JP2008116389A - Nondestructive corrosion diagnostic system for leakage oil of electrical apparatus - Google Patents

Nondestructive corrosion diagnostic system for leakage oil of electrical apparatus Download PDF

Info

Publication number
JP2008116389A
JP2008116389A JP2006301434A JP2006301434A JP2008116389A JP 2008116389 A JP2008116389 A JP 2008116389A JP 2006301434 A JP2006301434 A JP 2006301434A JP 2006301434 A JP2006301434 A JP 2006301434A JP 2008116389 A JP2008116389 A JP 2008116389A
Authority
JP
Japan
Prior art keywords
dimensional
filter
wavelength
oil leakage
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006301434A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takezawa
由高 竹澤
Kenji Tsuchiya
賢治 土屋
Kohei Niiyama
高平 新山
Koichi Ishikawa
公一 石川
Yuji Yaegashi
裕司 八重樫
Junichi Murakami
純一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2006301434A priority Critical patent/JP2008116389A/en
Publication of JP2008116389A publication Critical patent/JP2008116389A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diagnostic system that visually, nondestructively, and portably displays an abnormal place in which targeted leakage oil or corrosion is detected in oil filled apparatuses, such as transformers and breakers, and others, by remotely measuring with a simple image inputting device. <P>SOLUTION: The nondestructive corrosion diagnostic system for leakage oil of electrical apparatuses comprises five kinds of filters the center wavelengths of which are different from each other; the image inputting device 5 that outputs light in the range of wavelength from 390 nm to 2,000 nm that are captured through the filters, as two-dimensional image information; a light amount measuring section 6 that calculates a two-dimensional absorbance distribution from the two-dimensional image information; a storage section 8 that stores the master curve of an object to be measured; a calculation section 7 that calculates differences in two-dimensional absorbance or ratios of two-dimensional absorbance from the master curve and the two-dimensional absorbance distribution; a display section that displays an image from the calculated differences in two-dimensional absorbance or ratios of two-dimensional absorbance; and a light source of a discharge tube type that has an emission peak at the wavelength of 370 nm±10 nm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発変電所の保守管理に関し、現場のニーズが多い変圧器や遮断器等の油入機器の漏油・腐食検知を対象とし、非接触で異常個所を視覚的に表示することができる電気機器の非破壊漏油腐食診断装置にかかわり、特に可搬型で短時間に診断が可能な電気機器の非破壊漏油腐食診断装置に関する。   The present invention relates to maintenance management of power stations and substations, and is intended for the detection of oil leakage and corrosion of oil-filled equipment such as transformers and circuit breakers that have many on-site needs. More particularly, the present invention relates to a nondestructive oil leakage corrosion diagnostic apparatus for electric equipment that is portable and capable of making a diagnosis in a short time.

電気機器の漏油検知を対象とした技術としては、特許文献3に記載されているように光ファイバの表面に油が付着した際の伝送損失変化により検知する方法や、特許文献1に記載されているような波長1.66〜1.79μmの光を用いて基油成分の吸収から検知する方法、さらには特許文献2にあるように紫外線を照射した際の蛍光による検知方法が知られている。また、腐食、塗膜劣化を検知する技術としては特許文献5や特許文献4に記載されているような赤外線カメラを用いたサーモグラフィを利用した方法が提案されている。   As a technique for detecting oil leakage in electrical equipment, as described in Patent Document 3, a method of detecting by a transmission loss change when oil adheres to the surface of an optical fiber is described. There are known methods for detecting from absorption of base oil components using light having a wavelength of 1.66 to 1.79 μm, and detection methods using fluorescence when irradiated with ultraviolet light as described in Patent Document 2. Yes. Further, as a technique for detecting corrosion and coating film deterioration, a method using thermography using an infrared camera as described in Patent Document 5 and Patent Document 4 has been proposed.

特開平09−26375号公報JP 09-26375 A 特開平10−311771号公報Japanese Patent Laid-Open No. 10-311771 特開2002−107270号公報JP 2002-107270 A 特開2003−226826号公報JP 2003-226826 A 特開2004−37276号公報JP 2004-37276 A

しかしながら、特許文献3に記載される漏油検知方法は光ファイバを設置した部位でのポイントの診断であり、電気機器全体の漏油状況を把握することができない。また、特許文献1に記載されている漏油検知方法は、漏えい油の流路が必要であるという課題がある。特許文献2の蛍光方法は屋外での太陽光の下での検知や、表面が凸凹した面上での油を判定することが難しいという問題もあった。さらに、腐食、塗膜劣化を検知する技術としての特許文献5や特許文献4の技術は運転時の温度場がないと検知できない。   However, the oil leakage detection method described in Patent Document 3 is a point diagnosis at a site where an optical fiber is installed, and the oil leakage status of the entire electrical equipment cannot be grasped. Further, the oil leakage detection method described in Patent Document 1 has a problem that a leakage oil flow path is necessary. The fluorescence method of Patent Document 2 also has a problem that it is difficult to detect under sunlight in the outdoors and to determine oil on a surface with an uneven surface. Furthermore, the techniques of Patent Document 5 and Patent Document 4 as techniques for detecting corrosion and coating film deterioration cannot be detected without a temperature field during operation.

本発明は、上記事情に鑑みてなされたものであり、簡便で短時間に、画像入力装置を用いて遠隔測定で変圧器や遮断器等の油入機器の漏油・腐食検知を対象とした非接触の異常個所を視覚的に表示する診断装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is intended for oil leakage / corrosion detection of oil-filled devices such as transformers and circuit breakers by remote measurement using an image input device in a simple and short time. An object of the present invention is to provide a diagnostic device that visually displays a non-contact abnormal part.

