JP2008115781A - H-darrieus type windmill having opening and closing auxiliary blade - Google Patents

H-darrieus type windmill having opening and closing auxiliary blade Download PDF

Info

Publication number
JP2008115781A
JP2008115781A JP2006300343A JP2006300343A JP2008115781A JP 2008115781 A JP2008115781 A JP 2008115781A JP 2006300343 A JP2006300343 A JP 2006300343A JP 2006300343 A JP2006300343 A JP 2006300343A JP 2008115781 A JP2008115781 A JP 2008115781A
Authority
JP
Japan
Prior art keywords
blade
auxiliary blade
wind
straight
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006300343A
Other languages
Japanese (ja)
Inventor
Tanetsugu Ogasawara
胤次 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OGASAWARA INSATSU KK
Original Assignee
OGASAWARA INSATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OGASAWARA INSATSU KK filed Critical OGASAWARA INSATSU KK
Priority to JP2006300343A priority Critical patent/JP2008115781A/en
Publication of JP2008115781A publication Critical patent/JP2008115781A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem of an H-Darrieus type windmill for wind power generation that it is difficult to improve output performance, to lower the minimum speed of wind that enables power generation and to improve the output performance particularly at a low speed of wind because the windmill is not configured to make use of thrust force by wind acting on straight blades. <P>SOLUTION: The H-Darrieus type windmill 1 for wind power generation is a windmill in which the four straight blades 3 are arranged at positions a certain distance apart from a vertical shaft 2 and supported by means of the vertical shaft 2. Each straight blade 3 includes an openable and closable auxiliary blade 4 attached to an inner surface of the straight blade 3 on the side of the vertical shaft 2. A leading end of the auxiliary blade 4 in the rotating direction is turnably connected to a leading end of the straight blade 3 in the rotating direction by means of a hinge mechanism. The auxiliary blade 4 is configured such that it is turnable between a closing position where the auxiliary blade 4 is adjacent to the inner surface of the straight blade 3 and an opening position where the auxiliary blade 4 is opened at an arbitrary angle equal to or smaller than 90 degrees with respect to the inner surface of the straight blade. Because the auxiliary blade 4 is provided, it is possible to improve the output performance and lower the minimum speed of wind that enables the power generation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、風力発電用の風車のうち、特に開閉式補助ブレード付きH−ダリウス型風車に関するものである。   The present invention relates to an H-Darius type wind turbine with an openable / closable auxiliary blade among wind turbines for wind power generation.

風力発電用の風車として種々の風車が提案され、実用に供されている。特許文献1には、複数の直線翼を垂直軸の周囲に配置してなるH- ダリウス型風車に類似の風車が開示され,この風車は直線翼のピッチを変動させる変動ピッチを実現する特殊なリンク機構を備えている。この特許文献1の図5には、直線翼の後縁付近にフラップを設け、そのフラップを直線翼のピッチと連動させて傾動させるものが開示されている。   Various wind turbines have been proposed as wind turbines for wind power generation and are in practical use. Patent Document 1 discloses a windmill similar to an H-Darius type windmill in which a plurality of straight blades are arranged around a vertical axis, and this windmill is a special type that realizes a variable pitch that varies the pitch of the straight blades. A link mechanism is provided. FIG. 5 of this Patent Document 1 discloses that a flap is provided in the vicinity of the trailing edge of the straight blade and the flap is tilted in conjunction with the pitch of the straight blade.

特許文献2には、垂直軸から放射方向へ延びる複数の受圧板を備えた水平回転型風車が開示され、各受圧板に複数の可動板をヒンジ結合して設け、風下方向へ回動するトクル発生側にある受圧板では可動板に受風させると共に、風上方向へ回動する受圧板では可動板を風下方向へ回動させて受風させないように構成してある。   Patent Document 2 discloses a horizontal rotating wind turbine having a plurality of pressure receiving plates extending in a radial direction from a vertical axis. A plurality of movable plates are hingedly connected to each pressure receiving plate, and the torque rotates in the leeward direction. The pressure receiving plate on the generating side is configured to receive the wind on the movable plate, and the pressure receiving plate rotating in the upwind direction is configured not to receive the wind by rotating the movable plate in the downwind direction.

特許文献3には、垂直軸から放射方向へ延びる複数の回転羽根を設け、この回転羽根の各々に開閉式の複数の可動翼を装備し、過大な風速により過大な回転速度になったとき、可動錘に作用する遠心力を利用して電気接点をオンさせ、電動モータとスクリュー軸を介して複数の可動翼を閉じるように構成した垂直軸開閉翼型風車が開示されている。   In Patent Document 3, a plurality of rotating blades extending in the radial direction from the vertical axis are provided, and each of the rotating blades is equipped with a plurality of openable movable blades, and when the rotating speed becomes excessive due to excessive wind speed, A vertical axis open / close blade type wind turbine configured to turn on an electrical contact using a centrifugal force acting on a movable weight and close a plurality of movable blades via an electric motor and a screw shaft is disclosed.

H−ダリウス型風車は、垂直軸から所定距離離隔した位置に複数の直線翼を設けて垂直軸に固定的に支持させた構造のものであり、直線翼は翼形断面に構成されている。
特開昭51−10243号公報 特開昭54−22042号公報 特開2005−133550号公報
The H-Darius type wind turbine has a structure in which a plurality of straight blades are provided at positions spaced apart from a vertical axis by a predetermined distance and are fixedly supported on the vertical shaft, and the straight blades are configured in an airfoil cross section.
Japanese Patent Laid-Open No. 51-10243 Japanese Patent Laid-Open No. 54-22042 JP 2005-133550 A

このH−ダリウス型風車は、構造が簡単で小型の風車に適したものであるが、主に自然風により直線翼に発生する揚力によって回転トルクを発生させる構造であり、直線翼が風を受風して発生する推力によっては回転トルクを殆ど発生できない構造である。そのため、自然風のエネルギーを十分に活用できず、風車の出力性能を高めることが容易では難しい。   This H-Darius type windmill has a simple structure and is suitable for a small windmill. However, the H-Darius type windmill is a structure that generates rotational torque mainly by the lift generated in a straight blade by natural wind, and the straight blade receives the wind. The structure is such that almost no rotational torque can be generated by the thrust generated by the wind. For this reason, natural wind energy cannot be fully utilized, and it is difficult to improve the output performance of the windmill easily.

