JP2008115347A - Photoinduced rotation method, light-driven rotor, power transmission system and power transmission device - Google Patents

Photoinduced rotation method, light-driven rotor, power transmission system and power transmission device Download PDF

Info

Publication number
JP2008115347A
JP2008115347A JP2006311412A JP2006311412A JP2008115347A JP 2008115347 A JP2008115347 A JP 2008115347A JP 2006311412 A JP2006311412 A JP 2006311412A JP 2006311412 A JP2006311412 A JP 2006311412A JP 2008115347 A JP2008115347 A JP 2008115347A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
crystal polymer
actinic ray
driven rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006311412A
Other languages
Japanese (ja)
Other versions
JP5067964B2 (en
Inventor
Tomiki Ikeda
富樹 池田
Mizuho Kondo
瑞穂 近藤
Munenori Yamada
宗紀 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Unitika Ltd
Original Assignee
Tokyo Institute of Technology NUC
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Unitika Ltd filed Critical Tokyo Institute of Technology NUC
Priority to JP2006311412A priority Critical patent/JP5067964B2/en
Publication of JP2008115347A publication Critical patent/JP2008115347A/en
Application granted granted Critical
Publication of JP5067964B2 publication Critical patent/JP5067964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoinduced rotation method converting light energy to rotational energy. <P>SOLUTION: The photoinduced rotation method of the present invention, in one embodiment, includes irradiating a first active light and a second active light to a crosslinked liquid crystal polymer molded product, in which a photochromic molecule reversibly isomerizable by irradiation of the first and second active light is introduced, so as to be locally isomerized, and rotating the crosslinked liquid crystal polymer molded product by inducing shape change of the molded product. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,光誘起回転方法,光駆動型回転子,並びにこの光駆動型回転子を備える動力伝達システム及び動力伝達装置に関する。   The present invention relates to a light-induced rotation method, a light-driven rotor, and a power transmission system and a power transmission device including the light-driven rotor.

液晶高分子は,液晶性に基づく異方性と高分子の成形加工性を兼ね備えた高機能性材料であるが,ごく一部の分野で実用化されているに過ぎず,より広範囲な分野における実用化が期待されている。本発明者のグループは,先般,フォトクロミック分子を組み込んだ架橋液晶高分子からなる成形体において,第1の活性光線の照射により架橋液晶高分子成形体を屈曲せしめてその屈曲を維持できること,第2の活性光線の照射により架橋液晶高分子成形体を元の形態に復元できることを見出した(特許文献1)。すなわち,架橋液晶高分子成形体において光エネルギーを機械エネルギーに変換できることを報告した。この現象を用いれば,エネルギー伝達のための配線が不要となり,遠方よりレーザー光を照射するだけでフィルム等の成形体を折り曲げることが可能となる。このため,従来にない小型軽量な光マイクロマシンなどの様々な光駆動型運動材料への応用が期待できる。   Liquid crystal polymers are highly functional materials that have both anisotropy based on liquid crystallinity and moldability of polymers, but they have only been put to practical use in a few fields, and in a wider range of fields. Practical use is expected. The group of the present inventors has recently been able to bend a crosslinked liquid crystal polymer molded body by irradiation with a first actinic ray in a molded body composed of a crosslinked liquid crystal polymer incorporating photochromic molecules, It was found that the crosslinked liquid crystal polymer molded product can be restored to its original form by irradiation with actinic rays (Patent Document 1). In other words, it was reported that light energy can be converted to mechanical energy in crosslinked liquid crystal polymer moldings. If this phenomenon is used, wiring for energy transmission becomes unnecessary, and it becomes possible to bend a molded body such as a film only by irradiating a laser beam from a distance. For this reason, it can be expected to be applied to various light-driven motion materials such as an unprecedented small and light optical micromachine.

なお,液晶高分子材料,及び光エネルギーを用いた例ではないが,外部刺激を機械的エネルギーに変換する高分子材料として,水と極性溶媒を用いて当該高分子材料の回転を誘起する技術が提案されている(非特許文献1)。非特許文献2については,後述する。
特開2005−255805号公報 Okuzaki, H. et al J. Polym. Sci. Part B: Polym. Phys. 1996, 34, 1747-1749 "造形例",[online],株式会社ディーメック,[平成18年11月9日検索],インターネット(http://www.d-mec.co.jp/products/acculas/acculas_zoukei.html)
Although this is not an example of using liquid crystal polymer materials and light energy, as a polymer material that converts external stimuli into mechanical energy, there is a technology that induces rotation of the polymer material using water and a polar solvent. It has been proposed (Non-Patent Document 1). Non-patent document 2 will be described later.
JP 2005-255805 A Okuzaki, H. et al J. Polym. Sci. Part B: Polym. Phys. 1996, 34, 1747-1749 "Modeling examples", [online], D-MEC Corporation, [searched on November 9, 2006], Internet (http://www.d-mec.co.jp/products/acculas/acculas_zoukei.html)

光駆動型運動材料への応用展開に当っては,上記光屈曲−復元応答の運動モードに加えて他の運動モードの開発が期待されるところである。   In the development of application to light-driven motion materials, development of other motion modes is expected in addition to the motion mode of the light bending-restoration response.

本発明は,上記背景に鑑みてなされたものであり,その目的とするところは,光エネルギーを回転エネルギーに変換可能な光誘起回転方法,光駆動型回転子,並びにこれを備えた動力伝達システム及び動力伝達装置を提供することである。   The present invention has been made in view of the above-described background, and an object thereof is to provide a light-induced rotation method capable of converting light energy into rotational energy, a light-driven rotor, and a power transmission system including the same. And providing a power transmission device.

本発明に係る光誘起回転方法は,第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子が導入された架橋液晶高分子成形体に,前記フォトクロミック分子の異性化を局所的に起こすように前記第1の活性光線及び第2の活性光線を照射して,前記架橋液晶高分子成形体の形状変化を誘起することにより,当該架橋液晶高分子成形体を回転させるものである。本発明に係る光誘起回転方法においては,配向性と流動性を兼ね備えた液晶構造と,配向変化を伝搬しやすい架橋構造を兼ね備えた材料内のフォトクロミック分子の異性化によって,メソゲンの配向変化を高効率で高分子骨格に伝搬することができる。その結果,架橋液晶高分子成形体の異方的かつ機械的な応答を誘起して回転運動に変換することが可能となる。   In the photoinduced rotation method according to the present invention, the photochromic molecule isomerism is introduced into a crosslinked liquid crystal polymer molded product into which a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray is introduced. The cross-linked liquid crystal polymer molded body is rotated by irradiating the first actinic ray and the second actinic light so as to cause localization and inducing a shape change of the cross-linked liquid crystal polymer molded body. It is something to be made. In the photoinduced rotation method according to the present invention, the orientation change of mesogens is enhanced by isomerization of photochromic molecules in a material having a liquid crystal structure having both orientation and fluidity and a crosslinking structure that easily propagates the orientation change. Can efficiently propagate to the polymer skeleton. As a result, it is possible to induce an anisotropic and mechanical response of the crosslinked liquid crystal polymer molded body and convert it into a rotational motion.

本発明に係る光駆動型回転子は,第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有し,前記第1の活性光線,及び第2の活性光線の照射に応じて回転挙動を示す架橋液晶高分子成形体を備えるものである。本発明においては,配向性と流動性を兼ね備えた液晶構造と,配向変化を伝搬しやすい架橋構造を兼ね備えた架橋液晶高分子にフォトクロミック分子を導入しているので,光エネルギーを回転エネルギーに変換可能な光駆動型回転子を提供することができる。   The light-driven rotor according to the present invention contains a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray, and the first actinic ray and the second actinic ray. It comprises a crosslinked liquid crystal polymer molded body that exhibits rotational behavior in response to light irradiation. In the present invention, photochromic molecules are introduced into a liquid crystal structure having both orientation and fluidity and a crosslinked liquid crystal polymer having a crosslinked structure that easily propagates orientation changes, so light energy can be converted into rotational energy. A light-driven rotor can be provided.

本発明に係る動力伝達システムは,上記光駆動型回転子と,当該光駆動型回転子に前記第1の活性光線及び第2の活性光線を照射する光源を備えるものである。   A power transmission system according to the present invention includes the light-driven rotor and a light source that irradiates the light-driven rotor with the first active light beam and the second active light beam.

本発明に係る動力伝達装置は,上記光駆動型回転子と,当該光駆動型回転子に連動して動く動力伝達部材を備えるものである。   A power transmission device according to the present invention includes the light-driven rotor and a power transmission member that moves in conjunction with the light-driven rotor.

本発明によれば,光エネルギーを回転エネルギーに変換可能な光誘起回転方法,光駆動型回転子,並びにこれを備えた動力伝達システム及び動力伝達装置を提供することができるという優れた効果を有する。   According to the present invention, there is an excellent effect that it is possible to provide a light-induced rotation method capable of converting light energy into rotational energy, a light-driven rotor, a power transmission system and a power transmission device including the same. .

以下,本発明を適用した実施形態の一例について説明する。なお,本発明の趣旨に合致する限り,他の実施形態も本発明の範疇に属し得ることは言うまでもない。   Hereinafter, an example of an embodiment to which the present invention is applied will be described. It goes without saying that other embodiments may also belong to the category of the present invention as long as they meet the spirit of the present invention.

本発明に係る光駆動型回転子は,第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有し,第1の活性光線,及び第2の活性光線の照射に応じて回転挙動を示す架橋液晶高分子成形体を備えるものである。架橋液晶高分子成形体の最適な形態としては,フィルムやシート等を挙げることができる。なお,本明細書において「光駆動型回転子」とは,光エネルギーを機械エネルギーである回転エネルギーに変換することができる部材のことをいう。   The light-driven rotator according to the present invention contains a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray, and the first actinic ray and the second actinic ray. A crosslinked liquid crystal polymer molded body that exhibits rotational behavior in response to the irradiation is provided. Examples of the optimal form of the crosslinked liquid crystal polymer molded body include films and sheets. In the present specification, the “light-driven rotor” refers to a member that can convert light energy into rotational energy that is mechanical energy.

本発明に係る架橋液晶高分子は,主鎖型高分子液晶,側鎖型高分子液晶のどちらでもよいが,液晶の配向に直接関与するハードコア部であるメソゲンの配向可能領域たるドメイン領域が存在し,かつ高分子骨格が三次元網構造を形成している必要がある。これにより,配向したメソゲンが高分子マトリックス内に緩やかに拘束され,高分子骨格の動きがメソゲンの配向と強く相関した構造となる。架橋構造は,長距離に亘って配向秩序が保たれた構造をとっていることがより好ましい。   The cross-linked liquid crystal polymer according to the present invention may be either a main chain polymer liquid crystal or a side chain polymer liquid crystal, but there is a domain region that is an alignable region of the mesogen, which is a hard core part directly involved in the alignment of the liquid crystal. However, the polymer skeleton must form a three-dimensional network structure. As a result, the oriented mesogen is gently restrained in the polymer matrix, and the movement of the polymer skeleton is strongly correlated with the orientation of the mesogen. The cross-linked structure is more preferably a structure in which orientational order is maintained over a long distance.

架橋液晶高分子は,単官能重合性モノマーと,これと共重合する架橋重合性モノマーとから得られる共重合体により得ることができる。共重合体を得る方法としては,公知の方法を利用することができるが,単官能重合性モノマーと架橋重合性モノマーを含む混合物を,メソゲンが配向する条件下において共重合させる方法を利用することが簡便かつ有利である。具体例としては、反応容器として、内表面に配向性表面が形成されたものを用いて、モノマー混合物をインサイチュー(in-situ)重合法等を利用して,光重合あるいは熱重合させる方法により共重合反応させる方法が挙げられる。この方法によれば、共重合体分子は、配向性表面の作用により特定の方向に配向された状態で生成される。配向性処理としては、反応容器の内表面にポリイミドの層を形成してこれを特定の方向にラビング処理する方法、電場・磁場などをかけるなどの方法を挙げることができる。共重合させる別の方法としては,線状,又は弱く架橋した液晶高分子を作製し,応力によってメソゲンを配向させながら架橋反応を行う方法等を挙げることができる。   The crosslinked liquid crystal polymer can be obtained by a copolymer obtained from a monofunctional polymerizable monomer and a crosslinked polymerizable monomer copolymerized therewith. As a method for obtaining a copolymer, a known method can be used, but a method in which a mixture containing a monofunctional polymerizable monomer and a crosslinkable monomer is copolymerized under a condition in which the mesogen is oriented is used. Is convenient and advantageous. As a specific example, by using a reaction vessel having an orientation surface formed on the inner surface, a monomer mixture is photopolymerized or thermally polymerized using an in-situ polymerization method or the like. The method of making it copolymerize is mentioned. According to this method, the copolymer molecules are generated in a state of being oriented in a specific direction by the action of the oriented surface. Examples of the orientation treatment include a method in which a polyimide layer is formed on the inner surface of the reaction vessel and this is rubbed in a specific direction, and an electric field / magnetic field is applied. As another method of copolymerization, there can be mentioned a method in which a linear or weakly cross-linked liquid crystal polymer is prepared and a cross-linking reaction is performed while orienting mesogens by stress.