本願発明は上記目的を達成するために、中心波長の異なる5種のフィルターと、該フィルターを通じて取り込まれる波長390nm〜2000nmまでの光を二次元の画像情報として出力する画像入力装置と、前記二次元の画像情報に基づいて二次元の吸光度分布を算出する光量測定部と、被測定物のマスターカーブを記憶する記憶部と、前記マスターカーブと前記二次元の吸光度分布とに基づいて二次元の吸光度差もしくは二次元の吸光度比を算出する演算部と、算出された前記吸光度差もしくは前記吸光度比に基づいて表示を行う表示部と、370nm±10nmに発光ピークを有する放電管方式の光源部とを有する電気機器の非破壊漏油腐食診断装置を提供するものである。   In order to achieve the above object, the present invention achieves the above-described object, and includes five types of filters having different center wavelengths, an image input device that outputs light having a wavelength of 390 nm to 2000 nm taken through the filters as two-dimensional image information, and the two-dimensional A light quantity measuring unit that calculates a two-dimensional absorbance distribution based on the image information of the image, a storage unit that stores a master curve of the object to be measured, and a two-dimensional absorbance based on the master curve and the two-dimensional absorbance distribution A calculation unit that calculates a difference or two-dimensional absorbance ratio, a display unit that performs display based on the calculated absorbance difference or absorbance ratio, and a discharge tube type light source unit that has an emission peak at 370 nm ± 10 nm. The present invention provides a non-destructive oil leakage corrosion diagnostic device for electrical equipment.

本発明によれば、簡便な画像入力装置を用いて遠隔測定で変圧器や遮断器等の油入機器の漏油・腐食検知を対象とし、非接触で、異常個所を視覚的に表示する診断をすることができる。また、本発明の電気機器の非破壊漏油腐食診断装置可搬型とすることが容易で、診断対象が設置されているサイトに容易に持ち運びかつ診断することができる。   According to the present invention, a diagnosis that visually detects oil leakage and corrosion of oil-filled equipment such as a transformer and a circuit breaker by remote measurement using a simple image input device is performed in a contactless manner. Can do. Moreover, it is easy to make the non-destructive oil leakage diagnosis apparatus portable of the electrical equipment of the present invention, and it can be easily carried and diagnosed at the site where the diagnostic object is installed.

本発明者らは、絶縁油、塗膜、さびと光学物性との関係を詳細に検討した。その結果、漏油検知に対しては太陽光の下で油に紫外線を照射した際の蛍光を狭帯域の干渉フィルターを用いることで改善できることを解明した。また、表面凸凹の上での油の蛍光に関しては、単一波長の「蛍光法」では蛍光強度のばらつきや表面凸凹に伴う乱反射等の影響を受けやすいため、基準となる波長に対しての2波長法を活用することにより改善できることを解明した。以下にその検討内容を説明する。   The present inventors have studied in detail the relationship between insulating oil, coating film, rust and optical properties. As a result, it was clarified that the oil leakage can be improved by using a narrowband interference filter when the oil is irradiated with ultraviolet rays under sunlight. In addition, regarding the fluorescence of oil on the surface unevenness, the single-wavelength “fluorescence method” is easily affected by variations in fluorescence intensity, irregular reflection due to surface unevenness, and the like. It was clarified that it can be improved by utilizing the wavelength method. The contents of the study are described below.

紫外(UV)光源としてはブラックライト(光化学作用と蛍光作用の強い360nm〜380nmの波長域(UV−A)を放射する光源)からの370nmの波長を用いた。なお、430nm近傍に出現する蛍光は絶対強度での比較が難しいため、670nmを中心とした基準波長領域(ここではベースラインとなるシグナルの無い波長)に対する強度(即ち、蛍光の2波長診断)を比較した。その結果、変圧器用鉱油(新油、劣化油)、OFケーブル油及びシリコーン油に紫外線を照射すると、各油の分子構造に依存した蛍光を発することを確認できた。それに対して水では蛍光は発生しなかった。蛍光の強弱は、
鉱油(劣化油)>鉱油(新油)>>OFケーブル油>シリコーン油
であることがわかった。このことから、遠隔でも、上記4つの液体と水との判別ができ、しかも蛍光の強度からそれぞれの漏洩液体の種類を判別することができることがわかる。従って、油の種類によって光源を変更する必要がなく、簡便で小型軽量な携帯型診断装置を提供することができる。
As an ultraviolet (UV) light source, a wavelength of 370 nm from black light (a light source emitting a wavelength region of 360 nm to 380 nm (UV-A) having strong photochemical action and fluorescence action) was used. In addition, since the fluorescence appearing in the vicinity of 430 nm is difficult to compare in absolute intensity, the intensity (that is, the two-wavelength diagnosis of fluorescence) with respect to a reference wavelength region (here, a wavelength without a signal serving as a base line) centered on 670 nm. Compared. As a result, it was confirmed that when mineral oil for transformers (new oil, deteriorated oil), OF cable oil and silicone oil were irradiated with ultraviolet rays, fluorescence depending on the molecular structure of each oil was emitted. In contrast, no fluorescence was generated in water. The intensity of fluorescence
It was found that mineral oil (deteriorated oil)> mineral oil (new oil) >> OF cable oil> silicone oil. From this, it can be seen that the above four liquids and water can be discriminated even remotely, and the type of each leaked liquid can be discriminated from the intensity of fluorescence. Therefore, there is no need to change the light source depending on the type of oil, and a simple, small and light portable diagnostic device can be provided.

OFケーブル油からの蛍光は鉱油に比較すると微弱である。しかし、励起光波長を370nmより短い240〜330nmにすると、350nm近辺により強い蛍光が確認された。これはシリコーン油でも同様のことが言える。ただし、240〜330nmの励起光では、鉱油の蛍光は検知されなかった。従って、370nmの励起光による診断に加え、特に必要な場合には240〜330nmの励起光を使用した診断を加えることにより、OFケーブル油及びシリコーン油を強く検知することが可能となる。   The fluorescence from OF cable oil is weak compared to mineral oil. However, when the excitation light wavelength was 240 to 330 nm shorter than 370 nm, strong fluorescence was observed near 350 nm. The same can be said for silicone oil. However, the fluorescence of mineral oil was not detected with excitation light of 240 to 330 nm. Therefore, in addition to the diagnosis using the excitation light of 370 nm, when necessary, the diagnosis using the excitation light of 240 to 330 nm can be added to strongly detect the OF cable oil and the silicone oil.

