JP2008114141A - Ultrasonic cleaning device - Google Patents

Ultrasonic cleaning device Download PDF

Info

Publication number
JP2008114141A
JP2008114141A JP2006298778A JP2006298778A JP2008114141A JP 2008114141 A JP2008114141 A JP 2008114141A JP 2006298778 A JP2006298778 A JP 2006298778A JP 2006298778 A JP2006298778 A JP 2006298778A JP 2008114141 A JP2008114141 A JP 2008114141A
Authority
JP
Japan
Prior art keywords
cleaning
cleaning tank
ultrasonic
cleaning liquid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006298778A
Other languages
Japanese (ja)
Inventor
Kazuyuki Saiki
和幸 斉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP2006298778A priority Critical patent/JP2008114141A/en
Publication of JP2008114141A publication Critical patent/JP2008114141A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic cleaning device in which the cleaning effect of ultrasonic wave is more enhanced by devising the device so that a washing solution in a cleaning tank is allowed to flow more smoothly, thereby more uniforming ultrasonic sound pressure in the cleaning tank. <P>SOLUTION: In this ultrasonic cleaning device provided with at least the cubic cleaning tank 1; an ultrasonic generation means 3 set in the cleaning tank; a cleaning solution circulation line 7 sucking the cleaning solution in the cleaning tank and returning again to the cleaning tank; and a circulation pump 8 and a deaeration device 9 provided in the cleaning solution circulation line, four corners in a plan view of the cleaning tank 1 are chamfered to form into circular or linear chamfered faces 28 (29), a cleaning solution sucking port 5 of the cleaning solution circulation line 7 is communicatingly opened at a position on a diagonal line connecting the upper corner to the lower corner of a cleaning tank side wall 1a or in the vicinity thereof, and near to the upper ridge of the cleaning tank, and a cleaning solution discharge port 6 is communicatingly opened at a position on the diagonal line or in the vicinity thereof, and near to the lower ridge of the cleaning tank. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脱気装置を備えた超音波洗浄装置に関するものである。   The present invention relates to an ultrasonic cleaning apparatus provided with a deaeration device.

工業用洗浄装置では、部品や部材に付着した汚れ・バリなどをいかにきれいに除去して仕上げるかが重要な課題である。従来、このような洗浄装置の1つとして超音波洗浄装置が用いられている。   In industrial cleaning equipment, how to clean and finish dirt and burrs attached to parts and components is an important issue. Conventionally, an ultrasonic cleaning apparatus is used as one of such cleaning apparatuses.

超音波洗浄装置は、洗浄液を満たした洗浄槽内に超音波発生器を取り付け、洗浄液中に浸漬した被洗浄物に向けて超音波を照射することにより、超音波の振動エネルギーを利用して被洗浄物表面に付着した汚れやバリなどを剥離除去するようにしたものである。   An ultrasonic cleaning device attaches an ultrasonic generator in a cleaning tank filled with a cleaning liquid and irradiates ultrasonic waves toward an object to be cleaned immersed in the cleaning liquid, thereby utilizing ultrasonic vibration energy. It is intended to remove and remove dirt and burrs attached to the surface of the cleaning object.

ところで、このような超音波洗浄装置の場合、超音波の音圧、すなわち超音波の振動エネルギーは洗浄液に含まれる溶存空気濃度に大きな影響を受けることが知られており、溶存空気が多いと超音波の伝播を妨げ、エネルギーロスを引き起こして音圧が低下し、洗浄力が低下する。そこで、従来より超音波洗浄装置に脱気装置を付設し、洗浄液中の溶存空気濃度を低減することにより、効率的で安定な洗浄を実現できるように工夫している(例えば、特許文献1参照)。   In the case of such an ultrasonic cleaning device, it is known that the sound pressure of ultrasonic waves, that is, the vibration energy of ultrasonic waves, is greatly influenced by the concentration of dissolved air contained in the cleaning liquid. Propagation of sound waves is disturbed, energy loss is caused, sound pressure is reduced, and cleaning power is reduced. Therefore, a degassing device is conventionally attached to the ultrasonic cleaning device, and by reducing the dissolved air concentration in the cleaning liquid, it has been devised so that efficient and stable cleaning can be realized (see, for example, Patent Document 1). ).

特許文献1に記載の脱気装置は、空気のみを通す脱気膜を用いた膜式脱気装置の一例であって、密閉空間とされた脱気室内を脱気膜によって2室に仕切り、一方の室には脱気対象とする液を流すとともに、もう一方の室には真空ポンプをつないで負圧で引くことにより、液中の溶存空気を脱気膜を通して吸引除去するようにしたものである。   The deaeration device described in Patent Document 1 is an example of a membrane-type deaeration device using a deaeration membrane that allows only air to pass through. The deaeration chamber that is a sealed space is divided into two chambers by the deaeration membrane, The liquid to be degassed flows in one chamber, and the other chamber is connected to a vacuum pump and pulled at a negative pressure, so that the dissolved air in the liquid is sucked and removed through the degassing membrane. It is.

しかしながら、上記脱気装置の場合、脱気膜が高価で装置のコストが高く、さらに、一定期間毎に脱気膜を交換したり、逆洗したりしなければならず、装置の維持管理に費用と手間がかかるという欠点があった。また、一般的に膜式脱気装置は水系の洗浄液にしか適用できず、炭化水素系や溶剤系の洗浄液には適用することが困難であった。   However, in the case of the above deaeration device, the deaeration membrane is expensive and the cost of the device is high, and furthermore, the deaeration membrane must be replaced or backwashed at regular intervals, which is necessary for maintenance of the device. There was a drawback that it was expensive and time consuming. In general, the membrane type deaerator can be applied only to an aqueous cleaning solution, and is difficult to apply to a hydrocarbon-based or solvent-based cleaning solution.

また、上記膜式脱気装置以外にも、真空式脱気装置やターボ式脱気装置が知られている。真空式脱気装置は、密閉した脱気槽内を一定量の洗浄液で満たし、槽の上部空間の空気を真空ポンプで引くことにより、洗浄液中の溶存空気を取り出して排出するようにしたものである。ターボ式脱気装置は、密閉された脱気槽内に一定量の洗浄液を満たした後、脱気槽へ流入する洗浄液の供給量を絞りながら脱気槽内の洗浄液を大きな流量で排出することにより、脱気槽の入り口側と出口側に圧力差を与え、この圧力差によって脱気槽内の洗浄液中の溶存空気を取り出して排出するようにしたものである。しかしながら、これらにも一長一短があり、脱気効率、コスト、装置の維持管理のすべてを同時に満足できるものではなかった。   In addition to the membrane deaerator, a vacuum deaerator and a turbo deaerator are known. The vacuum deaerator is a device that fills the sealed deaeration tank with a certain amount of cleaning liquid and draws out the dissolved air in the cleaning liquid by drawing the air in the upper space of the tank with a vacuum pump. is there. The turbo-type deaeration device discharges the cleaning liquid in the deaeration tank at a large flow rate while reducing the supply amount of the cleaning liquid flowing into the deaeration tank after filling a certain amount of the cleaning liquid in the sealed deaeration tank. Thus, a pressure difference is given to the inlet side and the outlet side of the deaeration tank, and the dissolved air in the cleaning liquid in the deaeration tank is taken out and discharged by this pressure difference. However, these also have their merits and demerits, and all of deaeration efficiency, cost, and maintenance of the apparatus cannot be satisfied at the same time.

特開2004−249215号公報(全頁、全図)JP 2004-249215 A (all pages, all figures)

そこで、本出願人は、上記問題を解決すべく、特願2005−331249号によって、脱気効率に優れ、かつ、コスト廉価で維持管理も容易な脱気装置と、この脱気装置を用いた超音波洗浄装置を提案した。この特願2005−331249号で提案した超音波洗浄装置は、簡単な構造でありながら洗浄液中の溶存空気を効果的に除去することができ、この種の超音波洗浄装置として極めて有用なものであった。   Therefore, in order to solve the above problem, the present applicant has used a deaeration device which is excellent in deaeration efficiency, is inexpensive and easy to maintain, and is based on Japanese Patent Application No. 2005-331249. An ultrasonic cleaning device was proposed. The ultrasonic cleaning device proposed in Japanese Patent Application No. 2005-331249 can effectively remove dissolved air in the cleaning liquid while having a simple structure, and is extremely useful as this type of ultrasonic cleaning device. there were.

その後、本発明者は上記超音波洗浄装置についてさらなる実験と研究を進めた結果、洗浄槽内の洗浄液がよりスムーズに流れるようにすれば、洗浄槽内の超音波音圧をさらに均一化することができ、超音波による洗浄効果をより一層高めることができることを見い出した。   Thereafter, as a result of further experiments and research on the ultrasonic cleaning device, the present inventor can further uniformize the ultrasonic sound pressure in the cleaning tank if the cleaning liquid in the cleaning tank flows more smoothly. And found that the ultrasonic cleaning effect can be further enhanced.

本発明は、上記知見に基づいてなされたもので、上記特願2005−331249号で提案した超音波洗浄装置にさらなる改良を加え、洗浄槽内の洗浄液がよりスムーズに流れるように工夫することにより、洗浄槽内の超音波音圧をさらに均一化し、超音波による洗浄効果をより一層高めた超音波洗浄装置を提供することを目的とするものである。   The present invention has been made on the basis of the above knowledge, and by further improving the ultrasonic cleaning apparatus proposed in the above Japanese Patent Application No. 2005-331249, by devising the cleaning liquid in the cleaning tank to flow more smoothly. An object of the present invention is to provide an ultrasonic cleaning apparatus in which the ultrasonic sound pressure in the cleaning tank is further uniformed and the cleaning effect by ultrasonic waves is further enhanced.

