JP2008113015A - Polishing slurry and polishing method - Google Patents

Polishing slurry and polishing method Download PDF

Info

Publication number
JP2008113015A
JP2008113015A JP2007304888A JP2007304888A JP2008113015A JP 2008113015 A JP2008113015 A JP 2008113015A JP 2007304888 A JP2007304888 A JP 2007304888A JP 2007304888 A JP2007304888 A JP 2007304888A JP 2008113015 A JP2008113015 A JP 2008113015A
Authority
JP
Japan
Prior art keywords
polishing
polishing liquid
acid
insulating film
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007304888A
Other languages
Japanese (ja)
Other versions
JP4850167B2 (en
Inventor
Hitoshi Amanokura
仁 天野倉
Takashi Sakurada
剛史 櫻田
So Anzai
創 安西
Masato Fukazawa
正人 深沢
Shoichi Sasaki
晶市 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007304888A priority Critical patent/JP4850167B2/en
Publication of JP2008113015A publication Critical patent/JP2008113015A/en
Application granted granted Critical
Publication of JP4850167B2 publication Critical patent/JP4850167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing slurry capable of obtaining a surface to be polished having high flatness even if the surface to be polished is made of a plurality of substances, and further capable of suppressing metal residue and scratches after polishing; and to provide a method of performing CMP (chemical mechanical polishing) using the same, in the polishing slurry and polishing method used for polishing in a process for forming wirings of a semiconductor device, and the like. <P>SOLUTION: The polishing slurry contains: one of a surfactant and an organic solvent; a metal oxide-dissolving agent; and water, wherein the polishing slurry is used for polishing the surface to be polished that has at least a conductive substance and an insulating film on a surface thereof. The metal oxide-dissolving agent contains at least one selected from organic acid, organic ester, an organic acid ammonium salt, and sulfuric acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体デバイスの配線形成工程等における研磨に使用される研磨液及び研磨方法に関する。   The present invention relates to a polishing liquid and a polishing method used for polishing in a wiring formation process of a semiconductor device.

近年、半導体集積回路(以下、LSIと記す。)の高集積化、高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(以下、CMPと記す。)法もその一つであり、LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線形成において頻繁に利用される技術である。この技術は、例えば特許文献1に開示されている。   In recent years, new microfabrication techniques have been developed along with higher integration and higher performance of semiconductor integrated circuits (hereinafter referred to as LSIs). A chemical mechanical polishing (hereinafter referred to as CMP) method is one of them, and a technique frequently used in the planarization of an interlayer insulating film, the formation of a metal plug, and the formation of a buried wiring in an LSI manufacturing process, particularly a multilayer wiring forming process. It is. This technique is disclosed in Patent Document 1, for example.

また、最近はLSIを高性能化するために、配線材料となる導電性物質として銅および銅合金の利用が試みられている。しかし、銅や銅合金は従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。そこで、あらかじめ溝を形成してある絶縁膜上に銅または銅合金の薄膜を堆積して埋め込み、溝部以外の前記薄膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている。この技術は、例えば特許文献2に開示されている。   Recently, in order to improve the performance of LSIs, attempts have been made to use copper and copper alloys as conductive materials serving as wiring materials. However, copper and copper alloys are difficult to be finely processed by the dry etching method frequently used in the formation of conventional aluminum alloy wiring. Therefore, a so-called damascene method is mainly employed, in which a thin film of copper or a copper alloy is deposited and embedded on an insulating film in which a groove is formed in advance, and the thin film other than the groove is removed by CMP to form a buried wiring. ing. This technique is disclosed in Patent Document 2, for example.

銅または銅合金等の配線部用金属を研磨する金属CMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨布(パッド)を貼り付け、研磨布表面を金属用研磨液で浸しながら、基板の金属膜を形成した面を研磨布表面に押し付けて、研磨布の裏面から所定の圧力(以下、研磨圧力と記す。)を金属膜に加えた状態で研磨定盤を回し、研磨液と金属膜の凸部との相対的機械的摩擦によって凸部の金属膜を除去するものである。   A general method of metal CMP for polishing a metal for a wiring part such as copper or a copper alloy is to apply a polishing cloth (pad) on a circular polishing surface plate (platen), and to polish the surface of the polishing cloth with a metal polishing liquid. While dipping, the surface of the substrate on which the metal film is formed is pressed against the surface of the polishing cloth, and a predetermined pressure (hereinafter referred to as polishing pressure) is applied to the metal film from the back surface of the polishing cloth, and the polishing platen is turned. The metal film on the convex portion is removed by relative mechanical friction between the polishing liquid and the convex portion of the metal film.

CMPに用いられる金属用研磨液は、一般には酸化剤及び砥粒からなっており、必要に応じてさらに酸化金属溶解剤、保護膜形成剤が添加される。まず酸化剤によって金属膜表面を酸化し、その酸化層を砥粒によって削り取るのが基本的なメカニズムと考えられている。凹部の金属表面の酸化層は研磨パッドにあまり触れず、砥粒による削り取りの効果が及ばないので、CMPの進行とともに凸部の金属層が除去されて基板表面は平坦化される。この詳細については非特許文献1に開示されている。   The metal polishing liquid used for CMP is generally composed of an oxidizer and abrasive grains, and a metal oxide solubilizer and a protective film forming agent are further added as necessary. First, it is considered that the basic mechanism is to oxidize the surface of a metal film with an oxidizing agent and scrape the oxidized layer with abrasive grains. Since the oxide layer on the metal surface of the recess does not touch the polishing pad so much and the effect of scraping off by the abrasive grains does not reach, the metal layer of the projection is removed and the substrate surface is flattened with the progress of CMP. This detail is disclosed in Non-Patent Document 1.

CMPによる研磨速度を高める方法として酸化金属溶解剤を添加することが有効とされている。砥粒によって削り取られた金属酸化物の粒を研磨液に溶解(以下、エッチングと記す。)させてしまうと砥粒による削り取りの効果が増すためであると解釈される。酸化金属溶解剤の添加によりCMPによる研磨速度は向上するが、一方、凹部の金属膜表面の酸化層もエッチングされて金属膜表面が露出すると、酸化剤によって金属膜表面がさらに酸化され、これが繰り返されると凹部の金属膜のエッチングが進行してしまう。このため研磨後に埋め込まれた金属配線の表面中央部分が皿のように窪む現象(以下、ディッシングと記す。)が発生し、平坦化効果が損なわれる。   As a method for increasing the polishing rate by CMP, it is effective to add a metal oxide solubilizer. It is interpreted that if the metal oxide particles scraped off by the abrasive grains are dissolved in the polishing liquid (hereinafter referred to as etching), the effect of scraping off by the abrasive grains is increased. Although the polishing rate by CMP is improved by adding a metal oxide solubilizer, on the other hand, when the oxide layer on the metal film surface in the recess is also etched to expose the metal film surface, the metal film surface is further oxidized by the oxidant, and this is repeated. As a result, the etching of the metal film in the recesses proceeds. For this reason, a phenomenon occurs in which the central portion of the surface of the metal wiring embedded after polishing is depressed like a dish (hereinafter referred to as dishing), and the planarization effect is impaired.

これを防ぐために、さらに保護膜形成剤が添加される。保護膜形成剤は金属膜表面の酸化層上に保護膜を形成し、酸化層の研磨液中への溶解を防止するものである。この保護膜は砥粒により容易に削り取ることが可能で、CMPによる研磨速度を低下させないことが望まれる。   In order to prevent this, a protective film forming agent is further added. The protective film forming agent forms a protective film on the oxide layer on the surface of the metal film and prevents dissolution of the oxide layer in the polishing liquid. This protective film can be easily scraped off by abrasive grains, and it is desirable not to decrease the polishing rate by CMP.

銅または銅合金のディッシングや研磨中の腐食を抑制し、信頼性の高いLSI配線を形成するために、グリシン等のアミノ酢酸又はアミド硫酸からなる酸化金属溶解剤及び保護膜形成剤としてBTAを含有するCMP用研磨液を用いる方法が提唱されている。この技術は、例えば特許文献3に記載されている。   In order to suppress corrosion during dishing or polishing of copper or copper alloy, and to form a highly reliable LSI wiring, it contains BTA as a protective film forming agent and a metal oxide solubilizer composed of aminoacetic acid or amide sulfuric acid such as glycine A method using a polishing slurry for CMP is proposed. This technique is described in Patent Document 3, for example.

銅または銅合金等のダマシン配線形成やタングステン等のプラグ配線形成等の金属埋め込み形成においては、埋め込み部分以外に形成される層間絶縁膜である二酸化ケイ素膜の研磨速度も大きい場合には、層間絶縁膜ごと配線の厚みが薄くなるシニングが発生する。その結果、配線抵抗の増加が生じるために、研磨される金属膜に対して二酸化ケイ素膜の研磨速度が十分小さい特性が要求される。そこで、酸の解離により生ずる陰イオンにより二酸化ケイ素の研磨速度を抑制するために、研磨液のpHをpKa−0.5よりも大きくする方法が提唱されている。この技術は、例えば特許文献4に記載されている。   In metal embedding formation such as damascene wiring formation such as copper or copper alloy and plug wiring formation such as tungsten, interlayer insulation is used when the polishing rate of the silicon dioxide film which is an interlayer insulating film formed other than the embedded portion is high. Thinning occurs where the thickness of the wiring is reduced with each film. As a result, since the wiring resistance increases, the silicon dioxide film must have a sufficiently low polishing rate with respect to the metal film to be polished. Therefore, in order to suppress the polishing rate of silicon dioxide by anions generated by acid dissociation, a method of making the polishing solution pH higher than pKa-0.5 has been proposed. This technique is described in Patent Document 4, for example.

一方、銅或いは銅合金等の配線部用金属の下層には、層間絶縁膜中への銅拡散防止や密着性向上のためのバリア導体層(以下、バリア層という。)として、例えばタンタル、タンタル合金、窒化タンタル等のタンタル化合物等の導体層が形成される。したがって、銅或いは銅合金を埋め込む配線部以外では、露出したバリア層をCMPにより取り除く必要がある。しかし、これらのバリア層の導体は、銅或いは銅合金に比べ硬度が高いために、銅或いは銅合金用の研磨材料を組み合わせても十分な研磨速度が得られず、かつ平坦性が悪くなる場合が多い。そこで、配線部用金属を研磨する第1工程と、バリア層を研磨する第2工程からなる2段研磨方法が検討されている。   On the other hand, as a barrier conductor layer (hereinafter referred to as a barrier layer) for preventing copper diffusion into the interlayer insulating film and improving adhesion, for example, tantalum or tantalum is provided below the metal for wiring part such as copper or copper alloy. A conductor layer such as an alloy or a tantalum compound such as tantalum nitride is formed. Therefore, it is necessary to remove the exposed barrier layer by CMP except for the wiring portion in which copper or a copper alloy is embedded. However, the conductors of these barrier layers are harder than copper or copper alloy, so even if a polishing material for copper or copper alloy is combined, a sufficient polishing rate cannot be obtained, and the flatness deteriorates. There are many. In view of this, a two-step polishing method comprising a first step of polishing the wiring portion metal and a second step of polishing the barrier layer has been studied.