太陽光の下での検討では、図1に示したように太陽光のみの場合は、370nmの放射強度自体がブラックライトに比べて弱いため、鉱油から明確な蛍光が現れない。そこで、太陽光の下で補助光としてブラックライトを用いると、太陽光のみの反射スペクトルに対して、405nmを中心とする±5nm程度の狭い波長領域で太陽光の下でも明らかな蛍光が観測された。395nm以下の領域での発光ピークはブラックライトの直接反射によるもので、鉱油の蛍光に起因したものではない。また、410nm以上の領域では太陽光のみの場合も補助光を用いた場合も、スペクトルはほぼ一致した(変化が見られない)。   In the study under sunlight, as shown in FIG. 1, in the case of sunlight alone, the 370 nm radiation intensity itself is weaker than that of black light, and thus no clear fluorescence appears from mineral oil. Therefore, when black light is used as auxiliary light under sunlight, clear fluorescence is observed even under sunlight in a narrow wavelength region of about ± 5 nm centered at 405 nm, with respect to the reflection spectrum of only sunlight. It was. The emission peak in the region of 395 nm or less is due to direct reflection of black light, not due to the fluorescence of mineral oil. Further, in the region of 410 nm or more, the spectra were almost the same (no change was seen) when only sunlight or auxiliary light was used.

従って、395nm〜410nmの狭帯域フィルターを用いれば、太陽光の下でも蛍光を検知できることがわかった。そこで、以下の実施例では405nmを中心波長とした半値幅10nmのバンドパスフィルターと、670nmを中心波長とする半値幅60nmのバンドパスフィルターを用いた。   Therefore, it was found that if a narrow band filter of 395 nm to 410 nm is used, fluorescence can be detected even under sunlight. Therefore, in the following examples, a band-pass filter having a half-value width of 10 nm with a center wavelength of 405 nm and a band-pass filter with a half-value width of 60 nm having a center wavelength of 670 nm were used.

また、上記の装置によれば、別途フィルターの組み合わせを切り替えて使用することにより、上述の漏油のみならずさび、膜厚についても同一の装置でそれぞれ測定することが可能である。以下に、塗膜の枯れに伴う膜厚変化、さびの発生に伴う光物性変化について説明する。   Moreover, according to said apparatus, it is possible to measure not only the above-mentioned oil leakage but a rust and a film thickness with the same apparatus by switching and using a combination of filters separately. In the following, changes in film thickness due to the paint withering and changes in optical properties due to the occurrence of rust will be described.

図2に示したように、さびとしてはモデル物質として4種の試薬(α−FeOOH、γ−FeOOH、Fe(OH)、α−Fe)のスペクトルを測定した。さび(試薬)に近赤外線を照射するとさびの種類に応じて反射吸光度に差異の出る波長領域と差異の出ない波長領域のあることが確認できた。試薬間で差異の出ない共通に吸収ピークが出現する波長域は800nm〜1100nmであった。Fe(OH)水酸化物にだけ見られる1450nmと1950nmの吸収ピークは水酸基(OH基)に起因した高調波吸収によるものである。 As shown in FIG. 2, as rust, spectra of four types of reagents (α-FeOOH, γ-FeOOH, Fe (OH) 3 , α-Fe 2 O 3 ) were measured as model substances. When rust (reagent) was irradiated with near-infrared rays, it was confirmed that there was a wavelength region in which the reflection absorbance differs depending on the type of rust and a wavelength region in which there was no difference. The wavelength range where the absorption peak appears in common with no difference between the reagents was 800 nm to 1100 nm. The absorption peaks at 1450 nm and 1950 nm seen only in Fe (OH) 3 hydroxide are due to harmonic absorption due to the hydroxyl group (OH group).

また、いずれの試薬でも吸収の無い波長域は1200nm〜1400nmである。そこで、さび検知としては、この吸収の無い波長域を基準波長領域として、さびに対して吸収を示す800nm〜1100nmの領域との2波長診断とした。   Moreover, the wavelength range which does not absorb with any reagent is 1200 nm-1400 nm. Therefore, as the rust detection, a two-wavelength diagnosis with a wavelength range of 800 nm to 1100 nm showing absorption with respect to rust is performed using the wavelength region without absorption as a reference wavelength region.

次に、膜厚の診断について説明する。塗膜表面に近赤外線を照射すると膜厚に応じて反射吸光度に差異の出る波長領域と差異の出ない波長領域のあることが確認できた。膜厚によって差異の出ない波長域は1300nmを中心とする1200nm〜1400nmであるといえる。それに対して、膜厚によって差異の出る波長域は1850nm以上の波長域である。そこで、膜厚検知としては、1200nm〜1400nmを基準波長領域として、膜厚により変化する1850nm以上の領域との2波長診断とした。なお、樹脂の劣化や顔料等の種類によって大きく吸収スペクトルが変化する領域は750nm以下の可視光の領域である。   Next, the diagnosis of the film thickness will be described. When near infrared rays were irradiated to the coating film surface, it was confirmed that there was a wavelength region where the difference in reflection absorbance was different from that depending on the film thickness and a wavelength region where there was no difference. It can be said that the wavelength range where there is no difference depending on the film thickness is 1200 nm to 1400 nm centered on 1300 nm. On the other hand, the wavelength range where the difference occurs depending on the film thickness is a wavelength range of 1850 nm or more. Therefore, as a film thickness detection, a two-wavelength diagnosis is performed with a reference wavelength region of 1200 nm to 1400 nm and a region of 1850 nm or more that varies depending on the film thickness. In addition, the region where the absorption spectrum largely changes depending on the deterioration of the resin and the type of the pigment is a visible light region of 750 nm or less.

以上を纏めると、紫外光源を用いた蛍光2波長診断と、近赤外2波長診断の組合せにより感度よく電気機器の漏油、腐食(さび、塗膜の枯れ)を判定できることを解明し、これらの変化をCCDカメラ等で撮影し、その画像情報から吸光度を測定することで、電気機器の漏油、腐食を非破壊で遠隔から判定できることを見出した。   Summarizing the above, it has been clarified that oil leakage and corrosion (rust, withering of paint film) of electrical equipment can be determined with high sensitivity by combining fluorescence two-wavelength diagnosis using an ultraviolet light source and near-infrared two-wavelength diagnosis. It was found that oil leakage and corrosion of electrical equipment can be determined from a non-destructive remote location by photographing the change in the image with a CCD camera or the like and measuring the absorbance from the image information.

本発明の実施の態様としては例えば以下が考えられる。但し、本発明は下記のみに限定されるものでないことは当然である。   For example, the following may be considered as embodiments of the present invention. However, it is natural that the present invention is not limited to the following.