単官能重合性モノマーと架橋重合性モノマーの重合比率は,所望のドメインサイズ,架橋密度を考慮して決定する。ドメインサイズは,0.5μmより大きいことが好ましい。ドメインサイズが小さいと高分子骨格は,非液晶フィルムにおけるクロモフォアと高分子セグメントの関係とよく似た構造となり,各ドメインにおいてメソゲンの配向が変化し,高分子骨格が変形してもフィルム全体に与える影響が小さくなるためである。このような場合,配向変化が機械的応答に結びつかず,架橋液晶高分子成形体の回転が誘起しにくくなる。なお,架橋液晶高分子成形体は,架橋液晶高分子そのものから構成されているものに限定されず,目的とする架橋液晶高分子成形体の特性を損なわない範囲において適宜添加剤が含まれていてもよい。   The polymerization ratio between the monofunctional polymerizable monomer and the crosslinkable monomer is determined in consideration of the desired domain size and crosslink density. The domain size is preferably larger than 0.5 μm. When the domain size is small, the polymer skeleton has a structure similar to the relationship between chromophores and polymer segments in non-liquid crystal films, and the orientation of mesogens changes in each domain, giving the entire film even if the polymer skeleton is deformed. This is because the influence is reduced. In such a case, the orientation change does not lead to a mechanical response, and the rotation of the crosslinked liquid crystal polymer molded body is less likely to be induced. The cross-linked liquid crystal polymer molded product is not limited to those composed of the cross-linked liquid crystal polymer itself, and appropriate additives are included as long as the properties of the target cross-linked liquid crystal polymer molded product are not impaired. Also good.

重合性基としては,(メタ)アクリロイルオキシ基,(メタ)アクリルアミド基,ビニルオキシ基,ビニル基,又はエポキシ基等が挙げられるが,容易に重合できることから,(メタ)アクリロイルオキシ基や(メタ)アクリルアミド基が好ましい。架橋重合性モノマーは,2官能性モノマー,あるいは3官能性モノマー等に代表される多官能性モノマーを用いることができる。重合開始剤としては,公知のものを用いることができる。   Examples of the polymerizable group include a (meth) acryloyloxy group, a (meth) acrylamide group, a vinyloxy group, a vinyl group, and an epoxy group. Acrylamide groups are preferred. As the crosslinkable monomer, a bifunctional monomer or a polyfunctional monomer represented by a trifunctional monomer or the like can be used. Known polymerization initiators can be used.

架橋液晶高分子成形体を得る方法として,注型重合法を利用して金型を兼ねた反応容器を用いて共重合反応を行い、生成される共重合体を同時に成形する方法を利用することが好ましい。このような注型重合法によれば、上述の好適な配向処理法を適用することが極めて容易である。   As a method for obtaining a cross-linked liquid crystal polymer molded body, a method in which a polymerization reaction is performed using a reaction vessel that also serves as a mold using a casting polymerization method, and the resulting copolymer is simultaneously molded is used. Is preferred. According to such a casting polymerization method, it is very easy to apply the above-described preferred alignment treatment method.

フォトクロミック分子の導入箇所は,高分子主鎖,高分子側鎖のどちらでもよいが,メソゲン部位に導入することがより好ましい。メソゲン部位に導入することにより,フォトクロミック分子の異性化に伴う分子構造変化を,ドメイン領域にあるメソゲンの配向変化に効果的に変換することができるためである。そして,架橋構造を採用することにより,メソゲンの配向変化を高効率で高分子骨格に伝搬して,架橋液晶高分子成形体の異方的かつ機械的な応答を誘起して回転運動に変換することが可能となる。   The introduction site of the photochromic molecule may be either the polymer main chain or the polymer side chain, but is more preferably introduced into the mesogen site. This is because by introducing it into the mesogen site, the molecular structure change accompanying the isomerization of the photochromic molecule can be effectively converted into the orientation change of the mesogen in the domain region. By adopting a cross-linked structure, the orientation change of the mesogen is propagated to the polymer skeleton with high efficiency, and the anisotropic and mechanical response of the cross-linked liquid crystal polymer molded body is induced and converted into rotational motion. It becomes possible.

フォトクロミック分子は,特に限定されず公知のものを用いることができる。例として,トランス−シス異性化するアゾベンゼン,スチルベン構造等や,開環―閉環光異性化し得るスピロピラン,ジアリル構造等を挙げることができる。中でも,下記式(1)に示すアゾベンゼンは,第1の活性光線と第2の活性光線の波長が離れていて,かつ異性化の際に分子間距離が大きく変化することから特に好ましい例として挙げることができる。
アゾベンゼンは,アゾベンゼン骨格に結合している置換基にもよるが,第1の活性光線は300〜400nm程度(以下,単に「紫外光」という)であり,第2の活性光線は500〜650nm程度(以下,単に「可視光」という)である。上記式(1)に示すようにアゾベンゼンに紫外光を照射すると,棒状のトランス体から屈曲したシス体に異性化する。そして,この異性化したシス体に可視光を照射すると元のトランス体に戻る。
The photochromic molecule is not particularly limited, and known ones can be used. Examples include azobenzene and stilbene structures that undergo trans-cis isomerization, spiropyran and diallyl structures that can undergo ring-opening and ring-closing photoisomerization, and the like. Among them, azobenzene represented by the following formula (1) is particularly preferable because the wavelength of the first actinic ray is different from the wavelength of the second actinic ray and the intermolecular distance changes greatly upon isomerization. be able to.
Although azobenzene depends on a substituent bonded to the azobenzene skeleton, the first actinic ray is about 300 to 400 nm (hereinafter simply referred to as “ultraviolet light”), and the second actinic ray is about 500 to 650 nm. (Hereinafter simply referred to as “visible light”). As shown in the above formula (1), when azobenzene is irradiated with ultraviolet light, it is isomerized from a rod-shaped trans form to a bent cis form. When this isomerized cis form is irradiated with visible light, it returns to the original trans form.

架橋液晶高分子にアゾベンゼンを導入すると,アゾベンゼンは配向制御成分として働く。アゾベンゼンのトランス体は液晶相を安定化,若しくはそれ自体がメソゲンとして機能する。一方,屈曲構造を持つシス体は液晶相を不安定化する。従って,等温でもトランス体からシス体への異性化を誘起することにより,相転移を誘起することができる。   When azobenzene is introduced into the crosslinked liquid crystal polymer, azobenzene works as an orientation control component. The trans form of azobenzene stabilizes the liquid crystal phase or itself functions as a mesogen. On the other hand, a cis body with a bent structure destabilizes the liquid crystal phase. Therefore, the phase transition can be induced by inducing isomerization from the trans isomer to the cis isomer even under isothermal conditions.

フォトクロミック分子の異性化によるメソゲンの配向変化を高効率で高分子骨格に伝搬するファクターとしては,架橋構造,フォトクロミック分子の種類,フォトクロミック分子の導入率の他に,液晶の種類,照射条件等を挙げることができる。液晶の種類は,特に限定されない。メソゲンの配向変化を高効率で高分子骨格に伝搬する観点からは,メソゲンの配向能やパッキング性の高いものを用いることが好ましい。このような液晶として,スメクチック液晶や,強誘電性液晶等を挙げることができる。   Factors that propagate the mesogenic orientation change due to photochromic molecule isomerization to the polymer backbone with high efficiency include cross-linking structure, type of photochromic molecule, introduction rate of photochromic molecule, liquid crystal type, irradiation condition, etc. be able to. The type of liquid crystal is not particularly limited. From the viewpoint of propagating the mesogen orientation change to the polymer skeleton with high efficiency, it is preferable to use a mesogen having high orientation ability and packing property. Examples of such a liquid crystal include a smectic liquid crystal and a ferroelectric liquid crystal.

本発明に係る光駆動型回転子は,架橋液晶高分子成形体のみにより構成してもよいが,機械的強度等を改善する観点から架橋液晶高分子成形体に対する支持体を備えることが好ましい。支持体の材質は,架橋液晶高分子成形体と一体的に可動可能であれば特に限定されない。例えば,ポリエチレン,ポリプロピレン,ポリエチレンテレフタレート等の汎用性高分子,エラストマー,あるいはシリコンゴム等の無機材料等の公知の材料を用いることができる。支持体は,単一の材料から構成しても複数の材料から構成してもよい。   The light-driven rotor according to the present invention may be composed only of a crosslinked liquid crystal polymer molded body, but preferably includes a support for the crosslinked liquid crystal polymer molded body from the viewpoint of improving mechanical strength and the like. The material of the support is not particularly limited as long as it can move integrally with the crosslinked liquid crystal polymer molded body. For example, known materials such as general-purpose polymers such as polyethylene, polypropylene, and polyethylene terephthalate, inorganic materials such as elastomer, or silicon rubber can be used. The support may be composed of a single material or a plurality of materials.

支持体としては,架橋液晶高分子成形体と一体的に可動させる観点からは,エラストマー等の高弾性体や使用温度において十分な柔軟性を有する高分子成形体を用いることが好ましい。高分子成形体のガラス転移温度が使用温度以下のものを用いることにより,柔軟性の優れたものを得ることができる。このような高分子材料としては,ポリエチレン,ポリプロピレン,ポリブタジエン,ポリ塩化ビニリデン,ポリテトラフルオロエチレン,ポリフッ化ビニリデン等を挙げることができる。無論,可塑剤を添加することにより高分子成形体のガラス転移温度を使用温度以下となるようにしてもよい。なお,ここで「使用温度」とは,光駆動型回転子を実際に駆動する際の温度を言う。高分子成材料に融点(Tm)が存在する場合には,光駆動型回転子を安定して利用する観点から使用温度が融点を超えない範囲で使用することが好ましい。支持体の材質は,用いる用途や求められる耐久性に応じて適宜選定する。支持体の厚みは,用いる材料の柔軟性の度合い,強度,用いる用途等に応じて決める。厚みは特に限定されるものではないが,例えば5μm〜100μm程度とすることができる。   As the support, from the viewpoint of moving integrally with the crosslinked liquid crystal polymer molded body, it is preferable to use a highly elastic body such as an elastomer or a polymer molded body having sufficient flexibility at the operating temperature. By using a polymer molded body having a glass transition temperature equal to or lower than the operating temperature, a polymer having excellent flexibility can be obtained. Examples of such a polymer material include polyethylene, polypropylene, polybutadiene, polyvinylidene chloride, polytetrafluoroethylene, and polyvinylidene fluoride. Of course, the glass transition temperature of the polymer molded product may be made to be lower than the working temperature by adding a plasticizer. Here, the “operating temperature” refers to the temperature at which the optically driven rotor is actually driven. When the polymer component material has a melting point (Tm), it is preferably used in a range where the use temperature does not exceed the melting point from the viewpoint of stably using the light-driven rotor. The material of the support is appropriately selected according to the intended use and required durability. The thickness of the support is determined according to the degree of flexibility of the material used, the strength, the intended use, and the like. The thickness is not particularly limited, but can be, for example, about 5 μm to 100 μm.

架橋液晶高分子成形体と支持体を一体的に製造する方法は特に限定されず公知の方法を用いることができる。例えば,支持体をフィルムあるいはシート状として,架橋液晶高分子成形体を積層することができる。積層構造にする際には,支持体と架橋液晶高分子成形体とが十分に接着していることが重要である。光駆動により回転させる際に剥離やクラックが発生するのを防止するためである。接着方法としては,公知の方法を利用できる。例えば,接着機能を有する支持体を用いて架橋液晶高分子成形体とラミネートする方法,支持体と架橋液晶高分子成形体との間に,バーコーター塗工などの種々のコーティング方法を用いて接着層を設ける方法,両面テープにより支持体と架橋液晶高分子成形体を貼り合せる方法等を挙げることができる。接着層や両面テープ等の中間層を設ける場合,架橋液晶高分子成形体と一体的に可動させる観点から柔軟性に優れたものを選定することが好ましい。接着層の厚みは,例えば0.5μm〜20μmとすることができるが,無論これに限定されるものではない。なお,積層構造に代えて,支持体と架橋液晶高分子をスペーサ等の間隙保持部材を介して対向配置するようにしてもよい。また,支持体を備えずに,架橋液晶高分子成形体の厚みを十分に厚くすることにより機械的強度を改善することもできる。   A method for integrally producing the crosslinked liquid crystal polymer molded body and the support is not particularly limited, and a known method can be used. For example, a crosslinked liquid crystal polymer molded body can be laminated with the support as a film or a sheet. When making a laminated structure, it is important that the support and the crosslinked liquid crystal polymer molded article are sufficiently bonded. This is to prevent peeling or cracking when rotating by light driving. A known method can be used as the bonding method. For example, a method of laminating with a cross-linked liquid crystal polymer molded body using a support having an adhesive function, and bonding using various coating methods such as bar coater coating between the support and the cross-linked liquid crystal polymer molded body. Examples thereof include a method of providing a layer, and a method of bonding a support and a crosslinked liquid crystal polymer molded body with a double-sided tape. When an intermediate layer such as an adhesive layer or a double-sided tape is provided, it is preferable to select a layer having excellent flexibility from the viewpoint of moving integrally with the crosslinked liquid crystal polymer molded body. The thickness of the adhesive layer can be set to, for example, 0.5 μm to 20 μm, but is not limited to this. In place of the laminated structure, the support and the crosslinked liquid crystal polymer may be arranged to face each other via a gap holding member such as a spacer. In addition, the mechanical strength can be improved by sufficiently increasing the thickness of the crosslinked liquid crystal polymer molded body without providing a support.

図1は,本発明に係る動力伝達装置の一例を示す模式的斜視図である。動力伝達装置4は,光駆動型回転子たる無端状ベルト1,動力伝達部材たる2つの軸2,2つのプーリ3を備えている。無端状ベルト1は,同図に示すように,回転可能な2つの円筒状のプーリ3に巻き掛けられている。プーリ3の円筒部の内周部には軸2が嵌め合わされ,プーリ3と軸2が一体的に回転するように構成されている。無端状ベルト1に第1の活性光線及び第2の活性光線を照射することにより,光エネルギーを回転エネルギーに変換して無端状ベルト1を回転させ,それをプーリ3及び軸2の回動に変換して軸2と一体的に回動するローラ等(不図示)に動力を伝達することができる。なお,軸2を固定して,プーリ3のみを回動自在に構成し,プーリ3から他の部材に動力を伝達するように構成してもよい。   FIG. 1 is a schematic perspective view showing an example of a power transmission device according to the present invention. The power transmission device 4 includes an endless belt 1 that is an optically driven rotor, two shafts 2 that are power transmission members, and two pulleys 3. The endless belt 1 is wound around two rotatable cylindrical pulleys 3 as shown in FIG. The shaft 2 is fitted to the inner peripheral portion of the cylindrical portion of the pulley 3, and the pulley 3 and the shaft 2 are configured to rotate integrally. By irradiating the endless belt 1 with the first actinic ray and the second actinic ray, the light energy is converted into rotational energy to rotate the endless belt 1, which is used to rotate the pulley 3 and the shaft 2. Power can be transmitted to a roller or the like (not shown) that converts and rotates integrally with the shaft 2. Alternatively, the shaft 2 may be fixed and only the pulley 3 may be configured to be rotatable, and the power may be transmitted from the pulley 3 to other members.

無端状ベルト1は,所望の大きさの架橋液晶高分子成形体により構成されるフィルムやシート等(以下,「架橋液晶高分子フィルム等」と言う)の端部を接着剤等を用いてエンドレス状のリングとすることにより作製できる。また,架橋液晶高分子フィルム等と支持体(例えば,高分子フィルム,高分子シート)を積層構造とし,上述の方法等によりリングを作製してもよい。プーリ3と接触する無端状ベルト1の内周面側を支持体からなる層により構成することで,無端状ベルト1の機械的強度を高めることができる。無論,無端状ベルト1は支持体と架橋液晶高分子フィルム等以外の要素を含んでいてもよい。例えば,無端状ベルト1とプーリ3との間にすべりが生じないように,無端状ベルト1の幅方向における内周面側端部とプーリ3の端部に歯のかみあい部を設けてもよい。また,架橋液晶高分子フィルム等の上層に保護層等を設けてもよい。   The endless belt 1 is endless using an adhesive or the like at the end of a film, sheet or the like (hereinafter referred to as “crosslinked liquid crystal polymer film” or the like) composed of a crosslinked liquid crystal polymer molded body having a desired size. It can be produced by forming a ring-shaped ring. Alternatively, a crosslinked liquid crystal polymer film or the like and a support (for example, a polymer film or a polymer sheet) may be laminated to produce a ring by the above-described method or the like. By configuring the inner peripheral surface side of the endless belt 1 in contact with the pulley 3 with a layer made of a support, the mechanical strength of the endless belt 1 can be increased. Of course, the endless belt 1 may include elements other than the support and the crosslinked liquid crystal polymer film. For example, a tooth meshing portion may be provided at the end on the inner peripheral surface side in the width direction of the endless belt 1 and the end of the pulley 3 so that no slip occurs between the endless belt 1 and the pulley 3. . Moreover, you may provide a protective layer etc. on upper layers, such as a crosslinked liquid crystal polymer film.

架橋液晶高分子フィルム等は,必ずしも無端状ベルトの主面全体に形成していなくともよく,例えば,支持体を基体とするベルトの幅方向中央部の長軸方向にエンドレス状に配置したり,種類の異なる架橋液晶高分子フィルム等を長軸方向にストライプ状に配列するようにしてもよい。活性光線の波長の異なるフォトクロミック分子を導入した複数の架橋液晶高分子フィルム等をストライプ状に配置して,複数の回転運動モードを備えるようにしてもよい。また,架橋液晶高分子フィルム等は,必ずしも長軸方向にエンドレス状に配置する必要はなく,用途に応じて任意の箇所に配置してもよい。   The cross-linked liquid crystal polymer film or the like does not necessarily have to be formed on the entire main surface of the endless belt. For example, the cross-linked liquid crystal polymer film may be disposed endlessly in the longitudinal direction of the central portion in the width direction of the belt having the support as a base, Different types of cross-linked liquid crystal polymer films or the like may be arranged in stripes in the major axis direction. A plurality of cross-linked liquid crystal polymer films or the like into which photochromic molecules having different wavelengths of actinic rays are introduced may be arranged in stripes so as to have a plurality of rotational motion modes. Further, the cross-linked liquid crystal polymer film or the like does not necessarily need to be disposed endlessly in the major axis direction, and may be disposed at an arbitrary position depending on the application.

駆動軸から離れた位置にある従動軸に無端状ベルトを介して動力を伝達する場合にはモータ部を設けるのが一般的である。本発明に係る動力伝達装置4によれば,モータ部を設けずに無端状ベルト1の回転を誘起して軸2及びプーリ3に動力を伝達することができる。このため,装置の小型化,軽量化を実現できる。また,非接触光源によって,無端状ベルト1の回転をON,OFFすることができるので,光源の距離を任意に設定可能な動力伝達システムを提供することができる。例えば,光源を遠方に配置して,遠隔操作が可能な動力伝達システムを提供することもできる。   When power is transmitted to the driven shaft at a position away from the drive shaft via an endless belt, a motor unit is generally provided. According to the power transmission device 4 of the present invention, power can be transmitted to the shaft 2 and the pulley 3 by inducing rotation of the endless belt 1 without providing a motor portion. This makes it possible to reduce the size and weight of the device. In addition, since the rotation of the endless belt 1 can be turned on and off by the non-contact light source, a power transmission system capable of arbitrarily setting the distance of the light source can be provided. For example, it is possible to provide a power transmission system that can be remotely operated by disposing a light source at a distance.

次に,本発明に係る光誘起回転方法について説明する。本発明に係る光誘起回転方法は,第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子が導入された架橋液晶高分子成形体に,フォトクロミック分子の異性化を局所的に起こすように第1の活性光線及び第2の活性光線を照射して,架橋液晶高分子成形体の形状変化を誘起することにより,当該架橋液晶高分子成形体を回転させるものである。フォトクロミック分子の異性化を局所的に起こす方法としては,架橋液晶高分子成形体の吸光係数に応じて照射する光強度を調節する方法,照射領域を調整する方法等を挙げることができる。   Next, the light induced rotation method according to the present invention will be described. In the photoinduced rotation method according to the present invention, a photochromic molecule is isomerized into a cross-linked liquid crystal polymer molded product into which a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray is introduced. The cross-linked liquid crystal polymer molded body is rotated by irradiating the first actinic ray and the second actinic ray so as to cause local occurrence and inducing a shape change of the cross-linked liquid crystal polymer molded body. is there. Examples of a method for locally causing isomerization of a photochromic molecule include a method for adjusting the light intensity to be irradiated according to the extinction coefficient of the crosslinked liquid crystal polymer molded body, and a method for adjusting the irradiation region.

回転運動を連続的に行いたい場合には,フォトクロミック分子の異性化を連続的に誘起する。フォトクロミック分子の異性化を連続的に誘起するためには,第1の活性光線及び第2の活性光線の両方を同時あるいは逐次的に照射すればよい。異性化が連続的に起こっていれば,光照射は断続的であっても構わない。なお,ここで言う「連続的」とは,特定のフォトクロミック分子を継続的に異性化せしめることを意味するのではなく,架橋液晶高分子成形体内のいずれかのフォトクロミック分子の異性化が起こっている状態であることを意味する。   In order to perform the rotational motion continuously, isomerization of photochromic molecules is continuously induced. In order to continuously induce isomerization of the photochromic molecule, both the first actinic ray and the second actinic ray may be irradiated simultaneously or sequentially. If the isomerization occurs continuously, the light irradiation may be intermittent. Note that “continuous” as used herein does not mean that a specific photochromic molecule is continuously isomerized, but isomerization of any photochromic molecule in the crosslinked liquid crystal polymer molded body occurs. It means a state.

第1の活性光線,及び第2の活性光線の架橋液晶高分子成形体に対する照射位置は,同一としても異なるようにしてもよい。但し,異なる位置とする場合には,第1の活性光線,及び第2の活性光線のそれぞれの照射により,フォトクロミック分子の異性化を誘起できる位置とする。各光線の照射によって異性化を誘起して,メソゲンの配向変化を高分子骨格に伝搬する必要があるためである。第1の活性光線の照射によって異性化された箇所に,第2の活性光線の照射領域の少なくとも一部が含まれるようにすることが簡便である。   The irradiation positions of the first actinic ray and the second actinic ray on the crosslinked liquid crystal polymer molded body may be the same or different. However, when the positions are different, the positions are such that the isomerization of the photochromic molecule can be induced by the irradiation of the first actinic ray and the second actinic ray. This is because it is necessary to induce isomerization by irradiation of each light beam and to propagate the orientation change of the mesogen to the polymer skeleton. It is convenient that at least a part of the irradiation region of the second actinic ray is included in the portion isomerized by the irradiation of the first actinic ray.

本発明者らが鋭意検討を重ねた結果,活性光線の照射位置に応じて,回転方向を適宜変更できることがわかった。照射位置に対する回転方向,及び回転挙動は,用いる架橋液晶高分子成形体や,照射条件により変動し得るので所望の条件を適宜選定する。用いる用途に応じて単一の方向に回転するように構成してもよいし,照射位置を制御することにより回転が双方向に切り替わるように構成してもよい。照射光強度は,導入したフォトクロミック分子の種類,フォトクロミック分子の導入率,架橋液晶高分子成形体の厚み,及び所望とする回転挙動等に応じて最適となるように選定するが,通常1〜1000mJ/cm程度である。所望の回転挙動やフォトクロミック分子に応じて非偏光,偏光のどちらを用いてもよい。照射光源としては,高圧水銀灯,レーザー光等の各種公知の光源を用いることができる。 As a result of extensive studies by the present inventors, it has been found that the rotation direction can be appropriately changed according to the irradiation position of the actinic ray. The rotation direction and the rotation behavior with respect to the irradiation position can vary depending on the crosslinked liquid crystal polymer molded product used and the irradiation conditions. It may be configured to rotate in a single direction according to the application to be used, or may be configured to switch the rotation in both directions by controlling the irradiation position. The irradiation light intensity is selected so as to be optimal according to the type of the introduced photochromic molecule, the introduction rate of the photochromic molecule, the thickness of the crosslinked liquid crystal polymer molded product, the desired rotational behavior, etc., but usually 1 to 1000 mJ. / Cm 2 or so. Either non-polarized light or polarized light may be used depending on the desired rotational behavior and photochromic molecules. As the irradiation light source, various known light sources such as a high-pressure mercury lamp and a laser beam can be used.

架橋液晶高分子成形体に対する第1の活性光線,及び第2の活性光線の照射部位は,ガラス転移温度以上となっていることが好ましい。高分子主鎖の運動に影響を与えるミクロブラウン運動は,高温で活発化する一方でガラス転移温度以下では凍結されるためである。なお,架橋液晶高分子成形体に光を照射すると,その一部は熱エネルギーに変換され得るが,この熱により照射領域が局部的にガラス転移温度以上となっているものも含まれる。ただし,架橋液晶高分子成形体に融点(Tm)が存在する場合には,照射部位の温度が融点より低い温度となる範囲で使用する。   It is preferable that the irradiation site of the first actinic ray and the second actinic ray with respect to the crosslinked liquid crystal polymer molded body has a glass transition temperature or higher. This is because the micro-Brownian motion, which affects the motion of the polymer main chain, is activated at high temperatures, while it is frozen below the glass transition temperature. Note that when the crosslinked liquid crystal polymer molded body is irradiated with light, a part of the polymer can be converted into thermal energy, but some of the irradiation region is locally at or above the glass transition temperature due to this heat. However, when the melting point (Tm) is present in the crosslinked liquid crystal polymer molded product, it is used in a range where the temperature of the irradiated part is lower than the melting point.

次に,本発明に係る光駆動型回転子が回転するメカニズムについて図2〜4を用いつつ説明する。以下,アゾベンゼンを側鎖型高分子のメソゲンに導入した架橋液晶高分子からなるフィルムを例にとり説明する。なお,図中の各部分のサイズや形状は,説明の便宜上のものであり,各部分の比率,形状等は実際とは異なる。   Next, the mechanism by which the light-driven rotor according to the present invention rotates will be described with reference to FIGS. In the following, a film composed of a crosslinked liquid crystal polymer in which azobenzene is introduced into a side chain polymer mesogen will be described as an example. In addition, the size and shape of each part in the drawing are for convenience of explanation, and the ratio, shape, etc. of each part are different from actual ones.

図2(a)は,上記式(1)に示すアゾベンゼン分子の異性化の形状変化を模式的に図示した説明図である。図中,符号10は棒状のトランス体の形状を,符号20は屈曲したシス体の形状を模式的に示したものである。同図に示すように,アゾベンゼン分子に第1の活性光線として紫外光7を照射すると棒状のトランス体10から屈曲したシス体20に異性化し,第2の活性光線として可視光8を照射することによって元のトランス体10に戻る。すなわち,棒状のトランス体10と屈曲したシス体20を可逆的に光により変化せしめることができる。   FIG. 2A is an explanatory view schematically showing a change in the shape of the isomerization of the azobenzene molecule shown in the above formula (1). In the figure, reference numeral 10 schematically shows the shape of a rod-shaped transformer body, and reference numeral 20 schematically shows the shape of a bent cis body. As shown in the figure, when the azobenzene molecule is irradiated with ultraviolet light 7 as the first actinic light, it is isomerized from the rod-shaped trans isomer 10 to the cis-body 20 bent, and the visible light 8 is irradiated as the second actinic light. To return to the original transformer body 10. That is, the rod-like transformer body 10 and the bent cis body 20 can be reversibly changed by light.