上記2段研磨方法のうち、バリア層を研磨する第2工程において、平坦化のため、層間絶縁膜、例えば二酸化ケイ素、またLow−k(低誘電率)膜であるトリメチルシランを出発原料とするオルガノシリケートグラスや全芳香環系Low−k膜の研磨を要求される場合がある。その場合、層間絶縁膜が全て露出した際に被研磨面が平坦であるように、バリア層や配線部用金属の研磨速度と層間絶縁膜の研磨速度とをほぼ等しくすることにより、バリア層、配線部用金属及び層間絶縁膜の表面の平坦性を保ったまま研磨する手法が挙げられる。
米国特許第4944836号公報 特開平2−278822号公報 ジャーナル・オブ・エレクトロケミカルソサエティ誌、第138巻11号(1991年発行)3460〜3464頁 特開平8−83780号公報 特許公報第2819196号
In the second step of polishing the barrier layer in the above-mentioned two-stage polishing method, an interlayer insulating film such as silicon dioxide or trimethylsilane which is a low-k (low dielectric constant) film is used as a starting material for planarization. In some cases, polishing of an organosilicate glass or a wholly aromatic ring-based Low-k film is required. In that case, by making the polishing rate of the barrier layer and the metal for the wiring portion and the polishing rate of the interlayer insulating film substantially equal so that the polished surface is flat when all of the interlayer insulating film is exposed, the barrier layer, A method of polishing while maintaining the flatness of the surfaces of the metal for the wiring portion and the interlayer insulating film is mentioned.
U.S. Pat. No. 4,944,836 JP-A-2-278822 Journal of Electrochemical Society, Vol. 138, Issue 11 (1991), pages 3460-3464 JP-A-8-83780 Japanese Patent Publication No. 2819196

層間絶縁膜の研磨速度をバリア層や配線部用金属と同等に向上させるために、例えば、バリア層の導体用研磨液中の砥粒の粒径を大きくすることが考えられるが、銅或いは銅合金や酸化膜に研磨キズが発生して電気特性不良の原因になるという問題がある。   In order to improve the polishing rate of the interlayer insulating film to the same level as that of the barrier layer and the wiring portion metal, for example, it is conceivable to increase the grain size of the abrasive grains in the conductor polishing liquid of the barrier layer. There is a problem in that polishing flaws occur in the alloy or oxide film and cause electrical characteristics defects.

また、このような電気特性不良は、CMPによる研磨後の洗浄不足により発生することもある。一方、CMP工程において、高密度配線部上の銅残渣が取りきれずショート不良を起こすといった問題があった。   Moreover, such an electrical characteristic defect may occur due to insufficient cleaning after polishing by CMP. On the other hand, in the CMP process, there is a problem that the copper residue on the high-density wiring part cannot be completely removed and a short circuit defect occurs.

本発明は、上記問題点に鑑み、被研磨面の平坦性が高い研磨液を提供する。また、層間絶縁膜の研磨速度がバリア層や配線部用金属と同程度に速い研磨液を提供する。そして、この研磨液によれば、バリア層の研磨速度を低下させずに配線部の研磨速度を調整できる。さらに、研磨後の金属残渣や研磨キズを抑制できる。また、本発明は、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性が高く、低コストの半導体デバイス等の製造における研磨方法を提供するものである。   In view of the above problems, the present invention provides a polishing liquid having a highly flat surface to be polished. Further, it provides a polishing liquid whose interlayer insulating film has a polishing rate as high as that of the barrier layer and the metal for the wiring portion. And according to this polishing liquid, the polishing rate of the wiring portion can be adjusted without reducing the polishing rate of the barrier layer. Furthermore, metal residues and polishing scratches after polishing can be suppressed. The present invention also provides a polishing method in the manufacture of semiconductor devices and the like that are excellent in miniaturization, thinning, dimensional accuracy, electrical characteristics, reliability, and cost.

本発明は、以下(1)〜(17)の研磨液に関する。   The present invention relates to the polishing liquids (1) to (17) below.

(1) 界面活性剤、酸化金属溶解剤及び水を含有し、該酸化金属溶解剤は、有機酸、有機酸エステル、有機酸のアンモニウム塩及び硫酸から選ばれる少なくとも1種であり、
少なくとも導電性物質及び
絶縁膜を表面に有する被研磨面の研磨に使用されることを特徴とする研磨液。
(1) A surfactant, a metal oxide solubilizer and water are contained, and the metal oxide solubilizer is at least one selected from organic acids, organic acid esters, ammonium salts of organic acids, and sulfuric acid,
A polishing liquid which is used for polishing a surface to be polished having at least a conductive substance and an insulating film on its surface.

(2) 界面活性剤、酸化金属溶解剤及び水を含有し、該酸化金属溶解剤は、有機酸、有機酸エステル、有機酸のアンモニウム塩及び硫酸から選ばれる少なくとも1種であり、
少なくとも導電性物質及び、
シリコン系被膜または有機ポリマ膜を、
表面に有する被研磨面の研磨に使用されることを特徴とする研磨液。
(2) A surfactant, a metal oxide solubilizer, and water, wherein the metal oxide solubilizer is at least one selected from organic acids, organic acid esters, ammonium salts of organic acids, and sulfuric acid,
At least a conductive material, and
Silicon-based film or organic polymer film
A polishing liquid used for polishing a surface to be polished on a surface.

(3) パーフルオロアルカンスルホン酸、酸化金属溶解剤及び水を含有し、該酸化金属溶解剤は、有機酸、有機酸エステル、有機酸のアンモニウム塩及び硫酸から選ばれる少なくとも1種であることを特徴とする研磨液。 (3) It contains perfluoroalkanesulfonic acid, a metal oxide solubilizer and water, and the metal oxide solubilizer is at least one selected from organic acids, organic acid esters, ammonium salts of organic acids and sulfuric acid. A characteristic polishing liquid.

(4) 有機溶媒、酸化金属溶解剤及び水を含有し、該酸化金属溶解剤は、有機酸、有機酸エステル、有機酸のアンモニウム塩及び硫酸から選ばれる少なくとも1種であり、
少なくとも導電性物質及び絶縁膜を
表面に有する被研磨面の研磨に使用されることを特徴とする研磨液。
(4) containing an organic solvent, a metal oxide solubilizer and water, and the metal oxide solubilizer is at least one selected from organic acids, organic acid esters, ammonium salts of organic acids and sulfuric acid,
A polishing liquid which is used for polishing a surface to be polished having at least a conductive substance and an insulating film on its surface.

(5) 有機溶媒、酸化金属溶解剤及び水を含有し、該酸化金属溶解剤は、有機酸、有機酸エステル、有機酸のアンモニウム塩及び硫酸から選ばれる少なくとも1種であり、
少なくとも導電性物質及び、
シリコン系被膜または有機ポリマ膜を、
表面に有する被研磨面の研磨に使用されることを特徴とする研磨液。
(5) containing an organic solvent, a metal oxide solubilizer, and water, the metal oxide solubilizer being at least one selected from organic acids, organic acid esters, ammonium salts of organic acids, and sulfuric acid,
At least a conductive material, and
Silicon-based film or organic polymer film
A polishing liquid used for polishing a surface to be polished on a surface.

(6) 砥粒を含む前記(1)〜(5)のいずれか記載の研磨液。 (6) The polishing liquid according to any one of (1) to (5), comprising abrasive grains.

(7) 砥粒が、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニアから選ばれる少なくとも1種である前記(6)記載の研磨液。 (7) The polishing liquid according to (6), wherein the abrasive is at least one selected from silica, alumina, ceria, titania, zirconia, and germania.

(8) 砥粒の表面がアルキル基で変性されている前記(6)記載の研磨液。 (8) The polishing liquid according to (6), wherein the surface of the abrasive grains is modified with an alkyl group.

(9) 有機溶媒を0.1〜95重量%含有する前記(4)または(5)記載の研磨液。 (9) The polishing liquid according to (4) or (5) above, containing 0.1 to 95% by weight of an organic solvent.

(10) 有機溶媒がグリコール類及びその誘導体、アルコール類、炭酸エステル類から選ばれる少なくとも1種である前記(4)または(5)記載の研磨液。 (10) The polishing liquid according to (4) or (5), wherein the organic solvent is at least one selected from glycols and derivatives thereof, alcohols, and carbonates.

(11) 界面活性剤が非イオン性界面活性剤、陰イオン性界面活性剤から選ばれる少なくとも1種である前記(1)または(2)記載の研磨液。 (11) The polishing liquid according to (1) or (2), wherein the surfactant is at least one selected from a nonionic surfactant and an anionic surfactant.

(12) 界面活性剤が、パーフルオロアルカンスルホン酸とその誘導体から選ばれる少なくとも1種である前記(1)または(2)記載の研磨液。 (12) The polishing liquid according to (1) or (2), wherein the surfactant is at least one selected from perfluoroalkanesulfonic acid and derivatives thereof.

(13) 界面活性剤を0.00001〜20重量%含有する前記(1)または(2)記載の研磨液。 (13) The polishing liquid according to the above (1) or (2), which contains 0.00001 to 20% by weight of a surfactant.

(14) 金属の酸化剤を含む前記(1)〜(5)のいずれか記載の研磨液。 (14) The polishing liquid according to any one of (1) to (5), comprising a metal oxidizing agent.

(15) 金属の酸化剤が、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸及びオゾン水から選ばれる少なくとも1種である前記(14)記載の研磨液。 (15) The polishing liquid according to (14), wherein the metal oxidizing agent is at least one selected from hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, and ozone water.

(16) 重量平均分子量が500以上の水溶性ポリマを含有する前記(1)〜(5)のいずれか記載の研磨液。 (16) The polishing liquid according to any one of (1) to (5), which contains a water-soluble polymer having a weight average molecular weight of 500 or more.

(17) 前記水溶性ポリマが、多糖類、ポリカルボン酸、ポリカルボン酸エステル及びその塩、及びビニル系ポリマから選ばれた少なくとも1種である前記(16)記載の研磨液。 (17) The polishing liquid according to (16), wherein the water-soluble polymer is at least one selected from polysaccharides, polycarboxylic acids, polycarboxylic acid esters and salts thereof, and vinyl polymers.

さらに、本発明は、以下の(18)〜(21)の研磨方法に関する。   Furthermore, the present invention relates to the following polishing methods (18) to (21).

(18) 表面が凹部および凸部からなる層間絶縁膜と、前記層間絶縁膜を表面に沿って被覆するバリア導体層と、前記凹部を充填してバリア導体層を被覆する導電性物質層とを有する基体の、導電性物質層を研磨して前記凸部のバリア導体層を露出させる第1の研磨工程と、少なくともバリア導体層、凹部の導電性物質層および層間絶縁膜の一部を前記(1)〜(17)のいずれか記載の研磨液を供給しながら化学機械研磨して凸部の層間絶縁膜を露出させる第2の研磨工程とを含むことを特徴とする研磨方法。 (18) An interlayer insulating film having a concave portion and a convex surface, a barrier conductor layer covering the interlayer insulating film along the surface, and a conductive material layer filling the concave portion and covering the barrier conductor layer A first polishing step of polishing the conductive material layer of the base body to expose the barrier conductor layer of the convex portion, and at least a part of the barrier conductor layer, the conductive material layer of the concave portion, and the interlayer insulating film ( A polishing method comprising: a second polishing step of exposing the convex interlayer insulating film by chemical mechanical polishing while supplying the polishing liquid according to any one of 1) to (17).

(19) 層間絶縁膜がシリコン系被膜または有機ポリマ膜である前記(18)記載の研磨方法。 (19) The polishing method according to (18), wherein the interlayer insulating film is a silicon-based film or an organic polymer film.

(20) 導電性物質が銅を主成分とする前記(18)記載の研磨方法。 (20) The polishing method according to (18), wherein the conductive material contains copper as a main component.

(21) バリア導体層が前記層間絶縁膜へ前記導電性物質が拡散するのを防ぐバリア層であって、タンタル、窒化タンタル、タンタル合金、その他のタンタル化合物、チタン、窒化チタン、チタン合金、その他のチタン化合物、タングステン、窒化タングステン、タングステン合金、その他のタングステン化合物から選ばれる少なくとも1種を含む前記(18)記載の研磨方法。 (21) The barrier conductor layer is a barrier layer that prevents the conductive material from diffusing into the interlayer insulating film, and includes tantalum, tantalum nitride, tantalum alloy, other tantalum compounds, titanium, titanium nitride, titanium alloy, and others. The polishing method according to (18), comprising at least one selected from the group consisting of titanium compounds, tungsten, tungsten nitride, tungsten alloys, and other tungsten compounds.

本発明の研磨液により、被研磨面が複数の物質からなっていても平坦性が高い被研磨面が得られる。また、研磨後の金属残渣や研磨キズを抑制できる。さらに、バリア層の研磨速度を低下させずに層間絶縁膜の研磨速度を大きくでき、配線部用金属の研磨速度を調整できる。この研磨液を用いて化学機械研磨を行う本発明の研磨方法は、生産性が高く、微細化、薄膜化、寸法精度、電気特性に優れ、信頼性の高い半導体デバイス及び他の電子機器の製造に好適である。   With the polishing liquid of the present invention, a polished surface having high flatness can be obtained even if the polished surface is made of a plurality of substances. Moreover, metal residues and polishing scratches after polishing can be suppressed. Furthermore, the polishing rate of the interlayer insulating film can be increased without reducing the polishing rate of the barrier layer, and the polishing rate of the wiring portion metal can be adjusted. The polishing method of the present invention in which chemical mechanical polishing is performed using this polishing liquid is highly productive, and is excellent in miniaturization, thinning, dimensional accuracy, electrical characteristics, and production of highly reliable semiconductor devices and other electronic devices. It is suitable for.