上記目的を達成するため、本発明は次のような手段を採用した。
すなわち、少なくとも、立方体状になる洗浄槽と、該洗浄槽内に設置された超音波発生手段と、洗浄槽内の洗浄液を吸い込んで再び洗浄槽内に戻す洗浄液循環路と、該洗浄液循環路の途中に設けられた循環ポンプおよび脱気装置とを備えた超音波洗浄装置において、前記立方体状になる洗浄槽の平面視四隅部を面取りして円弧(アール)状または直線状の面取り面とし、前記洗浄液循環路の洗浄液吸込口を洗浄槽側壁の上角と下角をむすぶ対角線上またはその近傍であって洗浄槽の上縁寄りの位置に連通開口するとともに、洗浄液吐出口を前記対角線上またはその近傍であって洗浄槽の下縁寄りの位置に連通開口したことを特徴とするものである。なお、上記平面視四隅部に加え、洗浄槽の底面と側壁の交わる槽底の4つの隅角部にも円弧(アール)状または直線状の面取り面を形成すればさらに望ましい。
In order to achieve the above object, the present invention employs the following means.
That is, at least a cleaning tank having a cubic shape, an ultrasonic wave generating means installed in the cleaning tank, a cleaning liquid circulation path for sucking the cleaning liquid in the cleaning tank and returning it to the cleaning tank, and the cleaning liquid circulation path In the ultrasonic cleaning apparatus provided with a circulation pump and a deaeration device provided in the middle, chamfering the four corners in plan view of the cubic cleaning tank into an arc shape or a linear chamfered surface, The cleaning liquid suction port of the cleaning liquid circulation path is opened on a diagonal line connecting the upper and lower corners of the cleaning tank side wall or in the vicinity thereof and close to the upper edge of the cleaning tank, and the cleaning liquid discharge port is formed on the diagonal line or on the diagonal line. It is characterized in that it opens in the vicinity and close to the lower edge of the cleaning tank. In addition to the above four corners in plan view, it is more desirable to form arcuate or straight chamfered surfaces at the four corners of the tank bottom where the bottom and side walls of the cleaning tank intersect.

本発明によれば、立方体状になる洗浄槽の平面視四隅部を面取りして円弧(アール)状または直線状の面取り面としたので、洗浄槽内を回流する洗浄液はこの円弧(アール)状または直線状の面取り面に沿って流れるようになり、従来のように洗浄槽の四隅部でその流れが乱されるようなことがなくなる。このため、乱流による超音波の乱れがなくなり、洗浄槽内の音圧がより均一化されるので、脱気装置による溶存空気の除去効果と相俟って、さらに安定した超音波洗浄を実現することができる。さらに、平面視四隅部に加え、洗浄槽の底面と側壁の交わる槽底の4つの隅角部にも円弧(アール)状または直線状の面取り面を形成すれば、洗浄槽内を回流する洗浄液の流れはさらに滑らかなものとなり、乱流の発生をさらに低減することができる。   According to the present invention, the four corners in plan view of the cleaning tank having a cubic shape are chamfered to form an arc shape or a straight chamfered surface, so that the cleaning liquid circulating in the cleaning tank is in this arc shape. Alternatively, it flows along a straight chamfered surface, and the flow is not disturbed at the four corners of the cleaning tank as in the prior art. This eliminates the disturbance of ultrasonic waves due to turbulent flow and makes the sound pressure in the cleaning tank more uniform, which in combination with the effect of removing dissolved air by the degassing device realizes more stable ultrasonic cleaning. can do. Furthermore, in addition to the four corners in plan view, the cleaning liquid that circulates in the cleaning tank can be obtained by forming arcuate or straight chamfered surfaces at the four corners of the tank bottom where the bottom and side walls of the cleaning tank intersect. The flow becomes smoother and the generation of turbulent flow can be further reduced.

また、洗浄液循環路の洗浄液吸込口を洗浄槽側壁の上角と下角をむすぶ対角線上またはその近傍であって洗浄槽の上縁寄りの位置に連通開口するとともに、洗浄液吐出口を前記洗浄槽側壁の対角線上またはその近傍であって洗浄槽の下縁寄りの位置に連通開口したので、循環される洗浄液は洗浄槽内を同一方向に向かって流れる乱れのない水流となって回流する。このため、前記円弧(アール)状または直線状の面取り面による整流作用との相乗効果により、さらに安定した超音波洗浄を実現することができる。   In addition, the cleaning liquid suction port of the cleaning liquid circulation path is opened at a position on or near the diagonal line between the upper and lower corners of the cleaning tank side wall and close to the upper edge of the cleaning tank, and the cleaning liquid discharge port is connected to the cleaning tank side wall. Therefore, the circulating cleaning liquid circulates in the cleaning tank as an undisturbed water stream flowing in the same direction in the vicinity of the lower edge of the cleaning tank and near the lower edge of the cleaning tank. For this reason, a more stable ultrasonic cleaning can be realized by a synergistic effect with the rectifying action by the arc-shaped or linear chamfered surface.

図1〜図4に、本発明に係る超音波洗浄装置の第1の実施の形態を示す。
図1は装置全体の構成を示す図、図2は図1中の洗浄槽の第1の構造例を示す略示斜視図、図3は図1中の洗浄槽の第2の構造例を示す図、図4は図1中の脱気装置の構造を示す図である。
1 to 4 show a first embodiment of an ultrasonic cleaning apparatus according to the present invention.
FIG. 1 is a diagram showing a configuration of the entire apparatus, FIG. 2 is a schematic perspective view showing a first structural example of the cleaning tank in FIG. 1, and FIG. 3 shows a second structural example of the cleaning tank in FIG. 4 and 4 are views showing the structure of the deaeration device in FIG.

図1において、1は洗浄液2を満たされた立方体状の洗浄槽であって、この洗浄槽1の底面部には、超音波発生器(超音波発生手段)3が付設されている。また、洗浄槽1の外周囲にはヒータ(液温調節手段)4が付設され、洗浄液2の温度を調節可能とされている。   In FIG. 1, reference numeral 1 denotes a cubic cleaning tank filled with a cleaning liquid 2, and an ultrasonic generator (ultrasonic generator) 3 is attached to the bottom surface of the cleaning tank 1. Further, a heater (liquid temperature adjusting means) 4 is attached to the outer periphery of the cleaning tank 1 so that the temperature of the cleaning liquid 2 can be adjusted.

前記立方体状になる洗浄槽1の平面視四隅部は、図2または図3に示すように、補助部材などを用いて面取りされ、円弧(アール)状の面取り面28(図2)または直線状の面取り面29(図3)とされている。また、洗浄槽1の一側壁1aには、洗浄液循環路7の洗浄液吸込口5が洗浄槽側壁1aの上角と下角をむすぶ対角線d上またはその近傍であって洗浄槽1の上縁寄りの位置に連通開口されているとともに、洗浄液吐出口6が前記対角線d上またはその近傍であって洗浄槽1の下縁寄りの位置に連通開口されている。   As shown in FIG. 2 or FIG. 3, the four corners in plan view of the cleaning tank 1 having a cubic shape are chamfered by using an auxiliary member or the like, and an arc-shaped chamfered surface 28 (FIG. 2) or a straight line shape. The chamfered surface 29 (FIG. 3). Also, on one side wall 1 a of the cleaning tank 1, the cleaning liquid suction port 5 of the cleaning liquid circulation path 7 is on or near the diagonal d that forms the upper and lower corners of the cleaning tank side wall 1 a and near the upper edge of the cleaning tank 1. The cleaning liquid discharge port 6 is open at a position on or near the diagonal line d and near the lower edge of the cleaning tank 1.

前記洗浄液吸込口5と吐出口6をむすぶ洗浄液循環路7の経路途中には、洗浄液を強制循環させるための循環ポンプ8が接続されているとともに、該循環ポンプ8の上流側には洗浄液中の溶存空気を気泡として分離するための脱気装置9が接続されている。また、脱気装置9と循環ポンプ8の間には、バルブ開度を自在に調整可能な空気供給バルブ(空気供給手段)10が接続されている。   A circulation pump 8 for forcibly circulating the cleaning liquid is connected in the middle of the cleaning liquid circulation path 7 connecting the cleaning liquid suction port 5 and the discharge port 6, and the upstream side of the circulation pump 8 contains a cleaning liquid in the cleaning liquid. A degassing device 9 for separating dissolved air as bubbles is connected. Further, an air supply valve (air supply means) 10 capable of freely adjusting the valve opening degree is connected between the deaeration device 9 and the circulation pump 8.

前記空気供給バルブ10は、洗浄液循環路7内を流れる洗浄液中に外部から空気を供給し、洗浄液2の溶存空気濃度を調整するための空気供給機構であって、前記脱気装置9とこの空気供給バルブ10を制御することにより、洗浄液2中の溶存空気濃度を自在にコントロールすることが可能となる。   The air supply valve 10 is an air supply mechanism for supplying air from the outside into the cleaning liquid flowing in the cleaning liquid circulation path 7 and adjusting the dissolved air concentration of the cleaning liquid 2, and includes the deaerator 9 and the air. By controlling the supply valve 10, the dissolved air concentration in the cleaning liquid 2 can be freely controlled.

脱気装置9の上流側には、流量調節バルブ(流量調節手段)11、流量センサ(流量測定手段)12、液温センサ(液温測定手段)13、溶存空気濃度センサ(溶存空気濃度測定手段)14が接続されている。また、装置周囲の温度を測るための室温センサ(室温測定手段)15と、装置周囲の湿度を測るための湿度センサ(湿度測定手段)16も設置されている。なお、一般的に洗浄液中の溶存空気濃度は溶存している酸素Oの量に比例するので、前記溶存空気濃度センサ14としては溶存酸素測定器が用いられる。 On the upstream side of the deaerator 9, a flow rate adjusting valve (flow rate adjusting unit) 11, a flow rate sensor (flow rate measuring unit) 12, a liquid temperature sensor (liquid temperature measuring unit) 13, a dissolved air concentration sensor (dissolved air concentration measuring unit). ) 14 is connected. A room temperature sensor (room temperature measuring means) 15 for measuring the temperature around the apparatus and a humidity sensor (humidity measuring means) 16 for measuring the humidity around the apparatus are also provided. Since the dissolved air concentration in the cleaning liquid is generally proportional to the amount of dissolved oxygen O 2, a dissolved oxygen measuring device is used as the dissolved air concentration sensor 14.

制御装置(制御手段)17は装置全体の動作を制御するもので、前記流量センサ12,液温センサ13,溶存空気濃度センサ14,室温センサ15,湿度センサ16からの計測信号が入力されているとともに、これらの計測信号に基づいて循環ポンプ8,脱気装置9,空気供給バルブ10,流量調節バルブ11、ヒータ4を制御し、洗浄液2の溶存空気濃度が既定値もしくは規定範囲となるように制御するものである。なお、制御装置17には、コンピュータ18などのデータ処理装置が内蔵あるいは外付けされており、後述する制御例で示すように、制御に必要なデータを収集・分析し、洗浄液中の溶存空気濃度の制御に資されている。   A control device (control means) 17 controls the operation of the entire device, and receives measurement signals from the flow rate sensor 12, liquid temperature sensor 13, dissolved air concentration sensor 14, room temperature sensor 15, and humidity sensor 16. At the same time, based on these measurement signals, the circulation pump 8, the deaeration device 9, the air supply valve 10, the flow rate adjustment valve 11, and the heater 4 are controlled so that the dissolved air concentration of the cleaning liquid 2 becomes a predetermined value or a specified range. It is something to control. The control device 17 includes a data processing device such as a computer 18 or is externally attached. As shown in a control example described later, data necessary for control is collected and analyzed, and the concentration of dissolved air in the cleaning liquid Is conducive to control.

脱気装置9は、図4に示すように、所定長さからなる変形可能な弾性チューブ91を備え、この弾性チューブ91を挟むようにして2つのアクチュエータ92a,92bが対向配置されている。2つのアクチュエータ92a,92bのピストンロッド93a,93bの先端には、弾性チューブ91を上下から押圧して変形させるための圧接子94a,94bが取り付けられている。なお、弾性チューブ91の素材としては、炭化水素系洗浄液や溶剤系洗浄液に対しても耐性を有するフッ素ゴムなどを用いることが望ましい。   As shown in FIG. 4, the deaeration device 9 includes a deformable elastic tube 91 having a predetermined length, and two actuators 92 a and 92 b are opposed to each other so as to sandwich the elastic tube 91. At the tips of the piston rods 93a and 93b of the two actuators 92a and 92b, pressure contacts 94a and 94b for pressing and deforming the elastic tube 91 from above and below are attached. As a material for the elastic tube 91, it is desirable to use fluorine rubber or the like that is resistant to hydrocarbon-based cleaning solutions and solvent-based cleaning solutions.

脱気装置9は、アクチュエータ92a,92bを駆動してピストンロッド93a,93bを進退させることにより、その先端の圧接子94a,9abで弾性チューブ91を押圧して内腔断面積を狭めることにより、開口面積の小さくなった絞り部95(図4(b)参照)を形成するものである。循環される洗浄液がこの絞り部95の部分に達すると、その絞り量に応じて流速が速くなり、洗浄液の動圧が急激に上昇するとともに静圧が急激に低下し、次いで、絞り部95を通過すると、チューブの内腔断面積が広がるために流速が遅くなり、洗浄液の動圧が急激に低下するとともに静圧が急激に上昇する。   The deaeration device 9 drives the actuators 92a and 92b to advance and retract the piston rods 93a and 93b, and presses the elastic tube 91 with the pressure contactors 94a and 9ab at the tips thereof to narrow the lumen sectional area. A diaphragm portion 95 (see FIG. 4B) having a small opening area is formed. When the circulating cleaning liquid reaches the portion of the throttle portion 95, the flow rate increases according to the amount of throttle, the dynamic pressure of the cleaning liquid increases rapidly and the static pressure decreases rapidly. When passing, the lumen cross-sectional area of the tube widens, so the flow rate is slowed down, the dynamic pressure of the cleaning liquid decreases rapidly, and the static pressure increases rapidly.

絞り部95において上記のような急激な圧力変化が発生すると、絞り部95の下流側でキャビテーションが発生し、洗浄液中に溶け込んでいる溶存空気が気泡となって分離される。このキャビテーションによる溶存空気の分離作用の強さは、弾性チューブ91の絞り部95の開口面積の大きさ、すなわちアクチュエータ92a,92bのピストンロッド93a,93bの進退量によって制御することができる。   When the rapid pressure change as described above occurs in the throttle unit 95, cavitation occurs on the downstream side of the throttle unit 95, and dissolved air dissolved in the cleaning liquid is separated into bubbles. The strength of the separation action of the dissolved air by the cavitation can be controlled by the size of the opening area of the throttle portion 95 of the elastic tube 91, that is, the advance / retreat amount of the piston rods 93a, 93b of the actuators 92a, 92b.

なお、上記の例では2つのアクチュエータ92a,92bを用いて弾性チューブ91を押圧変形するようにしたが、1個のアクチュエータを用いて押圧変形するようにしてもよい。また、アクチュエータとしてピストンロッド式のものを用いたが、圧接子94a,94bを進退させることができればどのような形式、構造のものであってもよく、例えばネジ進退式のもの、ラック・ピニオン進退式のものなど、種々の進退機構を利用することができる。   In the above example, the elastic tube 91 is pressed and deformed using the two actuators 92a and 92b, but may be pressed and deformed using one actuator. Further, although the piston rod type actuator is used as the actuator, it may be of any type and structure as long as the pressure contacts 94a and 94b can be advanced and retracted, for example, a screw advance / retract type, a rack and pinion advance / retreat type. Various advancing and retracting mechanisms can be used, such as those of the type.

次に、上記超音波洗浄装置における溶存空気濃度の制御について説明する。
〔1〕制御例1
第1の制御例は、溶存空気濃度センサ14の測定結果を用いて洗浄液の溶存空気濃度を制御する場合の例である。以下、その制御方法を説明する。
Next, the control of the dissolved air concentration in the ultrasonic cleaning apparatus will be described.
[1] Control example 1
The first control example is an example in the case where the dissolved air concentration of the cleaning liquid is controlled using the measurement result of the dissolved air concentration sensor 14. The control method will be described below.

超音波洗浄装置の電源が投入されると、制御装置17は循環ポンプ8を駆動し、洗浄槽1内の洗浄液2を槽上部の洗浄液吸込口5から洗浄液循環路7内に吸引する。そして、洗浄液循環路7を一巡させた後、槽下部の洗浄液吐出口6から再び洗浄槽1内に吐出し、洗浄液2を循環させる。また、必要に応じてヒータ4も制御し、液温センサ13の出力する液温信号に基づいて洗浄液2の温度が規定温度となるように制御する。   When the power of the ultrasonic cleaning apparatus is turned on, the control device 17 drives the circulation pump 8 to suck the cleaning liquid 2 in the cleaning tank 1 into the cleaning liquid circulation path 7 from the cleaning liquid suction port 5 in the upper part of the tank. Then, after making a round of the cleaning liquid circulation path 7, the cleaning liquid 2 is discharged again from the cleaning liquid discharge port 6 at the bottom of the tank and the cleaning liquid 2 is circulated. Further, the heater 4 is also controlled as necessary, and the temperature of the cleaning liquid 2 is controlled to be a specified temperature based on the liquid temperature signal output from the liquid temperature sensor 13.

この状態において、制御装置17は溶存空気濃度センサ14から送られてくる溶存空気濃度信号を取り込み、その時点における洗浄液の溶存空気濃度が予め設定した既定値よりも大きいか小さいかを監視する。前述したように、溶存空気濃度が既定値よりも大きい場合には、超音波発生器3から放射される超音波の音圧が急激に低下してしまい、良好な超音波洗浄を行なうことが難しくなる。   In this state, the control device 17 takes in the dissolved air concentration signal sent from the dissolved air concentration sensor 14 and monitors whether the dissolved air concentration of the cleaning liquid at that time is larger or smaller than a preset default value. As described above, when the dissolved air concentration is larger than the predetermined value, the sound pressure of the ultrasonic wave radiated from the ultrasonic generator 3 rapidly decreases, and it is difficult to perform good ultrasonic cleaning. Become.

そこで、溶存空気濃度が既定値よりも大きい場合には、制御装置17は脱気装置9に制御信号を送り、脱気装置9のアクチュエータ92a、92bを駆動してピストンロッド93a,93bを進出させ、その先端の圧接子94a,94bによって弾性チューブ91を押圧変形させ、絞り部95を形成する(図4(b)参照)。   Therefore, when the dissolved air concentration is larger than the predetermined value, the control device 17 sends a control signal to the deaeration device 9 and drives the actuators 92a and 92b of the deaeration device 9 to advance the piston rods 93a and 93b. Then, the elastic tube 91 is pressed and deformed by the pressure contactors 94a and 94b at the tips thereof to form the throttle portion 95 (see FIG. 4B).

弾性チューブ91に絞り部95が形成されると、前述したように絞り部95の下流側でキャビテーションが発生し、洗浄液中に溶存している空気が気泡となって顕在化する。この気泡となって顕在化した溶存空気は洗浄液とともに再び洗浄液吐出口6から洗浄槽1内に吐出されるが、洗浄槽1内に吐出された気泡はその浮力によって洗浄液2中を上昇していき、洗浄槽1の上部液面から槽外へ排出される。   When the constricted portion 95 is formed in the elastic tube 91, cavitation occurs on the downstream side of the constricted portion 95 as described above, and the air dissolved in the cleaning liquid becomes apparent as bubbles. The dissolved air that has become apparent as bubbles is discharged into the cleaning tank 1 from the cleaning liquid discharge port 6 together with the cleaning liquid. The bubbles discharged into the cleaning tank 1 rise in the cleaning liquid 2 due to their buoyancy. The liquid is discharged from the upper liquid surface of the cleaning tank 1 to the outside of the tank.

上記キャビテーションによる溶存空気の気泡化が繰り返されると、洗浄槽1内の洗浄液2は徐々に脱気されていき、その溶存空気濃度はやがて予め設定した規定値以下となる。溶存空気濃度が既定値以下となったら、被洗浄物(図示略)を洗浄液2中に浸漬し、超音波発生器3から超音波を照射して超音波洗浄を開始する。これによって、音圧低下のない効率的で良好な超音波洗浄を行なうことができる。   When the bubble formation of the dissolved air by the cavitation is repeated, the cleaning liquid 2 in the cleaning tank 1 is gradually degassed, and the dissolved air concentration eventually becomes equal to or lower than a preset specified value. When the dissolved air concentration becomes equal to or lower than the predetermined value, an object to be cleaned (not shown) is immersed in the cleaning liquid 2, and ultrasonic cleaning is started by irradiating ultrasonic waves from the ultrasonic generator 3. This makes it possible to perform efficient and good ultrasonic cleaning without a decrease in sound pressure.

制御装置17は、上記超音波洗浄の最中も溶存空気濃度センサ14の出力する溶存空気濃度信号を監視し、洗浄液の溶存空気濃度が既定値以上とならないように脱気装置9の絞り量を制御する。これによって、洗浄槽1内の洗浄液2の溶存空気濃度を常に既定値以下に維持することができ、音圧低下のない良好な超音波洗浄を維持することができる。   The control device 17 monitors the dissolved air concentration signal output from the dissolved air concentration sensor 14 during the ultrasonic cleaning, and adjusts the throttle amount of the deaerator 9 so that the dissolved air concentration of the cleaning liquid does not exceed a predetermined value. Control. As a result, the dissolved air concentration of the cleaning liquid 2 in the cleaning tank 1 can always be kept below a predetermined value, and good ultrasonic cleaning without a decrease in sound pressure can be maintained.

このとき、洗浄液の溶存空気濃度が既定値よりもあまりに小さくなり過ぎるような場合には、空気供給バルブ10も制御し、空気供給バルブ10を開いて洗浄液循環路7内を流れる洗浄液に空気を送り込み、溶存空気濃度を上げるように制御すればよい。この空気供給バルブ10による空気供給制御を併用すれば、溶存空気濃度を常に既定値を中心とする一定範囲内に維持することができ、より良好な超音波洗浄を実現できる。   At this time, if the dissolved air concentration of the cleaning liquid is too small than the predetermined value, the air supply valve 10 is also controlled to open the air supply valve 10 and feed air into the cleaning liquid flowing in the cleaning liquid circulation path 7. Control may be performed to increase the dissolved air concentration. If the air supply control by the air supply valve 10 is used in combination, the dissolved air concentration can always be maintained within a certain range centered on the predetermined value, and better ultrasonic cleaning can be realized.

上記制御において、洗浄槽1の平面視四隅部は面取りされて円弧(アール)状の面取り面28(図2)あるいは直線状の面取り面29(図3)とされている。そのため、例えば円弧(アール)状の面取り面28とした場合を例に採ると、洗浄槽1内を回流する洗浄液2は、図5(a)中に矢印で示すように、面取り面28に沿って流れるようになり、従来のように洗浄槽1の四隅部でその流れが乱されるようなことがなくなる。このため、乱流による超音波の乱れがなくなり、洗浄槽1内の超音波音圧がより均一化され、脱気装置9による溶存空気の除去効果と相俟って、より安定した超音波洗浄を行なうことができる。直線状の面取り面29(図3)の場合も同様である。   In the above control, the four corners in plan view of the cleaning tank 1 are chamfered to form an arcuate chamfered surface 28 (FIG. 2) or a linear chamfered surface 29 (FIG. 3). For this reason, for example, in the case of an arc-shaped chamfered surface 28, the cleaning liquid 2 circulating in the cleaning tank 1 moves along the chamfered surface 28 as shown by an arrow in FIG. Thus, the flow is not disturbed at the four corners of the cleaning tank 1 as in the prior art. For this reason, the disturbance of the ultrasonic wave due to the turbulent flow is eliminated, the ultrasonic sound pressure in the cleaning tank 1 is made more uniform, and combined with the effect of removing the dissolved air by the degassing device 9, more stable ultrasonic cleaning Can be performed. The same applies to the case of the straight chamfered surface 29 (FIG. 3).

さらに、洗浄液循環路7の洗浄液吸込口5を洗浄槽側壁1aの上角と下角をむすぶ対角線d上またはその近傍であって洗浄槽1の上縁寄りの位置に連通開口するとともに、洗浄液吐出口6を前記対角線d上またはその近傍であって洗浄槽1の下縁寄りの位置に連通開口しているので、循環される洗浄液2は、図5(a)(b)中に矢印で示すように、洗浄槽1内を同一方向に向かって流れる乱れのない水流となって回流する。このため、前記円弧(アール)状の面取り面28(または直線状の面取り面29)による整流作用との相乗効果により、さらに安定した超音波洗浄を行なうことができる。   Further, the cleaning liquid suction port 5 of the cleaning liquid circulation path 7 is opened to a position on or near the diagonal line d between the upper and lower corners of the cleaning tank side wall 1a and close to the upper edge of the cleaning tank 1, and the cleaning liquid discharge port 6 is open at a position close to or below the diagonal line d and near the lower edge of the cleaning tank 1, so that the circulating cleaning liquid 2 is indicated by an arrow in FIGS. 5 (a) and 5 (b). In addition, the water flows in the washing tank 1 in the same direction and circulates as an undisturbed water flow. For this reason, more stable ultrasonic cleaning can be performed by a synergistic effect with the rectifying action by the arc-shaped chamfered surface 28 (or the linear chamfered surface 29).

なお、本発明者の実験によれば、良好な超音波洗浄を行なうための溶存空気濃度は、あまりに小さ過ぎても問題があり、2.5mg/l以上となるように設定することが望ましいことが判明した。したがって、目標とする溶存空気濃度の規定値はこの値以上とすることが望ましい。   According to the experiments by the present inventors, the dissolved air concentration for performing good ultrasonic cleaning has a problem even if it is too small, and it is desirable to set it to be 2.5 mg / l or more. There was found. Therefore, it is desirable that the target specified value of the dissolved air concentration be equal to or greater than this value.

前記溶存空気濃度の制御において、脱気装置9における絞り部95の絞り量(内腔断面積)は、溶存空気濃度の大小にかかわらず一定絞り(一定断面積)としてもよいが、溶存空気濃度の規定値からのズレ量の大小に比例してその絞り量を変えるように制御することが望ましい。これによって、溶存空気濃度をより短時間のうちに既定値まで下げることができる。   In the control of the dissolved air concentration, the throttle amount (lumen cross-sectional area) of the throttle portion 95 in the deaeration device 9 may be a constant throttle (constant cross-sectional area) regardless of the size of the dissolved air concentration. It is desirable to control so that the amount of aperture is changed in proportion to the amount of deviation from the specified value. Thereby, the dissolved air concentration can be lowered to a predetermined value in a shorter time.

同様に、空気供給バルブ10のバルブ開度も、溶存空気濃度の規定値からのズレ量の大小に比例してその開度を変えるようにすれば、下がり過ぎた溶存空気濃度をより短時間のうちに既定値まで引き戻すことができ、溶存空気濃度をより確実に一定範囲内に維持することができる。   Similarly, if the opening of the air supply valve 10 is changed in proportion to the amount of deviation from the specified value of the dissolved air concentration, the dissolved air concentration that has decreased too much can be reduced in a shorter time. In the meantime, it can be pulled back to the predetermined value, and the dissolved air concentration can be more reliably maintained within a certain range.

〔2〕制御例2
第2の制御例は、溶存空気濃度の制御動作をタイマー動作で行なうようにした場合の例である。
[2] Control example 2
The second control example is an example in which the dissolved air concentration control operation is performed by a timer operation.

一般的に、超音波洗浄装置における洗浄条件は、洗浄対象とする被洗浄物および洗浄装置の仕様によって決定される。したがって、前述した制御例1で示したような制御動作によって溶存空気濃度が規定値まで制御された後は、溶存空気濃度はそのときの洗浄条件に従った上昇率で徐々に悪化していく。したがって、予めこの溶存空気濃度の上昇率が分かれば、前述した制御例1の制御動作を常時行なわなくても、間歇的にタイマー動作させることにより、洗浄液の溶存空気濃度を既定範囲内に維持することが可能である。   Generally, the cleaning conditions in the ultrasonic cleaning apparatus are determined by the object to be cleaned and the specifications of the cleaning apparatus. Therefore, after the dissolved air concentration is controlled to the specified value by the control operation as shown in the control example 1 described above, the dissolved air concentration gradually deteriorates at an increasing rate according to the cleaning condition at that time. Accordingly, if the rate of increase of the dissolved air concentration is known in advance, the dissolved air concentration of the cleaning liquid is maintained within a predetermined range by intermittently operating the timer without performing the control operation of the control example 1 described above at all times. It is possible.

そこで、予めこの溶存空気濃度の上昇率を実験あるいは実際の超音波洗浄処理によって求めておき、その上昇率から決定される所定の時間間隔をタイマー動作時間として制御装置17に設定する。そして、前述した制御例1の制御動作によって洗浄液2の溶存空気濃度が規定値に達したら、循環ポンプ8を停止して脱気処理を停止し、設定したタイマー時間が経過した時点で再び循環ポンプ8を駆動し、溶存空気濃度をタイマー動作によって低減するように制御する。これを繰り返すことにより、溶存空気濃度を規定範囲内に維持することができる。これによって、洗浄コストの低減化を図ることができる。   Therefore, the rate of increase of the dissolved air concentration is obtained in advance by experiments or actual ultrasonic cleaning processing, and a predetermined time interval determined from the rate of increase is set in the control device 17 as a timer operating time. When the dissolved air concentration of the cleaning liquid 2 reaches a specified value by the control operation of the control example 1 described above, the circulation pump 8 is stopped to stop the deaeration process, and the circulation pump is again turned on when the set timer time has elapsed. 8 is driven to control the dissolved air concentration to be reduced by a timer operation. By repeating this, the dissolved air concentration can be maintained within the specified range. As a result, the cleaning cost can be reduced.

この第2の制御例の場合も、洗浄槽1の平面視四隅部に形成した円弧(アール)状の面取り面28または直線状の面取り面29は、前記第1の制御例の場合と同様に作用し、より一層の洗浄効果を上げることができる。   Also in the case of this second control example, arc-shaped chamfered surfaces 28 or linear chamfered surfaces 29 formed at the four corners in plan view of the cleaning tank 1 are the same as in the case of the first control example. It can act and can raise the further cleaning effect.

〔3〕制御例3
第3の制御例は、超音波洗浄装置の入出力信号の時系列データを制御装置17に内蔵あるいは外付けしたコンピュータ18を用いて解析し、当該超音波洗浄装置を溶存空気濃度などの複数の状態量を入出力信号とする多変量自己回帰モデルとしてソフトウェア上で構築し、この構築した多変量自己回帰モデルに基づいて溶存空気濃度を制御するようにした場合の例である。
[3] Control example 3
In the third control example, the time series data of the input / output signals of the ultrasonic cleaning device is analyzed using a computer 18 incorporated in or externally attached to the control device 17, and the ultrasonic cleaning device is analyzed by a plurality of dissolved air concentrations and the like. This is an example where a multivariate autoregressive model using state quantities as input / output signals is constructed on software, and the dissolved air concentration is controlled based on the constructed multivariate autoregressive model.

前述したように、超音波洗浄における洗浄槽1内の超音波音圧は、洗浄液の溶存空気濃度によって大きく変化するが、一方において、溶存空気濃度は、洗浄槽の形状、洗浄液の循環状態や液温、外気温、湿度などにより幅広い範囲に分布した状態となる。このため、洗浄装置の使用状況によっては、例えば洗浄液の溶存空気濃度だけ、あるいは洗浄液の温度と外気温だけというように、特定の状態量だけからでは正確に溶存空気濃度を特定することが困難な場合も出てくる。そこで、前述した制御例1による溶存空気濃度だけを用いた制御に代えて、超音波洗浄装置を多変量自己回帰モデルとして構築し、この多変量自己回帰モデルに基づいて溶存空気濃度を制御するようにしたものである。   As described above, the ultrasonic sound pressure in the cleaning tank 1 in ultrasonic cleaning varies greatly depending on the dissolved air concentration of the cleaning liquid. On the other hand, the dissolved air concentration depends on the shape of the cleaning tank, the circulation state of the cleaning liquid, and the liquid. It becomes a state distributed in a wide range by temperature, outside air temperature, humidity, and the like. For this reason, depending on the state of use of the cleaning device, it is difficult to specify the dissolved air concentration accurately only from a specific state quantity, for example, only the dissolved air concentration of the cleaning liquid or only the temperature and the outside temperature of the cleaning liquid. A case also comes out. Therefore, instead of the control using only the dissolved air concentration according to the control example 1 described above, the ultrasonic cleaning apparatus is constructed as a multivariate autoregressive model, and the dissolved air concentration is controlled based on the multivariate autoregressive model. It is a thing.

この超音波洗浄装置の多変量自己回帰モデル化は、制御装置17に付設されたコンピュータ18によって、以下に示すような各ステップの処理を行なうことにより、ソフトウェア上で実現される。なお、説明を分かりやすくするため、以下においては、溶存空気濃度、洗浄液の液温、室温の3つの状態量を入出力とする多変量自己回帰モデルを構築する場合を例に採って説明するが、流量、湿度などの他の状態量を変数に加えた場合でも、入出力の変数が増えるだけで処理自体は同様にして行なうことができる。   The multivariate autoregressive modeling of the ultrasonic cleaning apparatus is realized on software by performing the following steps by a computer 18 attached to the control apparatus 17. In order to make the explanation easy to understand, in the following, a case where a multivariate autoregressive model that inputs and outputs three state quantities of dissolved air concentration, cleaning liquid temperature, and room temperature will be described as an example. Even when other state quantities such as flow rate and humidity are added to the variables, the processing itself can be performed in the same manner as the number of input / output variables increases.

(第1ステップ)
まず最初に、溶存空気濃度、洗浄液の液温、室温についての時系列データを収集する。これを行なうには、超音波洗浄装置を稼働し、溶存空気濃度センサ14から出力される溶存酸素データ、液温センサ13から出力される液温データ、室温センサ15から出力される室温データを所定時間(例えば10〜15分間)にわたってサンプリングし、収集する。
(First step)
First, time-series data on the concentration of dissolved air, the temperature of the cleaning liquid, and room temperature is collected. In order to do this, an ultrasonic cleaning device is operated, and dissolved oxygen data output from the dissolved air concentration sensor 14, liquid temperature data output from the liquid temperature sensor 13, and room temperature data output from the room temperature sensor 15 are predetermined. Sample and collect over time (eg, 10-15 minutes).

(第2ステップ)
得られた溶存空気濃度、洗浄液の液温、室温の3つの状態量についての時系列データを基にコンピュータ18で解析し、溶存空気濃度、洗浄液の液温、室温を入出力とする多変量自己回帰モデルを構築する。
(Second step)
The computer 18 analyzes the obtained dissolved air concentration, the temperature of the cleaning liquid, and the time series data for the three state quantities of room temperature. The multivariate self with the dissolved air concentration, the temperature of the cleaning liquid, and the room temperature as inputs and outputs. Build a regression model.

〔第3ステップ〕
得られた多変量自己回帰モデルによる解析から溶存空気濃度、洗浄液の液温、室温のパワー寄与率、インパルス応答(閉鎖系)を算出する。
[Third step]
From the analysis by the obtained multivariate autoregressive model, the dissolved air concentration, the temperature of the cleaning liquid, the power contribution at room temperature, and the impulse response (closed system) are calculated.

〔第4ステップ〕
溶存空気濃度のインパルス応答から、「溶存空気濃度変化の基準時間」(溶存空気濃度が目的とする規定値以下になるまでの時間)を算出する。
[Fourth step]
From the impulse response of the dissolved air concentration, a “reference time for changing the dissolved air concentration” (time until the dissolved air concentration becomes equal to or less than the target specified value) is calculated.

〔第5ステップ〕
パワー寄与率とインパルス応答の値から溶存空気濃度の状態モデルを作成し、これに基づいて前記算出した「溶存空気濃度変化の基準時間」を修正した「溶存空気濃度変化の推定時間」を算出する。
[Fifth step]
A state model of the dissolved air concentration is created from the power contribution rate and the impulse response value, and based on this, the “estimated time of dissolved air concentration change” is calculated by correcting the calculated “reference time of dissolved air concentration change”. .

〔第6ステップ〕
得られた「溶存空気濃度変化の推定時間」から溶存空気濃度が規定の値になるまでの脱気量(あるいは脱気時間)を算出する。
[6th step]
The deaeration amount (or deaeration time) until the dissolved air concentration reaches a specified value is calculated from the obtained “estimated time of change in dissolved air concentration”.

〔第7ステップ〕
上記算出された脱気量(あるいは脱気時間)に基づいて、制御装置17により脱気装置9の絞り量(あるいは脱気時間)を制御し、溶存空気濃度が規定範囲になるようにコントロールする。
[Seventh step]
Based on the calculated deaeration amount (or deaeration time), the control device 17 controls the throttle amount (or deaeration time) of the deaeration device 9 so that the dissolved air concentration falls within a specified range. .

上記の多変量自己回帰モデルを用いれば、超音波洗浄装置全体を統計処理的に扱うことができる。このため、溶存空気濃度、液温、室温、流量、湿度、超音波音圧などの各状態量が複雑に絡み合って状態量間の関係を明確に関連づけることができない場合でも、洗浄液の溶存空気濃度を迅速かつ正確に制御することが可能となる。   If the above multivariate autoregressive model is used, the entire ultrasonic cleaning apparatus can be treated statistically. For this reason, even if each state quantity such as dissolved air concentration, liquid temperature, room temperature, flow rate, humidity, and ultrasonic sound pressure is complicatedly entangled and the relationship between the state quantities cannot be clearly related, the dissolved air concentration of the cleaning liquid Can be quickly and accurately controlled.

なお、上記の例では、超音波洗浄を開始する直前に各状態量の時系列データを収集したが、過去の超音波洗浄作業時に収集・蓄積された各状態量の時系列データを用いて多変量自己回帰モデルを構築するようにしてもよい。   In the above example, the time series data of each state quantity is collected immediately before the start of ultrasonic cleaning. However, the time series data of each state quantity collected and accumulated during the past ultrasonic cleaning work is used for many times. A variable autoregressive model may be constructed.

また、学習機能を付与し、被洗浄物の超音波洗浄が開始された後においても一定時間毎に上記各状態量の時系列データを収集し、この収集した新しい時系列データに基づいて最初に構築した多変量自己回帰モデルを修正するように構成してもよい。このような学習機能を付与しておけば、構築した多変量自己回帰モデルを実際に稼働している超音波洗浄装置の挙動により近づくように進化させることができ、より優れた超音波洗浄を実現することができる。   In addition, after the ultrasonic cleaning of the object to be cleaned is started, the time series data of each state quantity is collected at regular time intervals, and the first time series data is collected based on the collected new time series data. The constructed multivariate autoregressive model may be modified. If such a learning function is added, the constructed multivariate autoregressive model can be evolved to be closer to the behavior of the ultrasonic cleaning device that is actually operating, realizing better ultrasonic cleaning can do.

この第3の制御例の場合も、洗浄槽1の平面視四隅部に形成した円弧(アール)状の面取り面28または直線状の面取り面29は、前記第1の制御例の場合と同様に作用し、より一層の洗浄効果を上げることができる。   Also in the case of this third control example, arc-shaped chamfered surfaces 28 or linear chamfered surfaces 29 formed at the four corners in plan view of the cleaning tank 1 are the same as in the case of the first control example. It can act and can raise the further cleaning effect.

〔4〕制御例4
第4の制御例は、前記循環ポンプ8としてプロペラ式のポンプを用いるとともに、洗浄液の溶存空気濃度を2.5〜3.5mg/lの範囲になるように制御する場合の例である。
[4] Control example 4
The fourth control example is an example in which a propeller pump is used as the circulation pump 8 and the dissolved air concentration of the cleaning liquid is controlled to be in the range of 2.5 to 3.5 mg / l.

前述したように、循環ポンプ8としてプロペラ式のポンプを用いて洗浄液2を循環させるように構成した場合、脱気装置9で発生した気泡が循環ポンプ8に達すると、気泡は循環ポンプ8の回転するプロペラでさらに細かく剪断され、いわゆる「マイクロバブル」と呼ばれる直径10〜数十μmの極めて微細な気泡となる。このマイクロバブルが発生すると、マイクロバブルの作用によって洗浄槽1内の洗浄液2の均一分散化がさらに進み、洗浄槽全域にわたって溶存空気濃度が均一になり、室温や湿度、気圧などの環境の変化に影響されることのない超音波洗浄を実現することができる。また、洗浄液中の汚れが凝集しにくくなり、大きな塊の汚れが発生するようなこともなくなる。   As described above, when the cleaning liquid 2 is circulated using the propeller type pump as the circulation pump 8, when the bubbles generated in the deaeration device 9 reach the circulation pump 8, the bubbles are rotated by the circulation pump 8. Are further finely sheared by a propeller, and become very fine bubbles having a diameter of 10 to several tens of μm, so-called “microbubbles”. When the microbubbles are generated, the uniform dispersion of the cleaning liquid 2 in the cleaning tank 1 is further progressed by the action of the microbubbles, the dissolved air concentration becomes uniform over the entire cleaning tank, and the environment changes such as room temperature, humidity, and atmospheric pressure. Ultrasonic cleaning that is not affected can be realized. In addition, the dirt in the cleaning liquid is less likely to agglomerate, and large clumps are not generated.

この第4の制御例の場合も、洗浄槽1の平面視四隅部に形成した円弧(アール)状の面取り面28または直線状の面取り面29は、前記第1の制御例の場合と同様に作用し、より一層の洗浄効果を上げることができる。   Also in the case of this fourth control example, arc-shaped chamfered surfaces 28 or linear chamfered surfaces 29 formed at the four corners in plan view of the cleaning tank 1 are the same as in the case of the first control example. It can act and can raise the further cleaning effect.

図6に、本発明に係る超音波洗浄装置の第2の実施の形態を示す。
この第2の実施の形態は、脱気装置として、図7に示すような絞り固定式の脱気装置19、または図8(a)(b)に示すような乱流発生式の脱気装置22を用いたものである。なお、脱気装置19,22以外の部分は、図1に示した第1の実施の形態のものと同様な部材を用いているので、同一部分には同一の符号を付し、その詳細な説明は省略する。
FIG. 6 shows a second embodiment of the ultrasonic cleaning apparatus according to the present invention.
In the second embodiment, as a deaeration device, a fixed deaeration device 19 as shown in FIG. 7 or a turbulent flow generation deaeration device as shown in FIGS. 22 is used. In addition, since parts other than the deaeration devices 19 and 22 use the same members as those in the first embodiment shown in FIG. 1, the same parts are denoted by the same reference numerals, and the details thereof are the same. Description is omitted.

図7の絞り固定式の脱気装置19は、その全体が金属や硬質プラスチックなどの変形不可能な剛性パイプ20で作られており、この剛性パイプ20の適宜位置においてその径を絞ることにより、洗浄液の流れる流路途中に固定式の絞り部21を形成したものである。   7 is made entirely of a non-deformable rigid pipe 20 such as metal or hard plastic. By narrowing the diameter of the rigid pipe 20 at an appropriate position, A fixed throttle 21 is formed in the middle of the flow path of the cleaning liquid.

図8(a)は、乱流発生式の脱気装置22の第1の例を示すもので、筒状の管路23内に、断面三角形状をした障害物24を洗浄液の流れを遮る向きに直交配置したものである。図8(b)は、乱流発生式の脱気装置22の第2の例を示すもので、筒状の管路23内に、断面四角形状をした障害物24を洗浄液の流れを遮る向きに直交配置したものである。これら図8(a)(b)に示した脱気装置22は、それぞれ断面三角形または断面四角形をした障害物24によって洗浄液の流れを妨げて乱流を起こし、これによって障害物24の後方側でキャビテーションを発生させることにより、洗浄液中の溶存空気を気泡化させるようにしたものである。   FIG. 8A shows a first example of a turbulent flow generation type deaeration device 22 in which the obstruction 24 having a triangular cross section is blocked in the cylindrical conduit 23 so as to block the flow of the cleaning liquid. Are orthogonally arranged. FIG. 8B shows a second example of the turbulent flow generation type deaeration device 22 in which the obstruction 24 having a quadrangular cross section is blocked in the cylindrical conduit 23 so as to block the flow of the cleaning liquid. Are orthogonally arranged. The deaerator 22 shown in FIGS. 8 (a) and 8 (b) causes the turbulent flow by obstructing the flow of the cleaning liquid by the obstacle 24 having a triangular section or a quadrangular section, respectively. By generating cavitation, the dissolved air in the cleaning liquid is bubbled.

前記図6に示した第2の実施の形態に係る超音波洗浄装置は、使用した脱気装置19,22が絞り固定式や乱流発生式の脱気装置であるため、その絞り量や断面形状を変えることができないが、制御装置17によって循環ポンプ8、空気供給バルブ10、流量調節バルブ11などを制御することにより、洗浄液2の溶存空気濃度を調節することができる。また、前述した多変量自己回帰モデルを用いて制御することも、さらにはマイクロバブルを利用した超音波洗浄を行うことも、同様に可能である。   In the ultrasonic cleaning apparatus according to the second embodiment shown in FIG. 6, since the deaerators 19 and 22 used are fixed-aeration type or turbulent-flow type deaerators, the amount of restriction and the cross-section thereof. Although the shape cannot be changed, the dissolved air concentration of the cleaning liquid 2 can be adjusted by controlling the circulation pump 8, the air supply valve 10, the flow rate adjusting valve 11, and the like by the control device 17. It is also possible to control using the multivariate autoregressive model described above, and to perform ultrasonic cleaning using microbubbles.

さらに、この第2の実施の形態の場合も、洗浄槽1の平面視四隅部に形成した円弧(アール)状の面取り面28または直線状の面取り面29は、前記第1の制御例の場合と同様に作用し、より一層の洗浄効果を上げることができる。   Further, also in the case of the second embodiment, the arc-shaped chamfered surface 28 or the linear chamfered surface 29 formed at the four corners in the plan view of the cleaning tank 1 is the case of the first control example. It is possible to increase the cleaning effect.

図9に、本発明に係る超音波洗浄装置の第3の実施の形態を示す。
この第3の実施の形態は、脱気装置として、図10または図11に示すようなポンプ一体型のプロペラ式脱気装置25,27を用いたものである。なお、この脱気装置25,27以外の部分は、図1に示した第1の実施の形態のものと同様な部材を用いているので、同一部分には同一の符号を付し、その詳細な説明は省略する。
FIG. 9 shows a third embodiment of the ultrasonic cleaning apparatus according to the present invention.
In the third embodiment, propeller type deaerators 25 and 27 with a pump as shown in FIG. 10 or FIG. 11 are used as a deaerator. Since parts other than the deaerators 25 and 27 use the same members as those in the first embodiment shown in FIG. 1, the same parts are denoted by the same reference numerals, and details thereof are described. The detailed explanation is omitted.

図10の脱気装置25は、洗浄液循環路に接続されている循環ポンプ8のポンプ室81の洗浄液入り口部の口径を絞ることにより、絞り部25を形成したものである。なお、82は、洗浄液送給用のプロペラ(回転翼)である。   The deaeration device 25 in FIG. 10 forms the throttle part 25 by narrowing the diameter of the cleaning liquid inlet part of the pump chamber 81 of the circulation pump 8 connected to the cleaning liquid circulation path. In addition, 82 is a propeller (rotary blade) for feeding cleaning liquid.

図11の脱気装置27は、洗浄液循環路に接続されている循環ポンプ8のポンプ室81内に配置された洗浄液送給用のプロペラ82の翼形を非対称形とし、回転するプロペラ82の回りでキャビテーションが発生するようにしたものである。   The deaerator 27 in FIG. 11 has an airfoil shape of the propeller 82 for supplying cleaning liquid disposed in the pump chamber 81 of the circulation pump 8 connected to the cleaning liquid circulation path, and has an asymmetrical shape around the rotating propeller 82. In this case, cavitation is generated.

前記図9に示した第3の実施の形態に係る超音波洗浄装置の場合も、制御装置17によって循環ポンプ8、空気供給バルブ10、流量調節バルブ11などを制御することにより、洗浄液中の溶存空気濃度を調節することができる。また、前述した多変量自己回帰モデルを用いて制御することも、マイクロバブルを利用した超音波洗浄を行うことも、同様に可能である。   Also in the case of the ultrasonic cleaning apparatus according to the third embodiment shown in FIG. 9, the control device 17 controls the circulation pump 8, the air supply valve 10, the flow rate adjustment valve 11, etc., thereby dissolving the cleaning liquid. The air concentration can be adjusted. In addition, it is possible to control using the multivariate autoregressive model described above or to perform ultrasonic cleaning using microbubbles.

さらに、この第3の実施の形態の場合も、洗浄槽1の平面視四隅部に形成した円弧(アール)状の面取り面28または直線状の面取り面29は、前記第1の制御例の場合と同様に作用し、よりいっそうの洗浄効果を上げることができる。   Further, also in the case of the third embodiment, the arc-shaped chamfered surface 28 or the straight chamfered surface 29 formed at the four corners in the plan view of the cleaning tank 1 is the case of the first control example. It can act in the same way and can increase the cleaning effect.

上記実施の形態では、いずれも洗浄槽1の平面視四隅部にのみ円弧(アール)状または直線状の面取り面28,29を形成した場合の例を示したが、面取りの個所はこの平面視四隅部だけに限られるものではなく、この平面視四隅部に加え、図12(a)(b)に示すように、洗浄槽1の底面と側壁の交わる槽底の4つの隅角部についても円弧(アール)状または直線状の面取り面30,31を形成してもよいものである。このように、洗浄槽1の槽底の4つの隅角部にも円弧(アール)状または直線状の面取り面30,31を形成すれば、洗浄槽1内を回流する洗浄液の流れはさらに滑らかなものとなり、乱流の発生をより低減することができるので、さらに優れた洗浄効果を上げることができる。   In the above-described embodiment, an example in which arc-shaped or straight chamfered surfaces 28 and 29 are formed only at the four corners in plan view of the cleaning tank 1 has been described. In addition to the four corners in plan view, as shown in FIGS. 12 (a) and 12 (b), the four corners of the tank bottom where the bottom surface and the side wall of the cleaning tank 1 intersect are also included. Arc-shaped or straight chamfered surfaces 30 and 31 may be formed. As described above, if the arc-shaped or linear chamfered surfaces 30 and 31 are formed at the four corners of the bottom of the cleaning tank 1, the flow of the cleaning liquid circulating in the cleaning tank 1 is smoother. Therefore, the generation of turbulent flow can be further reduced, and a further excellent cleaning effect can be achieved.

第1の実施の形態に係る超音波洗浄装置の全体構成を示す図である。It is a figure which shows the whole structure of the ultrasonic cleaning apparatus which concerns on 1st Embodiment. 図1の超音波洗浄装置で用いる洗浄槽の第1の構造例を示す略示斜視図である。It is a schematic perspective view which shows the 1st structural example of the washing tank used with the ultrasonic cleaning apparatus of FIG. 図1の超音波洗浄装置で用いる洗浄槽の第2の構造例を示す略示斜視図である。It is a schematic perspective view which shows the 2nd structural example of the washing tank used with the ultrasonic cleaning apparatus of FIG. 図1の超音波洗浄装置で用いた脱気装置の構造例を示すもので、(a)は弾性チューブが押圧されていない状態を示す略示断面図、(b)は弾性チューブが押圧変形されて絞り部が形成された状態を示す略示断面図である。FIG. 2 shows a structural example of a deaeration apparatus used in the ultrasonic cleaning apparatus of FIG. 1, (a) is a schematic cross-sectional view showing a state where the elastic tube is not pressed, and (b) is a state where the elastic tube is pressed and deformed. FIG. 6 is a schematic cross-sectional view showing a state where a throttle portion is formed. 図2の洗浄槽を用いた場合の洗浄液の流れを示す説明図であって、(a)はその略示平面図、(b)はその略示側面図である。It is explanatory drawing which shows the flow of the washing | cleaning liquid at the time of using the washing tank of FIG. 2, Comprising: (a) is the schematic plan view, (b) is the schematic side view. 第2の実施の形態に係る超音波洗浄装置の全体構成を示す図である。It is a figure which shows the whole structure of the ultrasonic cleaning apparatus which concerns on 2nd Embodiment. 図6の第2の実施の形態に係る超音波装置で用いる脱気装置の第1の構造例を示す略示断面図である。FIG. 7 is a schematic cross-sectional view showing a first structure example of a deaeration device used in an ultrasonic device according to the second embodiment in FIG. 6. (a)は図6の第2の実施の形態に係る超音波装置で用いる脱気装置の第2の構造例を示す略示断面図、(b)は図6の第2の実施の形態に係る超音波洗浄装置で用いる脱気装置の第3の構造例を示す略示断面図である。6A is a schematic cross-sectional view showing a second structure example of a deaeration device used in the ultrasonic apparatus according to the second embodiment of FIG. 6, and FIG. 6B is a diagram of the second embodiment of FIG. It is a schematic sectional drawing which shows the 3rd structural example of the deaeration apparatus used with the ultrasonic cleaning apparatus which concerns. 第3の実施の形態に係る超音波洗浄装置の全体構成を示す図である。It is a figure which shows the whole structure of the ultrasonic cleaning apparatus which concerns on 3rd Embodiment. 図9の第3の実施の形態に係る超音波洗浄装置で用いる脱気装置の第1の構造例を示す略示断面図である。FIG. 10 is a schematic cross-sectional view illustrating a first structure example of a deaeration apparatus used in an ultrasonic cleaning apparatus according to the third embodiment in FIG. 9. 図9の第3の実施の形態に係る超音波洗浄装置で用いる脱気装置の第2の構造例を示す略示断面図である。FIG. 10 is a schematic cross-sectional view showing a second structure example of the deaeration device used in the ultrasonic cleaning device according to the third embodiment in FIG. 9. 槽底の4つの隅角部も面取りした場合の例を示すもので、(a)は円弧(アール)状の面取り面とした場合の例、(b)は直線状の面取り面とした場合の例である。It shows an example in which the four corners of the tank bottom are also chamfered. (A) is an example in the case of an arc-shaped chamfered surface, and (b) is in the case of a straight chamfered surface. It is an example.

符号の説明Explanation of symbols

1 洗浄槽
1a 洗浄槽の側壁
2 洗浄液
3 超音波発生器(超音波発生手段)
4 ヒータ(液温調節手段)
5 洗浄液吸込口
6 洗浄液吐出口
7 洗浄液循環路
8 循環ポンプ
9 脱気装置
10 空気供給バルブ(空気供給手段)
11 流量調節バルブ(流量調節手段)
12 流量センサ(流量測定手段)
13 液温センサ(液温測定手段)
14 溶存空気濃度センサ(溶存空気濃度測定手段)
15 室温センサ(室温測定手段)
16 湿度センサ(湿度測定手段)
17 制御装置(制御手段)
18 コンピュータ
19 脱気装置
20 剛性パイプ
21 絞り部
22 脱気装置
23 管路
24 障害物
25 脱気装置
26 絞り部
27 脱気装置
28 平面視四隅部の円弧(アール)状の面取り面
29 平面視四隅部の直線状の面取り面
30 槽底の隅角部に形成した円弧(アール)状の面取り面
31 槽底の隅角部に形成した直線状の面取り面
81 ポンプ室
82 ポンプのプロペラ
91 弾性チューブ
92a,92b アクチュエータ
93a,93b ピストンロッド
94a,94b 圧接子
95 絞り部
DESCRIPTION OF SYMBOLS 1 Cleaning tank 1a Side wall of cleaning tank 2 Cleaning liquid 3 Ultrasonic generator (ultrasonic generating means)
4 Heater (liquid temperature control means)
5 Cleaning liquid suction port 6 Cleaning liquid discharge port 7 Cleaning liquid circulation path 8 Circulating pump 9 Deaerator 10 Air supply valve (air supply means)
11 Flow control valve (flow control means)
12 Flow rate sensor (flow rate measuring means)
13 Liquid temperature sensor (liquid temperature measuring means)
14 dissolved air concentration sensor (dissolved air concentration measuring means)
15 Room temperature sensor (room temperature measuring means)
16 Humidity sensor (humidity measurement means)
17 Control device (control means)
DESCRIPTION OF SYMBOLS 18 Computer 19 Deaeration device 20 Rigid pipe 21 Restriction part 22 Deaeration device 23 Pipe line 24 Obstacle 25 Deaeration device 26 Restriction part 27 Deaeration device 28 Arc-shaped chamfered surface of four corners in plan view 29 Plane view Linear chamfered surfaces at the four corners 30 Arc-shaped chamfered surfaces formed at the corners of the tank bottom 31 Linear chamfered surfaces formed at the corners of the tank bottom 81 Pump chamber 82 Pump propeller 91 Elasticity Tube 92a, 92b Actuator 93a, 93b Piston rod 94a, 94b Pressure contactor 95 Restriction part

Claims (2)

少なくとも、立方体状になる洗浄槽と、該洗浄槽内に設置された超音波発生手段と、洗浄槽内の洗浄液を吸い込んで再び洗浄槽内に戻す洗浄液循環路と、該洗浄液循環路の途中に設けられた循環ポンプおよび脱気装置とを備えた超音波洗浄装置において、
前記立方体状になる洗浄槽の平面視四隅部を面取りして円弧(アール)状または直線状の面取り面とし、前記洗浄液循環路の洗浄液吸込口を洗浄槽側壁の上角と下角をむすぶ対角線上またはその近傍であって洗浄槽の上縁寄りの位置に連通開口するとともに、洗浄液吐出口を前記対角線上またはその近傍であって洗浄槽の下縁寄りの位置に連通開口したことを特徴とする超音波洗浄装置。
At least a cleaning tank having a cubic shape, an ultrasonic wave generating means installed in the cleaning tank, a cleaning liquid circulation path for sucking the cleaning liquid in the cleaning tank and returning it to the cleaning tank again, and in the middle of the cleaning liquid circulation path In an ultrasonic cleaning apparatus provided with a provided circulation pump and deaeration device,
The four corners in plan view of the cleaning tank that is in the shape of a cube are chamfered into an arc shape or a straight chamfered surface, and the cleaning liquid suction port of the cleaning liquid circulation path is on a diagonal line that forms the upper and lower corners of the cleaning tank side wall. Alternatively, the cleaning liquid discharge port is opened at a position close to the upper edge of the cleaning tank and near the lower edge of the cleaning tank. Ultrasonic cleaning device.
洗浄槽の底面と側壁の交わる槽底の4つの隅角部にも円弧(アール)状または直線状の面取り面を形成したことを特徴とする請求項1記載の超音波洗浄装置。   2. The ultrasonic cleaning apparatus according to claim 1, wherein arcuate or straight chamfered surfaces are also formed at four corners of the bottom of the tank where the bottom and side walls of the cleaning tank intersect.
JP2006298778A 2006-11-02 2006-11-02 Ultrasonic cleaning device Pending JP2008114141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298778A JP2008114141A (en) 2006-11-02 2006-11-02 Ultrasonic cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298778A JP2008114141A (en) 2006-11-02 2006-11-02 Ultrasonic cleaning device

Publications (1)

Publication Number Publication Date
JP2008114141A true JP2008114141A (en) 2008-05-22

Family

ID=39500562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298778A Pending JP2008114141A (en) 2006-11-02 2006-11-02 Ultrasonic cleaning device

Country Status (1)

Country Link
JP (1) JP2008114141A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284883A (en) * 2008-06-02 2009-12-10 Miura Co Ltd Apparatus for washing agricultural product
CN102489465A (en) * 2011-12-06 2012-06-13 云南优宝科技有限公司 Full-automatic compression band cleaning system and cleaning process
CN102825032A (en) * 2012-09-26 2012-12-19 东华理工大学 Self-circulation sewage ultrasonic cleaner
CN103203340A (en) * 2013-03-28 2013-07-17 凌强 Cleaning device
CN103586232A (en) * 2013-11-14 2014-02-19 无锡南方声学工程有限公司 Ultrasonic cleaning device applied to disc-shaped filter in polyester film industry
CN104907291A (en) * 2015-06-17 2015-09-16 澳帕曼织带(昆山)有限公司 Braid cleaning device
JP7469798B2 (en) 2020-05-14 2024-04-17 コトヒラ工業株式会社 Shoe sole cleaning device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168086U (en) * 1987-04-20 1988-11-01
JPH0833877A (en) * 1994-07-22 1996-02-06 Daido Metal Co Ltd Ultrasonic treating device
JP2005336080A (en) * 2004-05-26 2005-12-08 Asahi Kasei Medical Co Ltd Method and system for separating and collecting cell for therapeutic angiogenesis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168086U (en) * 1987-04-20 1988-11-01
JPH0833877A (en) * 1994-07-22 1996-02-06 Daido Metal Co Ltd Ultrasonic treating device
JP2005336080A (en) * 2004-05-26 2005-12-08 Asahi Kasei Medical Co Ltd Method and system for separating and collecting cell for therapeutic angiogenesis

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284883A (en) * 2008-06-02 2009-12-10 Miura Co Ltd Apparatus for washing agricultural product
CN102489465A (en) * 2011-12-06 2012-06-13 云南优宝科技有限公司 Full-automatic compression band cleaning system and cleaning process
CN102825032A (en) * 2012-09-26 2012-12-19 东华理工大学 Self-circulation sewage ultrasonic cleaner
CN103203340A (en) * 2013-03-28 2013-07-17 凌强 Cleaning device
CN103586232A (en) * 2013-11-14 2014-02-19 无锡南方声学工程有限公司 Ultrasonic cleaning device applied to disc-shaped filter in polyester film industry
CN104907291A (en) * 2015-06-17 2015-09-16 澳帕曼织带(昆山)有限公司 Braid cleaning device
JP7469798B2 (en) 2020-05-14 2024-04-17 コトヒラ工業株式会社 Shoe sole cleaning device

Similar Documents

Publication Publication Date Title
JP4159574B2 (en) Deaeration device and ultrasonic cleaning device using the same
JP5015074B2 (en) Ultrasonic cleaning equipment
JP2008114141A (en) Ultrasonic cleaning device
KR101191549B1 (en) Method and apparatus for cleaning substrate, and program recording medium
JP4705517B2 (en) Substrate cleaning method, substrate cleaning apparatus, program, and recording medium
KR20120028348A (en) Membrane cleaning with pulsed gas slugs and global aeration
WO2010128915A1 (en) Vortex generator with vortex chamber
JP2007090344A (en) Method for cleaning hollow component, cleaning assembly and method for maintenance of turbine blade
WO2014166748A1 (en) Method for the ultrasonic degassing of liquids for dialysis
WO2015175377A1 (en) Method and system for generating cavitation in a fluid
US8863763B1 (en) Sonication cleaning with a particle counter
JP2008036557A (en) Gas dissolving device, substrate washing unit, gas dissolving method and substrate washing method
JP2009098270A (en) Substrate cleaning device
JP2010125367A (en) Membrane separation apparatus
KR102435639B1 (en) System and method for generating High concentration nanobubble using degassing apparatus and ultrasonic
JP6108209B2 (en) Fine bubble generation nozzle
JP2006247498A (en) Membrane washing method and apparatus
JP2009154085A (en) Cleaning-in-place method for pipeline, and cleaning-in-place device for pipeline
JP4349076B2 (en) Washing the stagnation part during washing of the fluid distribution piping line and evaluating the degree of washing
Kawakami et al. Can Water Quality Affect the Lift Dynamics of Cavitating Hydrofoils?
CN220223689U (en) Integrated air floatation equipment
JP2012120988A (en) Fine air bubble generator
JP7458729B2 (en) bubble generator
JP2022017857A (en) System, method and program for monitoring control
JP2021016821A (en) Membrane separation apparatus operation method and membrane separation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090421

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101206

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510