前記電気機器の非破壊漏油腐食診断装置において、前記5種のフィルターの中心波長は、それぞれ405nm、670nm、845nm、1300nm及び1850nmであることが望ましい。また、前記電気機器の非破壊漏油腐食診断装置は、前記5種のフィルターを前記画像入力装置の光軸上に駆動する機構、例えば、回転機構に接続されたディスクに5つのフィルターを設け、これを回転することにより、それぞれのフィルターを所定の位置に設定する機構を備えること望ましい。このような構成により、フィルター機構を小型化し可搬型にすることができる。   In the non-destructive oil leakage diagnostic apparatus for electrical equipment, it is preferable that the center wavelengths of the five types of filters are 405 nm, 670 nm, 845 nm, 1300 nm, and 1850 nm, respectively. In addition, the non-destructive oil leakage corrosion diagnostic apparatus for electrical equipment is provided with a mechanism for driving the five types of filters on the optical axis of the image input device, for example, five filters on a disk connected to a rotation mechanism, It is desirable to provide a mechanism for setting each filter at a predetermined position by rotating it. With such a configuration, the filter mechanism can be reduced in size and made portable.

前記電気機器の非破壊漏油腐食診断装置において、前記二次元の吸光度差もしくは二次元の吸光度比は、中心波長405nmのフィルターと中心波長670nmのフィルターの組み合わせの近紫外2波長法、中心波長845nmのフィルターと中心波長1300nmのフィルター、及び中心波長1300nmのフィルターと中心波長1850nmのフィルターの組み合わせによる近赤外2波長法により求めることが好ましい。   In the non-destructive oil leakage corrosion diagnostic apparatus for electrical equipment, the two-dimensional absorbance difference or the two-dimensional absorbance ratio is determined by a near-ultraviolet two-wavelength method using a combination of a filter having a central wavelength of 405 nm and a filter having a central wavelength of 670 nm, and a central wavelength of 845 nm. And a filter having a center wavelength of 1300 nm and a combination of a filter having a center wavelength of 1300 nm and a filter having a center wavelength of 1850 nm are preferably obtained by the near infrared two-wavelength method.

また、前記光源部に380nm以上の波長の光をカットするフィルター(380nmから少なくとも2000nm程度の広範囲の光を遮断するカットフィルター)を有することが望ましい。中心波長にあわせエネルギー範囲の狭い波長域の励起光とするためのバンドパスフィルターは、中心波長の周辺域外の励起光を排除することができない。従って、長波長側の励起光を広く排除するフィルターを使用することにより遮断帯域以外の成分を減らすことができ、太陽光の下でも確実にノイズを減らし、目的の蛍光の強度を測定することができる。前記表示部の表示は漏油腐食進行の評価の表示であり、前記漏油腐食の進行に応じて表示色を変化させることが望ましい。前記二次元の画像情報は非圧縮のファイル形式であることができる。   Further, it is desirable that the light source unit has a filter that cuts light having a wavelength of 380 nm or more (cut filter that cuts light in a wide range of about 380 nm to at least 2000 nm). A band-pass filter for obtaining excitation light in a wavelength range with a narrow energy range in accordance with the center wavelength cannot exclude excitation light outside the peripheral region of the center wavelength. Therefore, it is possible to reduce components other than the cutoff band by using a filter that widely excludes the excitation light on the long wavelength side, reliably reducing noise even under sunlight, and measuring the target fluorescence intensity. it can. The display on the display unit is a display for evaluating the progress of oil leakage corrosion, and it is desirable to change the display color according to the progress of the oil leakage corrosion. The two-dimensional image information may be in an uncompressed file format.

本発明の電気機器の非破壊漏油腐食診断装置を、中心波長の異なった5種のフィルターと、そのフィルターを介して対象物の画像を撮像しうる撮像装置と、入力手段及び表示手段を有し、前記撮像装置及びフィルターを駆動する機構を制御する携帯型電子計算機と、370nm±10nmに発光ピークを有する光源とにより構成することで、上記装置を容易に可搬型にすることができる。上記撮像装置としては可搬型のCCDカメラ等を用いることができ、上記携帯型電子計算機としてパーソナルコンピュータを用いることができ、前記光源及びフィルターも可搬型とすることができる。   The non-destructive oil leakage diagnostic apparatus for electrical equipment according to the present invention comprises five types of filters having different center wavelengths, an imaging device capable of capturing an image of an object through the filters, an input unit and a display unit. By configuring the imaging apparatus and the portable electronic computer that controls the mechanism for driving the filter and the light source having the emission peak at 370 nm ± 10 nm, the apparatus can be easily made portable. A portable CCD camera or the like can be used as the imaging device, a personal computer can be used as the portable electronic computer, and the light source and the filter can also be portable.

前記5種のフィルターの中心波長は、前述のとおりであり、前記二次元の吸光度差もしくは二次元の吸光度比は、前述のとおり2波長光方式で求める。更に、前記5種のフィルターを前記画像入力装置の光軸上に駆動する機構を備えることが好ましい。   The center wavelengths of the five types of filters are as described above, and the two-dimensional absorbance difference or the two-dimensional absorbance ratio is obtained by the two-wavelength light method as described above. Furthermore, it is preferable that a mechanism for driving the five types of filters on the optical axis of the image input apparatus is provided.

前記フィルターの中心波長は405nm、670nm、845nm、1300nm、1850nmであり、前記光源部に380nm以上の可視光をカットするフィルターを有したほうが、表面の凸凹の迷光の影響、太陽光の影響の回避に好適である。   The center wavelengths of the filters are 405 nm, 670 nm, 845 nm, 1300 nm, and 1850 nm, and it is better to have a filter that cuts visible light of 380 nm or more in the light source unit, to avoid the effects of uneven stray light on the surface and the influence of sunlight. It is suitable for.

前記表示部の表示は漏油腐食進行の評価の表示であり、前記漏油腐食の進行に応じて表示色を変化させることができる。これはカメラ上でも可能であるし、データを送信したコンピュータ上でももちろん可能である。さらに、画像入力フォーマットは非圧縮のファイル形式(RAW、TIFF等)であることが測定精度的に望ましいが、汎用のJPEG形式でももちろん可能である。   The display on the display unit is a display for evaluating the progress of oil leakage corrosion, and the display color can be changed according to the progress of the oil leakage corrosion. This can be done on the camera or of course on the computer that sent the data. Furthermore, the image input format is preferably an uncompressed file format (RAW, TIFF, etc.) in terms of measurement accuracy, but of course, a general-purpose JPEG format is also possible.