本発明の研磨液の第一の特徴は、界面活性剤及び有機溶媒の少なくとも一方と、酸化金属溶解剤と水とを含有することである。好ましくは、さらに砥粒、金属の酸化剤を含有する。さらに、水溶性ポリマや金属防食剤等を、必要に応じて含有してもよい。   The first feature of the polishing liquid of the present invention is that it contains at least one of a surfactant and an organic solvent, a metal oxide solubilizer, and water. Preferably, it further contains abrasive grains and a metal oxidizing agent. Furthermore, you may contain a water-soluble polymer, a metal anticorrosive, etc. as needed.

界面活性剤は、一般に、非イオン性界面活性剤、陰イオン性界面活性剤、陽イオン性界面活性剤および両性界面活性剤の四種類に分類される。   Surfactants are generally classified into four types: nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants.

また、本発明における界面活性剤には、疎水性基として炭素−フッ素鎖を有するフッ素系界面活性剤を使用することもできる。例えば、パーフルオロアルカンスルホン酸とその誘導体が例示される。好ましくはパーフルオロオクタンスルホン酸とその誘導体である。フッ素系界面活性剤も上記と同様の四種類に分類される。   Moreover, the surfactant in this invention can also use the fluorine-type surfactant which has a carbon- fluorine chain as a hydrophobic group. For example, perfluoroalkanesulfonic acid and its derivatives are exemplified. Perfluorooctane sulfonic acid and its derivatives are preferred. Fluorosurfactants are also classified into the same four types as described above.

非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンプロピルパーフルオロオクタンスルホンアミド、ポリオキシエチレン−ポリオキシプロピレンブロックポリマー、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン硬化ヒマシ油、ポリエチレングリコール脂肪酸エステル、プロピル−2−ヒドロキシエチルパーフルオロオクタンスルホンアミド、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシエチレンアルキルアミン等及びその誘導体が挙げられ、また、アセチレンジオール及びそのエチレンオキシド付加物等のグリコール類も挙げられる。なお、上記「ポリオキシエチレン」は、付加したエチレンオキシドの数(n)が2つ以上のものだけでなく、1つ付加したものも含むこととする。   Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene propyl perfluorooctane sulfonamide, polyoxyethylene-polyoxypropylene block polymer, polyoxyethylene glycerin fatty acid ester. , Polyoxyethylene hydrogenated castor oil, polyethylene glycol fatty acid ester, propyl-2-hydroxyethyl perfluorooctanesulfonamide, sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, fatty acid alkanolamide, polyoxyethylene alkylamine and the like Derivatives, and glycols such as acetylenic diol and its ethylene oxide adducts. The “polyoxyethylene” includes not only the number of added ethylene oxides (n) of 2 or more but also one added.

陰イオン性界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、パーフルオロオクタンスルホン酸、リン酸ビス[2−(N−プロピルパーフルオロオクタンスルホニルアミノ)エチル]エステル、アルキルスルホコハク酸エステル塩、アルキルスルホン酸塩、アルキルエーテルカルボン酸塩、アルコール硫酸エステル塩、アルキルエーテル硫酸エステル塩、アルキルリン酸エステル塩等等及びその誘導体が挙げられる。   Examples of the anionic surfactant include alkylbenzene sulfonate, perfluorooctane sulfonate, bis [2- (N-propylperfluorooctanesulfonylamino) ethyl] ester, alkylsulfosuccinate, alkylsulfone. Examples thereof include acid salts, alkyl ether carboxylates, alcohol sulfate esters, alkyl ether sulfate esters, alkyl phosphate esters, and the like.

陽イオン性界面活性剤としては、例えば、脂肪族アルキルアミン塩、脂肪族第4級アンモニウム塩等が、また両性界面活性剤としては、例えばアミノカルボン酸塩等が挙げられる。   Examples of the cationic surfactant include aliphatic alkylamine salts and aliphatic quaternary ammonium salts. Examples of the amphoteric surfactant include aminocarboxylates.

これらの界面活性剤を1種単独でまたは2種以上を組み合わせて使用される。   These surfactants are used alone or in combination of two or more.

本発明の研磨液における界面活性剤としては非イオン性界面活性剤、陰イオン性界面活性剤が好ましく、特にアルカリ金属を含まないものが好ましい。   As the surfactant in the polishing liquid of the present invention, nonionic surfactants and anionic surfactants are preferable, and those containing no alkali metal are particularly preferable.

さらに好ましくは、ポリエチレングリコール型非イオン性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンプロピルパーフルオロオクタンスルホンアミド、グリコール類、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、脂肪酸アルカノールアミド、アルコール硫酸エステル塩、アルキルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルリン酸エステル塩から選ばれる少なくとも1種である。   More preferably, polyethylene glycol type nonionic surfactant, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene propyl perfluorooctanesulfonamide, glycols, glycerin fatty acid ester, sorbitan fatty acid ester, fatty acid alkanol It is at least one selected from amide, alcohol sulfate ester salt, alkyl ether sulfate ester salt, alkylbenzene sulfonate salt, and alkyl phosphate ester salt.

ポリエチレングリコール型非イオン性界面活性剤としては、例えばポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート等のポリエチレングリコール脂肪酸エステル等が挙げられる。   Examples of the polyethylene glycol type nonionic surfactant include polyethylene glycol fatty acid esters such as polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, and polyethylene glycol monooleate.

本発明の研磨液に含まれる有機溶媒としては特に制限はないが、水と任意で混合できるものが好ましい。   Although there is no restriction | limiting in particular as an organic solvent contained in the polishing liquid of this invention, The thing which can be mixed with water arbitrarily is preferable.

例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の炭酸エステル類;ブチロラクトン、プロピロラクトン等のラクトン類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のグリコール類;グリコール類の誘導体として、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテルやエチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテル、トリプロピレングリコールモノエチルエーテルやエチレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、ジエチレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、トリエチレングリコールモノプロピルエーテル、トリプロピレングリコールモノプロピルエーテルやエチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等のグリコールモノエーテル類、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテルやエチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、トリプロピレングリコールジエチルエーテルやエチレングリコールジプロピルエーテル、プロピレングリコールジプロピルエーテル、ジエチレングリコールジプロピルエーテル、ジプロピレングリコールジプロピルエーテル、トリエチレングリコールジプロピルエーテル、トリプロピレングリコールジプロピルエーテルやエチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジブチルエーテル、トリエチレングリコールジブチルエーテル、トリプロピレングリコールジブチルエーテル等のグリコールジエーテル類など;テトラヒドロフラン、ジオキサン、ジメトキシエタン、ポリエチレンオキサイド、エチレングリコールモノメチルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエーテル類;メタノール、エタノール、プロパノール、n−ブタノール、n−ペンタノール、n−ヘキサノール、イソプロパノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;その他フェノール、ジメチルホルムアミド、n−メチルピロリドン、酢酸エチル、乳酸エチル、スルホラン等が挙げられる。   For example, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; lactones such as butyrolactone and propyrolactone; ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene Glycols such as glycol; derivatives of glycols such as ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, triethylene glycol monomethyl ether, tripropylene glycol monomethyl ether and ethylene glycol monoethyl ether, Propylene rubber Cole monoethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether, tripropylene glycol monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, diethylene glycol monopropyl ether, dipropylene Glycol monopropyl ether, triethylene glycol monopropyl ether, tripropylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether, triethylene glycol monobutyl ether, tripropylene Glycol monoethers such as ethylene glycol dimethyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, tripropylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, diethylene glycol diethyl ether , Dipropylene glycol diethyl ether, triethylene glycol diethyl ether, tripropylene glycol diethyl ether, ethylene glycol dipropyl ether, propylene glycol dipropyl ether, diethylene glycol dipropyl ether, dipropylene glycol Rudipropyl ether, triethylene glycol dipropyl ether, tripropylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dibutyl ether, diethylene glycol dibutyl ether, dipropylene glycol dibutyl ether, triethylene glycol dibutyl ether, tripropylene glycol dibutyl ether, etc. Glycol diethers, etc .; ethers such as tetrahydrofuran, dioxane, dimethoxyethane, polyethylene oxide, ethylene glycol monomethyl acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate; methanol, ethanol, propanol, n-butanol, n- Pentano Le, n- hexanol, alcohols such as isopropanol; ketones such as acetone and methyl ethyl ketone; and other phenols, dimethylformamide, n- methyl pyrrolidone, ethyl acetate, ethyl lactate, sulfolane.

好ましい有機溶媒は、グリコール類及びその誘導体、アルコール類、炭酸エステル類から選ばれる少なくとも1種である。   A preferred organic solvent is at least one selected from glycols and derivatives thereof, alcohols, and carbonates.

本発明の研磨液の第二の特徴は、水と、表面がアルキル基で変性されている砥粒とを含有することである。好ましくは、必要に応じて酸化金属溶解剤、金属の酸化剤、有機溶媒、界面活性剤をさらに含有する。さらに、ポリマや金属防食剤等を、必要に応じて含有してもよい。   The second feature of the polishing liquid of the present invention is that it contains water and abrasive grains whose surface is modified with an alkyl group. Preferably, a metal oxide solubilizer, a metal oxidizer, an organic solvent, and a surfactant are further contained as necessary. Furthermore, you may contain a polymer, a metal anticorrosive, etc. as needed.

本発明における砥粒は、シリカ、アルミナ、ジルコニア、セリア、チタニア、ゲルマニア、炭化ケイ素等の無機物砥粒粒子、ポリスチレン、ポリアクリル、ポリ塩化ビニル等の有機物砥粒粒子のいずれを使用してもでもよい。これらのうち、シリカ、アルミナ、ジルコニア、セリア、チタニア、ゲルマニアが好ましく、特に、研磨液中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数の少ない、平均粒径が70nm以下のコロイダルシリカ、コロイダルアルミナが好ましく、平均粒径が40nm以下のコロイダルシリカ、コロイダルアルミナがより好ましい。粒径は、例えば光回折散乱式粒度分布計(例えば、COULTER Electronics社製の商品名COULTER N4 SD)で測定できる。また、一次粒子が平均2粒子未満凝集している粒子が好ましく、一次粒子が平均1.2粒子未満凝集している粒子がより好ましい。さらに、平均粒度分布の標準偏差が10nm以下であることが好ましく、平均粒度分布の標準偏差が5nm以下であるのがより好ましい。これらは1種類単独で、もしくは2種類以上混合して用いることができる。   The abrasive grains in the present invention may be any of inorganic abrasive grains such as silica, alumina, zirconia, ceria, titania, germania and silicon carbide, and organic abrasive grains such as polystyrene, polyacryl and polyvinyl chloride. Good. Of these, silica, alumina, zirconia, ceria, titania, and germania are preferable. In particular, dispersion stability in the polishing liquid is good, and the number of polishing scratches (scratches) generated by CMP is small. Colloidal silica and colloidal alumina of 70 nm or less are preferable, and colloidal silica and colloidal alumina having an average particle size of 40 nm or less are more preferable. The particle size can be measured, for example, with a light diffraction scattering type particle size distribution meter (for example, trade name COULTER N4 SD manufactured by COULTER Electronics). In addition, particles in which primary particles are aggregated with an average of less than 2 particles are preferable, and particles in which primary particles are aggregated with an average of less than 1.2 particles are more preferable. Furthermore, the standard deviation of the average particle size distribution is preferably 10 nm or less, and the standard deviation of the average particle size distribution is more preferably 5 nm or less. These may be used alone or in combination of two or more.