図2(b)は,アゾベンゼンをメソゲン部位に導入した架橋液晶高分子フィルム(以下,単に「フィルム」ともいう)30の紫外光照射前後の様子を模式的に図示した部分拡大説明図である。図中,符号31は高分子主鎖を,符号11はアゾベンゼンがトランス体であるトランス型アゾベンゼン側鎖を,符号12はメソゲンにアゾベンゼンを含まない非アゾベンゼン側鎖を,符号21はアゾベンゼンがシス体であるシス型アゾベンゼン側鎖を示している。トランス型アゾベンゼン側鎖11に紫外光7を照射するとアゾベンゼン部位が屈曲したシス型アゾベンゼン側鎖21に構造変化し,これにより非アゾベンゼン側鎖12の配向変化も誘起される。そして,この変化が高分子骨格に伝搬して架橋液晶高分子フィルム30の収縮が起こる。   FIG. 2B is a partially enlarged explanatory view schematically showing a state before and after ultraviolet irradiation of a crosslinked liquid crystal polymer film (hereinafter also simply referred to as “film”) 30 in which azobenzene is introduced into a mesogen site. In the figure, reference numeral 31 denotes a polymer main chain, reference numeral 11 denotes a trans-type azobenzene side chain in which azobenzene is a trans isomer, reference numeral 12 denotes a non-azobenzene side chain in which azobenzene does not contain azobenzene, and reference numeral 21 denotes a cis-benzene cis isomer. The cis-type azobenzene side chain is shown. When the trans-type azobenzene side chain 11 is irradiated with ultraviolet light 7, the structure changes to a cis-type azobenzene side chain 21 in which the azobenzene portion is bent, and thereby the orientation change of the non-azobenzene side chain 12 is also induced. Then, this change propagates to the polymer skeleton and the crosslinked liquid crystal polymer film 30 contracts.

ところで,アゾベンゼン分子は,トランス体からシス体への異性化を誘起する波長(360nm近傍)に高いモル吸光係数を持つ。このため,フィルム中のアゾベンゼン濃度が高くなると異性化を誘起する光はフィルム30を透過できなくなり,照射面側に存在するアゾベンゼン分子を選択的に光異性化することになる。その結果,フィルム30の厚み方向において収縮率に異方性が生じる。   By the way, the azobenzene molecule has a high molar extinction coefficient at a wavelength (near 360 nm) that induces isomerization from the trans form to the cis form. For this reason, when the azobenzene concentration in the film increases, the light that induces isomerization cannot be transmitted through the film 30, and the azobenzene molecules present on the irradiated surface side are selectively photoisomerized. As a result, anisotropy occurs in the shrinkage rate in the thickness direction of the film 30.

図3は,フィルムの厚み方向に対して,フィルム30の収縮率に異方性が生じる様子を模式的に図示した部分拡大説明図である。フィルム30(図3(a)参照)に紫外光を照射すると,照射領域においてトランス体からシス体に構造変化して,ドメインの配向変化が誘起される。そして,図3(b)に示すように厚み方向に収縮率の異方性が発生する。その結果,図3(c)に示すようにフィルム30が機械的な応答を示す。これに,可視光8を照射すると,照射領域においてシス体からトランス体に構造変化し,ドメインの新たな配向変化が誘起されて新たな収縮率の異方性が発生する。   FIG. 3 is a partially enlarged explanatory view schematically showing how anisotropy occurs in the shrinkage rate of the film 30 with respect to the thickness direction of the film. When the film 30 (see FIG. 3A) is irradiated with ultraviolet light, the structure changes from a trans isomer to a cis isomer in the irradiation region, thereby inducing a change in domain orientation. And as shown in FIG.3 (b), the anisotropy of a contraction rate generate | occur | produces in the thickness direction. As a result, the film 30 exhibits a mechanical response as shown in FIG. When visible light 8 is irradiated to this, the structure changes from a cis isomer to a trans isomer in the irradiated region, and a new orientation change of the domain is induced to generate a new anisotropy of the shrinkage rate.

図4は,無端状ベルトフィルム(以下,単に「無端状ベルト」ともいう)32の回転挙動の一例を説明するための模式図である。無端状ベルト32は,図4(a)に示すように図中左側から紫外光7を照射した場合,無端状ベルト32の光源側にある円周表面の照射部領域においてアゾベンゼンの異性化が起こり収縮率の異方性に伴う配向変化が誘起される。そして,図4(b)に示すように無端状ベルト32は一度中心方向に陥没した後,照射方向に向かって屈曲する。このとき,陥没した部分の両端部のうちの片側に対して,図4(b)に示すように可視光8を照射すると,その照射された部分が元のトランス体に戻ろうとして無端状ベルト32が可視光8を照射している光源側に引っ張られる。その結果,無端状ベルト32の重心位置が移動する。そして,無端状ベルト32上における可視光8の照射位置が変わり,別の面が可視光8により照射されることになる。すなわち,紫外光7と可視光8を連続的に照射することにより,照射スポットを移動して無端状ベルト32の重心の位置を移動させることが可能となり,無端状ベルト32を図中右側(可視光照射側)に回転させることができる。   FIG. 4 is a schematic diagram for explaining an example of the rotational behavior of an endless belt film (hereinafter, also simply referred to as “endless belt”) 32. When the endless belt 32 is irradiated with ultraviolet light 7 from the left side in the drawing as shown in FIG. 4A, isomerization of azobenzene occurs in the irradiation area of the circumferential surface on the light source side of the endless belt 32. An orientation change accompanying the anisotropy of the shrinkage rate is induced. As shown in FIG. 4B, the endless belt 32 is once depressed in the central direction and then bent in the irradiation direction. At this time, when one side of the both ends of the depressed portion is irradiated with visible light 8 as shown in FIG. 4 (b), the irradiated portion tries to return to the original transformer body. 32 is pulled toward the light source irradiating visible light 8. As a result, the center of gravity of the endless belt 32 moves. Then, the irradiation position of the visible light 8 on the endless belt 32 is changed, and another surface is irradiated with the visible light 8. That is, by continuously irradiating the ultraviolet light 7 and the visible light 8, it is possible to move the irradiation spot and move the position of the center of gravity of the endless belt 32. The light irradiation side can be rotated.

無端状ベルト32の厚みは特に限定されないが,図3に示すような変形を誘起できる厚みとする必要があり,用いる架橋液晶高分子や支持体の特性により適宜選定する。必ずしも厚み方向に収縮率の異方性を誘起する必要はなく,円周方向における収縮率の異方的変形を誘起せしめて回転するように構成してもよい。   The thickness of the endless belt 32 is not particularly limited, but should be a thickness that can induce deformation as shown in FIG. 3, and is appropriately selected depending on the properties of the crosslinked liquid crystal polymer used and the support. It is not always necessary to induce the anisotropy of the shrinkage rate in the thickness direction, and it may be configured to rotate by inducing anisotropic deformation of the shrinkage rate in the circumferential direction.

上述したようにアゾベンゼンのトランス体は,液晶相を安定化,若しくはそれ自体がメソゲンとして機能する。一方,アゾベンゼンのシス体は,屈曲構造により液晶相を不安定化する。従って,アゾベンゼンを用いた場合,紫外光照射によって等温的に液晶相から等方相への相転移を誘起し得る。このため,ドメインの配向変化をドラスチックに変更可能であり,配向変化を高効率で高分子骨格に伝搬し,架橋液晶高分子成形体の異方的かつ機械的な応答を誘起して回転運動に変換しやすい。無論,架橋液晶高分子成形体の異方的かつ機械的な応答を誘起して回転運動ができればよく,液晶相から等方相への等温的相転移が必須ではないことは言うまでもない。   As described above, the trans form of azobenzene stabilizes the liquid crystal phase or itself functions as a mesogen. On the other hand, the cis form of azobenzene destabilizes the liquid crystal phase due to the bent structure. Therefore, when azobenzene is used, a phase transition from the liquid crystal phase to the isotropic phase can be induced isothermally by irradiation with ultraviolet light. For this reason, it is possible to change the orientation change of the domain drastically, propagate the orientation change to the polymer skeleton with high efficiency, and induce an anisotropic and mechanical response of the crosslinked liquid crystal polymer molded body to cause the rotational motion. Easy to convert. Needless to say, it is only necessary to induce an anisotropic and mechanical response of the crosslinked liquid crystal polymer molded body so as to be able to rotate, and it is needless to say that an isothermal phase transition from the liquid crystal phase to the isotropic phase is not essential.

本発明は,配向性と流動性を兼ね備えている液晶を利用しているため,配向変化を誘起しやすく高分子骨格の異方的変形を誘起しやすい。架橋液晶高分子成形体における液晶の配向や材料,架橋密度などを変化させることにより機械的特性を変化させることができる。   Since the present invention uses a liquid crystal having both orientation and fluidity, it is easy to induce an orientation change and to induce anisotropic deformation of the polymer skeleton. The mechanical properties can be changed by changing the orientation, material, crosslinking density, etc. of the liquid crystal in the crosslinked liquid crystal polymer molded body.

本発明によれば,光エネルギーを回転エネルギーに変換可能な光誘起回転方法,光駆動型回転子,及び動力伝達装置を提供することができる。また,この光駆動型回転子と光源を備える動力伝達システムを提供することができる。光を制御媒体としているので誘導雑音が発生せず,多重伝送などの大量高速度伝送が可能,非接触接続が容易となる等の利点を有する。また,高分子材料とすることにより成形性に優れ,軽量化,低コスト化が期待できる。また,構造体そのものを駆動素子として用いることにより単純化,小型化の実現が容易となる。さらに,わずかな刺激によって回転を誘起できるため,プラスチックモーターなどの駆動装置を初めとした多岐に亘る応用が期待できる。また,本発明に係る光駆動型回転子によれば,エネルギー伝達のための配線が不要となり,遠方よりレーザー光等を照射するだけで回転挙動を誘起することができる動力伝達システムを提供することができる。さらに,マイクロ造形技術(非特許文献2)等と組み合わせることにより,従来にない高性能なマイクロマシン等を創製することが期待できる。本発明に係る光駆動型回転子の形状は,無端状ベルトに限定されず,用途に応じて適宜その形状を選定することができる。   According to the present invention, it is possible to provide a light-induced rotation method, a light-driven rotor, and a power transmission device that can convert light energy into rotational energy. Further, it is possible to provide a power transmission system including the light-driven rotor and the light source. Since light is used as a control medium, there is an advantage that no inductive noise is generated, high-speed transmission such as multiplex transmission is possible, and non-contact connection is easy. In addition, by using a polymer material, the moldability is excellent, and weight reduction and cost reduction can be expected. In addition, by using the structure itself as a drive element, simplification and miniaturization can be easily realized. Furthermore, since rotation can be induced by a slight stimulus, it can be expected to be used in a wide variety of applications including drive devices such as plastic motors. In addition, according to the optically driven rotor according to the present invention, a power transmission system is provided that can eliminate the need for wiring for energy transmission and can induce rotational behavior only by irradiating laser light or the like from a distance. Can do. Furthermore, it can be expected to create an unprecedented high-performance micromachine or the like by combining with a micro modeling technique (Non-patent Document 2). The shape of the optically driven rotor according to the present invention is not limited to the endless belt, and the shape can be appropriately selected according to the application.

次に,実施例によりさらに本発明を具体的に説明するが,本発明の範囲は下記の実施例に限定されるものではない。なお,以下に記載する試薬等は,特に断らない限りは一般に市販されているものである。核磁気共鳴吸収スペクトル測定(HNMR)は,Lamda-300(300MHz)を用い,テトラメチルシラン(TMS)を内部標準とした。化合物の液晶性は,示差走査熱量計(DSC;SeikoI&E,SSC-5200,DSC220C),ホットステージ(Mettler,FP-90,FP-82HT),偏光顕微鏡(POM;OLYMPUS,BH-2)を用いて評価した。示差走査熱量計は,ポリマーの評価は昇温速度10℃/min,モノマーの評価は昇温,降温速度2℃/minとして,いずれも窒素雰囲気下で測定した。 EXAMPLES Next, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example. The reagents and the like described below are generally commercially available unless otherwise specified. For nuclear magnetic resonance absorption spectrum measurement ( 1 HNMR), Lamda-300 (300 MHz) was used, and tetramethylsilane (TMS) was used as an internal standard. The liquid crystallinity of the compound is measured using a differential scanning calorimeter (DSC; Seiko I & E, SSC-5200, DSC220C), a hot stage (Mettler, FP-90, FP-82HT), and a polarizing microscope (POM; OLYMPUS, BH-2). evaluated. The differential scanning calorimeter was measured under a nitrogen atmosphere with a polymer evaluation rate of 10 ° C./min and a monomer evaluation of temperature increase and temperature decrease rate of 2 ° C./min.