以下、実施例により本発明の好ましい実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail by way of examples.

(実施例1)
実施例1では、フィルターの組み合わせを切り替えて使用することにより、漏油、さび、膜厚について測定する例を示す。
(Example 1)
Example 1 shows an example in which oil leakage, rust, and film thickness are measured by switching and using a combination of filters.

図3は本実施例に係る絶縁材の非破壊診断装置を示すブロック図であり、図5は漏油、腐食(さび、塗膜枯れ)判定のための演算のフローチャートを示す。   FIG. 3 is a block diagram showing a non-destructive diagnostic apparatus for an insulating material according to the present embodiment, and FIG. 5 shows a flowchart of calculation for determining oil leakage and corrosion (rust, paint wiping).

図3における非破壊診断装置は、少なくとも被測定物の画像情報を取り込むレンズ2と、第1のフィルター3と、第2のフィルター4と、画像入力装置5と、光量測定部6と、演算部7と、マスターカーブ記憶部8とを有している。図3においてはフィルターを2つしか示していないが、前述のように1つのディスクに5つのフィルターを備えていてもよい。   The nondestructive diagnostic apparatus in FIG. 3 includes at least a lens 2 that captures image information of an object to be measured, a first filter 3, a second filter 4, an image input device 5, a light quantity measurement unit 6, and a calculation unit. 7 and a master curve storage unit 8. Although only two filters are shown in FIG. 3, five filters may be provided on one disk as described above.

本実施例において、分光手段である第1のフィルター3は中心波長405nm、半値幅10nm、透過率60%のバンドパスフィルターである。また第2のフィルター4は波長670nm、半値幅60nm、透過率80%のバンドパスフィルターである。   In the present embodiment, the first filter 3 serving as the spectroscopic means is a bandpass filter having a center wavelength of 405 nm, a half width of 10 nm, and a transmittance of 60%. The second filter 4 is a bandpass filter having a wavelength of 670 nm, a half width of 60 nm, and a transmittance of 80%.

各波長における被測定物1の吸光度(A405,A670)の測定方法を以下に示す。なおここで二次元(画像)情報とは平面の広がりとして把握される情報をいい、具体的には縦横の座標位置に対応して所定の値(輝度値、吸光度等)を有する情報をいう。 A method for measuring the absorbance (A 405 , A 670 ) of the DUT 1 at each wavelength is shown below. Here, two-dimensional (image) information refers to information grasped as a spread of a plane, and specifically refers to information having a predetermined value (luminance value, absorbance, etc.) corresponding to vertical and horizontal coordinate positions.

まずレンズ1を介して第1のフィルター3からの被測定物1の画像を画像入力装置5で取り込み、濃淡の二次元画像情報として光量測定部6に出力する。光量測定部6は入力された濃淡の二次元画像情報は劣化診断の最小単位である画素毎の輝度値に変換し、演算部7にその結果を出力する。演算部7は予め求めてある基準輝度値(I)に基づいて各画素の吸光度を算出し、波長405nmにおける二次元の吸光度分布として記憶する。 First, an image of the object to be measured 1 from the first filter 3 is captured by the image input device 5 through the lens 1, and is output to the light quantity measuring unit 6 as light and shade two-dimensional image information. The light quantity measurement unit 6 converts the input two-dimensional grayscale image information into a luminance value for each pixel, which is the minimum unit for deterioration diagnosis, and outputs the result to the calculation unit 7. The calculation unit 7 calculates the absorbance of each pixel based on the reference luminance value (I 0 ) obtained in advance, and stores it as a two-dimensional absorbance distribution at a wavelength of 405 nm.

ここで、基準輝度値(I)とは、測定開始前にコピー用紙(白紙)等を用いて波長毎に測定し、演算部7にプリセットされている値である。また同様に第2のフィルター4からの被測定物1の二次元画像情報を画像入力装置5で取り込み、光量測定部6に入力し、波長670nmにおける二次元の吸光度分布を演算手段である演算部7に記憶する。 Here, the reference luminance value (I 0 ) is a value that is measured for each wavelength using copy paper (white paper) or the like before the measurement is started and is preset in the calculation unit 7. Similarly, the two-dimensional image information of the DUT 1 from the second filter 4 is captured by the image input device 5 and input to the light quantity measuring unit 6, and a two-dimensional absorbance distribution at a wavelength of 670 nm is a calculation unit that is a calculation means. 7

そして演算部7は、演算部7にて2波長間の吸光度差を算出し、その分布を画素毎に記憶するとともに、絶縁油の蛍光強度と吸光度差との関係(マスターカーブ)が予め記憶された記憶部8から漏油のしきい値が記憶されているマスターカーブを呼び出し、このマスターカーブと測定した被測定物の吸光度差とを画素毎に比較演算して絶縁油による蛍光発生の有無を判定し、結果を表示部9に表示する。   The calculation unit 7 calculates the absorbance difference between the two wavelengths in the calculation unit 7 and stores the distribution for each pixel, and the relationship (master curve) between the fluorescence intensity of the insulating oil and the absorbance difference is stored in advance. A master curve in which the threshold value of oil leakage is stored is called from the storage unit 8, and the master curve is compared with the measured absorbance difference of the measured object for each pixel to determine whether or not fluorescence is generated by the insulating oil. Determination is made and the result is displayed on the display unit 9.

図7は、石に付着させた絶縁油の蛍光を、430nmのフィルター(比較例)と狭帯域405nmフィルターを用いて観察した例を示すもので、比較例の場合は、絶縁油の存在が明確に表示されずしかも試料の左側にあるようなノイズが多く見られる。これに対し狭帯域フィルターを用いたときは絶縁油の存在が明確であり、かつノイズが見られない。   FIG. 7 shows an example in which the fluorescence of the insulating oil adhered to the stone is observed using a 430 nm filter (comparative example) and a narrow-band 405 nm filter. In the comparative example, the presence of the insulating oil is clear. In addition, there is a lot of noise on the left side of the sample. On the other hand, when a narrow band filter is used, the presence of insulating oil is clear and no noise is seen.

次に同様の装置によりさびの検知を行う例を示す。塗装した鋼板に油性インキで十字のマークを施したテストピース(新品、さびさせたもので、さび上に再塗装したもの、ベンガラを下地に塗装したもの3種類)を用いて、845nmと1300nmのフィルターの二次元吸光度差を測定した。その結果、油性インキは画像として現れず、新品の場合、さびを示す画像は表示されず、再塗装したさびの形状が明確に表示され、ベンガラを下塗りしたものは、ベンガラの酸化鉄が全面に明確に表示された。   Next, an example in which rust is detected by the same device will be described. Using test pieces (new, rusted, repainted on rust, 3 types coated with bengara on the ground) with a cross mark with oil-based ink on the coated steel sheet, 845nm and 1300nm The two-dimensional absorbance difference of the filter was measured. As a result, the oil-based ink does not appear as an image, and in the case of a new product, the image showing rust is not displayed, the shape of the repainted rust is clearly displayed, and the iron oxide of Bengala is applied to the entire surface of the undercoat of Bengala It was clearly displayed.

次に、同様の装置により、膜厚の検知を行う例を示す。図6において、1は上塗り1回(平均)、2は上塗り2回(平均)、3は上塗り3回(平均)の膜厚と、反射吸光度の関係を示す。フィルタは1300nmと1850nmのものを用いた。このデータから、膜厚が薄いほど反射吸光度差が大きくなることがわかる。   Next, an example in which the film thickness is detected using the same apparatus will be described. In FIG. 6, 1 is the top coat once (average), 2 is the top coat twice (average), and 3 is the top coat three times (average) film thickness and the relationship between the reflection absorbance. Filters with 1300 nm and 1850 nm were used. From this data, it can be seen that the thinner the film thickness, the larger the difference in reflection absorbance.

上述の診断に用いた診断アルゴリズムの概要は以下の通りである。
(1)表示色の設定(6色:赤、ピンク、黄緑、緑、青、白)
ただし、上記の表示色のしきい値は任意に設定可能である。
(2)撮影画像入力(3種;通常画像(対象確認用)、波長λ1画像、波長λ2画像)
ここで、各検知技術に対する波長λ1、λ2は表1に示すとおりである。
The outline of the diagnostic algorithm used for the above-mentioned diagnosis is as follows.
(1) Display color settings (6 colors: red, pink, yellow-green, green, blue, white)
However, the display color threshold can be arbitrarily set.
(2) Captured image input (3 types; normal image (for object confirmation), wavelength λ1 image, wavelength λ2 image)
Here, the wavelengths λ1 and λ2 for each detection technique are as shown in Table 1.

Figure 2008116389
Figure 2008116389

(3)診断範囲設定(最大サイズ:1024×768ピクセル)
(4)画像処理
i.輝度変換:{波長λ1輝度(Iλ1),波長λ2輝度(Iλ2)}
ii.吸光度差(ΔAr)の算出[ΔAr=−{log(Iλ1)−log(Iλ2)}]
iii.二次元画像表示(色表示)
図4は他の実施例による可搬型非破壊漏油腐食診断装置のブロック図で、撮像装置(デジタルカメラなど)10、表示部15を持つ入力装置(パーソナルコンピュータなど)13、入力装置の電源(バッテリなど)14、5種のフィルターを有するフィルター機構11、光源16及び可視光をカットするフィルター17を備える。入力装置13はフィルター機構11の駆動機構12及びカメラ10を備える。入力装置13、電源14、撮像装置10及びフィルター機構11は1つのセットとして、光源16とフィルター17とともに作業者が携帯することができる。
(3) Diagnostic range setting (maximum size: 1024 x 768 pixels)
(4) Image processing i. Luminance conversion: {wavelength λ1 luminance (Iλ1), wavelength λ2 luminance (Iλ2)}
ii. Calculation of difference in absorbance (ΔAr) [ΔAr = − {log (Iλ1) −log (Iλ2)}]
iii. 2D image display (color display)
FIG. 4 is a block diagram of a portable nondestructive oil leakage corrosion diagnosis apparatus according to another embodiment. The imaging apparatus (digital camera or the like) 10, the input device (personal computer or the like) 13 having a display unit 15, and the input device power supply ( 14) a filter mechanism 11 having five types of filters, a light source 16, and a filter 17 that cuts visible light. The input device 13 includes a drive mechanism 12 for the filter mechanism 11 and a camera 10. The input device 13, the power supply 14, the imaging device 10, and the filter mechanism 11 can be carried by an operator together with the light source 16 and the filter 17 as one set.

太陽光の下でのブラックライト照射時の反射分光スペクトル図。The reflection spectrum spectrum figure at the time of black light irradiation under sunlight. 塗膜厚さを変えたテストピース(さび無し)の反射分光スペクトル図。Reflection spectrum diagram of a test piece (without rust) with a different coating thickness. 本発明の実施例による非破壊漏油、腐食診断装置の一例を示すブロック図。1 is a block diagram showing an example of a nondestructive oil leakage and corrosion diagnosis apparatus according to an embodiment of the present invention. 本発明の他の実施例による可搬型非破壊漏油腐食診断装置を示すブロック図。The block diagram which shows the portable nondestructive oil leakage corrosion diagnostic apparatus by the other Example of this invention. 漏油、腐食判定のための演算のフローチャート。The flowchart of the calculation for oil leak and corrosion determination. 膜厚と反射吸光度差との関係を示すマスターカーブ図。The master curve figure which shows the relationship between a film thickness and a reflective absorbance difference. 凸凹石に付着した絶縁油の検知実施例による画像診断写真。The diagnostic imaging photograph by the detection example of the insulating oil adhering to unevenness stone.

符号の説明Explanation of symbols

1…被測定物、2…レンズ、3…第1フィルター、4…第2フィルター、5…画像入力装置、6…光量測定部、7…演算部、8…マスターカーブ記憶部、9…表示部。   DESCRIPTION OF SYMBOLS 1 ... Object to be measured, 2 ... Lens, 3 ... 1st filter, 4 ... 2nd filter, 5 ... Image input device, 6 ... Light quantity measurement part, 7 ... Calculation part, 8 ... Master curve memory | storage part, 9 ... Display part .

Claims (8)

中心波長の異なる5種のフィルターと、
該フィルターを通じて取り込まれる波長390nmから波長2000nmまでの光を二次元の画像情報として出力する画像入力装置と、
前記二次元の画像情報に基づいて二次元の吸光度分布を算出する光量測定部と、
被測定物のマスターカーブを記憶する記憶部と、
前記マスターカーブと前記二次元の吸光度分布とに基づいて二次元の吸光度差もしくは二次元の吸光度比を算出する演算部と、
算出された前記吸光度差もしくは前記吸光度比に基づいて診断結果の表示を行う表示部と、
370nm±10nmに発光ピークを有する放電管方式の光源部と、
を有することを特徴とする電気機器の非破壊漏油腐食診断装置。
5 types of filters with different center wavelengths,
An image input device that outputs light from a wavelength of 390 nm to a wavelength of 2000 nm captured through the filter as two-dimensional image information;
A light quantity measuring unit that calculates a two-dimensional absorbance distribution based on the two-dimensional image information;
A storage unit for storing the master curve of the object to be measured;
A calculation unit that calculates a two-dimensional absorbance difference or a two-dimensional absorbance ratio based on the master curve and the two-dimensional absorbance distribution;
A display unit for displaying a diagnosis result based on the calculated absorbance difference or the absorbance ratio;
A discharge tube type light source having an emission peak at 370 nm ± 10 nm;
A non-destructive oil leakage corrosion diagnostic apparatus for electrical equipment, characterized by comprising:
前記被測定物の画像を撮像する撮像装置と、前記撮像装置を駆動する駆動機構と、前記駆動機構を制御する携帯型計算機とを備えることを特徴とする請求項1記載の電気機器の非破壊漏油腐食診断装置。   The non-destructive electrical device according to claim 1, further comprising: an imaging device that captures an image of the object to be measured; a drive mechanism that drives the imaging device; and a portable computer that controls the drive mechanism. Oil leakage corrosion diagnosis device. 前記5種のフィルターの中心波長は、それぞれ405nm、670nm、845nm、1300nm及び1850nmであることを特徴とする請求項1または2記載の電気機器の非破壊漏油腐食診断装置。   The nondestructive oil leakage corrosion diagnostic apparatus for electrical equipment according to claim 1 or 2, wherein the center wavelengths of the five types of filters are 405 nm, 670 nm, 845 nm, 1300 nm, and 1850 nm, respectively. 前記5種のフィルターを前記画像入力装置の光軸上に駆動する機構を備えることを特徴とする請求項1〜3のいずれかに記載の電気機器の非破壊漏油腐食診断装置。   The non-destructive oil leakage corrosion diagnostic apparatus for an electric device according to any one of claims 1 to 3, further comprising a mechanism for driving the five types of filters on an optical axis of the image input device. 前記二次元の吸光度差もしくは二次元の吸光度比は、中心波長405nmのフィルターと中心波長670nmのフィルター、中心波長845nmのフィルターと中心波長1300nmのフィルター、及び中心波長1300nmのフィルターと中心波長1850nmのフィルターの組み合わせで求めることを特徴とする請求項1〜4のいずれかに記載の電気機器の非破壊漏油腐食診断装置。   The two-dimensional absorbance difference or the two-dimensional absorbance ratio includes a filter with a central wavelength of 405 nm and a filter with a central wavelength of 670 nm, a filter with a central wavelength of 845 nm and a filter with a central wavelength of 1300 nm, and a filter with a central wavelength of 1300 nm and a filter with a central wavelength of 1850 nm. The nondestructive oil leakage corrosion diagnosis apparatus for electrical equipment according to any one of claims 1 to 4, characterized in that it is obtained by a combination of 前記光源部に380nm以上の波長の光をカットするフィルターを有することを特徴とする請求項1〜5のいずれかに記載の電気機器の非破壊漏油腐食診断装置。   The nondestructive oil leakage corrosion diagnostic apparatus for an electric device according to any one of claims 1 to 5, wherein the light source unit includes a filter that cuts light having a wavelength of 380 nm or more. 前記表示部の表示は漏油腐食進行の評価の表示であり、前記漏油腐食の進行に応じて表示色を変化させることを特徴とする請求項1〜6のいずれかに記載の電気機器の非破壊漏油腐食診断装置。   The display of the said display part is a display of evaluation of the progress of oil leakage corrosion, A display color is changed according to the progress of the said oil leakage corrosion, The electric device in any one of Claims 1-6 characterized by the above-mentioned. Non-destructive oil leakage corrosion diagnostic device. 前記二次元の画像情報は非圧縮のファイル形式であることを特徴とする請求項1〜7のいずれかに記載の電気機器の非破壊漏油腐食診断装置。   The non-destructive oil leakage corrosion diagnostic apparatus for electrical equipment according to claim 1, wherein the two-dimensional image information is in an uncompressed file format.
JP2006301434A 2006-11-07 2006-11-07 Nondestructive corrosion diagnostic system for leakage oil of electrical apparatus Pending JP2008116389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301434A JP2008116389A (en) 2006-11-07 2006-11-07 Nondestructive corrosion diagnostic system for leakage oil of electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301434A JP2008116389A (en) 2006-11-07 2006-11-07 Nondestructive corrosion diagnostic system for leakage oil of electrical apparatus

Publications (1)

Publication Number Publication Date
JP2008116389A true JP2008116389A (en) 2008-05-22

Family

ID=39502427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301434A Pending JP2008116389A (en) 2006-11-07 2006-11-07 Nondestructive corrosion diagnostic system for leakage oil of electrical apparatus

Country Status (1)

Country Link
JP (1) JP2008116389A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160275699A1 (en) * 2015-03-17 2016-09-22 Hitachi, Ltd. Oil Leakage Detector and Oil Leakage Detection Method
TWI617797B (en) * 2015-07-15 2018-03-11 Hitachi Ltd Oil spill detection system
CN109238994A (en) * 2018-08-28 2019-01-18 国网福建省电力有限公司 A kind of power equipment permeability detection method in the daytime
CN109460879A (en) * 2017-11-22 2019-03-12 国网浙江省电力公司湖州供电公司 A kind of running state of transformer assessment system and method based on grey target algorithm
JP2020052023A (en) * 2018-09-28 2020-04-02 独立行政法人国立高等専門学校機構 Method and device for diagnosing corrosion of aluminum
JP2020180946A (en) * 2019-04-26 2020-11-05 株式会社日立ビルシステム Method and device for detecting foreign substance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029641A (en) * 1983-07-27 1985-02-15 Mitsubishi Electric Corp Oil leakage detecting device
JPH04204241A (en) * 1990-11-30 1992-07-24 Shimadzu Corp Measuring apparatus for oil concentration
JPH08304272A (en) * 1995-05-11 1996-11-22 Kurabo Ind Ltd Method and instrument for optical measurement
JPH10239202A (en) * 1997-02-27 1998-09-11 Mitsubishi Electric Corp Method and device for leakage detection
JP2005241316A (en) * 2004-02-25 2005-09-08 Nec Corp Metal corrosion degree measuring method and device
JP2006162627A (en) * 2004-12-07 2006-06-22 Samsung Electro Mech Co Ltd Thickness measurement method of organic paint film on surface of metal
JP2006300858A (en) * 2005-04-25 2006-11-02 Toshiba Corp Water examination device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029641A (en) * 1983-07-27 1985-02-15 Mitsubishi Electric Corp Oil leakage detecting device
JPH04204241A (en) * 1990-11-30 1992-07-24 Shimadzu Corp Measuring apparatus for oil concentration
JPH08304272A (en) * 1995-05-11 1996-11-22 Kurabo Ind Ltd Method and instrument for optical measurement
JPH10239202A (en) * 1997-02-27 1998-09-11 Mitsubishi Electric Corp Method and device for leakage detection
JP2005241316A (en) * 2004-02-25 2005-09-08 Nec Corp Metal corrosion degree measuring method and device
JP2006162627A (en) * 2004-12-07 2006-06-22 Samsung Electro Mech Co Ltd Thickness measurement method of organic paint film on surface of metal
JP2006300858A (en) * 2005-04-25 2006-11-02 Toshiba Corp Water examination device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160275699A1 (en) * 2015-03-17 2016-09-22 Hitachi, Ltd. Oil Leakage Detector and Oil Leakage Detection Method
US9898830B2 (en) 2015-03-17 2018-02-20 Hitachi, Ltd. Oil leakage detector and oil leakage detection method
US20180137652A1 (en) * 2015-03-17 2018-05-17 Hitachi, Ltd. Oil Leakage Detector and Oil Leakage Detection Method and Image Processing Unit
US10755442B2 (en) 2015-03-17 2020-08-25 Hitachi, Ltd. Oil leakage detector and oil leakage detection method and image processing unit
TWI617797B (en) * 2015-07-15 2018-03-11 Hitachi Ltd Oil spill detection system
US10234355B2 (en) 2015-07-15 2019-03-19 Hitachi, Ltd. Leakage oil detection system
CN109460879A (en) * 2017-11-22 2019-03-12 国网浙江省电力公司湖州供电公司 A kind of running state of transformer assessment system and method based on grey target algorithm
CN109238994A (en) * 2018-08-28 2019-01-18 国网福建省电力有限公司 A kind of power equipment permeability detection method in the daytime
JP2020052023A (en) * 2018-09-28 2020-04-02 独立行政法人国立高等専門学校機構 Method and device for diagnosing corrosion of aluminum
JP7321436B2 (en) 2018-09-28 2023-08-07 独立行政法人国立高等専門学校機構 Aluminum corrosion diagnostic device and electric wire diagnostic system equipped with the device
JP2020180946A (en) * 2019-04-26 2020-11-05 株式会社日立ビルシステム Method and device for detecting foreign substance
JP7165101B2 (en) 2019-04-26 2022-11-02 株式会社日立ビルシステム Foreign matter detection method and foreign matter detection device

Similar Documents

Publication Publication Date Title
JP2008116389A (en) Nondestructive corrosion diagnostic system for leakage oil of electrical apparatus
KR101894683B1 (en) Metal body shape inspection device and metal body shape inspection method
KR100795373B1 (en) Method and apparatus for monitoring oil deterioration in real time
JP6735383B2 (en) Oil leakage detection device, oil leakage detection method, and image processing unit of oil leakage detection device
US8704174B2 (en) Refined oil degradation level measuring instrument and refined oil degradation level measuring method
JP6119926B1 (en) Metal body shape inspection apparatus and metal body shape inspection method
US20140004619A1 (en) Systems, Methods And Apparatus For Analysis of Multiphase Fluid Mixture In Pipelines
EP1096249A2 (en) Nondestructive inspection method and apparatus
CN107015125A (en) It is a kind of based on infrared, Uv and visible light integrated detection method and device
Zhang et al. Comparison of different characteristic parameters acquired by UV imager in detecting corona discharge
JP4045742B2 (en) Nondestructive inspection method and apparatus
KR20160032593A (en) Method and apparatus for detecting defects on the glass substrate using hyper-spectral imaging
JP2009075098A (en) Apparatus and method for measuring magnetic powder concentration
JP2019132644A (en) Tire deterioration evaluation system
WO2014192734A1 (en) Film thickness measurement method, film thickness measurement device, and recording medium
Nevin et al. Multi-photon excitation fluorescence and third-harmonic generation microscopy measurements combined with confocal Raman microscopy for the analysis of layered samples of varnished oil films
CN102621147A (en) Steel plate surface color difference defect detecting device
JP6784063B2 (en) Lubrication state identification device and lubrication state identification method
JP2005351910A (en) Defect inspection method and its apparatus
JP5946993B2 (en) Liquid oil leak detection device
JP4654894B2 (en) Oil film detection apparatus and method
JP5658091B2 (en) Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test
CN111784629B (en) Oil leakage detection method and system
JP6813316B2 (en) Deterioration information acquisition device, deterioration information acquisition system, deterioration information acquisition method and deterioration information acquisition program
JP2010276349A (en) Method of measuring film thickness, and film thickness measuring device and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A977 Report on retrieval

Effective date: 20110112

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110629

Free format text: JAPANESE INTERMEDIATE CODE: A523

A711 Notification of change in applicant

Effective date: 20110629

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213