本発明の第二の特徴における表面がアルキル基で変性されている砥粒としては、上記無機物砥粒粒子または上記有機物砥粒粒子の表面をアルキル基で変性したものが挙げられる。無機物砥粒粒子または有機物砥粒粒子のいずれを使用してもよく、このうち好ましい粒子も上記と同様である。変性した砥粒は1種類単独で、もしくは2種類以上混合して用いることができる。   Examples of the abrasive grains having a surface modified with an alkyl group in the second feature of the present invention include those obtained by modifying the surface of the inorganic abrasive grains or the organic abrasive grains with an alkyl group. Either inorganic abrasive particles or organic abrasive particles may be used, and preferred particles are the same as described above. The modified abrasive grains can be used alone or in combination of two or more.

砥粒粒子表面をアルキル基で変性する方法には、特に制限はないが、砥粒粒子の表面に存在する水酸基をアルキル基を有するアルコキシシランと反応させる方法が挙げられる。アルキル基を有するアルコキシシランとしては、特に制限はないが、モノメチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルモノメトキシシラン、モノエチルトリメトキシシラン、ジエチルジメトキシシラン、トリエチルモノメトキシシラン、モノメチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルモノエトキシシランが挙げられる。反応方法としては、特に制限はなく、例えば砥粒粒子とアルコキシシランとを研磨液中で室温においても反応するが、反応を加速するために加熱してもよい。   The method of modifying the abrasive grain surface with an alkyl group is not particularly limited, and examples thereof include a method of reacting a hydroxyl group present on the abrasive grain surface with an alkoxysilane having an alkyl group. The alkoxysilane having an alkyl group is not particularly limited, but monomethyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, monoethyltrimethoxysilane, diethyldimethoxysilane, triethylmonomethoxysilane, monomethyltriethoxysilane, dimethyl Examples include diethoxysilane and trimethylmonoethoxysilane. The reaction method is not particularly limited, and for example, abrasive particles and alkoxysilane are reacted in a polishing liquid at room temperature, but may be heated to accelerate the reaction.

コロイダルシリカはシリコンアルコキシドの加水分解または珪酸ナトリウムのイオン交換による製造方法が知られており、コロイダルアルミナは硝酸アルミニウムの加水分解による製造方法が知られている。コロイダルシリカは、粒径制御性やアルカリ金属不純物の点で、シリコンアルコキシドの加水分解による製造方法によるものが最も利用される。シリコンアルコキシドとしては、TEMS(テトラメトキシシラン)又はTEOS(テトラエトキシシラン)が一般に用いられる。アルコール溶媒中で加水分解する方法において、粒径に影響するパラメータとしては、シリコンアルコキシドの濃度、触媒として用いられるアンモニア濃度とpH、反応温度、アルコール溶媒の種類(分子量)及び反応時間などがある。これらのパラメータを調整することによって、所望の粒径及び凝集度のコロイダルシリカ分散液を得ることができる。   Colloidal silica is known for its production by hydrolysis of silicon alkoxide or ion exchange of sodium silicate, and colloidal alumina is known for its production by hydrolysis of aluminum nitrate. Colloidal silica is most often used in terms of particle size controllability and alkali metal impurities by a production method by hydrolysis of silicon alkoxide. As the silicon alkoxide, TEMS (tetramethoxysilane) or TEOS (tetraethoxysilane) is generally used. In the method of hydrolyzing in an alcohol solvent, parameters affecting the particle size include the concentration of silicon alkoxide, the concentration and pH of ammonia used as a catalyst, the reaction temperature, the type (molecular weight) of the alcohol solvent, and the reaction time. By adjusting these parameters, a colloidal silica dispersion having a desired particle size and agglomeration degree can be obtained.

本発明における酸化金属溶解剤は、特に制限はないが、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、p−トルエンスルホン酸等の有機酸、これらの有機酸エステル及びこれら有機酸のアンモニウム塩等が挙げられる。また塩酸、硫酸、硝酸等の無機酸、これら無機酸のアンモニウム塩類、例えば過硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、クロム酸等が挙げられる。これらの中では、実用的なCMP速度を維持しつつ、エッチング速度を効果的に抑制できるという点でギ酸、マロン酸、リンゴ酸、酒石酸、クエン酸が、また、高CMP速度の点で硫酸が、金属を主成分とする導電性物質に対して好適である。これらは1種類単独で、もしくは2種類以上混合して用いることができる。   The metal oxide solubilizer in the present invention is not particularly limited, but formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4 -Methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, Examples thereof include organic acids such as adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid, citric acid, and p-toluenesulfonic acid, organic acid esters thereof, and ammonium salts of these organic acids. Further, inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and ammonium salts of these inorganic acids such as ammonium persulfate, ammonium nitrate, ammonium chloride and chromic acid can be mentioned. Among these, formic acid, malonic acid, malic acid, tartaric acid, and citric acid are effective in that the etching rate can be effectively suppressed while maintaining a practical CMP rate, and sulfuric acid is also effective in terms of a high CMP rate. It is suitable for a conductive material containing a metal as a main component. These may be used alone or in combination of two or more.

本発明の研磨液に金属の酸化剤を添加しても良い。金属の酸化剤としては、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸、オゾン水等が挙げられ、その中でも過酸化水素が特に好ましい。これらは1種類単独で、もしくは2種類以上混合して用いることができる。基体が集積回路用素子を含むシリコン基板である場合、アルカリ金属、アルカリ土類金属、ハロゲン化物などによる汚染は望ましくないので、不揮発成分を含まない酸化剤が望ましい。但し、オゾン水は組成の時間変化が激しいので過酸化水素が最も適している。但し、適用対象の基体が半導体素子を含まないガラス基板などである場合は不揮発成分を含む酸化剤であっても差し支えない。   A metal oxidizing agent may be added to the polishing liquid of the present invention. Examples of the metal oxidizing agent include hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, ozone water, etc. Among them, hydrogen peroxide is particularly preferable. These may be used alone or in combination of two or more. When the substrate is a silicon substrate including an integrated circuit element, contamination by alkali metal, alkaline earth metal, halide, etc. is not desirable, so an oxidizing agent that does not contain a nonvolatile component is desirable. However, hydrogen peroxide is most suitable because ozone water has a severe compositional change over time. However, when the substrate to be applied is a glass substrate or the like that does not include a semiconductor element, an oxidizing agent that includes a nonvolatile component may be used.

本発明の研磨液に水溶性ポリマを添加しても良い。水溶性ポリマの重量平均分子量は500以上とすることが好ましく、1500以上とすることがより好ましく、5000以上とすることが特に好ましい。重量平均分子量の上限は特に規定するものではないが、溶解性の観点から500万以下が好ましい。重量平均分子量が500未満では高い研磨速度が発現しない傾向にある。   A water-soluble polymer may be added to the polishing liquid of the present invention. The weight average molecular weight of the water-soluble polymer is preferably 500 or more, more preferably 1500 or more, and particularly preferably 5000 or more. The upper limit of the weight average molecular weight is not particularly specified, but is preferably 5 million or less from the viewpoint of solubility. When the weight average molecular weight is less than 500, a high polishing rate tends not to be exhibited.

重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより標準ポリスチレンの検量線を用いて測定することができる。   The weight average molecular weight can be measured by gel permeation chromatography using a standard polystyrene calibration curve.

重量平均分子量が500以上の水溶性ポリマとしては、特に制限はなく、例えばアルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸、ポリカルボン酸エステル及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;ポリエチレングリコール等が挙げられる。これらは1種類単独で、もしくは2種類以上混合して用いることができる。但し、適用する基体が半導体集積回路用シリコン基板などの場合はアルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、酸もしくはそのアンモニウム塩が望ましい。基体がガラス基板等である場合はその限りではない。その中でもペクチン酸、寒天、ポリリンゴ酸、ポリメタクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリルアミド、ポリビニルアルコール及びポリビニルピロリドン、それらのエステル及びそれらのアンモニウム塩が好ましい。   The water-soluble polymer having a weight average molecular weight of 500 or more is not particularly limited. For example, polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan and pullulan; polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, Polymethacrylic acid, polyammonium methacrylate, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), polyacrylic acid, polyacrylamide, aminopolyacrylamide, polyacrylic Polycarboxylic acids such as ammonium acid salt, sodium polyacrylate, polyamic acid, ammonium polyamic acid salt, sodium polyamic acid salt and polyglyoxylic acid, polycarboxylic acid esters and salts thereof; Alkenyl alcohol, vinyl polymers such as polyvinyl pyrrolidone and polyacrolein; polyethylene glycol, and the like. These may be used alone or in combination of two or more. However, when the substrate to be applied is a silicon substrate for a semiconductor integrated circuit or the like, contamination with an alkali metal, an alkaline earth metal, a halide or the like is not desirable, so an acid or an ammonium salt thereof is desirable. This is not the case when the substrate is a glass substrate or the like. Among these, pectinic acid, agar, polymalic acid, polymethacrylic acid, ammonium polyacrylate, polyacrylamide, polyvinyl alcohol and polyvinylpyrrolidone, esters thereof and ammonium salts thereof are preferable.

また、本発明の研磨液に金属防食剤を添加しても良い。金属防食剤として、例えば、2−メルカプトベンゾチアゾール、1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ−1H−1,2,4−トリアゾール、ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール、1−ジヒドロキシプロピルベンゾトリアゾール、2,3−ジカルボキシプロピルベンゾトリアゾール、4−ヒドロキシベンゾトリアゾール、4−カルボキシル(−1H−)ペンゾトリアゾール、4−カルボキシル(−1H−)ベンゾトリアゾールメチルルエステル、4−カルボキシル(−1H−)ベンゾトリアゾールブチルエステル、4−カルボキシル(−1H−)ベンゾトリアゾールオクチルエステル、5−ヘキシルベンゾトリアゾール、[1,2,3−ベンゾトリアゾリル−1−メチル][1,2,4−トリアゾリル−1−メチル][2−エチルヘキシル]アミン、トリルトリアゾール、ナフトトリアゾール、ビス[(1−ベンゾトリアゾリル)メチル]ホスホン酸等が挙げられる。   Moreover, you may add a metal anticorrosive to the polishing liquid of this invention. Examples of metal anticorrosives include 2-mercaptobenzothiazole, 1,2,3-triazole, 1,2,4-triazole, 3-amino-1H-1,2,4-triazole, benzotriazole, 1-hydroxybenzo Triazole, 1-dihydroxypropylbenzotriazole, 2,3-dicarboxypropylbenzotriazole, 4-hydroxybenzotriazole, 4-carboxyl (-1H-) benzotriazole, 4-carboxyl (-1H-) benzotriazole methyl ester, 4-carboxyl (-1H-) benzotriazole butyl ester, 4-carboxyl (-1H-) benzotriazole octyl ester, 5-hexylbenzotriazole, [1,2,3-benzotriazolyl-1-methyl] [1 , 2,4-G Azolyl-1-methyl] [2-ethylhexyl] amine, tolyltriazole, naphthotriazole, bis [(1-benzotriazolyl) methyl] phosphonic acid.

また、ピリミジン骨格を有するピリミジン、1,2,4−トリアゾロ[1,5−a]ピリミジン、1,3,4,6,7,8−ヘキサハイドロ−2H−ピリミド[1,2−a]ピリミジン、1,3−ジフェニル−ピリミジン−2,4,6−トリオン、1,4,5,6−テトラハイドロピリミジン、2,4,5,6−テトラアミノピリミジンサルフェイト、2,4,5−トリハイドロキシピリミジン、2,4,6−トリアミノピリミジン、2,4,6−トリクロロピリミジン、2,4,6−トリメトキシピリミジン、2,4,6−トリフェニルピリミジン、2,4−ジアミノ−6−ヒドロキシルピリミジン、2,4−ジアミノピリミジン、2−アセトアミドピリミジン、2−アミノピリミジン、2−メチル−5,7−ジフェニル−(1,2,4)トリアゾロ(1,5−a)ピリミジン、2−メチルサルファニル−5,7−ジフェニル−(1,2,4)トリアゾロ(1,5−a)ピリミジン、2−メチルサルファニル−5,7−ジフェニル−4,7−ジヒドロ−(1,2,4)トリアゾロ(1,5−a)ピリミジン、4−アミノピラゾロ[3,4−d]ピリミジン等が挙げられる。これらは1種類単独で、もしくは2種類以上混合して用いることができる。   Further, pyrimidine having a pyrimidine skeleton, 1,2,4-triazolo [1,5-a] pyrimidine, 1,3,4,6,7,8-hexahydro-2H-pyrimido [1,2-a] pyrimidine 1,3-diphenyl-pyrimidine-2,4,6-trione, 1,4,5,6-tetrahydropyrimidine, 2,4,5,6-tetraaminopyrimidine sulfate, 2,4,5-trione Hydroxypyrimidine, 2,4,6-triaminopyrimidine, 2,4,6-trichloropyrimidine, 2,4,6-trimethoxypyrimidine, 2,4,6-triphenylpyrimidine, 2,4-diamino-6 Hydroxylpyrimidine, 2,4-diaminopyrimidine, 2-acetamidopyrimidine, 2-aminopyrimidine, 2-methyl-5,7-diphenyl- (1,2,4) Riazolo (1,5-a) pyrimidine, 2-methylsulfanyl-5,7-diphenyl- (1,2,4) triazolo (1,5-a) pyrimidine, 2-methylsulfanyl-5,7-diphenyl Examples include -4,7-dihydro- (1,2,4) triazolo (1,5-a) pyrimidine, 4-aminopyrazolo [3,4-d] pyrimidine and the like. These may be used alone or in combination of two or more.