光回転挙動は,CCDカメラ(オムロン製 VC-HRM20Z)を用いて観察した。紫外光については,UV−LED光源(浜松ホトニクス製 LC-L1,又はキーエンス製 UV-400)を用いて365nmの単色光を取り出した。出力光の強度は,LC-L1において200mW/cmとし,UV-400において240mW/cmとした。また,可視光については,ハロゲンランプ光源(島津理化製 FLH-50)の白色光を用いた。出力光の強度は,540nmにおいて200mW/cmとした。また,測定サンプルと光源の照射距離は,15〜5mm程度とした。 The light rotation behavior was observed with a CCD camera (OMRON VC-HRM20Z). For ultraviolet light, 365 nm monochromatic light was extracted using a UV-LED light source (LC-L1 manufactured by Hamamatsu Photonics or UV-400 manufactured by Keyence). The intensity of the output light was 200 mW / cm 2 for LC-L1 and 240 mW / cm 2 for UV-400. For the visible light, white light from a halogen lamp light source (FLH-50, Shimadzu Rika) was used. The intensity of the output light was 200 mW / cm 2 at 540 nm. The irradiation distance between the measurement sample and the light source was about 15 to 5 mm.

本実施例においては,架橋液晶高分子成形体の形態としてフィルム状のものを用いた。架橋液晶高分子は,フォトクロミック分子としてアゾベンゼン構造を導入した下記式(2)で示されるシアノ基を有するアクリル酸エステル系ポリマー(以下,「CALP−CN」と略記する),及びシアノ基の部分をアルキル基に変更した下記式(3)で示されるアクリル酸エステル系ポリマー(以下,「CALP−Alk」と略記する)を用いた。
上記式(2)で示されるCALP−CNは,単官能重合性モノマーである下記式(4)で示される6−〔4−(4−シアノフェニルアゾ)フェノキシ〕ノナニルアクリレート(以下,「A9ABC」と略記する)と,架橋重合性モノマーである下記式(5)で示される4,4′−ビス〔6−(アクリロイルオキシ)ノナニルオキシ〕アゾベンゼン(以下,「DA9AB」と略記する)を混合し,液晶相を発現する条件下において共重合させることにより得た。
In this example, a film-like one was used as the form of the crosslinked liquid crystal polymer molded body. The crosslinked liquid crystal polymer is composed of an acrylic ester polymer having a cyano group represented by the following formula (2) having an azobenzene structure introduced as a photochromic molecule (hereinafter abbreviated as “CALP-CN”), and a portion of the cyano group. An acrylate polymer (hereinafter abbreviated as “CALP-Alk”) represented by the following formula (3) changed to an alkyl group was used.
The CALP-CN represented by the above formula (2) is a monofunctional polymerizable monomer represented by the following formula (4) 6- [4- (4-cyanophenylazo) phenoxy] nonanyl acrylate (hereinafter referred to as “A9ABC”). ) And 4,4′-bis [6- (acryloyloxy) nonanyloxy] azobenzene (hereinafter abbreviated as “DA9AB”) represented by the following formula (5), which is a crosslinking polymerizable monomer. , And obtained by copolymerization under the condition of developing a liquid crystal phase.

上記式(3)で示されるCALP−Alkは,単官能重合性モノマーである下記式(6)で示される6−〔4−(4−ノナニルオキシフェニルアゾ)フェノキシ〕ノナニルアクリレート(以下,「A9AB9」と略記する)と,上記式(5)に示した架橋重合性モノマーDA9ABを混合し,液晶相を発現する条件下において共重合させることにより得た。
The CALP-Alk represented by the above formula (3) is a monofunctional polymerizable monomer 6- [4- (4-nonanyloxyphenylazo) phenoxy] nonanyl acrylate (hereinafter, referred to as the following formula (6)). (Abbreviated as “A9AB9”) and the crosslinkable monomer DA9AB shown in the above formula (5) were mixed and copolymerized under the condition of developing a liquid crystal phase.

<単官能重合性モノマーの合成>
500mlのナスフラスコに4−アミノベンゾニトリル3.5g(27mmol)を入れ,1Nの塩酸100mlを加えて氷冷条件下,撹拌した。これに亜硝酸ナトリウム2.2g(32mmol)を水30mlに溶解した水溶液をゆっくり加えた。次いで,水酸化ナトリウム1.0g(25mmol)とフェノール3.0g(32mmol)を溶解した水溶液12mlを反応溶液にゆっくり加え,粉末炭酸カリウムをpH9程度になるまで加え,4時間ほど氷冷条件下で撹拌した。その後,1Nの塩酸を加えpH4とし,析出した沈殿物を回収して混合溶媒(酢酸エチル:ヘキサン=1:1)で再結晶を行うことにより,赤色固体の4−ヒドロキシ4'−シアノアゾベンゼン5.7g(26mmol)を得た。
<Synthesis of monofunctional polymerizable monomer>
To a 500 ml eggplant flask, 3.5 g (27 mmol) of 4-aminobenzonitrile was added, 100 ml of 1N hydrochloric acid was added, and the mixture was stirred under ice-cooling conditions. An aqueous solution in which 2.2 g (32 mmol) of sodium nitrite was dissolved in 30 ml of water was slowly added thereto. Next, 12 ml of an aqueous solution in which 1.0 g (25 mmol) of sodium hydroxide and 3.0 g (32 mmol) of phenol are dissolved is slowly added to the reaction solution, and powdered potassium carbonate is added until the pH reaches about 9, and the mixture is kept under ice-cooling conditions for about 4 hours. Stir. Thereafter, 1N hydrochloric acid is added to adjust the pH to 4, and the deposited precipitate is recovered and recrystallized with a mixed solvent (ethyl acetate: hexane = 1: 1) to give 4-hydroxy 4′-cyanoazobenzene 5 as a red solid. 0.7 g (26 mmol) was obtained.

上記4−ヒドロキシ4'−シアノアゾベンゼン5.7g(26mmol)をN,N−ジメチルホルムアミド(DMF)10mlに溶解し,炭酸カリウム3.5g(30mmol),9−ブロモノナノール10g(30mmol)を加え,130℃で3時間加熱還流を行い,TLCで反応終了を確認した。その後,溶液に酢酸エチル50mlと水30mlを加え,次いで有機層を希塩酸,蒸留水を用いて洗浄し,溶媒を減圧留去して乾燥した。乾燥固体を混合溶媒(酢酸エチル:ヘキサン=1:1)により再結晶することにより,赤色固体の4−(6−ヒドロキシノナニルオキシ)4'−シアノアゾベンゼン8.8g(24mmol)を得た。   5.7 g (26 mmol) of 4-hydroxy 4′-cyanoazobenzene was dissolved in 10 ml of N, N-dimethylformamide (DMF), and 3.5 g (30 mmol) of potassium carbonate and 10 g (30 mmol) of 9-bromononanol were added. The mixture was heated to reflux at 130 ° C. for 3 hours, and the completion of the reaction was confirmed by TLC. Thereafter, 50 ml of ethyl acetate and 30 ml of water were added to the solution, and then the organic layer was washed with dilute hydrochloric acid and distilled water, and the solvent was distilled off under reduced pressure and dried. The dried solid was recrystallized with a mixed solvent (ethyl acetate: hexane = 1: 1) to obtain 8.8 g (24 mmol) of 4- (6-hydroxynonanyloxy) 4′-cyanoazobenzene as a red solid.

上記4−(6−ヒドロキシノナニルオキシ)4'−シアノアゾベンゼン2.8g(9.3mmol)をテトロヒドロフラン(THF)150ml溶解し,硫酸マグネシウムによって予備乾燥した後,トリエチルアミン2.6ml(19mmol),ヒドロキノンを少量加え,氷冷条件下で撹拌した。これに,アクリル酸クロリド1.5g(19mmol)をTHF30mlで希釈した溶液を,滴下漏斗を用いてゆっくりと加え,2時間氷冷下撹拌した後,室温で36時間撹拌した。炭酸カリウム水溶液をpH10になるまで加え,THFを減圧留去した後,反応液を減圧濾過した。残渣をクロロホルムに溶解し,有機層を希塩酸と食塩水を用いて洗浄し,溶媒を減圧留去した。乾燥固体をカラムクロマトグラフィー(クロロホルム)によって精製し,混合溶媒(酢酸エチル:メタノール=1:1)で再結晶を行い,目的物である4−[6−(アクリロイルオキシ)ノナニルオキシ]4'−シアノアゾベンゼン(A9ABC)1.4g(3.4mmol)を得た。
・収率37%
HNMR(δ,CDCl3);1.2-1.4(m,12H),1.8(m,4H),4.0(t,2H),4.1(t,2H),5.7(dd,2H),6.0(dd,2H),6.3(dd,2H)7.0(m,2H),7.8(m,2H),7.9(d,4H)
2.8 g (9.3 mmol) of 4- (6-hydroxynonanyloxy) 4′-cyanoazobenzene was dissolved in 150 ml of tetrohydrofuran (THF), pre-dried with magnesium sulfate, and then 2.6 ml (19 mmol) of triethylamine. , Hydroquinone was added in a small amount and stirred under ice-cooling conditions. A solution obtained by diluting 1.5 g (19 mmol) of acrylic acid chloride with 30 ml of THF was slowly added thereto using a dropping funnel, and the mixture was stirred for 2 hours under ice-cooling and then stirred at room temperature for 36 hours. A potassium carbonate aqueous solution was added until the pH reached 10, and THF was distilled off under reduced pressure, and then the reaction solution was filtered under reduced pressure. The residue was dissolved in chloroform, the organic layer was washed with dilute hydrochloric acid and brine, and the solvent was distilled off under reduced pressure. The dried solid was purified by column chromatography (chloroform), recrystallized with a mixed solvent (ethyl acetate: methanol = 1: 1), and 4- [6- (acryloyloxy) nonanyloxy] 4′-cyano, which was the target product. 1.4 g (3.4 mmol) of azobenzene (A9ABC) was obtained.
・ Yield 37%
1 HNMR (δ, CDCl 3 ); 1.2-1.4 (m, 12H), 1.8 (m, 4H), 4.0 (t, 2H), 4.1 (t, 2H), 5.7 (dd, 2H), 6.0 (dd , 2H), 6.3 (dd, 2H) 7.0 (m, 2H), 7.8 (m, 2H), 7.9 (d, 4H)

上記式(6)に示したA9AB9については,後述する架橋重合性モノマーDA9ABと同様の手順で合成し,NMR測定により目的の化合物が得られていることを確認した。
HNMR
(δ,CDCl3);0.86(t,4H),1.2-1.4(m,20H),4.0(t,4H),4.1(t,2H),5.8(dd,1H),6.1(dd,1H),6.4(dd,1H),6.9(m,4H),7.8(m,4H)
A9AB9 represented by the above formula (6) was synthesized by the same procedure as that for the later-described crosslinkable monomer DA9AB, and it was confirmed by NMR measurement that the target compound was obtained.
1 HNMR
(Δ, CDCl 3 ); 0.86 (t, 4H), 1.2-1.4 (m, 20H), 4.0 (t, 4H), 4.1 (t, 2H), 5.8 (dd, 1H), 6.1 (dd, 1H) , 6.4 (dd, 1H), 6.9 (m, 4H), 7.8 (m, 4H)

<架橋重合性モノマーの合成>
4−ニトロフェノール3.5g(25mmol),炭酸カリウム3.5mg(25mmol),9−ブロモノナノール7.0g(30mmol)をDMF5mlに分散し,その懸濁液を130℃で3時間加熱還流した。TLCで反応終了を確認し,溶液に酢酸エチル50mlと水30mlを加えた後,有機層を希塩酸,及び蒸留水を用いて洗浄し,溶液を減圧留去して乾燥した。乾燥固体をTHF50mlに溶解し,氷冷下撹拌した。これに5?Pd−C1.5gを加えた後,水素化ホウ素ナトリウム2.0g(50mmol)を3回に分けて加え,室温で2時間撹拌した。その後氷冷撹拌下で溶液に1N塩酸100mlを滴下した。固体炭酸カリウムをpH10になるまで加え,溶液を減圧濾過した。沈殿物と溶液から反応物を酢酸エチルで抽出し,溶液を減圧留去して,乾燥を行い,赤褐色固体の4−(6−ヒドロキシノナニルオキシ)アニリン4.0g(16mmol)を得た。
<Synthesis of crosslinkable monomer>
4-Nitrophenol 3.5 g (25 mmol), potassium carbonate 3.5 mg (25 mmol), 9-bromononanol 7.0 g (30 mmol) were dispersed in DMF 5 ml, and the suspension was heated to reflux at 130 ° C. for 3 hours. . After confirming the completion of the reaction by TLC, 50 ml of ethyl acetate and 30 ml of water were added to the solution, and then the organic layer was washed with dilute hydrochloric acid and distilled water, and the solution was distilled off under reduced pressure and dried. The dried solid was dissolved in 50 ml of THF and stirred under ice cooling. To this was added 1.5 g of 5? Pd-C, and 2.0 g (50 mmol) of sodium borohydride was added in three portions, followed by stirring at room temperature for 2 hours. Thereafter, 100 ml of 1N hydrochloric acid was added dropwise to the solution with stirring under ice cooling. Solid potassium carbonate was added until pH 10 and the solution was filtered under reduced pressure. The reaction product was extracted from the precipitate and the solution with ethyl acetate, and the solution was distilled off under reduced pressure, followed by drying to obtain 4.0 g (16 mmol) of 4- (6-hydroxynonanyloxy) aniline as a reddish brown solid.