特許文献1,2,3にも、H−ダリウス型風車において風による推力を有効利用可能にするために活用できるような技術は、何ら含まれていない。   Patent Documents 1, 2, and 3 do not include any technology that can be used to effectively use the thrust by wind in the H-Darius type windmill.

請求項1の開閉式補助ブレード付きH−ダリウス型風車は、複数の直線翼を垂直軸から所定距離離隔した位置に配置して垂直軸に支持させた風力発電用のH−ダリウス型風車において、各直線翼に、その垂直軸側の内面に対して開閉可能な補助ブレードを設け、前記補助ブレードの回転方向リーディング端部は、前記直線翼の回転方向リーディング端部に回動可能に連結され、前記補助ブレードは、前記直線翼の内面に近接した閉位置と、前記内面に対し90度以下の任意角度開いた開位置とにわたって回動可能に構成されたことを特徴としている。   The H-Darius type windmill with an openable / closable auxiliary blade according to claim 1 is an H-Darius type windmill for wind power generation in which a plurality of straight blades are arranged at a predetermined distance from the vertical axis and supported by the vertical axis. Each straight blade is provided with an auxiliary blade that can be opened and closed with respect to the inner surface on the vertical axis side, and the rotational direction leading end of the auxiliary blade is rotatably connected to the rotational direction leading end of the linear blade, The auxiliary blade is configured to be rotatable between a closed position close to the inner surface of the straight blade and an open position opened at an arbitrary angle of 90 degrees or less with respect to the inner surface.

前記補助ブレードは、前記直線翼の内面に近接した閉位置と、前記内面に対し90度以下の任意角度開いた開位置とにわたって回動可能に構成されているため、風車が自然風を受けて回転中に、その回転速度があまり高くない場合、直線翼が風下方向へ回転する際に、補助ブレードは、風速と風車の回転速度と直線軸の周方向位置に応じて直線翼の内面から開いて受風し、その受風の推力が回転トルクを発生させる。補助ブレードは直線翼が90度以上回転する間受風するため、また、補助ブレードの受風面積が増大するとき、推力を回転トルクに変換するレバー長も増大するため、補助ブレードに作用する風の推力を有効活用して大きな回転トルクを発生させることができる。しかも、直線翼が風上方向へ回転する際には、補助ブレードが風圧により自動的に閉位置になるため、回転の抵抗が増すこともない。   The auxiliary blade is configured to be rotatable between a closed position close to the inner surface of the straight blade and an open position opened at an arbitrary angle of 90 degrees or less with respect to the inner surface. If the rotational speed is not so high during rotation, the auxiliary blade opens from the inner surface of the straight blade according to the wind speed, the rotational speed of the windmill, and the circumferential position of the linear axis when the straight blade rotates in the leeward direction. Wind, and the thrust of the wind generates rotational torque. Since the auxiliary blade receives wind while the straight blades rotate 90 degrees or more, and when the wind receiving area of the auxiliary blade increases, the lever length that converts thrust to rotational torque also increases, so the wind acting on the auxiliary blade It is possible to generate a large rotational torque by effectively utilizing the thrust. Moreover, when the straight blade rotates in the windward direction, the auxiliary blade is automatically closed by the wind pressure, so that the resistance to rotation does not increase.

請求項2の開閉式補助ブレード付きH−ダリウス型風車は、請求項1の発明において、前記補助ブレードの回転方向の幅は前記直線翼の回転方向の幅よりも大きく形成され、前記補助ブレードの回転方向トレーリング側部分には、前記直線翼の回転方向トレーリング端部から所定幅突出するテール部が形成され、前記テール部は回転方向トレーリング側へ移行する程外周側へ移行するように屈曲状叉は湾曲状に形成されたことを特徴としている。前記テール部を形成するため、補助ブレードの受風性能を高めることができる。   The H-Darius type windmill with an openable / closable auxiliary blade according to claim 2 is the invention according to claim 1, wherein the width of the auxiliary blade in the rotational direction is larger than the width of the linear blade in the rotational direction. A tail portion protruding a predetermined width from the rotational direction trailing end portion of the straight wing is formed on the rotational direction trailing side portion, and the tail portion moves toward the outer peripheral side as it moves toward the rotational direction trailing side. The bent fork is formed in a curved shape. Since the tail portion is formed, the wind receiving performance of the auxiliary blade can be enhanced.

請求項3の開閉式補助ブレード付きH−ダリウス型風車は、請求項1叉は2の発明において、前記補助ブレードは、金属と合成樹脂とFRPから選択される何れかの材料からなる板状の部材で構成されたことを特徴としている。補助ブレードを板状の部材で構成するため、補助ブレードを軽量化し、補助ブレードの風に対する応答性を確保できる。   The H-Darius type windmill with an openable / closable auxiliary blade according to claim 3 is the invention according to claim 1 or 2, wherein the auxiliary blade is a plate-like material made of any material selected from metal, synthetic resin, and FRP. It is characterized by being composed of members. Since the auxiliary blade is composed of a plate-like member, the auxiliary blade can be reduced in weight, and the response of the auxiliary blade to the wind can be ensured.

請求項4の開閉式補助ブレード付きH−ダリウス型風車は、請求項1〜3の何れかに記載の発明において、前記補助ブレードは、直線翼が風下方向へ回転するときには、風速と回転速度と周方向位置に応じて開いた開位置になって受風しその受風の推力により回転トルクを発生させると共に、開位置から閉位置に移行する際には、前記直線翼との間に抱き込んだ空気を回転方向トレーリング方向へ噴出することで回転トルクを発生させることを特徴としている。   The H-Darius type windmill with an openable / closable auxiliary blade according to claim 4 is the invention according to any one of claims 1 to 3, wherein the auxiliary blade has a wind speed and a rotational speed when the straight blade rotates in the leeward direction. The wind is received in the open position according to the position in the circumferential direction, and rotational torque is generated by the thrust of the received wind, and when moving from the open position to the closed position, it is held between the straight blades. It is characterized in that rotational torque is generated by ejecting air in the rotational direction trailing direction.

前記補助ブレードの受風による推力で回転トルクを発生できる上、補助ブレードが開位置から閉位置に移行する際には、直線翼との間に抱き込んだ空気を回転方向トレーリング方向へ噴出することで回転トルクを発生させる。   Rotational torque can be generated by the thrust generated by the wind of the auxiliary blade, and when the auxiliary blade moves from the open position to the closed position, the air trapped between the straight blades is ejected in the rotational direction and the trailing direction. This generates rotational torque.

請求項1の発明によれば、直線翼の内面に対して開閉可能な補助ブレードを設け、その回転方向リーディング端部を直線翼の回転方向リーディング端部に回動可能に連結し、補助ブレードは、直線翼の内面に近接した閉位置と、前記内面に対し90度以下の任意角度開いた開位置とにわたって回動可能に構成されたため、直線翼が風下方向へ回転するとき、その回転速度があまり大きくない状態において、直線翼が90度以上回転する間、補助ブレードが受風して開き、その受風の推力により回転トルクを発生させることができ、風による推力を有効活用して回転トルクを発生させることができ、風速が低いときの風車の出力性能を高めることができる。   According to the first aspect of the present invention, the auxiliary blade that can be opened and closed with respect to the inner surface of the straight blade is provided, and the leading end of the rotational direction is rotatably connected to the leading end of the straight blade. Since it is configured to be rotatable between a closed position close to the inner surface of the straight blade and an open position opened at an arbitrary angle of 90 degrees or less with respect to the inner surface, when the straight blade rotates in the leeward direction, the rotational speed is When the straight blades are rotated 90 degrees or more in a state that is not so large, the auxiliary blade receives and opens the wind, and the rotational torque can be generated by the thrust of the wind. And the output performance of the wind turbine when the wind speed is low can be improved.

しかも、前記の受風期間の間、補助ブレードの受風面積の増大に応じて、推力を回転トルクに変換するレバー長が増大するため、受風の推力による大きな回転トルクを発生させることができる。さらに、直線翼が風上方向へ回転する際には、補助ブレードが風圧により自動的に閉位置になるため、風車の回転の抵抗が増すこともない。   In addition, during the wind receiving period, the length of the lever that converts the thrust into the rotational torque increases as the wind receiving area of the auxiliary blade increases, so that a large rotational torque can be generated by the thrust of the received wind. . Further, when the straight blade rotates in the windward direction, the auxiliary blade is automatically closed by the wind pressure, so that the resistance to rotation of the windmill does not increase.

請求項2の発明によれば、補助ブレードの翼幅が直線翼の翼幅よりも大きく形成され、補助ブレードの回転方向トレーリング側部分には、直線翼の回転方向トレーリング端部から所定幅突出するテール部を形成し、そのテール部は回転方向トレーリング側へ移行する程外周側へ移行するように屈曲状叉は湾曲状に形成されたため、補助ブレードの受風性能を高めることができる。   According to the invention of claim 2, the blade width of the auxiliary blade is formed to be larger than the blade width of the straight blade, and the rotation direction trailing side portion of the auxiliary blade has a predetermined width from the rotation direction trailing end of the straight blade. A protruding tail portion is formed, and the tail portion is bent or curved so as to move to the outer peripheral side as it moves to the trailing side in the rotational direction, so that the wind receiving performance of the auxiliary blade can be improved. .

請求項3の発明によれば、補助ブレードを金属と合成樹脂とFRPから選択される何れかの材料からなる板状の部材で構成されるため、補助ブレードを軽量化し、補助ブレードの風に対する応答性を確保することできる。   According to the invention of claim 3, since the auxiliary blade is composed of a plate-like member made of any material selected from metal, synthetic resin and FRP, the auxiliary blade is reduced in weight and the auxiliary blade responds to wind. Sex can be secured.

請求項4の発明によれば、補助ブレードは、直線翼が風下方向へ回転するときには、風速と回転速度と周方向位置に応じて開いた開位置になって受風しその受風の推力により回転トルクを発生させると共に、開位置から閉位置に移行する際には、直線翼との間に抱き込んだ空気を回転方向トレーリング方向へ噴出することで回転トルクを発生させる。   According to the invention of claim 4, when the straight blade rotates in the leeward direction, the auxiliary blade receives the wind at an open position that is open according to the wind speed, the rotational speed, and the circumferential position, and receives the thrust of the received wind. In addition to generating rotational torque, when moving from the open position to the closed position, the rotational torque is generated by ejecting the air trapped between the straight blades in the rotational direction trailing direction.

本発明に係る開閉式補助ブレード付きH−ダリウス型風車は、垂直軸から所定距離離隔した位置に複数の直線翼を配置し、各直線翼に、その垂直軸側の内面に対して開閉可能な補助ブレードを設け、補助ブレードの回転方向リーディング端部は、直線翼の回転方向リーディング端部に回動可能に連結され、補助ブレードは、直線翼の内面に近接した閉位置と、その内面に対し90度以下の任意角度開いた開位置とにわたって回動可能に構成されたものである。   The H-Darius type windmill with an openable / closable auxiliary blade according to the present invention has a plurality of straight blades arranged at a predetermined distance from the vertical shaft and can be opened and closed with respect to the inner surface on the vertical shaft side of each straight blade. An auxiliary blade is provided, and the leading end portion in the rotational direction of the auxiliary blade is rotatably connected to the leading end portion in the rotational direction of the straight blade, and the auxiliary blade is located close to the inner surface of the straight blade and the inner surface. It is configured to be rotatable over an open position opened at an arbitrary angle of 90 degrees or less.

以下、本発明の実施例について図面に基づいて説明する。
図1、図2に示すように、本実施例に係る風力発電用のH−ダリウス型風車1は、中心部の鉛直姿勢の垂直軸2と、4枚の直線翼3と、各直線翼3に取り付けた補助ブレード4と、4枚の直線翼2の上端部と下端部を垂直軸2に一体的に連結する4組の連結ステー5a,5b及び2つの円形連結板6a,6bなどを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, an H-Darius type windmill 1 for wind power generation according to the present embodiment includes a vertical shaft 2 in a vertical position at the center, four straight blades 3, and each straight blade 3. The auxiliary blade 4 attached to the four blades, four sets of connecting stays 5a, 5b and two circular connecting plates 6a, 6b for integrally connecting the upper and lower ends of the four straight blades 2 to the vertical shaft 2. ing.

垂直軸2は、図示外の支持構造部に回転可能に支持され、垂直軸2の回転トルクは発電機に伝達されて発電に供される。4つの直線翼3は、垂直軸2から放射方向へ所定距離離隔した位置の円周4等分位置に配置されている。直線翼3は翼形断面で鉛直方向に直線的に延びるものであり、4つの直線翼3は矢印7で示す回転方向のリーディング方向へ直線翼3の前端を向けた状態に配置されている。直線翼3は、例えば、チタン合金、アルミ合金、マグネシウム合金、強度と耐候性に優れる合成樹脂、FRPのうちから選択される何れかの材料で、中実叉は中空の軽量なものに構成されている。但し、直線翼3を構成する材料は上記のものに限定される訳ではない。   The vertical shaft 2 is rotatably supported by a support structure (not shown), and the rotational torque of the vertical shaft 2 is transmitted to the generator and used for power generation. The four straight blades 3 are arranged at a circumferentially equally divided position at a predetermined distance from the vertical axis 2 in the radial direction. The straight blades 3 are linearly extending in the vertical direction with an airfoil cross section, and the four straight blades 3 are arranged in a state in which the front end of the straight blades 3 faces the leading direction of the rotation direction indicated by the arrow 7. The straight blade 3 is made of any material selected from, for example, a titanium alloy, an aluminum alloy, a magnesium alloy, a synthetic resin excellent in strength and weather resistance, and FRP, and is configured to be solid or hollow and lightweight. ing. However, the material constituting the straight blade 3 is not limited to the above.

直線翼3の上端部と下端部に対応する垂直軸2の部位には、1対の円形連結板6a,6bが水平姿勢に固定され、各円形連結板6a,6bから4本の連結ステー5a,5bが垂直軸2に対して放射方向へ延びるように水平に配設され、連結ステー5a,5bの内端部が円形連結板6a,6bに固着され、各組の上下の連結ステー5a,5bは同じ鉛直面内に位置している。   A pair of circular connecting plates 6a and 6b are fixed in a horizontal posture at the portion of the vertical shaft 2 corresponding to the upper end and the lower end of the straight blade 3, and four connecting stays 5a are connected to each of the circular connecting plates 6a and 6b. , 5b are arranged horizontally so as to extend in the radial direction with respect to the vertical axis 2, the inner ends of the connecting stays 5a, 5b are fixed to the circular connecting plates 6a, 6b, and the upper and lower connecting stays 5a, 5b is located in the same vertical plane.

各組の上下の連結ステー5a,5bの外端部に直線翼3の上下両端部が固着され、連結ステー5a,5bと直線翼3とが直角となるように固着されているが、直角以外の角度で固着することも可能にである。   The upper and lower ends of the straight wing 3 are fixed to the outer ends of the upper and lower connecting stays 5a and 5b of each set, and the connecting stays 5a and 5b and the straight wing 3 are fixed so as to be at right angles. It is also possible to fix at an angle of.

各直線翼3には、その垂直軸2側の内面3aに対して開閉可能な補助ブレード4が設けられている。補助ブレード4は、例えば、チタン合金、アルミ合金、マグネシウム合金、強度と耐候性に優れる合成樹脂、FRPのうちから選択される何れかの材料で、厚さ数mmの板状の軽量な部材で構成されている。補助ブレード4の回転方向リーディング端部4aは、直線翼3の回転方向リーディング端部3aにヒンジ機構8により回動可能に連結され(図3参照)、補助ブレード4は、直線翼3の内面に近接した閉位置と、直線翼3の内面に対して90度以下の任意角度開いた開位置とにわたって回動可能に構成されている。   Each straight blade 3 is provided with an auxiliary blade 4 that can be opened and closed with respect to the inner surface 3a on the vertical shaft 2 side. The auxiliary blade 4 is, for example, any material selected from titanium alloy, aluminum alloy, magnesium alloy, synthetic resin excellent in strength and weather resistance, and FRP, and is a plate-like lightweight member having a thickness of several millimeters. It is configured. The rotational leading edge 4a of the auxiliary blade 4 is rotatably connected to the rotational leading edge 3a of the straight blade 3 by a hinge mechanism 8 (see FIG. 3), and the auxiliary blade 4 is connected to the inner surface of the straight blade 3. It is configured to be rotatable over a close position close to it and an open position opened at an arbitrary angle of 90 degrees or less with respect to the inner surface of the straight blade 3.

図3に示すように、上記のヒンジ機構8は、直線翼3の前端部に形成された複数の矩形状の切欠き部9と、これら切欠き部9に対応するように補助ブレード4の前端部に形成された複数の円筒枢支部10と、切欠き部9と切欠き部9の間において直線翼3の前端に形成された係止部11と、円筒枢支部10と円筒枢支部10の間において補助ブレード4の前端に形成された被係止部12と、直線翼3の前端部に形成された軸孔13と、この軸孔13に挿入される軸部材14とを有する。   As shown in FIG. 3, the hinge mechanism 8 includes a plurality of rectangular notches 9 formed at the front end of the straight blade 3, and the front end of the auxiliary blade 4 so as to correspond to the notches 9. A plurality of cylindrical pivots 10 formed in the part, a locking part 11 formed at the front end of the straight blade 3 between the notch 9 and the notch 9, the cylindrical pivot 10 and the cylindrical pivot 10 In the meantime, it has a locked portion 12 formed at the front end of the auxiliary blade 4, a shaft hole 13 formed at the front end of the straight blade 3, and a shaft member 14 inserted into the shaft hole 13.

複数の切欠き部9に複数の円筒枢支部10を夫々嵌めて、軸孔13に軸部材14を挿入することにより、補助ブレード4の前端部が直線翼3の前端部に回動可能に連結されている。補助ブレード4は、直線翼3の内面に当接叉は近接する閉位置と、直線翼3の内面から離隔して軸部材14を中心として閉位置から90度以下の任意角度回動した開位置とに亙って回動可能であり、最大限90度開いた位置になると、複数の被係止部12が複数の係止部11に夫々当接して、それ以上は回動しなくなる。   A plurality of cylindrical support portions 10 are respectively fitted into the plurality of notches 9 and the shaft member 14 is inserted into the shaft hole 13 so that the front end portion of the auxiliary blade 4 is rotatably connected to the front end portion of the straight blade 3. Has been. The auxiliary blade 4 is in contact with or close to the inner surface of the straight blade 3, and the open position is spaced from the inner surface of the straight blade 3 and rotated about an angle of 90 degrees or less from the closed position around the shaft member 14. When the position reaches 90 degrees at the maximum, the plurality of locked portions 12 come into contact with the plurality of locking portions 11 and no longer rotate.

図1、図2に示すように、補助ブレード4の回転方向の幅(周方向の幅)は直線翼3の回転方向の幅(周方向の幅)よりも大きく形成され、補助ブレード4の回転方向トレーリング側部分には、直線翼3の回転方向トレーリング端部から所定幅だけ突出するテール部4bが形成されている。直線翼3の内面はほぼ平面状に形成され、補助ブレード4のテール部4b以外のブレード本体部4cも平板状に形成されている。   As shown in FIGS. 1 and 2, the width of the auxiliary blade 4 in the rotational direction (the width in the circumferential direction) is formed larger than the width of the straight blade 3 in the rotational direction (the width in the circumferential direction). A tail portion 4b that protrudes from the rotational trailing end portion of the straight blade 3 by a predetermined width is formed on the direction trailing side portion. The inner surface of the straight blade 3 is formed in a substantially flat shape, and the blade body portion 4c other than the tail portion 4b of the auxiliary blade 4 is also formed in a flat plate shape.

但し、直線翼3の内面を曲面状に形成してもよく、その場合、ブレード本体部4cは直線翼3の内面を曲面に当接叉は近接可能な曲面状に形成するものとする。テール部4bは回転方向トレーリング側へ移行する程外周側(垂直軸2から離れる方向)へ移行するように折線部4dで約30度屈曲された屈曲状に形成され、テール部4b自体は平板状に形成されている。但し、テール部4bは回転方向トレーリング側へ移行する程外周側へ移行するような湾曲状に形成してもよい。   However, the inner surface of the straight blade 3 may be formed in a curved shape, and in this case, the blade body 4c is formed in a curved surface that can contact or approach the curved surface. The tail portion 4b is formed in a bent shape bent about 30 degrees at the fold line portion 4d so as to move toward the outer peripheral side (the direction away from the vertical axis 2) as it moves toward the trailing direction of the rotational direction. It is formed in a shape. However, the tail portion 4b may be formed in a curved shape such that the tail portion 4b moves toward the outer peripheral side as it moves toward the rotational direction trailing side.

次に、以上説明したH−ダリウス型風車1の作用、効果について説明する。
図2に示す周方向の代表的位置A〜Eを引用し、自然風が矢印Wの方向から吹く場合を例にして説明すると、直線翼3が位置Aから位置Cに風上方向へ移動するとき、自然風と回転による空気流の合成風により直線翼3に揚力が発生し、その揚力の周方向成分により回転トルクが発生する。
Next, the operation and effect of the H-Darius type wind turbine 1 described above will be described.
Referring to the representative circumferential positions A to E shown in FIG. 2 and taking as an example the case where natural wind blows from the direction of arrow W, the straight blade 3 moves from position A to position C in the windward direction. At this time, lift is generated in the straight blade 3 by the combined wind of the natural wind and the rotation of the air flow, and rotational torque is generated by the circumferential component of the lift.

補助ブレード4がないと仮定すると、直線翼3が位置Bから位置Aへ移動するときに風による推力が回転の抵抗となるように作用するが、直線翼3が位置Dから位置Eへ移動するときに風による推力が回転を促進するように作用するため、これらはほぼキャンセルし合う。同様に、直線翼3が位置Cから位置Dへ移動するときに風による推力が回転を促進するように作用するが、直線翼が位置Eから位置Bへ移動するときに風による推力が回転の抵抗となるように作用するため、これらはほぼキャンセルし合う。   Assuming that there is no auxiliary blade 4, the wind thrust acts as a rotational resistance when the straight blade 3 moves from position B to position A, but the straight blade 3 moves from position D to position E. Sometimes wind thrusts act to promote rotation, so they cancel each other out. Similarly, when the straight blade 3 moves from position C to position D, the wind thrust acts to promote rotation, but when the straight blade 3 moves from position E to position B, the wind thrust is rotated. Since they act like resistances, they almost cancel each other.

ここで、本発明特有の補助ブレード4により次のような作用、効果が得られる。
風車1が自然風を受けて回転中に、直線翼3が位置Cから位置Eにわたって、直線翼3が風下方向へ回転するとき、補助ブレード4は、風速と風車1の回転速度と直線翼3の周方向位置に応じて直線翼3の内面から開いて受風し、その受風の推力(動圧による推力)が回転トルクを発生させる。位置Cにおいて、補助ブレード4のテール部4bが受風するため、補助ブレード4が開き始め、位置Cから位置Dにかけて補助ブレード4の開度が増大し、補助ブレード4が大きな面積で受風する。この受風により補助ブレード4に風による推力が作用し、この推力により大きな回転トルクが発生する。
但し、風車1の回転速度が大きくなる程、補助ブレード4が受風する受風量が減少して補助ブレード4の開度が小さくなり、補助ブレード4による回転トルク発生機能は低下する。
Here, the following operations and effects can be obtained by the auxiliary blade 4 unique to the present invention.
When the straight blade 3 rotates in the leeward direction from the position C to the position E while the windmill 1 is rotated by receiving natural wind, the auxiliary blade 4 has the wind speed, the rotational speed of the windmill 1 and the straight blade 3. Open from the inner surface of the straight blade 3 according to the position in the circumferential direction and receive wind, and the thrust of the wind (thrust by dynamic pressure) generates rotational torque. Since the tail portion 4b of the auxiliary blade 4 receives wind at the position C, the auxiliary blade 4 starts to open, the opening degree of the auxiliary blade 4 increases from the position C to the position D, and the auxiliary blade 4 receives wind in a large area. . Due to this wind, a thrust by wind acts on the auxiliary blade 4, and a large rotational torque is generated by this thrust.
However, as the rotational speed of the windmill 1 increases, the amount of wind received by the auxiliary blade 4 decreases and the opening degree of the auxiliary blade 4 decreases, and the function of generating rotational torque by the auxiliary blade 4 decreases.

直線翼3が位置Dを通過後には、補助ブレード4を閉じる方向への風による推力が作用するため、補助ブレード4の開度が急に減少していき、位置Dと位置Eの間の位置において補助ブレード4の開度が零になる。この開位置から閉位置に移行する際には、直線翼3との間に抱き込んだ空気を回転方向トレーリング方向へ噴出することで回転トルクが発生する。   After the straight blade 3 passes through the position D, thrust by the wind in the direction of closing the auxiliary blade 4 acts, so that the opening degree of the auxiliary blade 4 decreases suddenly, and the position between the position D and the position E The opening of the auxiliary blade 4 becomes zero. When shifting from the open position to the closed position, rotational torque is generated by ejecting the air trapped between the straight blades 3 in the rotational and trailing directions.

直線翼3が90以上回転する間補助ブレード4が受風するため、また、補助ブレード4の受風面積が増大するとき、補助ブレード4に作用する推力Tを回転トルクに変換するレバー長Lも増大するため、補助ブレード4に作用する風の推力Tを有効活用して大きな回転トルクを発生させることができ、風車1の出力性能を高めることができる。
その結果、風車1が発電可能な最低風速を約2m/sec程度まで低くすることができ、風車1の稼働率を高め、出力アップを達成することができる。この本発明の風車1は、大型の風車、小型の風車の何れにも適用可能であるが、小型の風車では、直線翼3が周方向へ移動する周速度が大型の風車よりも低いので、補助ブレード4は比較的小型の風車に特に有効である。
Since the auxiliary blade 4 receives wind while the straight blade 3 rotates 90 or more, and when the wind receiving area of the auxiliary blade 4 increases, the lever length L for converting the thrust T acting on the auxiliary blade 4 into rotational torque is also provided. Therefore, the wind thrust T acting on the auxiliary blade 4 can be effectively utilized to generate a large rotational torque, and the output performance of the windmill 1 can be enhanced.
As a result, the minimum wind speed that can be generated by the windmill 1 can be lowered to about 2 m / sec, the operating rate of the windmill 1 can be increased, and the output can be increased. The windmill 1 of the present invention can be applied to both a large windmill and a small windmill. However, in the small windmill, the peripheral speed at which the straight blades 3 move in the circumferential direction is lower than that of the large windmill. The auxiliary blade 4 is particularly effective for a relatively small windmill.

しかも、直線翼3が位置Eから位置Cにわたって風上方向へ回転する際には、補助ブレード4が風圧により自動的に閉位置になるため、風車1の回転の抵抗が増すこともない。 また、補助ブレード4にテール部4bを形成してあるため、位置Cにおいて補助ブレード4を早期に開作動を開始させて、その後の受風を促進することができる。屈曲状のテール部4bにより、直線翼3の内面と補助ブレード4の間に風を抱き込む性能あるいは受風性能を高めることもできる。   Moreover, when the straight blade 3 rotates in the windward direction from the position E to the position C, the auxiliary blade 4 is automatically closed by the wind pressure, so that the resistance to rotation of the windmill 1 does not increase. Further, since the tail portion 4b is formed on the auxiliary blade 4, the opening operation of the auxiliary blade 4 can be started early at the position C, and the subsequent wind receiving can be promoted. The bent tail portion 4b can also enhance the performance of receiving wind between the inner surface of the straight blade 3 and the auxiliary blade 4 or the wind receiving performance.

次に、前記実施例に係る風車1を部分的に変更する例について説明する。
風車1の直線翼の数は4枚に限定されるわけではなく、3枚でもよく、5枚以上でもよい。連結ステー5a,5bは直線翼3の上端部と下端部に対応する部位に配置されているが、直線翼3の中段部に対応する1叉は複数の部位にも設けてもよい。直線翼3の図示の断面形状や翼幅などは一例を示すものであり、種々変更可能である。
Next, an example of partially changing the wind turbine 1 according to the embodiment will be described.
The number of straight blades of the windmill 1 is not limited to four, but may be three or five or more. The connecting stays 5a and 5b are arranged at portions corresponding to the upper end portion and the lower end portion of the straight blade 3, but may be provided at one or a plurality of portions corresponding to the middle step portion of the straight blade 3. The illustrated cross-sectional shape, blade width, etc. of the straight blades 3 are examples, and can be variously changed.

本発明の実施例に係る発電用のH−ダリウス型風車の斜視図である。It is a perspective view of the H-Darius type windmill for power generation concerning the example of the present invention. 前記風車の平面図である。It is a top view of the said windmill. 補助ブレードを連結するヒンジ機構の分解斜視図である。It is a disassembled perspective view of the hinge mechanism which connects an auxiliary blade.

符号の説明Explanation of symbols

1 風車
2 垂直軸
3 直線翼
4 補助ブレード
4b テール部
5a,5b 連結ステー
6a,6b 円形連結板
DESCRIPTION OF SYMBOLS 1 Windmill 2 Vertical shaft 3 Straight blade 4 Auxiliary blade 4b Tail part 5a, 5b Connection stay 6a, 6b Circular connection board

Claims (4)

複数の直線翼を垂直軸から所定距離離隔した位置に配置して垂直軸に支持させた風力発電用のH−ダリウス型風車において、
各直線翼に、その垂直軸側の内面に対して開閉可能な補助ブレードを設け、
前記補助ブレードの回転方向リーディング端部は、前記直線翼の回転方向リーディング端部に回動可能に連結され、
前記補助ブレードは、前記直線翼の内面に近接した閉位置と、前記内面に対し90度以下の任意角度開いた開位置とにわたって回動可能に構成された、
ことを特徴とする開閉式補助ブレード付きH−ダリウス型風車。
In an H-Darius type wind turbine for wind power generation in which a plurality of straight blades are arranged at positions separated from a vertical axis by a predetermined distance and supported by the vertical axis,
Each straight wing is provided with an auxiliary blade that can be opened and closed with respect to the inner surface on the vertical axis side,
The rotational leading edge of the auxiliary blade is pivotally connected to the rotational leading edge of the straight blade,
The auxiliary blade is configured to be rotatable over a closed position close to the inner surface of the straight blade and an open position opened at an arbitrary angle of 90 degrees or less with respect to the inner surface.
An H-Darius type windmill with an openable / closable auxiliary blade.
前記補助ブレードの回転方向の幅は前記直線翼の回転方向の幅よりも大きく形成され、前記補助ブレードの回転方向トレーリング側部分には、前記直線翼の回転方向トレーリング端部から所定幅突出するテール部が形成され、
前記テール部は回転方向トレーリング側へ移行する程外周側へ移行するように屈曲状叉は湾曲状に形成されたことを特徴とする請求項1に記載の開閉式補助ブレード付きH−ダリウス型風車。
The width of the auxiliary blade in the rotational direction is formed to be larger than the width of the linear blade in the rotational direction, and a portion of the auxiliary blade in the rotational direction trailing side protrudes from the rotational direction trailing end of the linear blade by a predetermined width. A tail part is formed,
2. The H-Darius type with an openable / closable auxiliary blade according to claim 1, wherein the tail portion is formed in a bent shape or a curved shape so that the tail portion moves toward the outer peripheral side as it moves toward the rotational direction trailing side. Windmill.
前記補助ブレードは、金属と合成樹脂とFRPから選択される何れかの材料からなる板状の部材で構成されたことを特徴とする請求項1叉は2に記載の開閉式補助ブレード付きH−ダリウス型風車。   3. The H-with openable auxiliary blade according to claim 1, wherein the auxiliary blade is formed of a plate-like member made of any material selected from metal, synthetic resin, and FRP. Darius type windmill. 前記補助ブレードは、直線翼が風下方向へ回転するときには、風速と回転速度と周方向位置に応じて開いた開位置になって受風しその受風の推力により回転トルクを発生させると共に、開位置から閉位置に移行する際には、前記直線翼との間に抱き込んだ空気を回転方向トレーリング方向へ噴出することで回転トルクを発生させることを特徴とする請求項1〜3の何れかに記載の開閉式補助ブレード付きH−ダリウス型風車。   When the straight blades rotate in the leeward direction, the auxiliary blade receives the wind in an open position corresponding to the wind speed, the rotational speed, and the circumferential position, generates rotational torque by the thrust of the wind, and opens the auxiliary blade. 4. When moving from a position to a closed position, a rotational torque is generated by jetting air held between the straight blades in a rotational trailing direction. An H-Darius type windmill with an openable / closable auxiliary blade as described above.
JP2006300343A 2006-11-06 2006-11-06 H-darrieus type windmill having opening and closing auxiliary blade Pending JP2008115781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006300343A JP2008115781A (en) 2006-11-06 2006-11-06 H-darrieus type windmill having opening and closing auxiliary blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300343A JP2008115781A (en) 2006-11-06 2006-11-06 H-darrieus type windmill having opening and closing auxiliary blade

Publications (1)

Publication Number Publication Date
JP2008115781A true JP2008115781A (en) 2008-05-22

Family

ID=39501923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300343A Pending JP2008115781A (en) 2006-11-06 2006-11-06 H-darrieus type windmill having opening and closing auxiliary blade

Country Status (1)

Country Link
JP (1) JP2008115781A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936503B1 (en) 2009-06-12 2010-01-13 주식회사 한림메카트로닉스 Segmental twisting wind generation system having booster blades
WO2010102459A1 (en) * 2009-03-10 2010-09-16 Liu Shaozhong Movable-blade variable-speed type wind turbine
KR101029100B1 (en) 2009-04-24 2011-04-13 이동근 Movable type aerogenerator
WO2011028067A3 (en) * 2009-09-07 2011-07-14 Ryu Byung-Sue Cylindrical windmill for wind power generation
KR101096673B1 (en) 2009-06-02 2011-12-22 김영호 Generator use wind power or water power
KR200459427Y1 (en) 2010-12-16 2012-03-28 (주)케이비중공업 verticality wind generator with sub-blade
KR101135092B1 (en) 2009-12-24 2012-04-16 에너진(주) rotor for wind power generation
AT512326A1 (en) * 2011-12-29 2013-07-15 Wind Gmbh T TURBOMACHINE
KR101315548B1 (en) 2012-01-12 2013-10-08 박찬희 The Darrieus type generator with character of self starting and torque increment
CN103603766A (en) * 2013-11-30 2014-02-26 米建军 Wind wheel with variable blades and attack angles
KR101583775B1 (en) * 2014-12-19 2016-01-11 한국건설기술연구원 Couple type wind power equipment in small wind farm and small wind farm having the same
CN106351798A (en) * 2016-11-14 2017-01-25 马丽萍 Vertical shaft wind power station with openable sails
WO2021157498A1 (en) * 2020-02-06 2021-08-12 株式会社Okya Windmill equipment and windmill blade
JP7028395B1 (en) 2020-08-19 2022-03-02 株式会社Okya Windmill equipment and windmill blades

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010102459A1 (en) * 2009-03-10 2010-09-16 Liu Shaozhong Movable-blade variable-speed type wind turbine
KR101029100B1 (en) 2009-04-24 2011-04-13 이동근 Movable type aerogenerator
KR101096673B1 (en) 2009-06-02 2011-12-22 김영호 Generator use wind power or water power
KR100936503B1 (en) 2009-06-12 2010-01-13 주식회사 한림메카트로닉스 Segmental twisting wind generation system having booster blades
CN102597503A (en) * 2009-09-07 2012-07-18 柳荣实 Cylindrical windmill for wind power generation
WO2011028067A3 (en) * 2009-09-07 2011-07-14 Ryu Byung-Sue Cylindrical windmill for wind power generation
EP2518307A1 (en) * 2009-12-24 2012-10-31 Energyn Inc. Rotor for wind power generation, and wind power generator including same
KR101135092B1 (en) 2009-12-24 2012-04-16 에너진(주) rotor for wind power generation
EP2518307A4 (en) * 2009-12-24 2014-06-04 Energyn Inc Rotor for wind power generation, and wind power generator including same
KR200459427Y1 (en) 2010-12-16 2012-03-28 (주)케이비중공업 verticality wind generator with sub-blade
AT512326A1 (en) * 2011-12-29 2013-07-15 Wind Gmbh T TURBOMACHINE
AT512326B1 (en) * 2011-12-29 2013-09-15 Wind Gmbh T TURBOMACHINE
KR101315548B1 (en) 2012-01-12 2013-10-08 박찬희 The Darrieus type generator with character of self starting and torque increment
CN103603766A (en) * 2013-11-30 2014-02-26 米建军 Wind wheel with variable blades and attack angles
KR101583775B1 (en) * 2014-12-19 2016-01-11 한국건설기술연구원 Couple type wind power equipment in small wind farm and small wind farm having the same
CN106351798A (en) * 2016-11-14 2017-01-25 马丽萍 Vertical shaft wind power station with openable sails
WO2021157498A1 (en) * 2020-02-06 2021-08-12 株式会社Okya Windmill equipment and windmill blade
JP7028395B1 (en) 2020-08-19 2022-03-02 株式会社Okya Windmill equipment and windmill blades
JP2022042027A (en) * 2020-08-19 2022-03-14 株式会社Okya Wind turbine facility and wind turbine blade

Similar Documents

Publication Publication Date Title
JP2008115781A (en) H-darrieus type windmill having opening and closing auxiliary blade
JP4727277B2 (en) Combined lift and drag type vertical axis wind turbine
US7980810B2 (en) Vertical axis windmill and wind turbine system for generating electricity from wind energy
KR100637297B1 (en) Windmill for wind power generation
US8905704B2 (en) Wind sail turbine
AU2009277220B2 (en) Vertical shaft type Darius windmill
WO2008102461A1 (en) Vertical shaft windmill
WO2005116446A1 (en) Blade for vertical shaft wind wheel and vertical shaft wind wheel
JP2008538597A (en) Rotor system tension wheel for wind and hydro turbines
US20070189899A1 (en) Wind turbine rotor
KR102499973B1 (en) Vertical axis windmills and wind turbines
JP3435540B2 (en) Wind power generator
JP2000310179A (en) Rotor for horizontal axis windmill
GB2304826A (en) A wind-or water-powered machine
JP2006226148A (en) Horizontal-shaft windmill and propeller
KR20110046155A (en) vertical axis wind turbine
JP4147150B2 (en) Horizontal axis wind power generator and its direction 陀 mounting method
TWI273165B (en) A vertical axial wind engine
JPH0617745A (en) Vertical shaft sail-wing windmill having laterally long blade
JP2005054757A (en) Hybrid type wind mill
JP6398095B2 (en) Power equipment
JP4846059B1 (en) Wind turbine with open / close blades for wind power generation
JP2019052595A (en) Horizontal shaft windmill
JP2018155128A (en) Vertical axis wind turbine and wind power generator
JPS6318029B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20090501

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090915