本発明の研磨液に界面活性剤を配合する場合の配合量は、分散性及び沈降防止、さらに研磨傷との関係から、研磨液中0.00001〜20重量%含有するのが好ましい。すなわち研磨液の総量100gに対して、0.00001〜20gとすることが好ましく、0.0001〜10gとすることがより好ましく、0.0001〜5gとすることが特に好ましい。配合量が0.00001g未満では、研磨液の基体の被研磨面に対する濡れ性が低く、20gを超えると研磨速度が低下する傾向がある。   The blending amount when the surfactant is blended with the polishing liquid of the present invention is preferably 0.00001 to 20% by weight in the polishing liquid from the viewpoint of dispersibility, prevention of settling, and polishing scratches. That is, it is preferably 0.00001 to 20 g, more preferably 0.0001 to 10 g, and particularly preferably 0.0001 to 5 g with respect to 100 g of the total amount of the polishing liquid. When the blending amount is less than 0.00001 g, the wettability of the polishing liquid to the surface to be polished is low, and when it exceeds 20 g, the polishing rate tends to decrease.

本発明の研磨液に有機溶媒を配合する場合の配合量は、研磨液中0.1〜95重量%含有するのが好ましい。すなわち研磨液の総量100gに対して、0.1〜95gとすることが好ましく、0.2〜50gとすることがより好ましく、0.5〜10gとすることが特に好ましい。配合量が0.1g未満では、研磨液の基板に対する濡れ性が低いため十分な研磨速度が得られず、95gを超えると研磨液成分の溶解性が悪化するため好ましくない。   The blending amount of the organic solvent in the polishing liquid of the present invention is preferably 0.1 to 95% by weight in the polishing liquid. That is, it is preferably 0.1 to 95 g, more preferably 0.2 to 50 g, and particularly preferably 0.5 to 10 g with respect to 100 g of the total amount of the polishing liquid. If the blending amount is less than 0.1 g, a sufficient polishing rate cannot be obtained because the wettability of the polishing liquid to the substrate is low, and if it exceeds 95 g, the solubility of the polishing liquid component deteriorates, which is not preferable.

本発明の研磨液に酸化金属溶解剤を配合する場合の配合量は、研磨剤中の界面活性剤、有機溶媒、酸化金属溶解剤、水、砥粒、金属の酸化剤及び水溶性ポリマ(以下、七成分という。)の総量100gに対して、0.001〜20gとすることが好ましく、0.002〜10gとすることがより好ましく、0.005〜5gとすることが特に好ましい。配合量が0.001g未満では、研磨速度が低く、20gを超えるとエッチングの抑制が困難となり研磨面に荒れが生じる傾向がある。   The compounding amount when the metal oxide solubilizer is blended with the polishing liquid of the present invention is the surfactant, organic solvent, metal oxide solubilizer, water, abrasive grains, metal oxidizer and water-soluble polymer (hereinafter referred to as “polishing agent”). And 7 components) is preferably 0.001 to 20 g, more preferably 0.002 to 10 g, and particularly preferably 0.005 to 5 g with respect to 100 g of the total amount. When the blending amount is less than 0.001 g, the polishing rate is low, and when it exceeds 20 g, it is difficult to suppress etching and the polished surface tends to be rough.

なお、前記七成分のうち、水の配合量は残部でよく、含有されていれば特に制限はない。   In addition, among the seven components, the blending amount of water may be the remainder, and there is no particular limitation as long as it is contained.

本発明の研磨液に砥粒を配合する場合、砥粒の配合量は、七成分の総量100gに対して、0.01〜50gとすることが好ましく、0.02〜40gとすることがより好ましく、0.05〜30gとすることが特に好ましい。配合量が0.01g未満では研磨速度が低く、50gを超えると研磨キズが多く発生する傾向にある。   When mix | blending an abrasive grain with the polishing liquid of this invention, it is preferable that the compounding quantity of an abrasive grain shall be 0.01-50g with respect to 100g of total amounts of seven components, and it is more preferable to set it as 0.02-40g. Preferably, it is particularly preferably 0.05 to 30 g. When the blending amount is less than 0.01 g, the polishing rate is low, and when it exceeds 50 g, there is a tendency that many polishing scratches are generated.

本発明の研磨液に金属の酸化剤を配合する場合の配合量は、七成分の総量100gに対して、0〜50gとすることが好ましく、0〜20gとすることがより好ましく、0〜10gとすることが特に好ましい。配合量が50gを超えると、研磨面に荒れが生じる傾向がある。   The blending amount when the metal oxidizing agent is blended with the polishing liquid of the present invention is preferably 0 to 50 g, more preferably 0 to 20 g, more preferably 0 to 10 g with respect to 100 g of the total amount of the seven components. It is particularly preferable that When the amount exceeds 50 g, the polished surface tends to be rough.

本発明の研磨液に水溶性ポリマを配合する場合の配合量は、七成分の総量100gに対して0〜10gとすることが好ましく、0〜5gとすることがより好ましく、0〜2gとすることが特に好ましい。この配合量が10gを超えると研磨速度が低下する傾向がある。   The blending amount when the water-soluble polymer is blended with the polishing liquid of the present invention is preferably 0 to 10 g, more preferably 0 to 5 g, and more preferably 0 to 2 g with respect to the total amount of seven components of 100 g. It is particularly preferred. If this amount exceeds 10 g, the polishing rate tends to decrease.

本発明の研磨液に金属防食剤を配合する場合の配合量は、七成分の総量100gに対して0〜10gとすることが好ましく、0〜5gとすることがより好ましく、0〜2gとすることが特に好ましい。この配合量が10gを超えると研磨速度が低くなる傾向がある。   When the metal anticorrosive is blended in the polishing liquid of the present invention, the blending amount is preferably 0 to 10 g, more preferably 0 to 5 g, and more preferably 0 to 2 g with respect to the total amount of seven components of 100 g. It is particularly preferred. If this amount exceeds 10 g, the polishing rate tends to be low.

本発明の研磨液には、上述した各種成分のほかに、ビクトリアピュアブルー等の染料、フタロシアニングリーン等の顔料等の着色剤等を含有させてもよい。   The polishing liquid of the present invention may contain a coloring agent such as a dye such as Victoria Pure Blue, a pigment such as phthalocyanine green, in addition to the various components described above.

以上のような本発明の研磨液を、半導体デバイスにおける導電性物質層と、バリア層と、層間絶縁膜との化学機械研磨(CMP)に使用することができる。同一条件下のCMPにおいて導電性物質層/バリア層/層間絶縁膜は研磨速度比1/0.01〜20/0.01〜20で研磨されるのが好ましい。より好ましくは1/0.05〜10/0.05〜10であり、さらに好ましくは1/0.1〜10/0.01〜10である。   The polishing liquid of the present invention as described above can be used for chemical mechanical polishing (CMP) of a conductive material layer, a barrier layer, and an interlayer insulating film in a semiconductor device. In CMP under the same conditions, the conductive material layer / barrier layer / interlayer insulating film is preferably polished at a polishing rate ratio of 1 / 0.01 to 20 / 0.01 to 20. More preferably, it is 1 / 0.05-10 / 0.05-10, More preferably, it is 1 / 0.1-10 / 0.01-10.

導電性物質としては、銅、銅合金、銅の酸化物、銅合金の酸化物、タングステン、タングステン合金、銀、金等の、金属が主成分の物質が挙げられ、銅、銅合金、銅の酸化物、銅合金の酸化物等の銅が主成分である導電性物質が好ましい。導電性物質層として公知のスパッタ法、メッキ法により前記物質を成膜した膜を使用できる。   Examples of the conductive substance include copper, copper alloy, copper oxide, copper alloy oxide, tungsten, tungsten alloy, silver, gold, and the like, which are mainly composed of metals. Conductive substances containing copper as the main component, such as oxides and oxides of copper alloys, are preferred. As the conductive material layer, a film in which the material is formed by a known sputtering method or plating method can be used.

層間絶縁膜としては、シリコン系被膜や有機ポリマ膜が挙げられる。シリコン系被膜としては、二酸化ケイ素、フルオロシリケートグラス、オルガノシリケートグラス、シリコンオキシナイトライド、水素化シルセスキオキサン等のシリカ系被膜や、シリコンカーバイド及びシリコンナイトライドが挙げられる。また、有機ポリマ膜としては、全芳香族系低誘電率層間絶縁膜が挙げられる。特に、オルガノシリケートグラスが好ましい。これらの膜は、CVD法、スピンコート法、ディップコート法、またはスプレー法によって成膜される。   Examples of the interlayer insulating film include a silicon-based film and an organic polymer film. Examples of the silicon-based coating include silica-based coatings such as silicon dioxide, fluorosilicate glass, organosilicate glass, silicon oxynitride, silsesquioxane hydride, silicon carbide, and silicon nitride. Examples of the organic polymer film include a wholly aromatic low dielectric constant interlayer insulating film. In particular, organosilicate glass is preferable. These films are formed by a CVD method, a spin coating method, a dip coating method, or a spray method.

バリア層は絶縁膜中への導電性物質拡散防止、および絶縁膜と導電性物質との密着性向上のために形成される。バリア層に用いられる導体は、タングステン、窒化タングステン、タングステン合金、その他のタングステン化合物、チタン、窒化チタン、チタン合金、その他のチタン化合物、タンタル、窒化タンタル、タンタル合金、その他のタンタル化合物から選ばれる1種以上を含むのが好ましい。バリア層は、1種からなる単層であっても、2種以上の積層膜であっても良い。   The barrier layer is formed to prevent diffusion of the conductive material into the insulating film and to improve the adhesion between the insulating film and the conductive material. The conductor used for the barrier layer is selected from tungsten, tungsten nitride, tungsten alloys, other tungsten compounds, titanium, titanium nitride, titanium alloys, other titanium compounds, tantalum, tantalum nitride, tantalum alloys, and other tantalum compounds. Preferably it contains more than one species. The barrier layer may be a single layer made of one kind or a laminated film of two or more kinds.

本発明の研磨方法は、表面が凹部および凸部からなる層間絶縁膜と、前記層間絶縁膜を表面に沿って被覆するバリア層と、前記凹部を充填してバリア層を被覆する導電性物質層とを有する基体の、導電性物質層を研磨して前記凸部のバリア層を露出させる第1の研磨工程と、少なくともバリア層および凹部の導電性物質層を前記本発明の研磨液を供給しながら化学機械研磨して凸部の層間絶縁膜を露出させる第2の研磨工程とを含む。   The polishing method of the present invention comprises an interlayer insulating film having a concave portion and a convex surface, a barrier layer that covers the interlayer insulating film along the surface, and a conductive material layer that fills the concave portion and covers the barrier layer. A first polishing step for polishing the conductive material layer of the substrate having the convex portions to expose the barrier layer of the convex portion, and supplying the polishing liquid of the present invention to at least the conductive layer of the barrier layer and the concave portion. And a second polishing step for exposing the convex interlayer insulating film by chemical mechanical polishing.

ここで、化学機械研磨には、被研磨面を有する基体を研磨定盤の研磨布(パッド)上に押圧した状態で研磨液を供給しながら研磨定盤と基体とを相対的に動かすことによって被研磨面を研磨する方法が挙げられる。層間絶縁膜を露出させるには、他に、金属製または樹脂製のブラシを接触させる方法、研磨液を所定の圧力で吹きつける方法が挙げられる。   Here, in chemical mechanical polishing, the polishing surface plate and the substrate are relatively moved while supplying the polishing liquid while the substrate having the surface to be polished is pressed onto the polishing cloth (pad) of the polishing surface plate. The method of grind | polishing a to-be-polished surface is mentioned. Other methods for exposing the interlayer insulating film include a method of contacting a metal or resin brush and a method of spraying a polishing liquid at a predetermined pressure.

研磨に用いる装置としては、例えば研磨布により研磨する場合、研磨される基体を保持できるホルダと、回転数が変更可能なモータ等と接続し、研磨布を貼り付けた定盤とを有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。研磨条件には制限はないが、定盤の回転速度は基体が飛び出さないように200rpm以下の低回転が好ましい。被研磨面を有する基体の研磨布への押し付け圧力が1〜100kPaであることが好ましく、CMP速度のウエハ面内均一性及びパターンの平坦性を満足するためには、5〜50kPaであることがより好ましい。研磨している間、研磨布には研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨液で覆われていることが好ましい。研磨終了後の基体は、流水中でよく洗浄後、スピンドライ等を用いて基体上に付着した水滴を払い落としてから乾燥させることが好ましい。   As an apparatus used for polishing, for example, when polishing with a polishing cloth, it is common to have a holder that can hold a substrate to be polished and a surface plate that is connected to a motor or the like that can change the number of rotations and to which the polishing cloth is attached. A simple polishing apparatus can be used. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably a low rotation of 200 rpm or less so that the substrate does not jump out. The pressing pressure of the substrate having the surface to be polished against the polishing cloth is preferably 1 to 100 kPa, and in order to satisfy the uniformity of the CMP rate within the wafer surface and the flatness of the pattern, it is preferably 5 to 50 kPa. More preferred. During polishing, the polishing liquid is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with polishing liquid. The substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like.

研磨布の表面状態を常に同一にして化学機械研磨を行うために、研磨の前に研磨布のコンディショニング工程を入れるのが好ましい。例えば、ダイヤモンド粒子のついたドレッサを用いて少なくとも水を含む液で研磨布のコンディショニングを行う。続いて本発明による化学機械研磨工程を実施し、さらに、基体洗浄工程を加えるのが好ましい。   In order to perform chemical mechanical polishing with the surface state of the polishing cloth always the same, it is preferable to perform a conditioning process of the polishing cloth before polishing. For example, the polishing cloth is conditioned with a liquid containing at least water using a dresser with diamond particles. Subsequently, it is preferable to perform a chemical mechanical polishing process according to the present invention, and further add a substrate cleaning process.

本発明の研磨方法は、例えば半導体デバイスにおける配線層の形成に適用できる。以下、本発明の研磨方法の実施態様を、半導体デバイスにおける配線層の形成に沿って説明する。   The polishing method of the present invention can be applied to the formation of a wiring layer in a semiconductor device, for example. Hereinafter, embodiments of the polishing method of the present invention will be described along with formation of a wiring layer in a semiconductor device.

まず、シリコンの基板上に二酸化ケイ素等の層間絶縁膜を積層形成する。次いで、レジスト層形成、エッチング等の公知の手段によって、層間絶縁膜表面に所定パターンの凹部(基板露出部)を形成して凸部と凹部とを有する層間絶縁膜とする。この層間絶縁膜上に、表面の凸凹に沿って層間絶縁膜を被覆するタンタル等のバリア層を蒸着またはCVD等により成膜する。さらに、前記凹部を充填するようにバリア層を被覆する銅等の金属導電性物質層を蒸着、めっきまたはCVD等により形成する。層間絶縁膜、バリア層および導電性物質の形成厚さは、それぞれ0.01〜2.0μm、1〜100nm、0.01〜2.5μm程度が好ましい。   First, an interlayer insulating film such as silicon dioxide is laminated on a silicon substrate. Next, a known pattern concave portion (substrate exposed portion) is formed on the surface of the interlayer insulating film by a known means such as resist layer formation or etching to obtain an interlayer insulating film having convex portions and concave portions. On this interlayer insulating film, a barrier layer made of tantalum or the like covering the interlayer insulating film is formed along the surface irregularities by vapor deposition or CVD. Further, a metal conductive material layer such as copper covering the barrier layer is formed by vapor deposition, plating or CVD so as to fill the concave portion. The formation thickness of the interlayer insulating film, the barrier layer, and the conductive material is preferably about 0.01 to 2.0 μm, 1 to 100 nm, and 0.01 to 2.5 μm, respectively.

次に、この半導体基板の表面の導電性物質層を、例えば前記導電性物質/バリア層の研磨速度比が十分大きい前記導電性物質用の研磨液を用いて、CMPにより研磨する(第1の研磨工程)。これにより、基板上の凸部のバリア層が表面に露出し、凹部に前記導電性物質膜が残された所望の導体パターンが得られる。この得られたパターン面を、本発明の研磨液を使用する本発明の研磨方法における第2の研磨工程用の被研磨面として、研磨することができる。   Next, the conductive material layer on the surface of the semiconductor substrate is polished by CMP using, for example, a polishing liquid for the conductive material having a sufficiently high polishing rate ratio of the conductive material / barrier layer (first first material). Polishing process). Thereby, the barrier layer of the convex part on a board | substrate is exposed on the surface, and the desired conductor pattern with which the said electroconductive substance film was left in the recessed part is obtained. The obtained pattern surface can be polished as a surface to be polished for the second polishing step in the polishing method of the present invention using the polishing liquid of the present invention.

第2の研磨工程では、導電性物質、バリア層および層間絶縁膜を研磨できる本発明の研磨液を使用して、化学機械研磨により、少なくとも、前記露出しているバリア層および凹部の導電性物質を研磨する。凸部のバリア層の下の層間絶縁膜が全て露出し、凹部に配線層となる前記導電性物質層が残され、凸部と凹部との境界にバリア層の断面が露出した所望のパターンが得られた時点で研磨を終了する。研磨終了時のより優れた平坦性を確保するために、さらに、オーバー研磨(例えば、第2の研磨工程で所望のパターンを得られるまでの時間が100秒の場合、この100秒の研磨に加えて50秒追加して研磨することをオーバー研磨50%という。)して凸部の層間絶縁膜の一部を含む深さまで研磨しても良い。   In the second polishing step, at least the exposed conductive material of the barrier layer and the recess is formed by chemical mechanical polishing using the polishing liquid of the present invention capable of polishing the conductive material, the barrier layer, and the interlayer insulating film. To polish. The interlayer insulating film under the convex barrier layer is all exposed, the conductive material layer that becomes the wiring layer is left in the concave portion, and the desired pattern in which the cross section of the barrier layer is exposed at the boundary between the convex portion and the concave portion The polishing is finished when it is obtained. In order to ensure better flatness at the end of polishing, over polishing (for example, if the time until a desired pattern is obtained in the second polishing step is 100 seconds, in addition to this 100 second polishing) Polishing for an additional 50 seconds may be referred to as over-polishing 50%), and may be polished to a depth including a portion of the convex interlayer insulating film.

このようにして形成された金属配線の上に、さらに、層間絶縁膜および第2層目の金属配線を形成し、その配線間および配線上に再度層間絶縁膜を形成後、研磨して半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の配線層数を有する半導体デバイスを製造することができる。   An interlayer insulating film and a second-layer metal wiring are further formed on the metal wiring thus formed, an interlayer insulating film is formed again between and on the wiring, and then polished to obtain a semiconductor substrate. Make the surface smooth throughout. By repeating this step a predetermined number of times, a semiconductor device having a desired number of wiring layers can be manufactured.

本発明の研磨液は、上記のような半導体基板に形成されたケイ素化合物膜の研磨だけでなく、所定の配線を有する配線板に形成された酸化ケイ素膜、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズムなどの光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバの端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザ用LEDサファイア基板、SiC、GaP、GaAs等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等の基板を研磨するためにも使用することができる。   The polishing liquid of the present invention is not only for polishing a silicon compound film formed on a semiconductor substrate as described above, but also for an inorganic insulating film such as a silicon oxide film, glass, or silicon nitride formed on a wiring board having a predetermined wiring. Optical glass such as optical masks such as photomasks, lenses, and prisms, inorganic conductive films such as ITO, glass and crystalline materials, optical integrated circuits, optical switching elements, optical waveguides, end faces of optical fibers, scintillators, etc. It can also be used to polish crystals, solid-state laser single crystals, LED sapphire substrates for blue lasers, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, and magnetic heads.

以下に、実施例により本発明をさらに詳しく説明するが、本発明の技術思想を逸脱しない限り、本発明はこれらの実施例に限定されるものではない。例えば、研磨液の材料の種類やその配合比率は、本実施例記載の種類や比率以外でも構わないし、研磨対象の組成や構造も、本実施例記載以外の組成や構造でも構わない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples without departing from the technical idea of the present invention. For example, the type of polishing liquid material and the blending ratio thereof may be other than those described in this embodiment, and the composition and structure of the polishing target may be other than those described in this embodiment.

(研磨液作製方法)
表1〜表5に示す材料をそれぞれの配合で混合して実施例1〜27および比較例1〜4に使用する研磨液を調製した。なお、表3、4中のグリコール類としてアセチレンジオールを、アルキルベンゼンスルホン酸塩としてドデシルベンゼンスルホン酸ナトリウムを使用した。

Figure 2008113015
Figure 2008113015
Figure 2008113015
Figure 2008113015
Figure 2008113015
(Polishing liquid preparation method)
The materials shown in Tables 1 to 5 were mixed in respective formulations to prepare polishing liquids used in Examples 1 to 27 and Comparative Examples 1 to 4. In addition, acetylene diol was used as glycols in Tables 3 and 4, and sodium dodecylbenzenesulfonate was used as the alkylbenzene sulfonate.
Figure 2008113015
Figure 2008113015
Figure 2008113015
Figure 2008113015
Figure 2008113015

(基板)
以下の基板を用意した。
(substrate)
The following substrates were prepared.

ブランケット基板(a):CVD法でオルガノシリケートグラス(厚さ:1000nm)を形成したシリコン基板。 Blanket substrate (a): A silicon substrate on which organosilicate glass (thickness: 1000 nm) is formed by a CVD method.

ブランケット基板(b):厚さ1000nmの二酸化ケイ素をCVD法で形成したシリコン基板。 Blanket substrate (b): A silicon substrate formed by CVD of silicon dioxide having a thickness of 1000 nm.

ブランケット基板(c):厚さ200nmのタンタル膜をスパッタ法で形成したシリコン基板。 Blanket substrate (c): A silicon substrate on which a tantalum film having a thickness of 200 nm is formed by sputtering.

ブランケット基板(d):厚さ1600nmの銅膜をスパッタ法で形成したシリコン基板。 Blanket substrate (d): A silicon substrate on which a copper film having a thickness of 1600 nm is formed by sputtering.

パターン基板(a)の作製:シリコン基板上に層間絶縁膜として上記オルガノシリケートグラス(厚さ:1000nm)をCVD法で成膜した。このオルガノシリケートグラスにフォトリソ法によって、配線金属部幅4.5μm、層間絶縁膜部幅0.5μmが交互に並ぶように、溝を深さ800nmで形成して表面に凹部(溝部分)と凸部(非溝部分)とのストライプ状パターン部(エロージョン評価用)を作製した。別に配線金属部幅100μm、層間絶縁膜部幅100μmが交互に並ぶように、同様に溝を深さ800nmで形成して表面にストライプ状パターン部(ディッシング評価用)を作製した。   Preparation of pattern substrate (a): The above-mentioned organosilicate glass (thickness: 1000 nm) was formed as a interlayer insulating film on a silicon substrate by a CVD method. Grooves are formed at a depth of 800 nm on this organosilicate glass by photolithography so that wiring metal part widths of 4.5 μm and interlayer insulating film part widths of 0.5 μm are arranged alternately. A stripe pattern portion (for erosion evaluation) with a portion (non-groove portion) was produced. Separately, grooves were formed at a depth of 800 nm so that wiring metal part widths of 100 μm and interlayer insulating film part widths of 100 μm were alternately arranged, and striped pattern parts (for dishing evaluation) were formed on the surface.

さらにこの表面にそって、スパッタ法によってバリア層として厚さ200nmのタンタル膜を形成した。前記タンタル膜の上に、スパッタ法により前記溝を全て埋める様に導電性物質層として銅膜を1.6μm形成した。突出している該銅膜を第1の研磨工程として、銅だけを研磨する高選択性のCMPにより、被研磨面に凸部のバリア層が全て露出するまで研磨して平坦化されたパターン基板(a)を得た(研磨時間180秒間、最大研磨厚さは1.6μm。)
パターン基板(b):層間絶縁膜として二酸化ケイ素を使用した以外はパターン基板(a)と同様にして作製した。
Further, along this surface, a tantalum film having a thickness of 200 nm was formed as a barrier layer by sputtering. A copper film of 1.6 μm was formed as a conductive material layer on the tantalum film so as to fill all the grooves by sputtering. The projecting copper film is used as a first polishing step, and the substrate is polished and planarized by high-selectivity CMP for polishing only copper until the convex barrier layer is completely exposed on the surface to be polished ( a) was obtained (polishing time 180 seconds, maximum polishing thickness 1.6 μm)
Pattern substrate (b): produced in the same manner as the pattern substrate (a) except that silicon dioxide was used as an interlayer insulating film.

(実施例1〜27および比較例1〜4)
上記で調製した各研磨液を用いて、上記で用意した各基板を、下記の研磨条件で化学機械研磨した。また、銅のエッチング速度を下記の条件で各研磨液に浸漬してもとめた。化学機械研磨による研磨速度、研磨速度の面内均一性、銅エッチング速度、ディッシング量、エロージョン量、及び配線抵抗値、研磨カスの量、研磨キズの評価結果を表6〜表10に示した。
(Examples 1-27 and Comparative Examples 1-4)
Using each polishing liquid prepared above, each substrate prepared above was subjected to chemical mechanical polishing under the following polishing conditions. Moreover, it was stopped even if the etching rate of copper was immersed in each polishing liquid on the following conditions. Tables 6 to 10 show the evaluation results of polishing rate by chemical mechanical polishing, in-plane uniformity of polishing rate, copper etching rate, dishing amount, erosion amount, wiring resistance value, amount of polishing residue, and polishing scratches.

(研磨条件)[前記パターン基板の前処理である第1の研磨工程および各基板の下記の研磨に共通]
研磨パッド:発泡ポリウレタン樹脂(IC1000(ロデール社製))
研磨圧力:20.6kPa(210g/cm
基板と研磨定盤との相対速度:36m/min
(各基板の研磨工程)
ブランケット基板(a)、(b)、(c)、(d)を、上記で調製した各研磨液を150cc/分供給しながら、60秒間で化学機械研磨し、研磨終了後、蒸留水で洗浄処理した。
(Polishing conditions) [common to the first polishing step, which is a pretreatment of the patterned substrate, and the following polishing of each substrate]
Polishing pad: Foam polyurethane resin (IC1000 (Rodel))
Polishing pressure: 20.6 kPa (210 g / cm 2 )
Relative speed between substrate and polishing surface plate: 36 m / min
(Polishing process for each substrate)
Blanket substrates (a), (b), (c), and (d) were subjected to chemical mechanical polishing for 60 seconds while supplying each polishing solution prepared above at 150 cc / min, and washed with distilled water after polishing. Processed.

パターン基板(a)、(b)を、上記で調製した各研磨液を150cc/分供給しながら、90秒間で化学機械研磨し、研磨終了後、蒸留水で洗浄処理した。なお、パターン基板(a)および(b)の研磨は第2の研磨工程に相当し、約30秒で凸部の層間絶縁膜は全て被研磨面に露出し、研磨終了時にはオーバー研磨されていた。   The pattern substrates (a) and (b) were subjected to chemical mechanical polishing for 90 seconds while supplying 150 cc / min of each of the polishing liquids prepared above, and washed with distilled water after polishing. The polishing of the pattern substrates (a) and (b) corresponds to the second polishing step. In about 30 seconds, the convex interlayer insulating film was all exposed to the surface to be polished, and was over-polished at the end of polishing. .

(評価項目)
(1) 研磨速度:上記条件で研磨および洗浄した(a)〜(d)のブランケット基板のうち、オルガノシリケートグラス(a)及び二酸化ケイ素(b)の研磨速度を、研磨前後での膜厚差を大日本スクリーン製造株式会社製膜厚測定装置(製品名ラムダエース VL−M8000LS)を用いて測定し求めた。また、タンタル膜(c)及び銅(d)の研磨速度を研磨前後での膜厚差を電気抵抗値から換算して求めた。
(Evaluation item)
(1) Polishing rate: Among the blanket substrates of (a) to (d) polished and washed under the above conditions, the polishing rate of organosilicate glass (a) and silicon dioxide (b) is determined by the difference in film thickness before and after polishing. Was measured using a Dainippon Screen Mfg. Co., Ltd. film thickness measuring device (product name: Lambda Ace VL-M8000LS). Further, the polishing rate of the tantalum film (c) and copper (d) was obtained by converting the film thickness difference before and after polishing from the electric resistance value.

(2) 研磨速度の面内均一性:上記(1)研磨速度の標準偏差を平均値に対して百分率(%)で表した。 (2) In-plane uniformity of polishing rate: (1) The standard deviation of the polishing rate was expressed as a percentage (%) with respect to the average value.

(3)銅エッチング速度:ブランケット基板(d)を攪拌している研磨液(25℃、攪拌100rpm)へ60秒間浸漬した前後の銅膜厚差を電気抵抗値から換算して求めた。 (3) Copper etching rate: The copper film thickness difference before and after immersing the blanket substrate (d) in the polishing liquid (25 ° C., stirring 100 rpm) for 60 seconds was calculated from the electrical resistance value.

(4) 平坦性(ディッシング量):上記条件で研磨および洗浄したパターン基板(a)および(b)の、配線金属(銅)部幅100μm、層間絶縁膜部幅100μmが交互に並んだストライプ状パターン部(以下、ディッシング評価部という。)の表面形状から、触針式段差計で絶縁膜部に対する配線金属部の膜減り量を求めた。 (4) Flatness (amount of dishing): Striped pattern in which wiring metal (copper) part width 100 μm and interlayer insulating film part width 100 μm of pattern substrates (a) and (b) polished and washed under the above conditions are arranged alternately From the surface shape of the pattern portion (hereinafter referred to as a dishing evaluation portion), the amount of film reduction of the wiring metal portion relative to the insulating film portion was determined with a stylus type step meter.

(5) 平坦性(エロージョン量):パターン基板(a)および(b)に形成された配線金属部幅4.5μm、層間絶縁膜部幅0.5μmが交互に並んだ総幅2.5mmのストライプ状パターン部(以下、エロージョン評価部という。)の表面形状を触針式段差計により測定し、ストライプ状パターン周辺の層間絶縁膜部に対する同パターン部中央付近の層間絶縁膜部の膜減り量を求めた。 (5) Flatness (erosion amount): a total width of 2.5 mm in which wiring metal portion widths of 4.5 μm and interlayer insulating film portion widths of 0.5 μm formed on the pattern substrates (a) and (b) are alternately arranged. The surface shape of the stripe pattern portion (hereinafter referred to as the erosion evaluation portion) is measured by a stylus type step gauge, and the amount of film reduction of the interlayer insulating film portion near the center of the pattern portion relative to the interlayer insulating film portion around the stripe pattern Asked.

(6)配線抵抗値:上記(4)ディッシング評価部において、配線長さ1mmの配線抵抗値を測定した。また、上記(5)エロージョン評価部において、配線長さ1mmの配線抵抗値を測定した。 (6) Wiring resistance value: In the above (4) dishing evaluation section, the wiring resistance value with a wiring length of 1 mm was measured. Further, in the above (5) erosion evaluation section, the wiring resistance value with a wiring length of 1 mm was measured.

(7) 洗浄性(研磨カスの量):パターン基板(a)および(b)の表面に残った研磨カスの量をSEMを用いて観察し、1cm当たりの個数で評価した。 (7) Detergency (amount of polishing residue): The amount of polishing residue remaining on the surfaces of the pattern substrates (a) and (b) was observed using an SEM and evaluated by the number per 1 cm 2 .

(8) 研磨キズ:パターン基板(a)および(b)から、研磨キズの量をKLA Tencor社製パターンウエハ欠陥検出装置2138を用いて測定し、1cm当たりの個数で評価した。

Figure 2008113015
Figure 2008113015
Figure 2008113015
Figure 2008113015
Figure 2008113015
(8) Polishing scratches: The amount of polishing scratches was measured from the pattern substrates (a) and (b) using a pattern wafer defect detection device 2138 manufactured by KLA Tencor, and evaluated by the number per 1 cm 2 .
Figure 2008113015
Figure 2008113015
Figure 2008113015
Figure 2008113015
Figure 2008113015

比較例1〜4では、オルガノシリケートグラスの研磨速度が小さく、研磨速度の面内均一性が大きいためにディッシング及びエロージョンが大きく配線抵抗値が増加している。また、比較例1〜4では、研磨カスの量及び研磨キズの量が多い。それに対し実施例1〜27では、オルガノシリケートグラスまたは二酸化ケイ素の研磨速度が大きく研磨速度の面内均一性に優れるために良好なディッシング及びエロージョン特性により配線抵抗の増加が少ない。また、研磨カスの量及び研磨キズの量が少なく良好である。   In Comparative Examples 1 to 4, since the polishing rate of the organosilicate glass is small and the in-plane uniformity of the polishing rate is large, dishing and erosion are large and the wiring resistance value is increased. In Comparative Examples 1 to 4, the amount of polishing residue and the amount of polishing scratches are large. On the other hand, in Examples 1 to 27, the polishing rate of the organosilicate glass or silicon dioxide is large and the in-plane uniformity of the polishing rate is excellent, so that the increase in wiring resistance is small due to good dishing and erosion characteristics. Further, the amount of polishing residue and the amount of polishing scratches are small and good.

Claims (21)

界面活性剤、酸化金属溶解剤及び水を含有し、該酸化金属溶解剤は、有機酸、有機酸エステル、有機酸のアンモニウム塩及び硫酸から選ばれる少なくとも1種であり、
少なくとも導電性物質及び
絶縁膜を表面に有する被研磨面の研磨に使用されることを特徴とする研磨液。
A surfactant, a metal oxide solubilizer, and water, wherein the metal oxide solubilizer is at least one selected from organic acids, organic acid esters, ammonium salts of organic acids, and sulfuric acid,
A polishing liquid which is used for polishing a surface to be polished having at least a conductive substance and an insulating film on its surface.
界面活性剤、酸化金属溶解剤及び水を含有し、該酸化金属溶解剤は、有機酸、有機酸エステル、有機酸のアンモニウム塩及び硫酸から選ばれる少なくとも1種であり、
少なくとも導電性物質及び、
シリコン系被膜または有機ポリマ膜を、
表面に有する被研磨面の研磨に使用されることを特徴とする研磨液。
A surfactant, a metal oxide solubilizer, and water, wherein the metal oxide solubilizer is at least one selected from organic acids, organic acid esters, ammonium salts of organic acids, and sulfuric acid,
At least a conductive material, and
Silicon-based film or organic polymer film
A polishing liquid used for polishing a surface to be polished on a surface.
パーフルオロアルカンスルホン酸、酸化金属溶解剤及び水を含有し、該酸化金属溶解剤は、有機酸、有機酸エステル、有機酸のアンモニウム塩及び硫酸から選ばれる少なくとも1種であることを特徴とする研磨液。   It contains perfluoroalkanesulfonic acid, a metal oxide solubilizer and water, and the metal oxide solubilizer is at least one selected from organic acids, organic acid esters, ammonium salts of organic acids and sulfuric acid. Polishing fluid. 有機溶媒、酸化金属溶解剤及び水を含有し、該酸化金属溶解剤は、有機酸、有機酸エステル、有機酸のアンモニウム塩及び硫酸から選ばれる少なくとも1種であり、
少なくとも導電性物質及び絶縁膜を
表面に有する被研磨面の研磨に使用されることを特徴とする研磨液。
Containing an organic solvent, a metal oxide solubilizer and water, the metal oxide solubilizer is at least one selected from organic acids, organic acid esters, ammonium salts of organic acids and sulfuric acid,
A polishing liquid which is used for polishing a surface to be polished having at least a conductive substance and an insulating film on its surface.
有機溶媒、酸化金属溶解剤及び水を含有し、該酸化金属溶解剤は、有機酸、有機酸エステル、有機酸のアンモニウム塩及び硫酸から選ばれる少なくとも1種であり、
少なくとも導電性物質及び、
シリコン系被膜または有機ポリマ膜を、
表面に有する被研磨面の研磨に使用されることを特徴とする研磨液。
Containing an organic solvent, a metal oxide solubilizer and water, the metal oxide solubilizer is at least one selected from organic acids, organic acid esters, ammonium salts of organic acids and sulfuric acid,
At least a conductive material, and
Silicon-based film or organic polymer film
A polishing liquid used for polishing a surface to be polished on a surface.
砥粒を含む請求の範囲第1項〜第5項のいずれか記載の研磨液。   The polishing liquid according to any one of claims 1 to 5, which contains abrasive grains. 砥粒が、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニアから選ばれる少なくとも1種である請求の範囲第6項記載の研磨液。   The polishing liquid according to claim 6, wherein the abrasive is at least one selected from silica, alumina, ceria, titania, zirconia, and germania. 砥粒の表面がアルキル基で変性されている請求の範囲第6項記載の研磨液。   The polishing liquid according to claim 6, wherein the surface of the abrasive grains is modified with an alkyl group. 有機溶媒を0.1〜95重量%含有する請求の範囲第4項または第5項記載の研磨液。   The polishing liquid according to claim 4 or 5, which contains 0.1 to 95% by weight of an organic solvent. 有機溶媒がグリコール類及びその誘導体、アルコール類、炭酸エステル類から選ばれる少なくとも1種である請求の範囲第4項または第5項記載の研磨液。   The polishing liquid according to claim 4 or 5, wherein the organic solvent is at least one selected from glycols and derivatives thereof, alcohols, and carbonates. 界面活性剤が非イオン性界面活性剤、陰イオン性界面活性剤から選ばれる少なくとも1種である請求の範囲第1項または第2項記載の研磨液。   The polishing liquid according to claim 1 or 2, wherein the surfactant is at least one selected from a nonionic surfactant and an anionic surfactant. 界面活性剤が、パーフルオロアルカンスルホン酸とその誘導体から選ばれる少なくとも1種である請求の範囲第1項または第2項記載の研磨液。   The polishing liquid according to claim 1 or 2, wherein the surfactant is at least one selected from perfluoroalkanesulfonic acid and derivatives thereof. 界面活性剤を0.00001〜20重量%含有する請求の範囲第1項または第2項記載の研磨液。   The polishing liquid according to claim 1 or 2, which contains 0.00001 to 20% by weight of a surfactant. 金属の酸化剤を含む請求の範囲第1項〜第5項のいずれか記載の研磨液。   The polishing liquid according to any one of claims 1 to 5, which contains a metal oxidizing agent. 金属の酸化剤が、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸及びオゾン水から選ばれる少なくとも1種である請求の範囲第14項記載の研磨液。   The polishing liquid according to claim 14, wherein the metal oxidizing agent is at least one selected from hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, and ozone water. 重量平均分子量が500以上の水溶性ポリマを含有する請求の範囲第1項〜第5項のいずれか記載の研磨液。   The polishing liquid according to any one of claims 1 to 5, comprising a water-soluble polymer having a weight average molecular weight of 500 or more. 前記水溶性ポリマが、多糖類、ポリカルボン酸、ポリカルボン酸エステル及びその塩、及びビニル系ポリマから選ばれた少なくとも1種である請求の範囲第16項記載の研磨液。   The polishing liquid according to claim 16, wherein the water-soluble polymer is at least one selected from polysaccharides, polycarboxylic acids, polycarboxylic acid esters and salts thereof, and vinyl polymers. 表面が凹部および凸部からなる層間絶縁膜と、前記層間絶縁膜を表面に沿って被覆するバリア導体層と、前記凹部を充填してバリア導体層を被覆する導電性物質層とを有する基体の、導電性物質層を研磨して前記凸部のバリア導体層を露出させる第1の研磨工程と、少なくともバリア導体層、凹部の導電性物質層および層間絶縁膜の一部を請求の範囲第1項〜第17項のいずれか記載の研磨液を供給しながら化学機械研磨して凸部の層間絶縁膜を露出させる第2の研磨工程とを含むことを特徴とする研磨方法。   A substrate having an interlayer insulating film having a concave portion and a convex surface, a barrier conductor layer covering the interlayer insulating film along the surface, and a conductive material layer filling the concave portion and covering the barrier conductor layer A first polishing step of polishing the conductive material layer to expose the barrier conductor layer of the convex portion, and at least a part of the barrier conductor layer, the conductive material layer of the concave portion, and the interlayer insulating film. A polishing method comprising: a second polishing step of exposing the interlayer insulating film of the convex portion by chemical mechanical polishing while supplying the polishing liquid according to any one of items 1 to 17. 層間絶縁膜がシリコン系被膜または有機ポリマ膜である請求の範囲第18項記載の研磨方法。   19. The polishing method according to claim 18, wherein the interlayer insulating film is a silicon film or an organic polymer film. 導電性物質が銅を主成分とする請求の範囲第18項記載の研磨方法。   The polishing method according to claim 18, wherein the conductive substance contains copper as a main component. バリア導体層が前記層間絶縁膜へ前記導電性物質が拡散するのを防ぐバリア層であって、タンタル、窒化タンタル、タンタル合金、その他のタンタル化合物、チタン、窒化チタン、チタン合金、その他のチタン化合物、タングステン、窒化タングステン、タングステン合金、その他のタングステン化合物から選ばれる少なくとも1種を含む請求の範囲第18項記載の研磨方法。   The barrier conductor layer is a barrier layer that prevents the conductive material from diffusing into the interlayer insulating film, and includes tantalum, tantalum nitride, tantalum alloy, other tantalum compounds, titanium, titanium nitride, titanium alloy, and other titanium compounds. The polishing method according to claim 18, comprising at least one selected from tungsten, tungsten nitride, tungsten alloy, and other tungsten compounds.
JP2007304888A 2001-10-31 2007-11-26 Polishing liquid and polishing method Expired - Fee Related JP4850167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304888A JP4850167B2 (en) 2001-10-31 2007-11-26 Polishing liquid and polishing method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2001334376 2001-10-31
JP2001334376 2001-10-31
JP2002010280 2002-01-18
JP2002010280 2002-01-18
JP2002160181 2002-05-31
JP2002160181 2002-05-31
JP2007304888A JP4850167B2 (en) 2001-10-31 2007-11-26 Polishing liquid and polishing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003541040A Division JPWO2003038883A1 (en) 2001-10-31 2002-10-31 Polishing liquid and polishing method

Publications (2)

Publication Number Publication Date
JP2008113015A true JP2008113015A (en) 2008-05-15
JP4850167B2 JP4850167B2 (en) 2012-01-11

Family

ID=39445326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304888A Expired - Fee Related JP4850167B2 (en) 2001-10-31 2007-11-26 Polishing liquid and polishing method

Country Status (1)

Country Link
JP (1) JP4850167B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110088496A (en) * 2008-09-19 2011-08-03 미츠비시 가스 가가쿠 가부시키가이샤 Copper wiring surface protective liquid and method for manufacturing semiconductor circuit
JP2012186198A (en) * 2011-03-03 2012-09-27 Hitachi Chem Co Ltd Slurry for cmp polishing liquid, cmp polishing liquid and polishing method
JP2015071192A (en) * 2013-10-01 2015-04-16 株式会社フジミインコーポレーテッド Manufacturing method of substrate
JP2015523716A (en) * 2012-05-23 2015-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for manufacturing semiconductor device and method for using chemical mechanical polishing composition
JP2017165830A (en) * 2016-03-15 2017-09-21 石原ケミカル株式会社 Cleaning fluid and cleaning method
CN118064061A (en) * 2024-04-18 2024-05-24 浙江大学 Silicon carbide wafer polishing solution for double-sided synchronous polishing, preparation method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144109A (en) * 1998-11-10 2000-05-26 Okamoto Machine Tool Works Ltd Polishing agent slurry for polishing chemical machinery
JP2001135601A (en) * 1999-11-09 2001-05-18 Speedfam Co Ltd Polishing method for planalizing semiconductor device
JP2001144060A (en) * 1999-11-11 2001-05-25 Hitachi Chem Co Ltd Method of polishing substrate having metallic laminated film
JP2001316691A (en) * 2000-02-29 2001-11-16 Showa Denko Kk Detergent composition, method of cleaning and its use
JP2002121541A (en) * 2000-10-12 2002-04-26 Jsr Corp Aqueous dispersion for chemical machinery polishing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144109A (en) * 1998-11-10 2000-05-26 Okamoto Machine Tool Works Ltd Polishing agent slurry for polishing chemical machinery
JP2001135601A (en) * 1999-11-09 2001-05-18 Speedfam Co Ltd Polishing method for planalizing semiconductor device
JP2001144060A (en) * 1999-11-11 2001-05-25 Hitachi Chem Co Ltd Method of polishing substrate having metallic laminated film
JP2001316691A (en) * 2000-02-29 2001-11-16 Showa Denko Kk Detergent composition, method of cleaning and its use
JP2002121541A (en) * 2000-10-12 2002-04-26 Jsr Corp Aqueous dispersion for chemical machinery polishing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110088496A (en) * 2008-09-19 2011-08-03 미츠비시 가스 가가쿠 가부시키가이샤 Copper wiring surface protective liquid and method for manufacturing semiconductor circuit
KR101588485B1 (en) 2008-09-19 2016-01-25 미츠비시 가스 가가쿠 가부시키가이샤 Copper wiring surface protective liquid and method for manufacturing semiconductor circuit
JP2012186198A (en) * 2011-03-03 2012-09-27 Hitachi Chem Co Ltd Slurry for cmp polishing liquid, cmp polishing liquid and polishing method
JP2015523716A (en) * 2012-05-23 2015-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for manufacturing semiconductor device and method for using chemical mechanical polishing composition
JP2015071192A (en) * 2013-10-01 2015-04-16 株式会社フジミインコーポレーテッド Manufacturing method of substrate
JP2017165830A (en) * 2016-03-15 2017-09-21 石原ケミカル株式会社 Cleaning fluid and cleaning method
CN118064061A (en) * 2024-04-18 2024-05-24 浙江大学 Silicon carbide wafer polishing solution for double-sided synchronous polishing, preparation method and application

Also Published As

Publication number Publication date
JP4850167B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5447437B2 (en) Polishing liquid and polishing method
JP5741738B2 (en) Polishing liquid for metal film and polishing method
JP5533951B2 (en) Polishing liquid for metal and polishing method
JP5141792B2 (en) CMP polishing liquid and polishing method
JP2008263215A (en) Polishing liquid, and method of polishing
JPWO2007123235A1 (en) Polishing liquid and polishing method for CMP
JP4850167B2 (en) Polishing liquid and polishing method
JP2005064285A (en) Polishing solution and polishing method for cmp
JP4618987B2 (en) Polishing liquid and polishing method
JP2004179294A (en) Polishing liquid and polishing method
JP2013038237A (en) Cmp polishing liquid and polishing method
JP2006147993A (en) Polishing solution for cmp and polishing method
JP4935843B2 (en) Polishing liquid and polishing method
JP2006128552A (en) Polishing liquid for cmp and polishing method
JP2005285944A (en) Polishing solution for metal, and polishing method
JP2005217360A (en) Metal polishing solution and polishing method
JP2009259950A (en) Polishing solution for cmp and polishing method of substrate using the same
JP2008118112A (en) Polishing solution for cmp and polishing method of substrate
JP2006179665A (en) Polishing solution for metal, and polishing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100823

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4850167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees