30.51In0.49P(キャリア濃度9.1×1017cm-3)、エッチングストップ層は不純物を添加しないGa0.55In0.45Pを厚さ10nm成長させた。エッチングストップ層の上に、p型第1クラッド層と同一の結晶を厚さ1500nm、p型第2クラッド層として成長させた。さらにその上にはp型第2クラッド層とコンタクト層の格子不整を緩和する中間層としてp型Ga0.5I0.49P(キャリア濃度1.5×1018cm-3)を厚さ30nm成長させた。最上層にはコンタクト層として厚さ300nmのp型の高濃度のGaAs(キャリア濃度5.0×1018cm-3)を成長させた。 More specifically, on the n-type conductive GaAs substrate, n-type GaAs (carrier concentration 1 × 10 18 cm −3 ) having a thickness of 200 nm as a buffer layer, and n-type Ga 0.51 having a thickness of 200 nm as a second buffer layer. In 0.49 P (carrier concentration 1 × 10 18 cm −3 ) was grown. On top of that, n-type (Al 0.68 Ga 0.32 ) 0.51 In 0.49 P (carrier concentration 7.5 × 10 17 cm −3 ) having a thickness of 2500 nm as an n-type cladding layer and no impurity having a thickness of 35 nm as an undoped guide layer are added. (Al 0.7 Ga 0.3 ) 0.51 In 0.49 P was grown. The active layer has a multi-quantum well (MQW: quantum well) structure with Ga 0.51 In 0.49 P as a well and (Al 0.5 Ga 0.5 ) 0.51 In 0.49 P as a barrier, and no impurity is added. A crystal similar to the undoped guide layer was grown as a second undoped guide layer on the active layer with a thickness of 70 nm. Then, (Al 0.7 Ga 0.3 ) 0.51 In 0.49 P (carrier concentration 9.1 × 10 17 cm −3 ) having a thickness of 300 nm is used as the p-type first cladding layer, and Ga 0.55 In 0.45 P to which no impurity is added is used as the etching stop layer. A thickness of 10 nm was grown. On the etching stop layer, the same crystal as the p-type first cladding layer was grown as a p-type second cladding layer having a thickness of 1500 nm. Further, a p-type Ga 0.5In 0.49 P (carrier concentration of 1.5 × 10 18 cm −3 ) is grown to a thickness of 30 nm as an intermediate layer for relaxing the lattice mismatch between the p-type second cladding layer and the contact layer. It was. A p-type high concentration GaAs (carrier concentration 5.0 × 10 18 cm −3 ) having a thickness of 300 nm was grown as a contact layer on the uppermost layer.

その後、熱処理を実施してLDエピウェハを作製した。熱処理はp型第1クラッド層を成長した温度と同一の温度設定とし、III族原料の炉内への供給をストップしてV族原料のみを供給した。V族原料はPH3 とし、熱処理時間は5分とした。 Thereafter, heat treatment was performed to produce an LD epiwafer. The heat treatment was set to the same temperature as the temperature at which the p-type first cladding layer was grown, and the supply of the group III material into the furnace was stopped and only the group V material was supplied. The group V raw material was PH 3 and the heat treatment time was 5 minutes.

(比較例)
熱処理を全く実施せず、実施例と同様にしてLDエピウェハを作製した。
(Comparative example)
An LD epiwafer was produced in the same manner as in the example without performing any heat treatment.

エピ層の水素濃度を比較すると、実施例は7.2×1016atoms/cm3 、比較例は6.4×1017atoms/cm3 だった。なお、水素濃度はコンタクト層を除く全エピ層で行い、全測定値の平均値を取った。 When the hydrogen concentration of the epi layer was compared, the example was 7.2 × 10 16 atoms / cm 3 , and the comparative example was 6.4 × 10 17 atoms / cm 3 . The hydrogen concentration was measured in all epi layers except the contact layer, and the average value of all measured values was taken.

1回成長でのバラツキの影響を排除するため、実施例、比較例とも交互に3回ずつ実施した。   In order to eliminate the influence of variation in one-time growth, each of the examples and comparative examples was alternately performed three times.

実施例、比較例それぞれ3回分のエピウェハから同数ずつのLDチップを作製し、LDの特性を評価した。   The same number of LD chips were produced from three epi wafers for each of the example and comparative example, and the characteristics of the LD were evaluated.

その結果、70℃で1000時間の高温Iop信頼性試験では、比較例の信頼性生存率が59%だったのに対し、実施例は90%まで向上した。   As a result, in the high temperature Iop reliability test at 70 ° C. for 1000 hours, the reliability survival rate of the comparative example was 59%, while the example was improved to 90%.

また、熱処理の条件を変更することにより、水素濃度を変更したエピウェハも作製した。それぞれのエピウェハから得られるLD特性を比較した結果を、実施例、比較例の結果と併せて図3に示す。   In addition, an epi-wafer having a changed hydrogen concentration was produced by changing the heat treatment conditions. The result of comparing the LD characteristics obtained from each epi-wafer is shown in FIG. 3 together with the results of Examples and Comparative Examples.

図3では、本実施形態に係るエピウェハを●、それ以外の比較例、従来例を■で示した。図3中の(i)〜(v)は熱処理条件((ヒーター設定温度)×(熱処理時間))を示し、(i)は610℃×30秒、(ii)は650℃×30秒、(iii)は690℃×30秒、(iv)は690℃×10分、(v)は730℃×5分である。   In FIG. 3, the epi-wafer according to the present embodiment is indicated by ●, and other comparative examples and conventional examples are indicated by ■. (I) to (v) in FIG. 3 show heat treatment conditions ((heater set temperature) × (heat treatment time)), (i) is 610 ° C. × 30 seconds, (ii) is 650 ° C. × 30 seconds, ( iii) is 690 ° C. × 30 seconds, (iv) is 690 ° C. × 10 minutes, and (v) is 730 ° C. × 5 minutes.

図3に示すように、この結果から、エピウェハ中の水素濃度を9.2×1016atoms/cm3 以下にした場合にLD特性向上、つまりIopの信頼性試験結果が向上することがわかった。 As shown in FIG. 3, it was found from this result that the LD characteristics were improved, that is, the reliability test result of Iop was improved when the hydrogen concentration in the epiwafer was 9.2 × 10 16 atoms / cm 3 or less. .

本発明の好適な実施形態を示す発光素子用エピタキシャルウェハの構造図である。1 is a structural diagram of an epitaxial wafer for light-emitting elements showing a preferred embodiment of the present invention. 実施例で用いた発光素子用エピタキシャルウェハの構造図である。It is a structural diagram of the epitaxial wafer for light emitting elements used in the examples. 最適条件確認のため、エピ層中の水素濃度を振ったときのIopの信頼性試験生存率をまとめた結果を示す図である。It is a figure which shows the result of having put together the reliability test survival rate of Iop when changing the hydrogen concentration in an epilayer for optimal condition confirmation.

符号の説明Explanation of symbols

1 発光素子用エピタキシャルウェハ
2 基板
3 エピタキシャル層
4 バッファ層
5 第2バッファ層
6 n型クラッド層
7 ガイド層
8 活性層
9 第2アンドープガイド層
10 p型第1クラッド層
11 エッチングストップ層
12 p型第2クラッド層
13 中間層
14 コンタクト層
DESCRIPTION OF SYMBOLS 1 Epitaxial wafer 2 for light emitting elements Substrate 3 Epitaxial layer 4 Buffer layer 5 Second buffer layer 6 N-type cladding layer 7 Guide layer 8 Active layer 9 Second undoped guide layer 10 P-type first cladding layer 11 Etching stop layer 12 P-type Second cladding layer 13 Intermediate layer 14 Contact layer

Claims (6)

基板上に、III族およびV族原料ガスを用いてn型クラッド層、活性層、p型クラッド層を含むエピタキシャル層を成長させた発光素子用エピタキシャルウェハにおいて、上記エピタキシャル層の水素濃度の平均値を9.2×1016atoms/cm3 以下にしたことを特徴とする発光素子用エピタキシャルウェハ。 In an epitaxial wafer for a light emitting device in which an epitaxial layer including an n-type cladding layer, an active layer, and a p-type cladding layer is grown on a substrate using a group III and group V source gas, an average value of hydrogen concentration of the epitaxial layer An epitaxial wafer for a light-emitting element, characterized in that is 9.2 × 10 16 atoms / cm 3 or less. 上記n型クラッド層、活性層、p型クラッド層の水素濃度をいずれも9.2×1016atoms/cm3 以下にした請求項1記載の発光素子用エピタキシャルウェハ。 The epitaxial wafer for a light-emitting element according to claim 1, wherein the hydrogen concentration of each of the n-type cladding layer, the active layer, and the p-type cladding layer is 9.2 × 10 16 atoms / cm 3 or less. 上記n型クラッド層、活性層、p型クラッド層はAlGaInPからなる請求項1または2記載の発光素子用エピタキシャルウェハ。   The epitaxial wafer for light-emitting elements according to claim 1, wherein the n-type cladding layer, the active layer, and the p-type cladding layer are made of AlGaInP. 上記n型クラッド層、活性層、p型クラッド層はAlGaAsからなる請求項1または2記載の発光素子用エピタキシャルウェハ。   The epitaxial wafer for light-emitting elements according to claim 1 or 2, wherein the n-type cladding layer, the active layer, and the p-type cladding layer are made of AlGaAs. 加熱した基板上にIII族およびV族原料ガス、ドーピング原料およびキャリアガスを供給し、上記基板上に、n型クラッド層、活性層、p型クラッド層を含むエピタキシャル層を成長させる発光素子用エピタキシャルウェハの製造方法において、III族原料の供給を一時的に停止し、基板上にV族原料ガスのみを供給して、上記エピタキシャル層の水素濃度の平均値を低下させることを特徴とする発光素子用エピタキシャルウェハの製造方法。   A group III and group V source gas, a doping source and a carrier gas are supplied onto a heated substrate, and an epitaxial layer including an n-type cladding layer, an active layer, and a p-type cladding layer is grown on the substrate. In the wafer manufacturing method, the supply of the group III source material is temporarily stopped, and only the group V source gas is supplied onto the substrate to reduce the average value of the hydrogen concentration of the epitaxial layer. Epitaxial wafer manufacturing method. 請求項1〜4いずれかに記載した発光素子用エピタキシャルウェハを用いて作製したことを特徴とする発光素子。   A light emitting device manufactured using the epitaxial wafer for light emitting device according to claim 1.
JP2006301701A 2006-11-07 2006-11-07 Epitaxial wafer for light emitting element, its manufacturing method, and light emitting element Pending JP2008118038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301701A JP2008118038A (en) 2006-11-07 2006-11-07 Epitaxial wafer for light emitting element, its manufacturing method, and light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301701A JP2008118038A (en) 2006-11-07 2006-11-07 Epitaxial wafer for light emitting element, its manufacturing method, and light emitting element

Publications (1)

Publication Number Publication Date
JP2008118038A true JP2008118038A (en) 2008-05-22

Family

ID=39503728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301701A Pending JP2008118038A (en) 2006-11-07 2006-11-07 Epitaxial wafer for light emitting element, its manufacturing method, and light emitting element

Country Status (1)

Country Link
JP (1) JP2008118038A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274083A (en) * 1998-03-24 1999-10-08 Sumitomo Electric Ind Ltd Compound semiconductor device and manufacture thereof
JP2000058919A (en) * 1998-08-13 2000-02-25 Toshiba Corp Semiconductor element and its manufacture
JP2001339120A (en) * 2000-05-29 2001-12-07 Nec Corp Compound semiconductor element and its manufacturing method
JP2002026458A (en) * 2000-07-10 2002-01-25 Nec Corp Semiconductor laser and method of manufacturing the same
JP2002324913A (en) * 2001-04-25 2002-11-08 Ricoh Co Ltd Iii nitride semiconductor and method of manufacturing the same, and semiconductor device and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274083A (en) * 1998-03-24 1999-10-08 Sumitomo Electric Ind Ltd Compound semiconductor device and manufacture thereof
JP2000058919A (en) * 1998-08-13 2000-02-25 Toshiba Corp Semiconductor element and its manufacture
JP2001339120A (en) * 2000-05-29 2001-12-07 Nec Corp Compound semiconductor element and its manufacturing method
JP2002026458A (en) * 2000-07-10 2002-01-25 Nec Corp Semiconductor laser and method of manufacturing the same
JP2002324913A (en) * 2001-04-25 2002-11-08 Ricoh Co Ltd Iii nitride semiconductor and method of manufacturing the same, and semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Nakamura et al. Introduction to nitride semiconductor blue lasers and light emitting diodes
US5740192A (en) Semiconductor laser
JP5018433B2 (en) Epitaxial wafer for semiconductor light emitting device and semiconductor light emitting device
JP2002094114A (en) SEMICONDUCTOR DEVICE COMPRISING ZnO-BASED OXIDE SEMICONDUCTOR LAYER AND ITS FABRICATING METHOD
JP2007165405A (en) Light emitting diode
JP2001284736A (en) Nitride-based semiconductor light emitting device and nitride-based semiconductor substrate
JP4781028B2 (en) Group III nitride semiconductor laminate and method for manufacturing group III nitride semiconductor light emitting device
JP2000164512A (en) Growing method of nitride iii-v compound semiconductor layer, manufacture of semiconductor device and semiconductor light emitting device
JP4284944B2 (en) Method for manufacturing gallium nitride based semiconductor laser device
JP2006100518A (en) Method for treating surface of substrate and method for manufacturing group iii nitride compound semiconductor light-emitting element
JP2002367909A (en) Nitride semiconductor film and method of manufacturing the same
JP2008118038A (en) Epitaxial wafer for light emitting element, its manufacturing method, and light emitting element
JP2008140906A (en) Epitaxial wafer for light emitting element and light emitting element
JP2009054791A (en) Epitaxial wafer for light emitting element, its manufacturing method, and light emitting element
JP4545074B2 (en) Semiconductor manufacturing method
JP2009026798A (en) Epitaxial wafer for light-emitting element, its manufacturing method, and light-emitting element
JP2009164489A (en) MANUFACTURING METHOD OF COMPOUND SEMICONDUCTOR, SEMICONDUCTOR LASER DIODE AND AlGaN-BASED SUPERLATTICE STRUCTURE
JP2006294706A (en) Semiconductor light emitting device
JP2007288068A (en) Epitaxial wafer for light emission and light emitting element
JP2013149923A (en) Epitaxial wafer for light-emitting element, light-emitting element using the same and manufacturing method of epitaxial wafer for light-emitting element
JP4389888B2 (en) Semiconductor growth method, semiconductor light emitting device manufacturing method, and semiconductor device manufacturing method
JP2006093681A (en) Germanium additional source for compound semiconductor, method of manufacturing compound semiconductor using the same, and compound semiconductor
JP2007081075A (en) Nitride semiconductor laser device and its manufacturing method
JP2007173620A (en) Method for manufacturing semiconductor light emitting element
JP2008311500A (en) Epitaxial wafer for light emitting element, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604