JP2008116294A - Method for measuring road surface properties - Google Patents

Method for measuring road surface properties Download PDF

Info

Publication number
JP2008116294A
JP2008116294A JP2006299062A JP2006299062A JP2008116294A JP 2008116294 A JP2008116294 A JP 2008116294A JP 2006299062 A JP2006299062 A JP 2006299062A JP 2006299062 A JP2006299062 A JP 2006299062A JP 2008116294 A JP2008116294 A JP 2008116294A
Authority
JP
Japan
Prior art keywords
road surface
crack
flatness
measured
pattern diagram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006299062A
Other languages
Japanese (ja)
Other versions
JP4950620B2 (en
Inventor
Michi Sekiya
美智 関谷
Toru Hayashi
透 林
Eiichiro Sumiya
英一郎 角谷
Michihiro Hori
倫裕 堀
Yoshihiro Takahashi
好廣 高橋
Shusuke Suzuki
秀輔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Hokkaido Electric Power Co Inc
Taisei Rotec Corp
Original Assignee
Taisei Corp
Hokkaido Electric Power Co Inc
Taisei Rotec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Hokkaido Electric Power Co Inc, Taisei Rotec Corp filed Critical Taisei Corp
Priority to JP2006299062A priority Critical patent/JP4950620B2/en
Publication of JP2008116294A publication Critical patent/JP2008116294A/en
Application granted granted Critical
Publication of JP4950620B2 publication Critical patent/JP4950620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Repair (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring inexpensive road surface properties capable of measuring the road surface properties, using less working labor and time. <P>SOLUTION: In this method for measuring road surface properties, flatness σ, track drill depth D, and crack rate C as the reference for repair of the road surface are measured. A vehicle 3, having a vibration measuring apparatus 2, is made to travel at a constant speed, the frequency in a predetermined segment of a measured road surface 1 is detected, the flatness property σ in the segment is determined from the frequency, based on the correlation table of the flatness properties, with respect to the previously formed frequency, thereby measuring the flatness σ. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、路面の補修を行う基準となる路面の平たん性、わだち掘れ深さ、ひび割れ率を測定する路面性状測定方法に関する。   The present invention relates to a road surface property measuring method for measuring flatness, rutting depth, and cracking rate of a road surface that serves as a reference for repairing the road surface.

道路の補修工事を行うに際しては、路面の劣化状態を測定する路面性状測定を行って、その測定値より舗装の評価数値(MCI(メンテナンス・コントロール・インデックス)値)を算出し、その評価数値に応じて、補修工事の順序が決定される。すなわち、基本的には舗装の劣化進行の大きい路面から補修工事が行われるようになっている。路面性状測定は、路面の平たん性、わだち掘れ深さ、ひび割れ率を測定して、これらの値からMCI値を算出する。   When repairing roads, measure the road surface properties to measure the deterioration of the road surface, calculate the pavement evaluation value (MCI (maintenance control index) value) from the measured value, and use that as the evaluation value. The order of repair work is determined accordingly. That is, repair work is basically performed from the road surface where the progress of pavement deterioration is large. In the road surface property measurement, the flatness of the road surface, the rutting depth, and the crack rate are measured, and the MCI value is calculated from these values.

従来、路面性状測定を行うには、種々の方法があったが、その一つとして、路面性状測定車(例えば、特許文献1乃至3参照)を使用する場合があった。路面性状測定車は、平たん性、わだち掘れ深さ、ひび割れ率を走行しながら測定できる車両である。路面性状測定車は、例えば、真上から路面に照射したレーザ光線の反射により路面からの高さを検出し、距離信号に重ねながら路面画像を撮影し、リアルタイム画像専用処理機により自動解析し、高精度な平たん性データを測定する。また、路面性状測定車は、例えば、路面画像を撮影しつつ、レーザと光検出器を用いながら、幅1mm以上のひび割れを検出してひび割れ率を算出する。さらに、路面性状測定車は、例えば、真上から路面に走査されたレーザ光線による反射映像をCCDカメラにより記録し、その映像データをリアルタイム画像専用処理機により自動解析し、正確なわだち掘れ深さを測定する。以上のような路面性状測定車によれば、正確な測定データを短時間で得ることができる。   Conventionally, there are various methods for measuring road surface properties, and one of them is to use a road surface property measuring vehicle (see, for example, Patent Documents 1 to 3). The road surface property measuring vehicle is a vehicle that can measure flatness, rutting depth, and crack rate while traveling. The road surface property measuring vehicle, for example, detects the height from the road surface by reflection of the laser beam irradiated onto the road surface from directly above, captures the road surface image while superimposing it on the distance signal, and automatically analyzes it with a dedicated real-time image processor Measure flatness data with high accuracy. Further, the road surface property measuring vehicle detects a crack having a width of 1 mm or more and calculates a crack rate while taking a road surface image and using a laser and a photodetector. Furthermore, the road surface property measuring vehicle records, for example, a reflected image by a laser beam scanned on the road surface from directly above with a CCD camera, and the image data is automatically analyzed by a dedicated real-time image processor to obtain an accurate rutting depth. Measure. According to the road surface property measuring vehicle as described above, accurate measurement data can be obtained in a short time.

その他に、簡易な路面性状測定方法として、以下のような方法があった。   In addition, as a simple road surface property measuring method, there was the following method.

路面の平たん性を測定するには、3メートルプロフィルメータを用いている。3メートルプロフィルメータは、3メートルの直線状部材の中間に、路面との距離を測定する測定装置を備えており、路面の走行方向に沿って直線状部材の長手方向に牽引しながら、直線上部材と路面との距離を測定して、路面の走行方向の平たん性を測定するように構成されている。   A 3 meter profilometer is used to measure the flatness of the road surface. The 3-meter profilometer is equipped with a measuring device that measures the distance to the road surface in the middle of the 3-meter linear member, and pulls in the longitudinal direction of the linear member along the running direction of the road surface. The distance between the member and the road surface is measured, and the flatness in the traveling direction of the road surface is measured.

路面のひび割れ率を測定するには、特に計測試験機などは用いず、ステッキメジャー等でひび割れ位置や長さを確認し、グラフ用紙にスケッチする。そして、グラフ用紙の単位マス内のクラックの有無を確認して、ひび割れ率を算出する。   To measure the crack rate on the road surface, do not use a measurement tester in particular, check the crack position and length with a stick measure, etc., and sketch on the graph paper. Then, the crack rate is calculated by checking the presence or absence of cracks in the unit cell of the graph paper.

路面のわだち掘れ深さを測定するには、横断凹凸プロフィルメータを用いている。横断凹凸プロフィルメータは、道路の一車線分の幅と同等の長さの直線状部材と、この直線状部材の長手方向に移動自在に設けられ路面との距離を測定する測定装置とを有しており、路面の横断方向に沿って配置され、測定装置を横断方向に移動させながら、路面との距離を測定して、わだち掘れ深さを測定するように構成されている。
特開2000−194983号公報 特開平10−2727号公報 特開平9−96515号公報
In order to measure the rutting depth of the road surface, a transverse unevenness profilometer is used. The transverse unevenness profilometer has a linear member having a length equivalent to the width of one lane of the road, and a measuring device that is movably provided in the longitudinal direction of the linear member and measures the distance from the road surface. It is arranged along the crossing direction of the road surface, and is configured to measure the rutting depth by measuring the distance from the road surface while moving the measuring device in the crossing direction.
JP 2000-194983 A Japanese Patent Laid-Open No. 10-2727 JP-A-9-96515

しかしながら、路面性状測定車は非常に高価(億単位)であり、路面性状測定を行うに際しても非常に高いコスト(数百万〜数千万円)がかかるといった問題があった。そのため、路面性状測定車は、国や都道府県が管理している道路では使用されているが、市町村が管理している道路では予算が合わないのが現状である。よって、市町村が管理している道路では、前記したような簡易な路面性状測定方法を採用するようになるが、この路面性状測定方法では、以下のような問題があった。   However, the road surface property measuring vehicle is very expensive (100 million units), and there is a problem that a very high cost (several millions to tens of millions of yen) is required to perform the road surface property measurement. For this reason, road surface property measuring vehicles are used on roads managed by the country and prefectures, but the current situation is that budgets do not match on roads managed by municipalities. Therefore, the road managed by the municipality adopts the simple road surface property measuring method as described above, but this road surface property measuring method has the following problems.

3メートルプロフィルメータを用いて平たん性を測定する場合には、装置自体は比較的安価であるが、作業員が人力で引っ張って測定をおこなうために、測定速度が遅く、非常に多くの時間と手間を要していた。また、横断凹凸プロフィルメータを用いてわだち掘れ深さを測定する場合には、測定の際に一車線を完全に遮断する必要があり、交通に影響を及ぼすとともに、最大わだち掘れ深さを読み取る作業が必要となる。さらに、路面のひび割れ率を測定する場合には、特に測定器などは用いないので、安価に測定を行うことができるが、測定作業員の熟練によって測定精度が左右されるとともに、作業に非常に多くの時間と手間を要する。   When measuring flatness using a 3 meter profilometer, the device itself is relatively inexpensive, but the measurement speed is slow and very long because the operator pulls it manually. It took time and effort. In addition, when measuring the rutting depth using a transverse unevenness profile meter, it is necessary to completely block one lane during the measurement, which affects traffic and reads the maximum rutting depth. Is required. In addition, when measuring the crack rate on the road surface, no measuring instrument is used, so it can be measured at low cost, but the measurement accuracy depends on the skill of the measurement operator, and the work is very difficult. It takes a lot of time and effort.

そこで、本発明は前記の問題を解決すべく案出されたものであって、安価で且つ少ない作業手間と時間で路面性状を測定できる路面性状測定方法を提供することを目的とする。   Therefore, the present invention has been devised to solve the above-described problems, and an object thereof is to provide a road surface property measuring method that can measure road surface properties at low cost and with less work and time.

前記課題を解決するための請求項1に係る発明は、路面の補修を行う基準となる路面の平たん性、わだち掘れ深さ、ひび割れ率を測定する路面性状測定方法において、振動測定器を搭載した車両を一定速度で走行させて、被測定路面の所定の区間内での振動数を検出して、その振動数に応じて前記区間内の平たん性を決定することで、前記平たん性を測定することを特徴とする路面性状測定方法である。   The invention according to claim 1 for solving the above-mentioned problem is equipped with a vibration measuring instrument in a road surface property measuring method for measuring flatness, rutting depth, and crack rate of a road surface, which is a reference for repairing the road surface. By driving the vehicle at a constant speed, detecting the frequency in a predetermined section of the road surface to be measured, and determining the flatness in the section according to the frequency, the flatness It is a road surface property measuring method characterized by measuring.

このような方法によれば、車両に搭載した振動測定器で検出した振動数に応じて、平たん性を測定するので、車両を走行させながら測定することができ、従来の3メートルプロフィルメータを用いた場合と比較して作業手間と時間を大幅に低減することができる。さらに、振動測定器は、路面性状測定車と比較して大幅に安価である。   According to such a method, since the flatness is measured according to the vibration frequency detected by the vibration measuring device mounted on the vehicle, it can be measured while the vehicle is running, and the conventional 3 meter profilometer can be used. Compared to the case of using it, the labor and time can be greatly reduced. Furthermore, the vibration measuring device is significantly less expensive than the road surface property measuring vehicle.

請求項2に係る発明は、前記平たん性は、予め形成された、前記振動数に対する平たん性の相関表に基づいて決定されることを特徴とする請求項1に記載の路面性状測定方法である。   The invention according to claim 2 is characterized in that the flatness is determined based on a correlation table of flatness with respect to the frequency, which is formed in advance. It is.

このような方法によれば、実測されたデータに基づいて平たん性が決定されるので、精度の高い平たん性のデータを得ることができる。   According to such a method, since flatness is determined based on actually measured data, highly accurate flatness data can be obtained.

請求項3に係る発明は、路面の補修を行う基準となる路面の平たん性、わだち掘れ深さ、ひび割れ率を測定する路面性状測定方法において、複数のわだち掘れ深さに対応する複数の路面表面形状を図示した表面形状パターン図を形成しておき、一方、被測定路面の所定の位置に横断方向に延びるラインを引き、前記ラインを所定の角度から観測するとともに前記表面形状パターン図と比較して最も近い表面形状パターン図を選択することで、前記わだち掘れ深さを決定することを特徴とする路面性状測定方法である。   The invention according to claim 3 is a road surface property measuring method for measuring flatness, rutting depth, crack ratio of a road surface which is a reference for repairing the road surface, and a plurality of road surfaces corresponding to plural rutting depths. A surface shape pattern diagram illustrating the surface shape is formed, and on the other hand, a line extending in the transverse direction is drawn at a predetermined position on the road surface to be measured, and the line is observed from a predetermined angle and compared with the surface shape pattern diagram. Then, the road surface property measuring method is characterized in that the rubbing depth is determined by selecting the closest surface shape pattern diagram.

このような方法によれば、測定作業者は、被測定路面上あるいは被測定路面脇の所定の位置で所定の高さから被測定路面と表面形状パターン図を比較するだけで、わだち掘れ深さを決定できるので、従来の横断凹凸プロフィルメータを用いた場合と比較して作業手間と時間を大幅に低減することができる。さらに、路面性状測定車と比較して安価であるのは勿論、横断凹凸プロフィルメータと比較しても大幅に安価である。   According to such a method, the measurement operator can compare the measured road surface and the surface shape pattern diagram from a predetermined height at a predetermined position on the side of the measured road surface or on the side of the measured road surface. Therefore, the labor and time can be greatly reduced as compared with the case of using a conventional transverse unevenness profilometer. Furthermore, it is cheaper than a road surface property measuring vehicle, and is also considerably cheaper than a transverse unevenness profilometer.

請求項4に係る発明は、前記表面形状パターン図は、透明シートに前記路面表面形状を図示して形成されており、前記表面形状パターン図を前記被測定路面に被せるように観測して、前記被測定路面と前記表面形状パターン図とを比較することを特徴とする請求項3に記載の路面性状測定方法である。   In the invention according to claim 4, the surface shape pattern diagram is formed by illustrating the road surface shape on a transparent sheet, and the surface shape pattern diagram is observed so as to cover the measured road surface, The road surface property measuring method according to claim 3, wherein the measured road surface and the surface shape pattern diagram are compared.

このような方法によれば、被測定路面と表面形状パターン図とを視線上で重ねて直接的に観測することができるので、その比較を短時間でできるとともに、わだち掘れ深さの測定精度を高めることができる。   According to such a method, since the road surface to be measured and the surface shape pattern diagram can be directly observed on the line of sight, the comparison can be made in a short time and the measurement accuracy of the rutting depth can be improved. Can be increased.

請求項5に係る発明は、路面の補修を行う基準となる路面の平たん性、わだち掘れ深さ、ひび割れ率を測定する路面性状測定方法において、複数のひび割れ率に対応する複数のひび割れ形状を図示したひび割れパターン図を形成しておき、前記ひび割れパターン図を被測定路面と比較して最も近いひび割れパターン図を選択することで、前記ひび割れ率を決定することを特徴とする路面性状測定方法である。   The invention according to claim 5 is a road surface property measuring method for measuring flatness, rutting depth, and crack rate of a road surface, which is a reference for repairing the road surface, wherein a plurality of crack shapes corresponding to a plurality of crack rates are provided. In the road surface property measuring method, a crack pattern diagram is formed, and the crack rate is determined by selecting the closest crack pattern diagram by comparing the crack pattern diagram with the road surface to be measured. is there.

このような方法によれば、測定作業者は、被測定路面上あるいは被測定路面脇から被測定路面とひび割れパターン図を比較するだけで、ひび割れ率を決定できるので、作業手間と時間を大幅に低減することができる。また、従来のグラフ用紙にスケッチする方法と比較して精度はほとんど変わらない。さらに、路面性状測定車と比較して安価であるのは勿論、スケッチする方法と比較しても消耗品を必要とせず作業人数が少なくて済むので安価に測定することができる。   According to such a method, the measurement operator can determine the crack rate simply by comparing the measured road surface and the crack pattern diagram from the measured road surface or from the measured road surface, greatly reducing the labor and time. Can be reduced. In addition, the accuracy is almost the same as in the conventional method of sketching on graph paper. Furthermore, it is inexpensive compared with the road surface property measuring vehicle, and it can be measured at low cost because no consumables are required and the number of workers is small compared with the sketching method.

請求項6に係る発明は、前記ひび割れパターン図は、透明シートに前記ひび割れ形状を図示して形成されており、前記ひび割れパターン図を前記被測定路面に被せるように観測して、前記被測定路面と前記ひび割れパターン図とを比較することを特徴とする請求項5に記載の路面性状測定方法である。   In the invention according to claim 6, the crack pattern diagram is formed by showing the crack shape on a transparent sheet, and the crack pattern diagram is observed so as to cover the measured road surface. The road surface property measuring method according to claim 5, wherein the crack pattern pattern is compared with the crack pattern diagram.

このような方法によれば、被測定路面とひび割れパターン図とを視線上で重ねて直接的に観測することができるので、その比較を短時間でできるとともに、ひび割れ率の測定精度を高めることができる。   According to such a method, since the road surface to be measured and the crack pattern diagram can be directly observed by overlapping on the line of sight, the comparison can be performed in a short time and the measurement accuracy of the crack rate can be improved. it can.

本発明によれば、安価で且つ少ない作業手間と時間で路面性状を測定できるといった優れた効果を発揮する。   According to the present invention, it is possible to obtain an excellent effect that the road surface property can be measured at a low cost with less work and time.

次に、本発明を実施するための最良の形態について、添付図面を参照しながら詳細に説明する。なお、説明において、同一の要素には同一の番号を付し、重複する説明は省略する。   Next, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は本発明に係る路面性状測定方法を実施するための最良の形態の平たん性を測定する状態を示した側面図、図2は振動数と平たん性との相対関係を示した相関図、図3は本発明に係る路面性状測定方法を実施するための最良の形態のわだち掘り深さを測定する状態を示した斜視図、図4はわだち掘り深さの測定位置を示した側面図、図5は本発明に係る路面性状測定方法を実施するための最良の形態の表面形状パターン図を示した正面図、図6は本発明に係る路面性状測定方法を実施するための最良の形態の他の表面形状パターン図を示した正面図、図7はひび割れ率を測定する被測定路面を示した斜視図、図8は本発明に係る路面性状測定方法を実施するための最良の形態のひび割れパターン図を示した正面図である。   FIG. 1 is a side view showing a state of measuring the flatness of the best mode for carrying out the road surface property measuring method according to the present invention, and FIG. 2 is a correlation showing the relative relationship between the frequency and the flatness. FIG. 3, FIG. 3 is a perspective view showing a state of measuring the rutting depth of the best mode for carrying out the road surface property measuring method according to the present invention, and FIG. 4 is a side view showing a measuring position of the rutting depth. FIG. 5, FIG. 5 is a front view showing a surface shape pattern diagram of the best mode for carrying out the road surface property measuring method according to the present invention, and FIG. 6 is the best view for carrying out the road surface property measuring method according to the present invention. 7 is a front view showing another surface shape pattern diagram, FIG. 7 is a perspective view showing a measured road surface for measuring the crack rate, and FIG. 8 is the best mode for carrying out the road surface property measuring method according to the present invention. It is the front view which showed the crack pattern figure.

本実施の形態に係る路面性状測定方法は、路面の劣化状態を測定する方法であって、路面の平たん性、わだち掘れ深さ、ひび割れ率をそれぞれ測定する。そして、路面性状測定方法で得られた測定結果は、道路の補修工事を行う順番を決めるMCI(メンテナンス・コントロール・インデックス)値を算出するのに利用される。   The road surface property measuring method according to the present embodiment is a method of measuring a road surface deterioration state, and measures road surface flatness, rutting depth, and cracking rate. The measurement result obtained by the road surface property measuring method is used to calculate an MCI (maintenance control index) value that determines the order of road repair work.

まず、かかる路面性状測定方法のうち、路面(被測定路面1)の平たん性σを測定する方法を説明する。平たん性σを測定するに際しては、図1に示すように、振動測定器2を搭載した車両3を、被測定路面1上を一定速度(例えば、時速30kmまたは50km)で走行させる。そして、振動測定器2で、所定の区間内(例えば100メートル)での振動数を検出する。ここで、一度の測定では長距離を走行し、所定の長さ単位で分割された複数の区間を連続して測定する。   First, a method for measuring the flatness σ of the road surface (measured road surface 1) among the road surface property measuring methods will be described. When measuring the flatness σ, as shown in FIG. 1, the vehicle 3 equipped with the vibration measuring device 2 is made to travel on the road surface 1 to be measured at a constant speed (for example, 30 km or 50 km per hour). Then, the vibration measuring device 2 detects the vibration frequency within a predetermined section (for example, 100 meters). Here, in a single measurement, the vehicle travels a long distance and continuously measures a plurality of sections divided by a predetermined length unit.

本発明は、検出された振動数に応じて、区間内の平たん性σを決定することで、被測定路面1の平たん性σを測定するようになっている。これは、平たん性σが悪い(平たん性σの数値が大きい)と、走行する車両3に多くの振動が発生するという現象を利用したものである。具体的には、平たん性σは、予め形成された振動数に対する平たん性σの相関表(図2参照)に基づいて決定されるようになっている。相関表は、従来の方法で平たん性σが求められている路面(図示せず)に、振動測定器2を備えた車両3を走行させて、所定の平たん性σに対する振動数を測定する実走行試験を行うことで形成される。このとき、振動測定器2の測定感度(加速度、速度、変位など)は一定にしておく。この実走行試験は、同一の路面で複数回行い、その平均値を算出することで、相関表の精度を高めている。また、実走行試験は、複数の路面で行い、複数の数値の平たん性σについて、平たん性σに対応する振動数をそれぞれ測定する。   In the present invention, the flatness σ of the road surface 1 to be measured is measured by determining the flatness σ in the section according to the detected frequency. This utilizes the phenomenon that when the flatness σ is poor (the flatness σ has a large numerical value), a lot of vibration is generated in the traveling vehicle 3. Specifically, the flatness σ is determined based on a correlation table (see FIG. 2) of the flatness σ with respect to the frequency formed in advance. The correlation table is obtained by driving a vehicle 3 equipped with a vibration measuring device 2 on a road surface (not shown) for which flatness σ is determined by a conventional method, and measuring the frequency with respect to the predetermined flatness σ. It is formed by performing an actual running test. At this time, the measurement sensitivity (acceleration, speed, displacement, etc.) of the vibration measuring instrument 2 is kept constant. This actual running test is performed a plurality of times on the same road surface, and the average value is calculated, thereby improving the accuracy of the correlation table. In addition, the actual running test is performed on a plurality of road surfaces, and the frequency corresponding to the flatness σ is measured for each of the flatness σ of a plurality of numerical values.

相関表は、例えば、図2に示すように形成されている。実走行試験によって計測された所定の走行距離での振動数が0〜30の場合は、平たん性σは、0〜0.5となる。この場合、MCI値の計算には0.5が用いられる。また、振動数が30(30は含まず)〜50の場合は、平たん性σは、0.5(0.5は含まず)〜1.0となる。この場合、MCI値の計算には1.0が用いられる。さらに、振動数が50(50は含まず)〜100の場合は、平たん性σは、1.0(1.0は含まず)〜1.5となる。この場合、MCI値の計算には1.5が用いられる。そして、振動数が増加すると、図2に示す数値のように、平たん性σの数値も増加する。なお、振動数が1000(1000は含まず)〜の場合は、平たん性σは、4.0(4.0は含まず)〜5.0となる。この場合、MCI値の計算には5.0が用いられる。   The correlation table is formed, for example, as shown in FIG. When the frequency at a predetermined travel distance measured by the actual travel test is 0 to 30, the flatness σ is 0 to 0.5. In this case, 0.5 is used to calculate the MCI value. When the frequency is 30 (not including 30) to 50, the flatness σ is 0.5 (not including 0.5) to 1.0. In this case, 1.0 is used to calculate the MCI value. Further, when the frequency is 50 (not including 50) to 100, the flatness σ is 1.0 (not including 1.0) to 1.5. In this case, 1.5 is used to calculate the MCI value. When the frequency increases, the flatness σ also increases as shown in FIG. When the frequency is 1000 (excluding 1000) or more, the flatness σ is 4.0 (excluding 4.0) to 5.0. In this case, 5.0 is used to calculate the MCI value.

次に、かかる路面性状測定方法のうち、路面(被測定路面1)のわだち掘れ深さDを測定する方法を説明する。わだち掘れ深さDを測定するに際しては、まず、図3に示すように、被測定路面1の測定位置となる所定の位置に横断方向に延びるライン4を引く。ライン4は、チョークなどで引いておき、測定後に他の車両が走行することで自然に消えるようにするのが好ましい。そして、図4に示すように、ライン4を所定の角度αから観測する。このとき、ライン4から所定距離L離間した位置で、所定の高さHに目線を合わせることで、所定の角度αで観測することができる。なお、ライン4の観測は、車両内から行えば、風雨の影響を受けないので好ましい。   Next, among the road surface property measuring methods, a method for measuring the rutting depth D of the road surface (measured road surface 1) will be described. When measuring the rutting depth D, first, as shown in FIG. 3, a line 4 extending in the transverse direction is drawn to a predetermined position as a measurement position of the measured road surface 1. It is preferable that the line 4 is drawn with a chalk or the like and disappears naturally when another vehicle travels after the measurement. Then, as shown in FIG. 4, the line 4 is observed from a predetermined angle α. At this time, it is possible to observe at a predetermined angle α by aligning the line of sight with a predetermined height H at a position separated from the line 4 by a predetermined distance L. Note that it is preferable to observe the line 4 from the inside of the vehicle because it is not affected by wind and rain.

一方、複数のわだち掘れ深さDに対応する複数の路面表面形状を図示した表面形状パターン図5a,5b,5c,5d,5e,5f(図5参照)を予め形成しておく。各表面形状パターン図5a,5b,5c,5d,5e,5fは、各わだち掘れ深さDごとに路面の表面形状をプレートにそれぞれ図示して形成されている。プレートは透明シート6にて構成されており、プレートの向こう側が透過できるようになっている。各表面形状パターン図5a,5b,5c,5d,5e,5fには、表面形状に応じたわだち掘れ深さDが表示されている。本実施の形態では、表面形状パターン図5a,5b,5c,5d,5e,5fは6種類形成されており、わだち掘れ深さDが5mm,10mm,20mm,30mm,40mm,50mmの6段階で表示されている。   On the other hand, surface shape pattern diagrams 5a, 5b, 5c, 5d, 5e and 5f (see FIG. 5) illustrating a plurality of road surface shapes corresponding to a plurality of rutting depths D are formed in advance. In each of the surface shape pattern diagrams 5a, 5b, 5c, 5d, 5e, and 5f, the surface shape of the road surface is illustrated on the plate for each rutting depth D, respectively. The plate is composed of a transparent sheet 6 so that the other side of the plate can be transmitted. In each of the surface shape pattern diagrams 5a, 5b, 5c, 5d, 5e, and 5f, a rutting depth D corresponding to the surface shape is displayed. In the present embodiment, the surface shape pattern diagrams 5a, 5b, 5c, 5d, 5e, and 5f are formed in six types, and the rutting depth D is 6 steps of 5 mm, 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm. It is displayed.

ライン4の観測は、複数の路面表面形状を図示した表面形状パターン図5a,5b,5c,5d,5e,5fと比較して、形状が一致するか、あるいは最も近い表面形状パターン図5a(5b,5c,5d,5e,5f)を選択する。このとき、測定作業者は各表面形状パターン図5a(5b,5c,5d,5e,5f)を、視線上に入れて、被測定路面1に被せるように観測して、被測定路面1と表面形状パターン図5a,5b,5c,5d,5e,5fとを比較すれば、短時間で且つ正確な測定を行うことができる。そして選択した表面形状パターン図5a(5b,5c,5d,5e,5f)に表示された数値を、被測定路面1のわだち掘れ深さDとする。かかるわだち掘れ深さDの測定は、表面が凹凸の路面にライン4を引いて所定の角度αから観察すると、一定の形状に見えるといった性質を利用したものである。   The observation of the line 4 is performed by comparing the surface shape pattern diagrams 5a, 5b, 5c, 5d, 5e, and 5f showing the plurality of road surface shapes with the same or closest surface shape pattern diagrams 5a (5b). , 5c, 5d, 5e, 5f). At this time, the measurement operator puts each surface shape pattern diagram 5a (5b, 5c, 5d, 5e, 5f) on the line of sight and observes it so as to cover the measured road surface 1, and the measured road surface 1 and the surface If the shape pattern diagrams 5a, 5b, 5c, 5d, 5e, and 5f are compared, accurate measurement can be performed in a short time. The numerical value displayed in the selected surface shape pattern diagram 5a (5b, 5c, 5d, 5e, 5f) is the rutting depth D of the road surface 1 to be measured. The measurement of the rutting depth D utilizes the property that the surface looks like a certain shape when the line 4 is drawn on an uneven road surface and observed from a predetermined angle α.

なお、路面の劣化状態は、道路の使用状況や使用環境に応じて変わってくる。そのため、表面形状パターン図は、図5に示したもの以外にも予め形成しておく。例えば、温暖地域で夏季の路面温度の高い時期で、大型車の通過頻度の高いアスファルト製の路面では、図6に示すように、アスファルトの塑性流動が発生して、路面表面の磨耗の他に変形が発生する。具体的には、車輪が接触するわだち部分の表面に磨耗が発生するとともに、わだち部分の下部のアスファルトが両側に押し退けられて、わだち部分の両側が隆起する。図6の表面形状パターン図7a,7b,7c,7d,7e,7fも6種類形成されており、わだち掘れ深さDが5mm,10mm,20mm,30mm,40mm,50mmの6段階で表示されている。   In addition, the deterioration state of a road surface changes according to the use condition and use environment of a road. Therefore, the surface shape pattern diagram is formed in advance other than that shown in FIG. For example, on an asphalt road surface in which a large vehicle passes frequently at a time when the road surface temperature is high in summer in a warm region, asphalt plastic flow occurs, as shown in FIG. 6, in addition to wear on the road surface. Deformation occurs. Specifically, wear occurs on the surface of the rudder portion that comes into contact with the wheel, and the asphalt at the lower part of the rudder portion is pushed away to both sides, and both sides of the rudder portion rise. 6 types of surface shape pattern diagrams 7a, 7b, 7c, 7d, 7e, and 7f are also formed, and the digging depth D is displayed in six stages of 5 mm, 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm. Yes.

なお、高い精度が必要な場合は、直定規とクサビ部材を用いて、わだち掘れ深さを実測してもよい。   When high accuracy is required, the rutting depth may be measured using a straight ruler and a wedge member.

次に、かかる路面性状測定方法のうち、路面(被測定路面1)のひび割れ率Cを測定する方法を説明する。路面のひび割れは、図7に示すように、主に、縦ひび割れ8aと横ひび割れ8bとがある。縦ひび割れ8aは、路面の縦断方向に沿って1本または複数本の線で発生するもので、線状ひび割れともいう。縦ひび割れ8aは、車輪の通過位置(わだち掘れの発生位置)に多く発生する。横ひび割れ8bは、路面の横断方向に沿って発生するものである。横ひび割れ8bは、アスファルト舗装では、路面内に水道管やガス管などの構造物が横断している箇所に発生するケースが多く、コンクリート舗装では、舗装体と下地との温度収縮の差が大きく、目地部が対応しきれずに発生する場合が多い。図示していないが、ひび割れは、その他に面状ひび割れや切盛境のひび割れなどがある。面状ひび割れは、舗装面全体に亀甲状に発生するものであって、線状ひび割れが発達して発生したり、アスファルト混合物の性状や施工状況に起因して発生するケースが多い。切盛境のひび割れは、切土部と盛土部の境界線上に発生するひび割れで、切土盛土の形状と同じ形で路面の表面に現れるものがほとんどである。切盛境のひび割れは、路床より下部の不等沈下によって発生する場合が多い。   Next, a method for measuring the crack rate C of the road surface (measured road surface 1) among the road surface property measuring methods will be described. As shown in FIG. 7, road cracks mainly include vertical cracks 8a and horizontal cracks 8b. The vertical crack 8a is generated by one or a plurality of lines along the longitudinal direction of the road surface, and is also referred to as a linear crack. Longitudinal cracks 8a frequently occur at the wheel passing position (the position where rutting is generated). The lateral crack 8b occurs along the cross direction of the road surface. Horizontal cracks 8b often occur in places where water pipes and gas pipes and other structures cross the road surface in asphalt pavement. In concrete pavement, the difference in temperature shrinkage between the pavement and the ground is large. In many cases, the joint portion is not fully supported. Although not shown in the drawing, the cracks include a planar crack and a crack at a cutting edge. Planar cracks occur in the form of a turtle shell on the entire pavement surface, and are often generated by the development of linear cracks or due to the properties of the asphalt mixture and construction conditions. Cracks on the cut-off boundary are cracks that occur on the boundary line between the cut portion and the fill portion, and most appear on the surface of the road surface in the same shape as the shape of the cut embankment. Cracks on the cut edge often occur due to uneven settlement below the roadbed.

ひび割れ率Cを測定するに際しては、まず、例えば10%、20%・・・というように複数のひび割れ率に対応するひび割れパターン図を形成しておく。図8に示すように、ひび割れパターン図9a,9b,9cは、同じひび割れ率(例えば、10%)で、複数のパターンが形成されている。例えば、ひび割れパターン図9aは、縦ひび割れ8aが1条発生したパターンを示しており、縦ひび割れ8a1本当たりでひび割れ率10%に相当する。ひび割れパターン図9bは、縦ひび割れ8aと横ひび割れ8bとが混在したパターンを示しており、図示する程度の割合の場合、ひび割れ率Cが10%となる。ひび割れパターン図9cは、部分補修を行ったパッチング部分8cを含むパターンを示しており、パッチング部分8cが図示する程度の割合の場合、ひび割れ率Cが10%となる。ひび割れパターン図9a,9b,9cは、各種パターンをプレートに図示して形成されている。プレートは透明シート6にて構成されており、プレートの向こう側が透過できるようになっている。各ひび割れパターン図9a,9b,9cには、ひび割れの状態に応じたひび割れ率C(図9では全てひび割れ率C=10%)が表示されている。また、各ひび割れパターン図9a,9b,9cには、格子状のグリッドが形成されており、実際の路面との比較が行いやすくなっている。ひび割れパターン図は、図9に示すものに限られるものではなく、複数のひび割れ率C(5%,10%,20%,30%,40%,50%)ごとに形成されている。また、ひび割れのパターンも、図9に示すものに限られるものではなく、面状ひび割れを含むパターンや、種々のひび割れを組み合わせたパターンを形成するようにしてもよい。   When measuring the crack rate C, first, a crack pattern diagram corresponding to a plurality of crack rates such as 10%, 20%,... Is formed. As shown in FIG. 8, in the crack pattern diagrams 9a, 9b, and 9c, a plurality of patterns are formed with the same crack rate (for example, 10%). For example, the crack pattern FIG. 9a shows a pattern in which one vertical crack 8a is generated, which corresponds to a crack rate of 10% per one vertical crack 8a. Crack pattern FIG. 9b shows a pattern in which vertical cracks 8a and horizontal cracks 8b are mixed. In the case of the ratio shown in the figure, the crack rate C is 10%. Crack pattern FIG. 9c shows a pattern including a patching portion 8c that has undergone partial repair. When the ratio of the patching portion 8c is as shown, the crack rate C is 10%. Crack patterns FIGS. 9a, 9b, and 9c are formed by showing various patterns on a plate. The plate is composed of a transparent sheet 6 so that the other side of the plate can be transmitted. In each of the crack patterns 9a, 9b, and 9c, a crack rate C corresponding to the state of the crack (the crack rate C = 10% in FIG. 9) is displayed. In addition, each crack pattern figure 9a, 9b, 9c has a grid-like grid, which makes it easy to compare with the actual road surface. The crack pattern diagram is not limited to that shown in FIG. 9, but is formed for each of a plurality of crack ratios C (5%, 10%, 20%, 30%, 40%, 50%). Further, the crack pattern is not limited to that shown in FIG. 9, and a pattern including a planar crack or a combination of various cracks may be formed.

ひび割れ率Cを測定するに際しては、前記ひび割れパターン図9a,9b,9cを含む複数のひび割れパターン図と被測定路面1とを比較して、同一かあるいは最も近いひび割れパターン図を選択する。このとき、測定作業者はひび割れパターン図9a,9b,9cを、視線上に入れて、被測定路面1に被せるように観測して、被測定路面1とひび割れパターン図9a(9b,9c)とを比較すれば、短時間で且つ正確な測定を行うことができる。そして選択したひび割れパターン図9a(9b,9c)に表示された数値を、被測定路面1のひび割れ率Cとする。かかるひび割れ率Cの測定は、ひび割れの形状と長さによって、ひび割れ率Cが大まか決定できるといった性質を利用したものである。   When measuring the crack rate C, a plurality of crack pattern diagrams including the crack pattern diagrams 9a, 9b, and 9c are compared with the measured road surface 1, and the same or closest crack pattern diagram is selected. At this time, the measurement operator puts the crack pattern diagrams 9a, 9b, 9c on the line of sight and observes them so as to cover the measured road surface 1, and the measured road surface 1 and the crack pattern diagrams 9a (9b, 9c) Can be measured in a short time and accurately. The numerical value displayed in the selected crack pattern figure 9a (9b, 9c) is taken as the crack rate C of the road surface 1 to be measured. The measurement of the crack rate C utilizes the property that the crack rate C can be roughly determined by the shape and length of the crack.

以上のように、測定された平たん性σ、ひび割れ率Cおよびわだち掘れ深さDは、図9に示すような、一枚のシートからなる路面調査票に記入する。路面調査票は、測定箇所の記載欄と、調査データの記載欄とで構成され、一目で路面データが確認できるように構成されている。   As described above, the measured flatness σ, crack rate C, and rutting depth D are entered on a road surface survey sheet composed of a single sheet as shown in FIG. The road surface survey form includes a measurement field description column and a survey data description column so that the road surface data can be confirmed at a glance.

測定箇所の記載欄には、路線名と、測点(例えば、キロポスト表示)と、車線(例えば、上り線・下り線の区別、走行車線・追越車線の区別)が記載される。   In the description column of the measurement location, a route name, a measurement point (for example, a kilometer post display), and a lane (for example, distinction between an uplink line and a downlink line, distinction between a traveling lane and an overtaking lane) are described.

調査データの平たん性σの記載欄には、測定された振動数より平たん性σの劣化度を示したランクが記載される。本実施の形態では、例えばcランクとなっており、MCI値の計算にはσ=3.0が用いられる。   In the description column of the flatness σ of the survey data, a rank indicating the degree of deterioration of the flatness σ from the measured frequency is written. In this embodiment, for example, the rank is c, and σ = 3.0 is used for calculation of the MCI value.

調査データのわだち掘れ深さDの欄には、被測定路面と比較して選択された表面形状パターン図のわだち掘れ深さDの数値より決まったランクが記載される。本実施の形態では、例えばdランクとなっており、MCI値の計算にはD=30が用いられる。なお、わだち掘れ深さDは、実測値がある場合には、これを優先して用いることで、測定精度を高めている。   In the column of the rutting depth D of the survey data, a rank determined by the numerical value of the rutting depth D of the surface shape pattern diagram selected in comparison with the measured road surface is described. In this embodiment, for example, d rank is used, and D = 30 is used for calculation of the MCI value. The rutting depth D, when there is an actual measurement value, is used with priority to increase the measurement accuracy.

調査データのひび割れ率Cの欄には、被測定路面と比較して選択されたひび割れパターン図のひび割れ率Cの数値より決まったランクが記載される。本実施の形態では、例えばcランクとなっており、MCI値の計算にはC=20が用いられる。   In the crack rate C column of the survey data, a rank determined from the numerical value of the crack rate C of the crack pattern diagram selected in comparison with the measured road surface is described. In the present embodiment, for example, the rank is c, and C = 20 is used for calculating the MCI value.

MCI値を算出するには下記の(1式)乃至(4式)を用いる。

Figure 2008116294
Figure 2008116294
Figure 2008116294
Figure 2008116294
To calculate the MCI value, the following (Expression 1) to (Expression 4) are used.
Figure 2008116294
Figure 2008116294
Figure 2008116294
Figure 2008116294

まず、(1式)を用いて、平たん性σ、ひび割れ率Cおよびわだち掘れ深さDを考慮したMCI値を算出する。本実施の形態で得た前記数値を用いて計算すると、MCI=2.64となる。次に、(2式)を用いて、わだち掘れ深さDおよびひび割れ率Cを考慮したMCIを算出する。本実施の形態で得た前記数値を用いて計算すると、MCI=3.05となる。さらに、(3式)を用いて、ひび割れ率Cを考慮したMCIを算出する。本実施の形態で得た前記数値を用いて計算すると、MCI=4.52となる。最後に、(4式)を用いて、わだち掘れ深さDを考慮したMCIを算出する。本実施の形態で得た前記数値を用いて計算すると、MCI=4.16となる。 First, using (Formula 1), an MCI value in consideration of the flatness σ, crack rate C, and rutting depth D is calculated. When calculated using the numerical values obtained in the present embodiment, MCI = 2.64. Next, using (Formula 2), MCI 0 in consideration of the rutting depth D and crack rate C is calculated. When calculated using the numerical values obtained in the present embodiment, MCI 0 = 3.05. Furthermore, MCI 1 considering the crack rate C is calculated using (Expression 3). When calculated using the numerical values obtained in the present embodiment, MCI 1 = 4.52. Finally, MCI 2 in consideration of the rutting depth D is calculated using (Expression 4). When calculated using the numerical values obtained in this embodiment, MCI 2 = 4.16.

そして、以上の4式より算出されたMCI値を比較して、最も小さい値を、被測定路面の評価の数値とする。この被測定路面の評価は、MCI値が2.64となる。これは、一部でも極端に劣化した部分があると路面補修を行う必要があるためである。そして、路面の維持修繕の管理基準値をMCI=3とした場合、この被測定路面は補修工事を行う必要があると判断する。なお、路面の管理基準値は、国、県や市町村などの道路管理者が定めた値による。   Then, the MCI values calculated from the above four formulas are compared, and the smallest value is set as a numerical value for evaluating the measured road surface. This evaluation of the measured road surface has an MCI value of 2.64. This is because it is necessary to perform road surface repair if there is a part that is extremely deteriorated. When the management reference value for road surface maintenance and repair is set to MCI = 3, it is determined that the road surface to be measured needs to be repaired. In addition, the road management standard value is a value determined by a road administrator such as a country, a prefecture, or a municipality.

本実施の形態では、(1式)〜(4式)の4つの式よりMCI値を算出して、最も小さい値を採用しているが、これに限られるものではない。地域の状況に応じて、前記4つの式のうち、選択された式(例えば(4式))を用いて、路面の評価を行うようにしてもよい。   In the present embodiment, the MCI value is calculated from the four expressions (Expression 1) to (Expression 4) and the smallest value is adopted, but the present invention is not limited to this. Depending on the local situation, the road surface may be evaluated using a selected expression (for example, (Expression 4)) among the four expressions.

次に、本実施の形態に係る路面性状測定方法の作用を説明する。   Next, the operation of the road surface property measuring method according to the present embodiment will be described.

かかる路面性状測定方法によれば、平たん性σを測定する車両3に搭載した振動測定器2で検出した振動数に応じて、平たん性σを決定するので、車両3を走行させながら自動的に測定を行うことができ、従来の3メートルプロフィルメータを用いた場合と比較して作業手間と作業時間を大幅に低減することができる。また、測定時間が短いので複数回測定することも容易であり、測定精度を高めることができる。さらに、振動測定器2は、従来の路面性状測定車と比較して大幅に安価であり、イニシャルコストおよびランニングコストを大幅に低減することができる。   According to this road surface property measuring method, the flatness σ is determined according to the vibration frequency detected by the vibration measuring device 2 mounted on the vehicle 3 that measures the flatness σ. Therefore, the labor and time can be greatly reduced as compared with the case of using a conventional 3 meter profilometer. Further, since the measurement time is short, it is easy to measure a plurality of times, and the measurement accuracy can be improved. Furthermore, the vibration measuring instrument 2 is significantly cheaper than a conventional road surface property measuring vehicle, and the initial cost and running cost can be greatly reduced.

また、平たん性σは、予め形成された振動数に対する平たん性の相関表(図2参照)に基づいて決定されるので、実測されたデータに基づいて平たん性σが決定され、精度の高い平たん性σのデータを得ることができる。   Further, since the flatness σ is determined based on a flatness correlation table (see FIG. 2) with respect to the frequency formed in advance, the flatness σ is determined based on the actually measured data. High flatness σ data can be obtained.

一方、かかる路面性状測定方法によれば、複数のひび割れ率Cに対応する複数のひび割れ形状を図示したひび割れパターン図9a,9b,9cを形成しておき、ひび割れパターン図9a,9b,9cを被測定路面1と比較して同一か最も近いひび割れパターン図9a(9b,9c)を選択することで、ひび割れ率Cを決定するので、測定作業者は、被測定路面上あるいは被測定路面脇から被測定路面1とひび割れパターン図9a,9b,9cを比較するだけで、ひび割れ率Cを決定できる。したがって、測定の作業手間と時間を大幅に低減することができる。また、前記のようにして測定されたひび割れ率Cは、従来のグラフ用紙にスケッチする方法と比較して精度はほとんど変わらない。さらに、従来の路面性状測定車と比較して安価であるのは勿論、スケッチする方法と比較しても消耗品を必要とせず作業人数が少なくて済むのでさらに安価に測定することができる。   On the other hand, according to this road surface property measuring method, crack pattern diagrams 9a, 9b, 9c illustrating a plurality of crack shapes corresponding to a plurality of crack rates C are formed, and the crack pattern diagrams 9a, 9b, 9c are covered. Since the crack pattern C is determined by selecting the crack pattern figure 9a (9b, 9c) that is the same or closest to the measurement road surface 1, the measurement operator can measure the crack from the measured road surface or from the side of the measured road surface. The crack rate C can be determined simply by comparing the measured road surface 1 with the crack pattern diagrams 9a, 9b, and 9c. Therefore, the labor and time for measurement can be greatly reduced. Further, the accuracy of the crack rate C measured as described above is almost the same as that of the conventional method of sketching on graph paper. Furthermore, it is less expensive than a conventional road surface property measuring vehicle, and it can be measured more inexpensively because it requires less consumables and requires fewer workers than a sketching method.

また、ひび割れパターン図9a,9b,9cは、透明シート6にひび割れ形状を図示して形成されているので、被測定路面1とひび割れパターン図9a,9b,9cとを視線上で重ねて直接的に観測することができるので、その比較を短時間でできるとともに、ひび割れ率Cの測定精度を高めることができる。   Further, since the crack pattern diagrams 9a, 9b, and 9c are formed in the transparent sheet 6 so as to illustrate the crack shape, the measured road surface 1 and the crack pattern diagrams 9a, 9b, and 9c are directly overlapped on the line of sight. Therefore, the comparison can be performed in a short time and the measurement accuracy of the crack rate C can be increased.

一方、かかる路面性状測定方法によれば、被測定路面の所定の位置に横断方向に延びるライン4を引き、このライン4を所定の角度から観測するとともに表面形状パターン図5a,5b,5c,5d,5e,5fと比較して同一か最も近い表面形状パターン図5a(5b,5c,5d,5e,5f)を選択することで、わだち掘れ深さDを決定するので、測定作業者は、被測定路面上あるいは被測定路面脇の所定の位置で所定の高さから被測定路面1と表面形状パターン図5a,5b,5c,5d,5e,5fを比較するだけで、わだち掘れ深さDを決定できる。したがって、従来の横断凹凸プロフィルメータを用いた場合と比較して作業手間と作業時間を大幅に低減することができる。さらに、一旦、ひび割れパターン図5a,5b,5c,5d,5e,5fを形成してしまえば、その後は、被測定路面1とひび割れパターン図5a,5b,5c,5d,5e,5fとを比較するだけでよいので、殆んど費用がかからない。よって、従来の路面性状測定車と比較して安価であるのは勿論、横断凹凸プロフィルメータと比較しても大幅に安価である。   On the other hand, according to this road surface property measuring method, a line 4 extending in the transverse direction is drawn at a predetermined position on the road surface to be measured, and this line 4 is observed from a predetermined angle and surface shape pattern diagrams 5a, 5b, 5c, 5d. , 5e, 5f, the same or closest surface shape pattern diagram 5a (5b, 5c, 5d, 5e, 5f) is selected, and the rutting depth D is determined. By simply comparing the measured road surface 1 and the surface shape pattern diagrams 5a, 5b, 5c, 5d, 5e, and 5f at a predetermined position on the measurement road surface or on the side of the measured road surface, the rutting depth D is obtained. Can be determined. Therefore, compared with the case where the conventional cross-projection unevenness profilometer is used, it is possible to greatly reduce the work time and the work time. Further, once the crack pattern diagrams 5a, 5b, 5c, 5d, 5e, and 5f are formed, the measured road surface 1 is compared with the crack pattern diagrams 5a, 5b, 5c, 5d, 5e, and 5f. Because it is only necessary to do it, it costs little. Therefore, it is not only cheaper than the conventional road surface property measuring vehicle, but also significantly cheaper than the transverse unevenness profile meter.

さらに、表面形状パターン図5a,5b,5c,5d,5e,5fは、透明シート6に路面表面形状を図示して形成されているので、被測定路面1と表面形状パターン図5a,5b,5c,5d,5e,5fとを視線上で重ねて直接的に観測することができる。したがって、その比較を短時間でできるとともに、わだち掘れ深さDの測定精度を高めることができる。   Furthermore, the surface shape pattern diagrams 5a, 5b, 5c, 5d, 5e, and 5f are formed on the transparent sheet 6 with the road surface shape illustrated, so that the measured road surface 1 and the surface shape pattern diagrams 5a, 5b, and 5c are shown. , 5d, 5e, 5f can be directly observed on the line of sight. Therefore, the comparison can be performed in a short time, and the measurement accuracy of the rutting depth D can be increased.

すなわち、本実施の形態によれば、平たん性σ、ひび割れ率Cおよびわだち掘れ深さD全ての項目において、安価で且つ少ない作業手間と作業時間で路面性状を測定することができる。したがって、道路を遮断する時間を大幅に低減することができ、交通に及ぼす影響を低減できる。   That is, according to the present embodiment, the road surface properties can be measured at low cost with less work and time in all items of flatness σ, crack rate C, and rutting depth D. Therefore, the time for blocking the road can be greatly reduced, and the influence on traffic can be reduced.

以上、本発明を実施するための形態について説明したが、本発明は前記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。例えば、本実施の形態では、わだち掘れ深さDの測定およびひび割れ率Cの測定(観測)は、測定現場で直接行うようにしているが、これに限られるものではなく、所定の位置から路面に引かれたライン4やひび割れ状態を写真撮影しておき、後に別の場所で測定を行うようにしてもよい。このようにすれば、道路を遮断する時間をさらに低減することができる。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said embodiment, In the range which does not deviate from the meaning of this invention, a design change is possible suitably. For example, in this embodiment, the measurement of the rutting depth D and the measurement (observation) of the crack rate C are performed directly at the measurement site, but the present invention is not limited to this. It is also possible to take a photograph of the line 4 drawn or the cracked state and measure it later in another place. In this way, the time for blocking the road can be further reduced.

本発明に係る路面性状測定方法を実施するための最良の形態の平たん性を測定する状態を示した側面図である。It is the side view which showed the state which measures the flatness of the best form for implementing the road surface property measuring method which concerns on this invention. 振動数と平たん性との相対関係を示した相関図である。It is the correlation figure which showed the relative relationship between a frequency and flatness. 本発明に係る路面性状測定方法を実施するための最良の形態のわだち掘り深さを測定する状態を示した斜視図である。It is the perspective view which showed the state which measures the rutting depth of the best form for implementing the road surface property measuring method which concerns on this invention. わだち掘り深さの測定位置を示した側面図である。It is the side view which showed the measurement position of the rutting depth. 本発明に係る路面性状測定方法を実施するための最良の形態の表面形状パターン図を示した正面図である。It is the front view which showed the surface shape pattern figure of the best form for implementing the road surface property measuring method which concerns on this invention. 本発明に係る路面性状測定方法を実施するための最良の形態の他の表面形状パターン図を示した正面図である。It is the front view which showed the other surface shape pattern figure of the best form for implementing the road surface property measuring method which concerns on this invention. ひび割れ率を測定する被測定路面を示した斜視図である。It is the perspective view which showed the to-be-measured road surface which measures a crack rate. 本発明に係る路面性状測定方法を実施するための最良の形態のひび割れパターン図を示した正面図である。It is the front view which showed the crack pattern figure of the best form for implementing the road surface property measuring method which concerns on this invention. 測定されたデータを記載する路面調査票を示した図である。It is the figure which showed the road surface survey form which describes the measured data.

符号の説明Explanation of symbols

1 被測定路面
2 振動計測器
3 車両
4 ライン
5a〜5f 表面形状パターン図
6 透明シート
7a〜7f 表面形状パターン図
9a〜9c ひび割れパターン図
DESCRIPTION OF SYMBOLS 1 Road surface to be measured 2 Vibration measuring instrument 3 Vehicle 4 Line 5a-5f Surface shape pattern figure 6 Transparent sheet 7a-7f Surface shape pattern figure 9a-9c Crack pattern figure

Claims (6)

路面の補修を行う基準となる路面の平たん性、わだち掘れ深さ、ひび割れ率を測定する路面性状測定方法において、
振動測定器を搭載した車両を一定速度で走行させて、被測定路面の所定の区間内での振動数を検出して、その振動数に応じて前記区間内の平たん性を決定することで、前記平たん性を測定する
ことを特徴とする路面性状測定方法。
In the road surface property measurement method that measures the flatness of the road surface, the rutting depth, and the crack rate, which is the standard for repairing the road surface,
By running a vehicle equipped with a vibration measuring device at a constant speed, detecting the frequency in a predetermined section of the road surface to be measured, and determining the flatness in the section according to the frequency And measuring the flatness. A method for measuring road surface properties.
前記平たん性は、予め形成された、前記振動数に対する平たん性の相関表に基づいて決定される
ことを特徴とする請求項1に記載の路面性状測定方法。
2. The road surface property measuring method according to claim 1, wherein the flatness is determined based on a correlation table of flatness with respect to the frequency, which is formed in advance.
路面の補修を行う基準となる路面の平たん性、わだち掘れ深さ、ひび割れ率を測定する路面性状測定方法において、
複数のわだち掘れ深さに対応する複数の路面表面形状を図示した表面形状パターン図を形成しておき、一方、被測定路面の所定の位置に横断方向に延びるラインを引き、
前記ラインを所定の角度から観測するとともに前記表面形状パターン図と比較して最も近い表面形状パターン図を選択することで、前記わだち掘れ深さを決定する
ことを特徴とする路面性状測定方法。
In the road surface property measurement method that measures the flatness of the road surface, the rutting depth, and the crack rate, which is the standard for repairing the road surface,
Forming a surface shape pattern diagram illustrating a plurality of road surface shapes corresponding to a plurality of rutting depths, while drawing a line extending in the transverse direction to a predetermined position of the measured road surface,
The road surface property measuring method, wherein the rutting depth is determined by observing the line from a predetermined angle and selecting a surface shape pattern diagram closest to the surface shape pattern diagram.
前記表面形状パターン図は、透明シートに前記路面表面形状を図示して形成されており、
前記表面形状パターン図を前記被測定路面に被せるように観測して、前記被測定路面と前記表面形状パターン図とを比較する
ことを特徴とする請求項3に記載の路面性状測定方法。
The surface shape pattern diagram is formed by illustrating the road surface shape on a transparent sheet,
The road surface property measuring method according to claim 3, wherein the surface shape pattern diagram is observed so as to cover the surface to be measured, and the measured surface surface is compared with the surface shape pattern diagram.
路面の補修を行う基準となる路面の平たん性、わだち掘れ深さ、ひび割れ率を測定する路面性状測定方法において、
複数のひび割れ率に対応する複数のひび割れ形状を図示したひび割れパターン図を形成しておき、前記ひび割れパターン図を被測定路面と比較して最も近いひび割れパターン図を選択することで、前記ひび割れ率を決定する
ことを特徴とする路面性状測定方法。
In the road surface property measurement method that measures the flatness of the road surface, the rutting depth, and the crack rate, which is the standard for repairing the road surface,
By forming a crack pattern diagram illustrating a plurality of crack shapes corresponding to a plurality of crack rates, comparing the crack pattern diagram with the road surface to be measured, and selecting the closest crack pattern diagram, the crack rate can be reduced. A road surface property measuring method characterized by deciding.
前記ひび割れパターン図は、透明シートに前記ひび割れ形状を図示して形成されており、
前記ひび割れパターン図を前記被測定路面に被せるように観測して、前記被測定路面と前記ひび割れパターン図とを比較する
ことを特徴とする請求項5に記載の路面性状測定方法。
The crack pattern diagram is formed by illustrating the crack shape on a transparent sheet,
The road surface property measuring method according to claim 5, wherein the cracked pattern diagram is observed so as to cover the measured road surface, and the measured road surface and the cracked pattern diagram are compared.
JP2006299062A 2006-11-02 2006-11-02 Road surface property measurement method Active JP4950620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299062A JP4950620B2 (en) 2006-11-02 2006-11-02 Road surface property measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299062A JP4950620B2 (en) 2006-11-02 2006-11-02 Road surface property measurement method

Publications (2)

Publication Number Publication Date
JP2008116294A true JP2008116294A (en) 2008-05-22
JP4950620B2 JP4950620B2 (en) 2012-06-13

Family

ID=39502345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299062A Active JP4950620B2 (en) 2006-11-02 2006-11-02 Road surface property measurement method

Country Status (1)

Country Link
JP (1) JP4950620B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914889A (en) * 2010-08-10 2010-12-15 武汉武大卓越科技有限责任公司 Laser evenness measuring system and method based on acceleration compensation
KR101168503B1 (en) * 2010-02-23 2012-07-27 한국도로공사 System and method for measuring road evenness through analyzing octave band of oscillation on pavement
CN104713769A (en) * 2015-04-01 2015-06-17 哈尔滨工业大学 Active shock excitation detection system for road condition assessment
CN107323454A (en) * 2017-08-03 2017-11-07 鄂尔多斯市普渡科技有限公司 A kind of unmanned speed-regulating device and method of adjustment based on surface evenness
JP2018040666A (en) * 2016-09-07 2018-03-15 東芝インフラシステムズ株式会社 Crack analysis device, crack analysis method, and crack analysis program
JP2018060427A (en) * 2016-10-06 2018-04-12 富士通株式会社 Road surface condition detection program and road surface condition detection device
JP2019036182A (en) * 2017-08-18 2019-03-07 国際航業株式会社 Pavement management support system
CN111139718A (en) * 2020-01-21 2020-05-12 吉林大学 Frequency tester of vehicle-mounted pavement crack detection system based on inverse piezoelectric effect
JP2021107683A (en) * 2015-07-21 2021-07-29 株式会社東芝 Crack analysis data editing device, crack analysis data editing method, and crack analysis data editing program
US11682243B2 (en) 2018-10-26 2023-06-20 Nec Corporation Driving assistance device, driving assistance method, and program
JP7503478B2 (en) 2020-11-10 2024-06-20 カヤバ株式会社 Arithmetic device and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202002A (en) * 1983-04-30 1984-11-15 Nichireki Chem Ind Co Ltd Simplified road surface status measuring apparatus
JPS607003U (en) * 1983-06-24 1985-01-18 大和建工株式会社 Foldable rut meter
JPS6110606A (en) * 1984-06-26 1986-01-18 日瀝化学工業株式会社 Investigation of road surface
JPH0996515A (en) * 1995-09-29 1997-04-08 Mitsubishi Heavy Ind Ltd Detection apparatus for crack on road surface
JP3036919U (en) * 1996-07-29 1997-05-06 有限会社オーティーエス Automotive window glass damage measurement gauge scale
JP2004108988A (en) * 2002-09-19 2004-04-08 Yozo Fujino Road surface diagnostic method and its device
JP2005315675A (en) * 2004-04-28 2005-11-10 Japan Science & Technology Agency Road surface flatness measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202002A (en) * 1983-04-30 1984-11-15 Nichireki Chem Ind Co Ltd Simplified road surface status measuring apparatus
JPS607003U (en) * 1983-06-24 1985-01-18 大和建工株式会社 Foldable rut meter
JPS6110606A (en) * 1984-06-26 1986-01-18 日瀝化学工業株式会社 Investigation of road surface
JPH0996515A (en) * 1995-09-29 1997-04-08 Mitsubishi Heavy Ind Ltd Detection apparatus for crack on road surface
JP3036919U (en) * 1996-07-29 1997-05-06 有限会社オーティーエス Automotive window glass damage measurement gauge scale
JP2004108988A (en) * 2002-09-19 2004-04-08 Yozo Fujino Road surface diagnostic method and its device
JP2005315675A (en) * 2004-04-28 2005-11-10 Japan Science & Technology Agency Road surface flatness measuring device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101168503B1 (en) * 2010-02-23 2012-07-27 한국도로공사 System and method for measuring road evenness through analyzing octave band of oscillation on pavement
CN101914889A (en) * 2010-08-10 2010-12-15 武汉武大卓越科技有限责任公司 Laser evenness measuring system and method based on acceleration compensation
CN104713769A (en) * 2015-04-01 2015-06-17 哈尔滨工业大学 Active shock excitation detection system for road condition assessment
JP2021107683A (en) * 2015-07-21 2021-07-29 株式会社東芝 Crack analysis data editing device, crack analysis data editing method, and crack analysis data editing program
JP7155321B2 (en) 2015-07-21 2022-10-18 株式会社東芝 Crack analysis data editing device, crack analysis data editing method, and crack analysis data editing program
JP2018040666A (en) * 2016-09-07 2018-03-15 東芝インフラシステムズ株式会社 Crack analysis device, crack analysis method, and crack analysis program
JP2018060427A (en) * 2016-10-06 2018-04-12 富士通株式会社 Road surface condition detection program and road surface condition detection device
CN107323454A (en) * 2017-08-03 2017-11-07 鄂尔多斯市普渡科技有限公司 A kind of unmanned speed-regulating device and method of adjustment based on surface evenness
JP2019036182A (en) * 2017-08-18 2019-03-07 国際航業株式会社 Pavement management support system
JP7039804B2 (en) 2017-08-18 2022-03-23 国際航業株式会社 Pavement management support system
US11682243B2 (en) 2018-10-26 2023-06-20 Nec Corporation Driving assistance device, driving assistance method, and program
CN111139718A (en) * 2020-01-21 2020-05-12 吉林大学 Frequency tester of vehicle-mounted pavement crack detection system based on inverse piezoelectric effect
JP7503478B2 (en) 2020-11-10 2024-06-20 カヤバ株式会社 Arithmetic device and program

Also Published As

Publication number Publication date
JP4950620B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4950620B2 (en) Road surface property measurement method
US11060245B1 (en) Method for operating paving train machines
US7850395B1 (en) Smoothness indicator analysis system
US20030175077A1 (en) Method and apparatus for calculating and using the profile of a surface
Chin et al. Evaluation of technologies for road profile capture, analysis, and evaluation
JP2017002658A (en) Bridge inspection method
US8682622B1 (en) Smoothness indicator analysis system
Jackson et al. Measuring pavement friction characteristics at variable speeds for added safety
Engstrand Railway surveying-A case study of the GRP 5000
CN111455787A (en) Pavement detection system based on pavement three-dimensional digitization
Tsai et al. A remote sensing and GIS-enabled asset management system (RS-GAMS).
Uddin Pavement Performance Measures Using Android-Based Smart Phone Application
Tsai et al. Feasibility study of measuring concrete joint faulting using 3d continuous pavement profile data 2
Chin Paving the way for terrestrial laser scanning assessment of road quality
Olson et al. Inertial and inclinometer based profiler repeatability and accuracy using the IRI model
JP7169112B2 (en) Road surface management system for drainage pavement
Hoffman et al. Verification of rut depth collected with the INO laser rut measurement system (LRMS)
Walters et al. Using Scanning Lasers for Real—Time Pavement Thickness Measurement
CN107063140A (en) A kind of subway solid concrete roabed overburden amount non-destructive testing method and system
Guo et al. Development and preliminary evaluation of a varying-speed road profiler
Nielsen et al. Measuring joint movement on rigid pavements using the traffic speed Deflectometer
JP6745112B2 (en) Road surface property evaluation method and road surface property evaluation device
Altmann et al. Calibration, certification, and verification of transverse pavement profile measurements
Lueangvilai Development of Structure and Pavement Inspection Using Mobile Laser Scanning Point Clouds: A Case Study of Thailand Expressway
Zhang Comparison of Condition Evaluation Methods for Flexible Pavement, and Exploration of Ride Quality Assessment through Vibration Frequency Analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250