500mlのナスフラスコに,上記4−(6−ヒドロキシノナニルオキシ)アニリン4.0g(16mmol)と1Nの塩酸100mlを加え,氷冷下撹拌を行った。これに亜硝酸ナトリウム1.2g(17mmol)を溶解させた水溶液30mlをゆっくり滴下した。次にこの水溶液を0℃に保持したまま,水酸化ナトリウム2.0g(50mmol)とフェノール1.6g(17mmol)を水50mlに溶解させた水溶液を滴下し,さらに粉末炭酸カリウムをpHが9程度になるまで加えた,4時間氷冷下撹拌した。その後,1Nの塩酸を加えてpH4とし,減圧濾過を行った。残渣を酢酸エチルに加熱溶解させた後に水で洗浄し,無水硫酸マグネシウムで乾燥した後,乾燥剤を濾過した。さらに酢酸エチルを減圧留去した。残渣を混合溶媒(酢酸エチル:ヘキサン=1:1)で再結晶したところ,褐色固体の4−ヒドロキシ−4'−(6−ヒドロキシノナニルオキシ)アゾベンゼン3.6g(10mmol)を得た。   To a 500 ml eggplant flask, 4.0 g (16 mmol) of 4- (6-hydroxynonanyloxy) aniline and 100 ml of 1N hydrochloric acid were added and stirred under ice cooling. 30 ml of an aqueous solution in which 1.2 g (17 mmol) of sodium nitrite was dissolved was slowly added dropwise thereto. Next, while maintaining this aqueous solution at 0 ° C., an aqueous solution in which 2.0 g (50 mmol) of sodium hydroxide and 1.6 g (17 mmol) of phenol were dissolved in 50 ml of water was dropped, and further, powdered potassium carbonate was adjusted to a pH of about 9. The mixture was added to the mixture and stirred for 4 hours under ice-cooling. Thereafter, 1N hydrochloric acid was added to adjust the pH to 4, followed by filtration under reduced pressure. The residue was dissolved in ethyl acetate with heating, washed with water, dried over anhydrous magnesium sulfate, and the desiccant was filtered. Further, ethyl acetate was distilled off under reduced pressure. The residue was recrystallized with a mixed solvent (ethyl acetate: hexane = 1: 1) to obtain 3.6 g (10 mmol) of 4-hydroxy-4 ′-(6-hydroxynonanyloxy) azobenzene as a brown solid.

上記4−ヒドロキシ−4'−(6−ヒドロキシノナニルオキシ)アゾベンゼン3.6g(10mmol)をDMF10mlに溶解し,溶液に炭酸カリウム3.5g(30mmol),9−ブロモノナノール3.5g(16mmol)を加え,130℃で3時間加熱還流した。TLCで反応終了を確認し,溶液に酢酸エチル50mlと水30mlを加えた後,有機層を希塩酸,蒸留水を用いて洗浄し,溶液を減圧留去・乾燥した。乾燥固体を酢酸エチルとヘキサンを用いて再結晶し,山吹色固体の4,4'−ビス(6−ヒドロキシノナニルオキシ)アゾベンゼン4.6g(9.3mmol)を得た。   3.6 g (10 mmol) of 4-hydroxy-4 ′-(6-hydroxynonanyloxy) azobenzene was dissolved in 10 ml of DMF, and 3.5 g (30 mmol) of potassium carbonate and 3.5 g (16 mmol) of 9-bromononanol were added to the solution. ) And heated to reflux at 130 ° C. for 3 hours. After confirming the completion of the reaction by TLC, 50 ml of ethyl acetate and 30 ml of water were added to the solution, the organic layer was washed with dilute hydrochloric acid and distilled water, and the solution was evaporated under reduced pressure and dried. The dried solid was recrystallized from ethyl acetate and hexane to obtain 4.6 g (9.3 mmol) of 4,4′-bis (6-hydroxynonanyloxy) azobenzene as a bright yellow solid.

上記4,4'−ビス(6−ヒドロキシノナニルオキシ)アゾベンゼン4.6g(9.3mmol)をTHFに150ml溶解し,硫酸マグネシウムによって予備乾燥した後,トリエチルアミン5.2ml(37mmol)を加えた。次いでヒドロキノンを少量加え,氷冷下撹拌した。THF30mlで希釈したアクリル酸クロリド3ml(37mmol)をゆっくりと滴下した。さらに2時間氷冷下撹拌した後,室温で12時間撹拌した。その後,炭酸カリウム水溶液をpH10になるまで加え,THFを減圧留去し,反応液を減圧濾過した。残留物をクロロホルムに溶解し,有機層を希塩酸と食塩水を用いて洗浄した後,溶媒を減圧留去した。残渣をカラムクロマトグラフィー(クロロホルム)によって精製し,混合溶媒(酢酸エチル:メタノール=1:1)で再結晶を行い目的物である4,4'−ビス[6−(アクリロイルオキシ)ノナニルオキシ]アゾベンゼン(DA9AB)1.0g(1.6mmol)を得た。
・収率17%
HNMR(δ,CDCl3):1.2-1.4(m,20H),1.6(m,8H),4.0(t,4H),4.1(t,4H),5.7(dd,2H),6.0(dd,2H),6.3(dd,2H),6.9(m,4H),7.8(m,4H)
The above 4,4′-bis (6-hydroxynonanyloxy) azobenzene (4.6 g, 9.3 mmol) was dissolved in 150 ml of THF, pre-dried with magnesium sulfate, and then added with 5.2 ml (37 mmol) of triethylamine. Next, a small amount of hydroquinone was added and stirred under ice cooling. 3 ml (37 mmol) of acrylic acid chloride diluted with 30 ml of THF was slowly added dropwise. The mixture was further stirred for 2 hours under ice cooling, and then stirred at room temperature for 12 hours. Thereafter, an aqueous potassium carbonate solution was added until the pH reached 10, THF was distilled off under reduced pressure, and the reaction solution was filtered under reduced pressure. The residue was dissolved in chloroform, the organic layer was washed with dilute hydrochloric acid and brine, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (chloroform), recrystallized from a mixed solvent (ethyl acetate: methanol = 1: 1), and 4,4′-bis [6- (acryloyloxy) nonanyloxy] azobenzene (the target product). DA9AB) 1.0 g (1.6 mmol) was obtained.
・ Yield 17%
· 1 HNMR (δ, CDCl 3 ): 1.2-1.4 (m, 20H), 1.6 (m, 8H), 4.0 (t, 4H), 4.1 (t, 4H), 5.7 (dd, 2H), 6.0 (dd , 2H), 6.3 (dd, 2H), 6.9 (m, 4H), 7.8 (m, 4H)

得られたA9ABC,A9AB9,DA9ABの相転移温度を表1に示す。
Table 1 shows the phase transition temperatures of the obtained A9ABC, A9AB9, and DA9AB.

<架橋液晶高分子フィルムの作製>
液晶セルは以下のようにして作製した。まず,中性洗剤及びイソプロピルアルコール中で超音波洗浄したガラス基板上に,ポリイミド前駆体であるポリアミド酸の薄膜をスピンコート法により作製した。そして,加熱処理することによりポリイミド配向膜を有するガラス基板を得た。次いで,ラビング装置(E.H.C.RM-50)を用いてポリイミド面をラビングした後,シリカスペーサーを介してラビング方向がアンチパラレルになるように基板を貼り合せてホモジニアスセルとした。ハイブリッドセルは,基板の片面にホモジニアス配向処理を施し,他方にホメオトロピック配向処理を施すことにより得た。
<Production of cross-linked liquid crystal polymer film>
The liquid crystal cell was produced as follows. First, a thin film of polyamic acid, which is a polyimide precursor, was prepared by spin coating on a glass substrate ultrasonically cleaned in a neutral detergent and isopropyl alcohol. And the glass substrate which has a polyimide orientation film was obtained by heat-processing. Next, the polyimide surface was rubbed using a rubbing apparatus (EHCRM-50), and then the substrate was bonded through a silica spacer so that the rubbing direction was anti-parallel, to obtain a homogeneous cell. The hybrid cell was obtained by subjecting one side of the substrate to homogeneous orientation treatment and the other to homeotropic orientation treatment.

次に,上記化学式(4)のA9ABC(単官能重合性モノマー)を80mol%,上記化学式(6)のDA9AB(架橋重合性モノマー)を20mol%の割合で混合し,熱重合開始剤として下記化学式(7)のV−40(Wako製 エタノールにより再結晶したものを使用)を2mol%添加した試料を等方相温度まで昇温した。そして,毛細管現象を利用して上記液晶セルに封入した。この液晶セルを98℃に加熱した乾燥オーブン中で24時間保持し,熱重合を行うことにより架橋液晶高分子フィルムを得た。
また,上記化学式(5)のA9AB9(単官能重合性モノマー)を20mol%,上記化学式(6)のDA9AB(架橋重合性モノマー)を80mol%の割合で混合し,光重合開始剤として下記化学式(8)のIrgacure 784を2mol%添加した試料を等方相温度(97℃以上)まで昇温した。そして,毛細管現象を利用して上記液晶セルに封入した。この液晶セルを0.1℃/minでスメクチック相を示す89℃まで降温し,メソゲンを一軸配向させた後高圧水銀灯の波長540nm以上,光強度3mW/cmの可視光を2.5時間照射して重合を行うことにより架橋液晶高分子フィルムを得た。
Next, 80 mol% of A9ABC (monofunctional polymerizable monomer) of the chemical formula (4) and 20 mol% of DA9AB (crosslinked polymerizable monomer) of the chemical formula (6) were mixed, and the following chemical formula was used as a thermal polymerization initiator. A sample added with 2 mol% of V-7 (use of Wako recrystallized with ethanol) of (7) was heated to an isotropic phase temperature. And it enclosed with the said liquid crystal cell using the capillary phenomenon. This liquid crystal cell was kept in a drying oven heated to 98 ° C. for 24 hours and subjected to thermal polymerization to obtain a crosslinked liquid crystal polymer film.
In addition, 20 mol% of A9AB9 (monofunctional polymerizable monomer) of the above chemical formula (5) and 80 mol% of DA9AB (crosslinked polymerizable monomer) of the above chemical formula (6) were mixed, and the following chemical formula ( The sample to which 2 mol% of Irgacure 784 of 8) was added was heated to an isotropic phase temperature (97 ° C. or higher). And it enclosed with the said liquid crystal cell using the capillary phenomenon. The liquid crystal cell was cooled to 89 ° C. showing a smectic phase at 0.1 ° C./min, mesogens were uniaxially oriented, and then irradiated with visible light having a wavelength of 540 nm or more and a light intensity of 3 mW / cm 2 for 2.5 hours. Then, a crosslinked liquid crystal polymer film was obtained by polymerization.

<架橋液晶高分子フィルムと無端状ベルトフィルムの特性>
図5(a)に上記CALP−CN,図5(b)にCALP−AlkのDSC測定を行った際のプロファイルを示す。同図に示すように,CALP−CN,CALP−Alkどちらも30℃付近にガラス転移温度が観測された。CALP−CNのフィルムの異方性を偏光顕微鏡により観察したところ,異方性を示すこと,その異方性は200℃以上まで安定であることを確認した。
<Characteristics of cross-linked liquid crystal polymer film and endless belt film>
FIG. 5 (a) shows the CALP-CN and FIG. 5 (b) shows the profile of the CALP-Alk DSC measurement. As shown in the figure, a glass transition temperature was observed around 30 ° C. for both CALP-CN and CALP-Alk. When the anisotropy of the CALP-CN film was observed with a polarizing microscope, it was confirmed that the anisotropy was exhibited and that the anisotropy was stable up to 200 ° C. or higher.

(実験例1) CALP−CNからなるホモジニアス配向の架橋液晶高分子フィルムの両端部を圧着することにより直径8mm,幅3mm,膜厚20μmの無端状ベルト32aを作製した。そして,図6(a)に示すようにポリカーボネートからなるプラスチックプレート33の上に載置した。紫外光7は,無端状ベルト32aに対して図6(a)中の左側であって載置面との角度が約30°の方向から,時計の7時〜8時の範囲付近が照射されるように,可視光8は,無端状ベルト32aに対して図6(a)中の右側であって,載置面との角度が約45°の方向から,時計の2時〜5時の範囲付近が照射されるように設定した。紫外光7及び可視光8は共に非偏光とし,28℃の条件下で測定した。図6(b)に,無端状ベルト32aの光回転挙動の写真を示す。同図は,左側からそれぞれ照射前,照射開始から5s,8s,10sの時点における無端状ベルト32aの写真を示している。照射開始後10秒でおよそ50mm程度,紫外光源側(図中左側)に回転した。 (Experimental Example 1) An endless belt 32a having a diameter of 8 mm, a width of 3 mm, and a film thickness of 20 μm was produced by pressing both ends of a homogeneously oriented crosslinked liquid crystal polymer film made of CALP-CN. Then, it was placed on a plastic plate 33 made of polycarbonate as shown in FIG. The ultraviolet light 7 is irradiated on the endless belt 32a on the left side in FIG. 6 (a) and in the vicinity of the range from 7 o'clock to 8 o'clock from the direction where the angle with the mounting surface is about 30 °. As shown, the visible light 8 is on the right side in FIG. 6A with respect to the endless belt 32a, and the angle between the visible light 8 and the placement surface is about 45 °, and the time from 2 o'clock to 5 o'clock of the watch. It set so that the area vicinity might be irradiated. Both ultraviolet light 7 and visible light 8 were unpolarized and measured under the condition of 28 ° C. FIG. 6B shows a photograph of the light rotation behavior of the endless belt 32a. This figure shows photographs of the endless belt 32a before irradiation from the left side and at times of 5s, 8s and 10s from the start of irradiation, respectively. In about 10 seconds after the start of irradiation, it rotated about 50 mm toward the ultraviolet light source (left side in the figure).

(実験例2) 上記実験例1と同様に作製した無端状ベルトをプラスチックプレートに代えて,黒アルマイト,塗装鉄板(黒,白),床面に載置し,無端状ベルトの回転挙動を検討した。その結果,上記実験例1と同様の回転挙動を示すことを確認した。 (Experimental example 2) The endless belt produced in the same manner as in Experimental example 1 above was placed on black anodized, painted iron plate (black, white), and the floor instead of the plastic plate, and the rotational behavior of the endless belt was examined. did. As a result, it was confirmed that the same rotational behavior as in Experimental Example 1 was exhibited.

(実験例3) 上記実験例1と同様に作製した無端状ベルトについて,測定温度を変更する以外は上記実験例1と同様の測定条件において回転挙動を検討した。具体的には,30℃,60℃,80℃に設定したホットプレート上に無端状ベルトを載置することにより検討した。その結果,いずれの温度においても無端状ベルトが回転することを確認した。 (Experimental example 3) About the endless belt produced similarly to the said experimental example 1, rotational behavior was examined on the measurement conditions similar to the said experimental example 1 except changing measurement temperature. Specifically, it was examined by placing an endless belt on a hot plate set at 30 ° C., 60 ° C., and 80 ° C. As a result, it was confirmed that the endless belt rotates at any temperature.

(比較例1) 可視光を照射しないという条件以外は,上記実験例1と同様の条件下にて実験を行った。その結果,無端状ベルトは半回転程度で回転が止まってしまった。 Comparative Example 1 An experiment was performed under the same conditions as in Experimental Example 1 except that no visible light was irradiated. As a result, the endless belt stopped rotating after about half a turn.

(実験例4) 上記実験例1と同様にして作製した無端状ベルト32bに対して,図7(a)に示すように照射領域を変更して回転挙動を検討した。すなわち,紫外光7は,無端状ベルト32bに対して図7(a)中の左側であって載置面との角度が約30°の方向から,時計の10時〜11時の範囲付近が照射されるように,可視光8は,無端状ベルト32bに対して図7(a)中の右側であって,載置面との角度が約45°の方向から,時計の2時〜5時の範囲付近が照射されるように設定した。照射波長,照射強度,測定温度等の他の条件は上記実験例1と同様とした。その結果,図7(b)に示すように,照射開始後12秒でおよそ20mm程度,紫外光源側(図中左側)に回転した。紫外光の照射位置を変えることにより,回転方向を切り替え可能であることを確認した。 (Experimental example 4) With respect to the endless belt 32b produced in the same manner as in Experimental example 1, the irradiation region was changed as shown in FIG. That is, the ultraviolet light 7 is located on the left side in FIG. 7 (a) with respect to the endless belt 32b from the direction where the angle with the mounting surface is about 30 °, and around the range from 10:00 to 11:00 of the watch. As shown, the visible light 8 is on the right side in FIG. 7 (a) with respect to the endless belt 32b, and the angle with the mounting surface is about 45 °, from 2 o'clock to 5 o'clock of the watch. It was set so that the vicinity of the time range was irradiated. Other conditions such as the irradiation wavelength, irradiation intensity, and measurement temperature were the same as in Experimental Example 1. As a result, as shown in FIG. 7 (b), it rotated to the ultraviolet light source side (left side in the figure) about 20 mm in 12 seconds after the start of irradiation. It was confirmed that the rotation direction can be switched by changing the irradiation position of ultraviolet light.

(実験例5) 液晶の配向性がハイブリッド配向のCALP−CNからなる無端状ベルトにおいて,回転挙動を検討した。無端状ベルトの大きさは,上記実験例1と同様とした。そして,紫外光は,無端状ベルトの左側であって載置面との角度が約45°の方向から,時計の10時〜11時の範囲付近が照射されるように,可視光は,無端状ベルトの右側であって載置面との角度が約60°の方向から,時計の2時〜3時の付近が照射されるように設定した。その他の実験条件は上記実験例1と同様とした。その結果,照射開始後12秒で紫外光源から離れる方向におよそ22mm(約1回転)回転した。 (Experimental Example 5) The rotational behavior of an endless belt made of CALP-CN having a liquid crystal alignment property of hybrid alignment was examined. The size of the endless belt was the same as in Experimental Example 1. The visible light is endless so that the ultraviolet light is irradiated in the vicinity of the range from 10:00 to 11:00 on the left side of the endless belt at an angle of about 45 ° with the mounting surface. The watch was set to irradiate around 2 o'clock to 3 o'clock of the watch from the direction of about 60 ° on the right side of the belt. Other experimental conditions were the same as in Experimental Example 1 above. As a result, it rotated about 22 mm (about one rotation) in the direction away from the ultraviolet light source 12 seconds after the start of irradiation.

(実験例6) 液晶の配向性がツイストネマチック配向のCALP−CNからなる無端状ベルトにおいて,回転挙動を検討した。具体的には,直径6mm,幅3mm,厚み20μmの無端状ベルトを作製した。実験条件は,上記実験例1と同様とした。その結果,照射開始後30秒で紫外光源側におよそ50mm(約3回転)回転した。 (Experimental example 6) Rotational behavior was examined in an endless belt made of CALP-CN in which the orientation of liquid crystal is twisted nematic alignment. Specifically, an endless belt having a diameter of 6 mm, a width of 3 mm, and a thickness of 20 μm was produced. The experimental conditions were the same as in Experimental Example 1 above. As a result, it rotated about 50 mm (about 3 rotations) to the ultraviolet light source side 30 seconds after the start of irradiation.

(実験例7) 架橋液晶高分子としてCALP−CNに代えてCALP−Alkを用いた以外は,上記実験例1と同様の条件下で回転挙動を検討した。その結果,本実験例に係る無端状ベルトは,照射開始後120秒で紫外光源側に約1回転することを確認した。 (Experimental Example 7) The rotational behavior was examined under the same conditions as in Experimental Example 1 except that CALP-Alk was used as the crosslinked liquid crystal polymer instead of CALP-CN. As a result, it was confirmed that the endless belt according to this experimental example rotated about one turn toward the ultraviolet light source 120 seconds after the start of irradiation.

(実験例8) 架橋液晶高分子フィルムとして,CALP−Alkからなるホモジニアス配向のものを,支持体としてポリエチレンフィルム(未延伸フィルム,50μm,東セロ株式会社製)のものを用い,架橋液晶高分子フィルムと支持体からなる無端状ベルトを以下の方法により作製した。まず,自動塗工装置I型(テスター産業株式会社製 PI-1210)及びバーコーターを用いて,ポリエチレンフィルムの一端部に溶液状の接着剤を供給し,バーコーティング塗工によってポリエチレンフィルムの主面全体に均一に広がるように接着剤を引き伸ばし,110℃に加熱したオーブン内で乾燥することにより接着層(12μm)をコートしたフィルムを得た。接着剤としては,アローベースSB-1200(ユニチカ株式会社製,酸変性ポリエチレン樹脂水性分散体),アデカボンタイターHUX380(株式会社ADEKA社製、ポリウレタン樹脂水性分散体)との混合物を用いた。次いで,このフィルムと20μmの架橋液晶高分子フィルムを110℃の条件下で熱圧着によりラミネートした。そして,得られたラミネートフィルムの端部を架橋液晶高分子フィルムがベルトの外周面側となるようにエポキシ接着剤(Hysol E-05CL,Henkel社製)で貼り付けて無端状ベルト(長さ45mm,幅8mm,厚み82μm)を得た。 (Experimental example 8) The cross-linked liquid crystal polymer film is a homogeneous liquid crystal polymer film made of CALP-Alk as the cross-linked liquid crystal polymer film, and the support is a polyethylene film (unstretched film, 50 μm, manufactured by Tosero Co., Ltd.). An endless belt comprising a support and a support was produced by the following method. First, using an automatic coating device type I (PI-1210 manufactured by Tester Sangyo Co., Ltd.) and a bar coater, a solution adhesive is supplied to one end of the polyethylene film, and the main surface of the polyethylene film is applied by bar coating. The adhesive was stretched so as to spread uniformly over the whole, and dried in an oven heated to 110 ° C. to obtain a film coated with an adhesive layer (12 μm). As the adhesive, a mixture of Arrow Base SB-1200 (manufactured by Unitika Ltd., acid-modified polyethylene resin aqueous dispersion) and Adeka Bontiter HUX380 (ADEKA Corporation, polyurethane resin aqueous dispersion) was used. Next, this film and a 20 μm cross-linked liquid crystal polymer film were laminated by thermocompression bonding at 110 ° C. Then, an endless belt (length: 45 mm) was attached to the end of the obtained laminate film with an epoxy adhesive (Hysol E-05CL, manufactured by Henkel) so that the cross-linked liquid crystal polymer film was on the outer peripheral surface side of the belt. , Width 8 mm, thickness 82 μm).

図8(a)に,本実験例8に係る動力伝達装置の模式的斜視図を示す。同図に示すように,動力伝達装置34は,無端状ベルト32c,筐体35,大径軸36,小径軸37,大径プーリ(ボールベアリング)38,小径プーリ(ボールベアリング)39を備えている。大径プーリ38は外径12mm,内径8mmのものを,小径プーリ39は外径3mm,内径1mmのものを用いた。大径軸36,小径軸37は,筐体35に固定されている。そして,大径軸36,小径軸37それぞれに回動可能な大径プーリ38,小径プーリ39が取り付けられ,この2つのプーリに無端状ベルト32cが巻き掛けられている。紫外光7は,無端状ベルト32cが小径プーリ39に接触する近傍,すなわち,小径プーリ39と無端状ベルト32cとの非接触領域及び接触領域近傍を無端状ベルト32cの接線方向に対する略垂直方向から照射した。可視光8は,無端状ベルト32cが大径プーリ38に接触している近傍,すなわち,大径プーリ38と無端状ベルト32cとの非接触領域及び接触領域近傍を無端状ベルト32cの接線方向に対する略垂直な方向から照射した。紫外光7及び可視光8は共に非偏光とし,25℃の条件下で実験を行った。その他の照射条件等は,上記実験例1と同様とした。図8(b)は光照射前,図8(c)は照射30秒後,図8(d)は照射60秒後の動力伝達装置34の写真を示している。これらの図に示すように,図中反時計方向に無端状ベルト32c,大径プーリ38,及び小径プーリ39が回転した。   FIG. 8A shows a schematic perspective view of a power transmission device according to Experimental Example 8. FIG. As shown in the figure, the power transmission device 34 includes an endless belt 32c, a housing 35, a large diameter shaft 36, a small diameter shaft 37, a large diameter pulley (ball bearing) 38, and a small diameter pulley (ball bearing) 39. Yes. The large-diameter pulley 38 has an outer diameter of 12 mm and an inner diameter of 8 mm, and the small-diameter pulley 39 has an outer diameter of 3 mm and an inner diameter of 1 mm. The large diameter shaft 36 and the small diameter shaft 37 are fixed to the housing 35. A large-diameter pulley 38 and a small-diameter pulley 39 are attached to the large-diameter shaft 36 and the small-diameter shaft 37, respectively, and an endless belt 32c is wound around these two pulleys. The ultraviolet light 7 travels in the vicinity where the endless belt 32c comes into contact with the small-diameter pulley 39, that is, the non-contact area between the small-diameter pulley 39 and the endless belt 32c and the vicinity of the contact area from a direction substantially perpendicular to the tangential direction of the endless belt 32c. Irradiated. Visible light 8 is in the vicinity of the endless belt 32c in contact with the large-diameter pulley 38, that is, the non-contact area between the large-diameter pulley 38 and the endless belt 32c and the vicinity of the contact area with respect to the tangential direction of the endless belt 32c. Irradiated from a substantially vertical direction. Both the ultraviolet light 7 and the visible light 8 were non-polarized, and the experiment was performed under the condition of 25 ° C. Other irradiation conditions were the same as in Experimental Example 1 above. FIG. 8B shows a photograph of the power transmission device 34 before light irradiation, FIG. 8C shows 30 seconds after irradiation, and FIG. 8D shows 60 seconds after irradiation. As shown in these figures, the endless belt 32c, the large-diameter pulley 38, and the small-diameter pulley 39 rotate counterclockwise in the figure.

(実験例9) 上記実験例8と同じ動力伝達装置を用いて,同様のサンプルにて照射領域を変更して回転挙動を検討した。図9(a)に,本実験例9に係る動力伝達装置の模式的斜視図を示す。紫外光7は,無端状ベルト32dが大径プーリ38に接触する近傍,すなわち,大径プーリ38と無端状ベルト32dとの非接触領域及び接触領域近傍を無端状ベルト32dの接線方向に対する略垂直方向から照射した。可視光8は,無端状ベルト32dが小径プーリ39に接触している近傍,すなわち,小径プーリ39と無端状ベルト32dとの非接触領域及び接触領域近傍を無端状ベルト32dに対する接線方向の略垂直方向から照射した。照射波長,照射強度,測定温度等の他の条件は上記実験例8と同様とした。図9(b)は光照射前,図9(c)は照射15秒後,図9(d)は照射30秒後の動力伝達装置34の写真を示している。これらの図に示すように,無端状ベルト32dは,上記実験例8とは逆の方向,すなわち時計方向に回転した。照射位置を変えることにより,回転方向を切り替え可能であることを確認した。 (Experimental Example 9) Using the same power transmission device as in Experimental Example 8, the irradiation region was changed with the same sample, and the rotational behavior was examined. FIG. 9A shows a schematic perspective view of a power transmission device according to Experimental Example 9. FIG. The ultraviolet light 7 is substantially perpendicular to the tangential direction of the endless belt 32d in the vicinity where the endless belt 32d contacts the large diameter pulley 38, that is, in the non-contact area and the contact area between the large diameter pulley 38 and the endless belt 32d. Irradiated from the direction. Visible light 8 is substantially perpendicular to the endless belt 32d in the vicinity where the endless belt 32d is in contact with the small-diameter pulley 39, that is, in the non-contact area and the contact area between the small-diameter pulley 39 and the endless belt 32d. Irradiated from the direction. Other conditions such as irradiation wavelength, irradiation intensity, and measurement temperature were the same as in Experimental Example 8. FIG. 9B shows a photograph of the power transmission device 34 before light irradiation, FIG. 9C after 15 seconds of irradiation, and FIG. 9D after 30 seconds of irradiation. As shown in these drawings, the endless belt 32d was rotated in the direction opposite to that of the experimental example 8, that is, in the clockwise direction. It was confirmed that the rotation direction can be switched by changing the irradiation position.

本発明に係る光誘起回転方法,光駆動型回転子,並びにこの光駆動型回転子を備える動力伝達システム及び動力伝達装置は,上記光回転特性を利用して,例えば,プラスチックモーター,スイッチング素子,玩具,マイクロマシン等の種々の用途に用いることができる。   A light-induced rotation method, a light-driven rotator, and a power transmission system and power transmission device including the light-driven rotator according to the present invention, for example, a plastic motor, a switching element, It can be used for various applications such as toys and micromachines.

光駆動型回転子の形状の一例を示す模式的斜視図。The typical perspective view which shows an example of the shape of an optically driven rotor. (a)はアゾベンゼン分子の異性化を説明するための模式図,(b)は架橋液晶高分子の構造変化を説明するための模式図。(A) is a schematic diagram for demonstrating the isomerization of an azobenzene molecule, (b) is a schematic diagram for demonstrating the structural change of a bridge | crosslinking liquid crystal polymer. 架橋液晶高分子成形体の異方的変形を説明するための部分拡大図。The elements on larger scale for demonstrating the anisotropic deformation | transformation of a crosslinked liquid crystal polymer molded object. 本発明に係る光駆動型回転子の回転挙動を説明するための模式図。The schematic diagram for demonstrating the rotational behavior of the optically driven rotor which concerns on this invention. 実施例に係る架橋液晶高分子のDSC測定プロファイルを示す図。The figure which shows the DSC measurement profile of the crosslinked liquid crystal polymer which concerns on an Example. (a)は実験例1に係る無端状ベルトに対する光学系の模式的説明図,(b)は実験例1に係る無端状ベルトの回転挙動の写真。(A) is typical explanatory drawing of the optical system with respect to the endless belt which concerns on Experimental example 1, (b) is a photograph of the rotational behavior of the endless belt which concerns on Experimental example 1. FIG. (a)は実験例4に係る無端状ベルトに対する光学系の模式的説明図,(b)は実験例4に係る無端状ベルトの回転挙動の写真。(A) is typical explanatory drawing of the optical system with respect to the endless belt which concerns on Experimental example 4, (b) is a photograph of the rotational behavior of the endless belt which concerns on Experimental example 4. FIG. (a)は実験例8に係る動力伝達装置の模式的斜視図,(b)〜(d)は実験例8に係る無端状ベルトの光照射前後の写真。(A) is a typical perspective view of the power transmission device according to Experimental Example 8, and (b) to (d) are photographs of the endless belt according to Experimental Example 8 before and after light irradiation. (a)は実験例9に係る動力伝達装置の模式的斜視図,(b)〜(d)は実験例9に係る無端状ベルトの光照射前後の写真。(A) is a typical perspective view of the power transmission device according to Experimental Example 9, and (b) to (d) are photographs of the endless belt according to Experimental Example 9 before and after light irradiation.

符号の説明Explanation of symbols

1 無端状ベルト
2 軸
3 プーリ
4 動力伝達装置
7 紫外光
8 可視光
10 トランス体
11 トランス型側鎖
20 シス体
21 シス型側鎖
30 架橋液晶高分子フィルム
31 高分子主鎖
32 無端状ベルトフィルム
33 プラスチックプレート
34 動力伝達装置
35 筐体
36 大径軸
37 小径軸
38 大径プーリ
39 小径プーリ
DESCRIPTION OF SYMBOLS 1 Endless belt 2 Shaft 3 Pulley 4 Power transmission device 7 Ultraviolet light 8 Visible light 10 Transformer body 11 Transformer side chain 20 Cis body 21 Cis type side chain 30 Crosslinked liquid crystal polymer film 31 Polymer main chain 32 Endless belt film 33 Plastic plate 34 Power transmission device 35 Housing 36 Large diameter shaft 37 Small diameter shaft 38 Large diameter pulley 39 Small diameter pulley

Claims (10)

第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子が導入された架橋液晶高分子成形体に,
前記フォトクロミック分子の異性化を局所的に起こすように前記第1の活性光線及び第2の活性光線を照射して,前記架橋液晶高分子成形体の形状変化を誘起することにより,当該架橋液晶高分子成形体を回転させる光誘起回転方法。
To a crosslinked liquid crystal polymer molded article into which a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray is introduced,
By irradiating the first actinic ray and the second actinic ray so as to cause the isomerization of the photochromic molecule locally, a shape change of the crosslinked liquid crystal polymer molded product is induced, so that A light-induced rotation method for rotating a molecular compact.
前記架橋液晶高分子成形体における前記第1の活性光線,及び第2の活性光線の照射部が,当該架橋液晶高分子成形体のガラス転移温度以上であることを特徴とする請求項1に記載の光誘起回転方法。   The irradiation part of the said 1st actinic ray and 2nd actinic ray in the said crosslinked liquid crystal polymer molded object is more than the glass transition temperature of the said crosslinked liquid crystal polymer molded object, The claim 1 characterized by the above-mentioned. Light-induced rotation method. 第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有し,
前記第1の活性光線,及び第2の活性光線の照射に応じて回転挙動を示す架橋液晶高分子成形体を備える光駆動型回転子。
Containing photochromic molecules that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray;
A light-driven rotator comprising a crosslinked liquid crystal polymer molded body that exhibits a rotational behavior in response to irradiation with the first actinic ray and the second actinic ray.
前記架橋液晶高分子成形体は,支持体と一体的に形成されていることを特徴とする請求項3に記載の光駆動型回転子。   The light-driven rotor according to claim 3, wherein the crosslinked liquid crystal polymer molded body is formed integrally with a support. 前記支持体は,少なくとも高分子成形体からなり,当該高分子成形体のガラス転移温度が使用温度以下であることを特徴とする請求項3又は4に記載の光駆動型回転子。   5. The light-driven rotor according to claim 3, wherein the support is made of at least a polymer molded body, and the glass transition temperature of the polymer molded body is equal to or lower than a use temperature. 前記支持体と前記架橋液晶高分子成形体は,積層構造となっていることを特徴とする請求項3,4又は5に記載の光駆動型回転子。   The light-driven rotor according to claim 3, 4 or 5, wherein the support and the crosslinked liquid crystal polymer molded body have a laminated structure. 前記フォトクロミック分子が,アゾベンゼンであることを特徴とする請求項3〜6のいずれか1項に記載の光駆動型回転子。   The light-driven rotor according to claim 3, wherein the photochromic molecule is azobenzene. 請求項3〜7のいずれか1項に記載の光駆動型回転子が,無端状ベルトであることを特徴とする光駆動型回転子。   The optically driven rotor according to any one of claims 3 to 7, wherein the optically driven rotor is an endless belt. 請求項3〜8のいずれか1項に記載の光駆動型回転子と,当該光駆動型回転子に前記第1の活性光線,及び第2の活性光線を照射する光源を備える動力伝達システム。   A power transmission system comprising: the light-driven rotor according to claim 3; and a light source that irradiates the light-driven rotor with the first active light beam and the second active light beam. 請求項3〜8のいずれか1項に記載の光駆動型回転子と,当該光駆動型回転子に連動して動く動力伝達部材を備える動力伝達装置。   A power transmission device comprising: the optically driven rotor according to any one of claims 3 to 8; and a power transmission member that moves in conjunction with the optically driven rotor.
JP2006311412A 2006-10-11 2006-11-17 Light-induced rotation method, light-driven rotor, power transmission system, and power transmission device Expired - Fee Related JP5067964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006311412A JP5067964B2 (en) 2006-10-11 2006-11-17 Light-induced rotation method, light-driven rotor, power transmission system, and power transmission device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006277487 2006-10-11
JP2006277487 2006-10-11
JP2006311412A JP5067964B2 (en) 2006-10-11 2006-11-17 Light-induced rotation method, light-driven rotor, power transmission system, and power transmission device

Publications (2)

Publication Number Publication Date
JP2008115347A true JP2008115347A (en) 2008-05-22
JP5067964B2 JP5067964B2 (en) 2012-11-07

Family

ID=39501559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311412A Expired - Fee Related JP5067964B2 (en) 2006-10-11 2006-11-17 Light-induced rotation method, light-driven rotor, power transmission system, and power transmission device

Country Status (1)

Country Link
JP (1) JP5067964B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068691A (en) * 2008-09-12 2010-03-25 Tokyo Institute Of Technology Optical-driving actuator, its manufacturing method, and power transfer system
JP2010260836A (en) * 2009-05-11 2010-11-18 Tokyo Univ Of Science Liquid crystalline molecular motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236327B2 (en) 2014-01-31 2017-11-22 日東電工株式会社 Method for producing photoresponsive cross-linked liquid crystal polymer film
JP6223214B2 (en) * 2014-01-31 2017-11-01 日東電工株式会社 Method for producing photoresponsive cross-linked liquid crystal polymer film and photoresponsive cross-linked liquid crystal polymer film obtained by the production method
TWI725554B (en) * 2019-09-24 2021-04-21 國立中央大學 Light-driven rotor applied to the surface of the water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037826A (en) * 2000-07-27 2002-02-06 Jsr Corp Cross-linked product and optical recording medium of photochromic compound
JP2002256031A (en) * 2001-02-28 2002-09-11 Jsr Corp Liquid crystal material, its production method, liquid crystal film, its production method and method of use
JP2003245899A (en) * 2002-02-22 2003-09-02 Tama Tlo Kk Optical driving method for biofunctional molecule, and micro-nanomachine
JP2005023151A (en) * 2003-06-30 2005-01-27 Jsr Corp Optically driven actuator, molecular valve and photoresponsive material
JP2005255805A (en) * 2004-03-10 2005-09-22 Rikogaku Shinkokai Liquid crystal molded product capable of photoinduced bending

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037826A (en) * 2000-07-27 2002-02-06 Jsr Corp Cross-linked product and optical recording medium of photochromic compound
JP2002256031A (en) * 2001-02-28 2002-09-11 Jsr Corp Liquid crystal material, its production method, liquid crystal film, its production method and method of use
JP2003245899A (en) * 2002-02-22 2003-09-02 Tama Tlo Kk Optical driving method for biofunctional molecule, and micro-nanomachine
JP2005023151A (en) * 2003-06-30 2005-01-27 Jsr Corp Optically driven actuator, molecular valve and photoresponsive material
JP2005255805A (en) * 2004-03-10 2005-09-22 Rikogaku Shinkokai Liquid crystal molded product capable of photoinduced bending

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068691A (en) * 2008-09-12 2010-03-25 Tokyo Institute Of Technology Optical-driving actuator, its manufacturing method, and power transfer system
JP2010260836A (en) * 2009-05-11 2010-11-18 Tokyo Univ Of Science Liquid crystalline molecular motor

Also Published As

Publication number Publication date
JP5067964B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5224261B2 (en) Optically driven actuator and power transmission system
Guo et al. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals
Si et al. Controllable and stable deformation of a self-healing photo-responsive supramolecular assembly for an optically actuated manipulator arm
Lee et al. Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks
Fang et al. Synthesis of reactive azobenzene main-chain liquid crystalline polymers via Michael addition polymerization and photomechanical effects of their supramolecular hydrogen-bonded fibers
Ube et al. Photomobile polymer materials with crosslinked liquid‐crystalline structures: molecular design, fabrication, and functions
Ohm et al. Liquid crystalline elastomers as actuators and sensors
Chang et al. Liquid crystals obtained from disclike mesogenic diacetylenes and their polymerization
JP5067964B2 (en) Light-induced rotation method, light-driven rotor, power transmission system, and power transmission device
CN105500857B (en) A kind of optical drive composite with double membrane structure and preparation method thereof
JP6150731B2 (en) Method for producing liquid crystal alignment film
JP6865795B2 (en) Photo-alignable articles
Cheng et al. Visible light induced bending and unbending behavior of crosslinked liquid-crystalline polymer films containing azotolane moieties
TWI589677B (en) Ferroelectric liquid crystal composition and ferroelectric liquid crystal display element
Ube et al. Photoinduced motions of thermoplastic polyurethanes containing azobenzene moieties in main chains
JPWO2011007784A1 (en) LAMINATE MANUFACTURING METHOD AND LAMINATE
JP2009249406A (en) Photochromic liquid crystal material
Bossi et al. Photomodulation of macroscopic properties
Dradrach et al. Traveling Wave Rotary Micromotor Based on a Photomechanical Response in Liquid Crystal Polymer Networks
CN102127458A (en) Binary synergistic photosensitive liquid crystal orientation agent for disc liquid crystal orientation and preparation method
JP3163539B2 (en) Liquid crystalline alignment film, method for producing liquid crystalline alignment film, and optical element using the same
Astam et al. Active surfaces formed in liquid crystal polymer networks
Skandani et al. Aliphatic flexible spacer length controls photomechanical response in compact, ordered liquid crystalline polymer networks
JP2012077228A (en) New liquid crystal polymer and optical element using the same
Acierno et al. Synthesis and characterization of segmented liquid crystalline polymers with the azo group in the main chain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5067964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees