JP2008111981A - Objective lens with correction collar - Google Patents

Objective lens with correction collar Download PDF

Info

Publication number
JP2008111981A
JP2008111981A JP2006294634A JP2006294634A JP2008111981A JP 2008111981 A JP2008111981 A JP 2008111981A JP 2006294634 A JP2006294634 A JP 2006294634A JP 2006294634 A JP2006294634 A JP 2006294634A JP 2008111981 A JP2008111981 A JP 2008111981A
Authority
JP
Japan
Prior art keywords
correction
coil spring
load
objective lens
correction ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006294634A
Other languages
Japanese (ja)
Other versions
JP4838686B2 (en
Inventor
Kenji Uehara
健志 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006294634A priority Critical patent/JP4838686B2/en
Publication of JP2008111981A publication Critical patent/JP2008111981A/en
Application granted granted Critical
Publication of JP4838686B2 publication Critical patent/JP4838686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an objective lens with a correction collar in which an amount of rotative force of the correction collar and a load on the correction collar, etc. can be set to appropriate values, the influence of a load and a deflection caused by a coil spring in the direction crossing the optical axis is minimized or eliminated, and a correction lens group is moved along the optical axis without decentering it. <P>SOLUTION: The objective lens with a correction collar in which a correction lens group 2a is moved in the direction along the optical axis in response to the rotation of the correction collar 7, is provided with coil springs 8a and 8b that press a correction lens group mirror frame 3a for holding the correction lens group 2a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば顕微鏡に用いられる対物レンズであり、カバーガラスの厚さや温度変化による屈折率の変動などの観察環境に起因して発生する収差を補正するための収差補正機能を備えた補正環付き対物レンズに関する。   The present invention is an objective lens used in, for example, a microscope, and a correction ring having an aberration correction function for correcting aberrations caused by an observation environment such as a refractive index variation due to a thickness of a cover glass or a temperature change. The present invention relates to an attached objective lens.

例えば高いNA(開口率)を有する生物顕微鏡用対物レンズには、カバーガラスの厚さや温度変化による屈折率の変動などの観察環境に起因して発生する収差を補正する手段として、対物レンズを構成するレンズ群のうち任意の収差補正レンズ群(以下、補正レンズ群とする)を光軸に沿う方向に移動させる機能が備えられている。そのような補正環付き対物レンズを備えた顕微鏡が特許文献1に記載されている。   For example, an objective lens for a biological microscope having a high NA (aperture ratio) is configured as a means for correcting aberrations caused by an observation environment such as a refractive index change due to a thickness of a cover glass or a temperature change. A function of moving an arbitrary aberration correction lens group (hereinafter referred to as a correction lens group) in the direction along the optical axis is provided. A microscope having such an objective lens with a correction ring is described in Patent Document 1.

このような対物レンズにおいて、補正レンズ群を移動させる方法としては、補正レンズ群を保持する補正レンズ群鏡枠に設けたビスを補正環に設けたカムに圧接させ、その補正環を回転させた際に生じるカムの作用を利用する方法や、補正環の回転に連動して移動するカム部材を設け、そのカム部材の作用を利用する方法等がある。それらのうち、補正レンズ群鏡枠に設けたビスを補正環に設けたカムに圧接させる構成を備えた補正環付き対物レンズが、特許文献2に記載されている。   In such an objective lens, as a method of moving the correction lens group, a screw provided on a correction lens group frame holding the correction lens group is pressed against a cam provided on the correction ring, and the correction ring is rotated. There are a method of utilizing the action of the cam generated at the time, a method of providing a cam member that moves in conjunction with the rotation of the correction ring, and utilizing the action of the cam member. Among them, Patent Document 2 discloses an objective lens with a correction ring having a configuration in which a screw provided on a correction lens group lens frame is pressed against a cam provided on a correction ring.

特開2002−167101号公報JP 2002-167101 A 特開平11−248995号公報JP-A-11-248995

上述したような現在一般的に用いられている補正環付き対物レンズは、補正環を回転させるために必要とする力(以下、補正環の回転力量という)を小さくしすぎると、検鏡時に対物レンズに加わる微小な振動や衝撃等により補正環が回転しピントがずれてしまうため、何度もピント合わせをやり直さなければならない。これとは逆に、補正環の回転力量を大きくしすぎると、検鏡しながら補正環を回すことが難しくなってしまうため、ピント合わせがしにくくなる。さらに、回転力量を大きしすぎると、補正環のカム部やそのカム部に圧接しているビス等に変形や破損が生じてしまい、収差補正精度に大きく影響を及ぼしてしまう。そのため、補正環の回転力量やカム部等に加わる荷重は、適正な値に定めなくてはならない。   The objective lens with a correction ring that is generally used at present as described above has an objective at the time of speculum if the force required to rotate the correction ring (hereinafter referred to as the amount of rotational force of the correction ring) is too small. Since the correction ring rotates and is out of focus due to minute vibrations or shocks applied to the lens, it is necessary to focus again and again. On the other hand, if the amount of rotational force of the correction ring is increased too much, it becomes difficult to rotate the correction ring while performing a microscopic examination, so that focusing becomes difficult. Furthermore, if the amount of rotational force is excessively large, the cam portion of the correction ring and the screw that is in pressure contact with the cam portion will be deformed or damaged, greatly affecting the aberration correction accuracy. For this reason, the rotational force amount of the correction ring and the load applied to the cam portion and the like must be set to appropriate values.

このような観点から特許文献2に記載された対物レンズの構成を見てみると、特許文献2に記載された対物レンズには、対物胴に設けられたネジ込みに沿って移動可能なリング部材(35)が備えられると共に、そのリング部材(35)と補正環(32)との間にコイルバネ(36)が配置されている。この対物レンズは、リング部材(35)を光軸に沿う方向に移動させることにより、コイルバネ(36)の装備長を変化させ、補正環(32)の回転力量を任意に調整することができる。なお、このコイルバネ(36)により対物レンズに加わる荷重は、特許文献2の図3や図4に示されているようなリング部材(35)が対物胴(30)に当接した状態において最小の値となる。しかし、対物レンズに加わる荷重をその値以下には調整することができないため、荷重を適正な値に定めることは難しい。なお、この対物レンズには、コイルバネ(36)のほかにコイルバネ(9)が備えられているが、このコイルバネ(9)の荷重はコイルバネ(36)の荷重と同じ方向に働く。そのため、コイルバネ(9)が備えられていても、対物レンズに加わる荷重は軽減されない。   From this point of view, when looking at the configuration of the objective lens described in Patent Document 2, the objective lens described in Patent Document 2 has a ring member that can move along a screw thread provided in the objective cylinder. (35) is provided, and a coil spring (36) is disposed between the ring member (35) and the correction ring (32). This objective lens can change the installation length of the coil spring (36) by moving the ring member (35) in the direction along the optical axis, and can arbitrarily adjust the rotational force amount of the correction ring (32). Note that the load applied to the objective lens by the coil spring (36) is minimal when the ring member (35) as shown in FIGS. 3 and 4 of Patent Document 2 is in contact with the objective cylinder (30). Value. However, since the load applied to the objective lens cannot be adjusted below that value, it is difficult to set the load to an appropriate value. The objective lens is provided with a coil spring (9) in addition to the coil spring (36). The load of the coil spring (9) acts in the same direction as the load of the coil spring (36). Therefore, even if the coil spring (9) is provided, the load applied to the objective lens is not reduced.

また、特許文献2に記載されているような補正環付き対物レンズのように、補正レンズ群等の移動にコイルバネを利用している場合、その移動時、そのコイルバネには、光軸を横切る方向の荷重や偏位が生じる。このような荷重や偏位が生じた場合、補正レンズ群等は光軸に沿って移動せず、偏心が生じてしまう。なお、コイルバネの使用時の収縮範囲を一定とした場合、コイルバネの自由長が長くなる。そのため、たわみ量が大きくなるに従いこのような荷重や偏位は大きくなり、偏心も生じやすくなる。顕微鏡に用いられるような対物レンズの場合、補正レンズ群の光軸に沿う方向の移動量が長いものでは2.0mm程度もあるため、その影響を無視することはできない。   In addition, when a coil spring is used to move the correction lens group or the like as in the objective lens with a correction ring as described in Patent Document 2, the coil spring has a direction across the optical axis during the movement. Load and displacement occur. When such a load or deviation occurs, the correction lens group or the like does not move along the optical axis, resulting in eccentricity. In addition, when the contraction range at the time of use of a coil spring is made constant, the free length of a coil spring becomes long. Therefore, as the amount of deflection increases, such a load or displacement increases, and eccentricity tends to occur. In the case of an objective lens used in a microscope, since the movement of the correction lens group in the direction along the optical axis is as long as about 2.0 mm, the influence cannot be ignored.

本発明は、このような従来技術の問題点に鑑みてなされたものであり、その目的とするところは、補正環の回転力量と補正環等に加わる荷重を適正な値に設定することができ、圧縮部材により光軸を横切る方向に生じる荷重や偏位の影響を微小に抑え又は除去して補正レンズ群を偏心させることなく光軸に沿って移動させることができる補正環付き対物レンズを提供することである。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to set the rotational force amount of the correction ring and the load applied to the correction ring to appropriate values. An objective lens with a correction ring that can be moved along the optical axis without decentering the correction lens group by minimizing or eliminating the influence of the load or displacement generated in the direction crossing the optical axis by the compression member It is to be.

上記の目的を達成するために、本発明の補正環付き対物レンズは、補正レンズ群を補正環の回転に応動させて光軸に沿う方向へ移動させる補正環付き対物レンズであって、前記補正レンズ群を保持する補正レンズ群鏡枠を押圧する複数の圧縮部材を備えている。   In order to achieve the above object, an objective lens with a correction ring according to the present invention is an objective lens with a correction ring that moves a correction lens group in a direction along the optical axis in response to rotation of the correction ring. A plurality of compression members are provided to press the correction lens group frame holding the lens group.

また、本発明の補正環付き対物レンズは、前記複数の圧縮部材が、前記補正レンズ群鏡枠を先端部方向へ押圧する第一の圧縮部材と前記補正レンズ群鏡枠を先端部方向とは反対の方向へ押圧する第二の圧縮部材であることが好ましい。   In the objective lens with a correction ring according to the present invention, the plurality of compression members may be configured such that the first compression member that presses the correction lens group lens frame toward the distal end and the correction lens group lens frame toward the distal end. The second compression member is preferably pressed in the opposite direction.

また、本発明の補正環付き対物レンズは、前記補正レンズ群鏡枠に対して前記第一の圧縮部材により加えられる荷重と前記第二の圧縮部材により加えられる荷重とが同一の大きさではないことが好ましい。   In the objective lens with a correction ring of the present invention, the load applied by the first compression member and the load applied by the second compression member on the correction lens group lens frame are not the same magnitude. It is preferable.

また、本発明の補正環付き対物レンズは、前記圧縮部材が、コイルバネであることが好ましい。   In the objective lens with a correction ring of the present invention, it is preferable that the compression member is a coil spring.

本発明の補正環付き対物レンズによれば、補正環の回転力量と補正環等に加わる荷重を適正な値に設定することができ、圧縮部材により光軸を横切る方向に生じる荷重や偏位の影響を微小に抑え又は除去して補正レンズ群を偏心させることなく光軸に沿って移動させることができる。   According to the objective lens with a correction ring of the present invention, the amount of rotational force of the correction ring and the load applied to the correction ring and the like can be set to appropriate values, and the load and displacement generated in the direction crossing the optical axis by the compression member can be set. The correction lens group can be moved along the optical axis without decentering or removing the influence minutely.

実施例の説明に先立ち、従来例として、図3〜図7を用いて、現在一般的に用いられている補正環付き対物レンズの構成と、そのような構成において補正環の回転力量と補正環等に加わる荷重の値について説明する。図3は従来の補正環付き対物レンズの構成を示す一部断面図、図4は従来の補正環付き対物レンズに用いられる補正環のカム部を設けられた面を光軸に沿う方向から見た図、図5(a)は従来の補正環付き対物レンズに用いられる補正環とビスとの関係を示す断面図、図5(b)は図5(a)を上から見た断面図、図6は補正環付き対物レンズに一般的に用いられるコイルバネの形状を示す模式図、図7はコイルバネのたわみ量による荷重特性を示すグラフである。   Prior to the description of the embodiments, as a conventional example, the configuration of an objective lens with a correction ring that is generally used at present, and the rotational force amount of the correction ring and the correction ring in such a configuration will be described with reference to FIGS. The value of the load applied to the above will be described. FIG. 3 is a partial cross-sectional view showing the configuration of a conventional objective lens with a correction ring, and FIG. 4 shows the surface provided with the cam portion of the correction ring used in the conventional objective lens with a correction ring as viewed from the direction along the optical axis. FIG. 5A is a cross-sectional view showing the relationship between a correction ring and a screw used in a conventional objective lens with a correction ring, and FIG. 5B is a cross-sectional view of FIG. 5A viewed from above. FIG. 6 is a schematic diagram showing the shape of a coil spring generally used for an objective lens with a correction ring, and FIG. 7 is a graph showing load characteristics depending on the deflection amount of the coil spring.

まず、図3〜図5を用いて、現在一般的に用いられている補正環付き対物レンズの構成を説明する。図3に示すように、この補正環付き対物レンズの対物胴1は、複数のレンズにより構成されているレンズ部2を備えている。なお、補正環付き対物レンズは、このレンズ部2がカバーガラスCGに対向するように配置される。このレンズ部2を構成する単レンズまたは接合レンズは、それぞれの鏡枠3により保持されている。なお、レンズ部2を構成する接合レンズの一つである補正レンズ群2aは、ビス4の取り付けられた補正レンズ群鏡枠3aにより保持されている。また、対物胴1には、先端部側から順に、カバー5、指標環6、補正環7が取り付けられている。なお、補正環7は指標環6と対物胴1とにより挟まれている。さらに、補正環7は、レンズ部2の光軸を中心として一定の範囲で回転自在となっている。この補正環7の内部には、カム部端面7a1を備えたカム部7aが形成され、外周面には目盛りが記入されている。また、対物胴1と補正レンズ群鏡枠3aとの間には、圧縮部材としてコイルバネ8が配置されている。   First, the configuration of an objective lens with a correction ring that is generally used at present will be described with reference to FIGS. As shown in FIG. 3, the objective cylinder 1 of the objective lens with a correction ring includes a lens unit 2 composed of a plurality of lenses. The objective lens with a correction ring is arranged so that the lens unit 2 faces the cover glass CG. Single lenses or cemented lenses constituting the lens unit 2 are held by respective lens frames 3. The correction lens group 2a, which is one of the cemented lenses constituting the lens unit 2, is held by a correction lens group lens frame 3a to which screws 4 are attached. Further, a cover 5, an index ring 6, and a correction ring 7 are attached to the objective cylinder 1 in order from the distal end side. The correction ring 7 is sandwiched between the index ring 6 and the objective cylinder 1. Further, the correction ring 7 is rotatable within a certain range around the optical axis of the lens unit 2. A cam portion 7a having a cam portion end surface 7a1 is formed inside the correction ring 7, and a scale is written on the outer peripheral surface. In addition, a coil spring 8 is disposed as a compression member between the objective cylinder 1 and the correction lens group frame 3a.

図3及び図4に示すように、補正環7には、ストッパー溝端面7b1を備えたストッパー溝7bが形成されている。また、補正レンズ群鏡枠2aには、光軸を挟んでビス4の反対側となる位置に、ストッパービス9が取り付けられている。補正環7の回転できる範囲は、これらの部材や部位により、一定の範囲に制限されている。 As shown in FIGS. 3 and 4, the correction ring 7 is formed with a stopper groove 7 b having a stopper groove end surface 7 b 1 . A stopper screw 9 is attached to the correction lens group frame 2a at a position opposite to the screw 4 across the optical axis. The range in which the correction ring 7 can be rotated is limited to a certain range by these members and parts.

図3及び図5(a)に示すように、ビス4は、コイルバネ8により、補正環7のカム部7aに圧接させられている。そのため、図5(b)に示すように、カム部7aの作用により、補正環7を回転させるとビス4を光軸に沿う方向に移動させることができる。このとき、補正レンズ群鏡枠3aはビス4と一体的に移動するので、その補正レンズ群3aに保持されている補正レンズ群2aも移動させることができる。   As shown in FIGS. 3 and 5A, the screw 4 is pressed against the cam portion 7 a of the correction ring 7 by a coil spring 8. Therefore, as shown in FIG. 5B, when the correction ring 7 is rotated by the action of the cam portion 7a, the screw 4 can be moved in the direction along the optical axis. At this time, the correction lens group frame 3a moves integrally with the screw 4, so that the correction lens group 2a held by the correction lens group 3a can also be moved.

このような補正環付き対物レンズにおいて、補正環等に加わるコイルバネの荷重は、コイルバネの仕様や使用時の収縮範囲により決定される。そして、その荷重は一般に1〜1.8[N]程度の範囲(以下、適正範囲という)内の値とすることが好ましいとされている。また、この荷重が適正範囲内であるときは、補正環の回転力量も適正な値となる。なお、この適正範囲は、補正レンズ群とそれを保持する補正レンズ群鏡枠の重量や、補正レンズ群鏡枠と対物胴との間に生じるクリアランス量や、使用する潤滑油の粘度等により変化する。   In such an objective lens with a correction ring, the load of the coil spring applied to the correction ring or the like is determined by the specification of the coil spring and the contraction range during use. In general, the load is preferably set to a value within a range of about 1 to 1.8 [N] (hereinafter referred to as an appropriate range). Further, when this load is within an appropriate range, the amount of rotational force of the correction ring is also an appropriate value. The appropriate range varies depending on the weight of the correction lens group and the correction lens group frame that holds the correction lens group, the amount of clearance generated between the correction lens group frame and the objective cylinder, the viscosity of the lubricating oil used, and the like. To do.

しかし、このような補正環付き対物レンズにおいて、レンズ部を構成する単レンズまたは接合レンズやそれらを保持する鏡枠の配置等は、あらかじめ固定されている。そのため、それらと隣接して配置されるコイルバネの仕様や使用時の収縮範囲は、所定のスペース内に収めなければならない等の制限ある。このような理由から、補正環等に加わる荷重を適正範囲内の値とすることは難しい。   However, in such an objective lens with a correction ring, the arrangement of a single lens or a cemented lens constituting the lens unit and a lens frame for holding them is fixed in advance. Therefore, the specifications of the coil springs arranged adjacent to them and the contraction range at the time of use have limitations such as having to be within a predetermined space. For these reasons, it is difficult to set the load applied to the correction ring or the like within a proper range.

ここで、図6及び図7を用いて、このような補正環付き対物レンズに用いられる一般的なコイルバネの仕様について説明する。一般的にコイルバネは図6に示すような形状を有しており、図7に示すように圧縮されるに従いたわみ量も増加し、コイルバネが圧接している部材に対してコイルバネにより加えられる荷重も増加していく。なお、ある程度収縮した状態、すなわち、たわみ量がある程度大きい状態では、図7におけるa-bの範囲のように、その荷重はたわみ量に従って線形的に増加していく。このような状態であれば、荷重の調整が比較的行いやすい。そのため、補正環付き対物レンズに用いる際にも、コイルバネは常にこのような状態となるように装着されることが望ましい。   Here, the specification of a general coil spring used for such an objective lens with a correction ring will be described with reference to FIGS. In general, the coil spring has a shape as shown in FIG. 6, and the amount of deflection increases as it is compressed as shown in FIG. 7, and the load applied by the coil spring to the member to which the coil spring is pressed is also increased. It will increase. Note that in a state of contraction to some extent, that is, in a state in which the amount of deflection is large to some extent, the load increases linearly according to the amount of deflection as in the range ab in FIG. In such a state, it is relatively easy to adjust the load. Therefore, it is desirable that the coil spring is always mounted so as to be in such a state when used for an objective lens with a correction ring.

コイルバネのたわみ量が図7におけるa−bの範囲内にある場合、以下の条件式(1)が成り立つ。
P = K・δ ・・・(1)
但し、
P:荷重[N]
K:バネ定数[N/mm]
δ:たわみ量[mm]
である。
When the amount of deflection of the coil spring is within the range ab in FIG. 7, the following conditional expression (1) is established.
P = K · δ (1)
However,
P: Load [N]
K: Spring constant [N / mm]
δ: Deflection amount [mm]
It is.

なお、コイルバネのバネ定数Kは、以下の条件式(2)により導くことができる。
K = Gd4/8ND3 ・・・(2)
但し、
G:コイルバネの材料の横弾性係数[N/mm2
d:コイルバネの材料の直径[mm]
N:コイルバネの有効巻数
D:コイルバネのコイルの平均径[mm]
The spring constant K of the coil spring can be derived from the following conditional expression (2).
K = Gd 4 / 8ND 3 (2)
However,
G: Coefficient of transverse elasticity of coil spring material [N / mm 2 ]
d: Diameter of the coil spring material [mm]
N: Effective number of turns of coil spring
D: Coil spring average diameter [mm]

しかし、図7においてに示されているように、たわみ量が一定の値(図中においてはbとして示す値)を超えると、コイルバネ自身の両端部から隣接するコイル同士が接触をし始め、コイルバネの荷重がたわみ量に対して非線形的に急激に増加するようになり、上記条件式(1)が成り立たなくなる。   However, as shown in FIG. 7, when the amount of deflection exceeds a certain value (value shown as b in the figure), adjacent coils start to contact each other from both ends of the coil spring itself, and the coil spring The load increases rapidly in a non-linear manner with respect to the deflection amount, and the conditional expression (1) is not satisfied.

次に、補正環付き対物レンズに用いられている一般的なコイルバネについて、具体的な数値データを用いて説明する。このコイルバネの仕様は以下の通りである。
材料 :ピアノ線
材料の横弾性係数(G) :78000[N/mm]
材料直径(d) :0.6[mm]
コイル平均径(D) :15[mm]
総巻数 :6
有効巻数(N) :4
自由長 :23[mm]
最圧縮時のコイルバネ長 :3.6[mm]
使用時の収縮範囲 :6〜7[mm]
使用時のたわみ量(δ) :17〜16[mm]
最大たわみ量 :19.4[mm]
バネ定数(K) :0.094[N/mm2
Next, a general coil spring used for an objective lens with a correction ring will be described using specific numerical data. The specification of this coil spring is as follows.
Material: Piano wire
Material transverse elastic modulus (G): 78000 [N / mm]
Material diameter (d): 0.6 [mm]
Coil average diameter (D): 15 [mm]
Total volume: 6
Effective number of turns (N): 4
Free length: 23 [mm]
Coil spring length at maximum compression: 3.6 [mm]
Shrinkage range during use: 6-7 [mm]
Deflection amount during use (δ): 17 to 16 [mm]
Maximum deflection: 19.4 [mm]
Spring constant (K): 0.094 [N / mm 2 ]

このコイルバネにおいて、使用時のたわみ量は最大たわみ量の82〜88%となる。また、たわみ量が最大たわみ量の85%程度を超えると、コイルバネの両端に設けられた座巻きとその近傍にある有効巻きコイルとが接触を始めるため、コイルバネの荷重がたわみ量に対して非線形的に急激に増加し始める。つまり、このコイルバネは、図7におけるa1−b1の範囲内において使用されていることになる。 In this coil spring, the amount of deflection during use is 82 to 88% of the maximum amount of deflection. Further, when the deflection amount exceeds about 85% of the maximum deflection amount, the end windings provided at both ends of the coil spring and the effective winding coil in the vicinity thereof come into contact with each other, so the load of the coil spring is nonlinear with respect to the deflection amount. Starts to increase rapidly. That is, this coil spring is used within the range of a 1 -b 1 in FIG.

また、このコイルバネは、上記条件式(1)より、たわみ量(δ)=16[mm](コイルバネ長=7[mm])であるときには、荷重(P)=1.504[N]であり、この値は適正範囲内の値となる。しかし、たわみ量(δ)=17[mm](コイルバネ長=6[mm])であるときには、たわみ量が最大たわみ量の85%(この場合、19.4×0.85=16.49[mm])を超えているため、上記条件式(1)は成り立たず、荷重(P)の値は適正範囲の上限値P=1.8[N]を大幅に超えた値となってしまう。   Further, according to the conditional expression (1), when the deflection amount (δ) = 16 [mm] (coil spring length = 7 [mm]), the coil spring has a load (P) = 1.504 [N]. This value is within the appropriate range. However, when the deflection amount (δ) = 17 [mm] (coil spring length = 6 [mm]), the deflection amount is 85% of the maximum deflection amount (in this case, 19.4 × 0.85 = 16.49 [16]). mm]), the conditional expression (1) does not hold, and the value of the load (P) greatly exceeds the upper limit value P = 1.8 [N] of the appropriate range.

ところで、補正環付き対物レンズに一般的に用いられているコイルバネのように構成上の制限がある場合、コイルバネの荷重のたわみ量に対する急激な変化を回避する方法として、コイルバネの材料直径を細くするという方法と、コイルバネの有効巻数を少なくするという方法がある。   By the way, when there is a structural limitation like a coil spring generally used for an objective lens with a correction ring, the material diameter of the coil spring is reduced as a method for avoiding a sudden change in the deflection amount of the coil spring load. And a method of reducing the effective number of turns of the coil spring.

これらの方法を採用すると、コイルバネのたわみ量による荷重特性を示すグラフである図7において、コイルバネの荷重がたわみ量に対して非線形的に急激に増加する値であるbが右方向へシフトする。つまり、上記条件式(1)が成り立つ範囲、すなわち、コイルバネの荷重の変化が安定する範囲が広くなり、コイルバネの荷重のたわみ量に対する急激な変化が生じにくくなる。   When these methods are employed, in FIG. 7 which is a graph showing the load characteristics depending on the deflection amount of the coil spring, b, which is a value in which the load of the coil spring rapidly increases nonlinearly with respect to the deflection amount, is shifted to the right. That is, the range in which the conditional expression (1) is satisfied, that is, the range in which the change in the coil spring load is stabilized is widened, and a sudden change with respect to the deflection amount of the coil spring load is less likely to occur.

しかし、上記条件式(1)、(2)からも分かるように、コイルバネの材料直径を細くした場合、バネ定数が大幅に減少、すなわち、たわみ量に対するコイルバネの荷重の変化が大幅に小さくなってしてしまう。例えば、材料直径を0.6[mm]から0.5[mm]とした変更した場合には、同じたわみ量から得られる荷重は、6割以下((0.5/0.6)4=0.58)となってしまう。そのため、この方法を用いた場合、補正環付き対物レンズに用いるもののように収縮範囲が制限されていると、十分なたわみ量が得られず、適正荷重を下回るような小さな荷重しか得られない。また、その荷重が小さすぎると、光軸を横切る方向に荷重や偏位が生じてしまう。 However, as can be seen from the conditional expressions (1) and (2), when the material diameter of the coil spring is reduced, the spring constant is greatly reduced, that is, the change in the coil spring load with respect to the deflection amount is significantly reduced. Resulting in. For example, when the material diameter is changed from 0.6 [mm] to 0.5 [mm], the load obtained from the same deflection amount is 60% or less ((0.5 / 0.6) 4 = 0.58). Therefore, when this method is used, if the contraction range is limited like that used for an objective lens with a correction ring, a sufficient amount of deflection cannot be obtained, and only a small load that is less than the appropriate load can be obtained. Further, if the load is too small, a load or a deviation is generated in a direction crossing the optical axis.

一方、コイルバネの有効巻数を少なくした場合、バネ定数が増加、すなわち、たわみ量に対するコイルバネの荷重の変化が大きくなってしまう。そのため、この方法を用いた場合、コイルバネの荷重の値を適正範囲の値とすることが難しい。   On the other hand, when the effective number of turns of the coil spring is decreased, the spring constant increases, that is, the change in the load of the coil spring with respect to the deflection amount increases. For this reason, when this method is used, it is difficult to set the value of the coil spring load within a proper range.

このように、現在一般的に用いられている補正環付き対物レンズの構成では、コイルバネの荷重を適正範囲内の値とすることができない。そのため、補正環の回転力量も適正な値とすることができず、また、コイルバネが圧接している部材やその部材の周辺に配置されている部材に変形や破損が生じてしまう。   As described above, in the configuration of the objective lens with a correction ring that is generally used at present, the load of the coil spring cannot be set to a value within an appropriate range. For this reason, the amount of rotational force of the correction ring cannot be set to an appropriate value, and deformation or breakage occurs in the member in contact with the coil spring or the member disposed around the member.

また、現在一般的に用いられている補正環付き対物レンズの構成では、光軸を横切る方向に生じる荷重や偏位を抑えたり解消したりするための特別な手段を設けたものでは無いため、ビスや補正レンズ群鏡枠や補正レンズ群の移動は光軸に沿ったものとはならず、偏心が生じてしまう。   In addition, in the configuration of the objective lens with a correction ring that is generally used at present, there is no special means for suppressing or eliminating the load or deviation generated in the direction crossing the optical axis. The movement of the screw, the correction lens group lens frame, and the correction lens group does not follow the optical axis, resulting in decentration.

以下に、本発明の実施の形態を図示した二つの実施例によって説明する。   In the following, embodiments of the present invention will be described with reference to two illustrated examples.

まず、図1及び図7を用いて、実施例1の補正環付き対物レンズの構成を説明する。図1は本実施例に係る補正環付き対物レンズの構成を示す一部断面図であり、図7はコイルバネのたわみ量による荷重特性を示すグラフである。なお、本実施例の補正環付き対物レンズにおけるいくつかの部材や部位は、図3〜図5を用いて説明した従来の補正環付き対物レンズと、ほぼ同じ形状や機能を備えている。そこで、本実施例の構成説明は、その補正環付き対物レンズとは異なる部材や構成についてのみ行う。また、それらの部材や部位については、図3〜図5の場合と同じ符号を付け、説明は省略する。   First, the configuration of the objective lens with a correction ring according to the first embodiment will be described with reference to FIGS. 1 and 7. FIG. 1 is a partial cross-sectional view showing a configuration of an objective lens with a correction ring according to the present embodiment, and FIG. 7 is a graph showing a load characteristic depending on a deflection amount of a coil spring. In addition, some members and parts in the objective lens with a correction ring of the present embodiment have substantially the same shape and function as those of the conventional objective lens with a correction ring described with reference to FIGS. Therefore, the configuration of the present embodiment will be described only for members and configurations different from the objective lens with a correction ring. Moreover, about the member and site | part, the same code | symbol as the case of FIGS. 3-5 is attached | subjected, and description is abbreviate | omitted.

本実施例の補正環付き対物レンズは、従来例とは異なり、圧縮部材としてコイルバネ8aとコイルバネ8bという二つのコイルバネを備えている。これらのコイルバネのうち、第一の圧縮部材であるコイルバネ8aは、従来例の圧縮部材であるコイルバネ8と同様に、対物胴1と補正レンズ群鏡枠3aとの間に配置されている。一方、第二の圧縮部材であるコイルバネ8bは、補正レンズ群鏡枠3aを挟んで、コイルバネ8aの反対側の位置に配置されている。   Unlike the conventional example, the objective lens with a correction ring of the present embodiment includes two coil springs, a coil spring 8a and a coil spring 8b, as compression members. Among these coil springs, the coil spring 8a as the first compression member is disposed between the objective cylinder 1 and the correction lens group lens frame 3a, similarly to the coil spring 8 as the compression member of the conventional example. On the other hand, the coil spring 8b as the second compression member is disposed at a position opposite to the coil spring 8a with the correction lens group lens frame 3a interposed therebetween.

そして、これらの圧縮部材のうち、第一の圧縮部材であるコイルバネ8aは、従来例の圧縮部材であるコイルバネ8と同様に、補正レンズ群鏡枠3aやビス4や補正環7を、補正環付き対物レンズの先端部方向へ押圧するように荷重を加えている。これに対し、第二の圧縮部材であるコイルバネ8bは、補正レンズ群鏡枠3a等を補正環付き対物レンズの先端部方向とは反対の方向へ押圧するように荷重を加えている。なお、ビス4は、コイルバネ8aの荷重とコイルバネ8bの荷重との差により生じる荷重により、補正環7のカム部7aに圧接させられている。   Of these compression members, the coil spring 8a, which is the first compression member, is connected to the correction lens group frame 3a, the screw 4, and the correction ring 7 in the same manner as the coil spring 8 which is the compression member of the conventional example. A load is applied so as to press toward the tip of the attached objective lens. On the other hand, the coil spring 8b as the second compression member applies a load so as to press the correction lens group frame 3a and the like in a direction opposite to the tip direction of the objective lens with the correction ring. The screw 4 is pressed against the cam portion 7a of the correction ring 7 by a load generated by a difference between the load of the coil spring 8a and the load of the coil spring 8b.

本実施例はこのような構成を備えているため、補正環等に加わる荷重や補正環の回転力量は、コイルバネ8aの荷重とコイルバネ8bの荷重との差により決定される。そこで、本実施例の圧縮部材についてより詳細に説明する。   Since the present embodiment has such a configuration, the load applied to the correction ring and the rotational force amount of the correction ring are determined by the difference between the load of the coil spring 8a and the load of the coil spring 8b. Therefore, the compression member of the present embodiment will be described in detail.

まず、本実施例の第一の圧縮部材であるコイルバネ8aについて、具体的な数値データを用いて説明する。   First, the coil spring 8a, which is the first compression member of this embodiment, will be described using specific numerical data.

本実施例に用いられているコイルバネ8aの仕様は以下の通りである。
材料 :ピアノ線
材料の横弾性係数(G) :78000[N/mm]
材料直径(d) :0.6[mm]
コイル平均径(D) :15[mm]
総巻数 :5
有効巻数(N) :3
自由長 :23[mm]
最圧縮時のコイルバネ長 :3.0[mm]
使用時の収縮範囲 :6〜7[mm]
使用時のたわみ量(δ) :17〜16[mm]
最大たわみ量 :20[mm]
バネ定数(K) :0.126[N/mm2
The specifications of the coil spring 8a used in this embodiment are as follows.
Material: Piano wire
Material transverse elastic modulus (G): 78000 [N / mm]
Material diameter (d): 0.6 [mm]
Coil average diameter (D): 15 [mm]
Total number of turns: 5
Effective number of turns (N): 3
Free length: 23 [mm]
Coil spring length at maximum compression: 3.0 [mm]
Shrinkage range during use: 6-7 [mm]
Deflection amount during use (δ): 17 to 16 [mm]
Maximum deflection: 20 [mm]
Spring constant (K): 0.126 [N / mm 2 ]

このコイルバネ8aにおいて、使用時のたわみ量は最大たわみ量の80〜85%である。つまり、コイルバネ8aの使用時のたわみ量の値は、図7におけるa−bの範囲内の値、すなわち、上記条件式(1)が成り立つ範囲の値である。従って、コイルバネ8aは使用時に、その荷重が急激に変化することはない。   In this coil spring 8a, the amount of deflection during use is 80 to 85% of the maximum amount of deflection. That is, the value of the deflection amount when the coil spring 8a is used is a value within the range ab in FIG. 7, that is, a value within a range where the conditional expression (1) is satisfied. Accordingly, the load of the coil spring 8a does not change suddenly during use.

しかし、このコイルバネ8aの有効巻数は3であり、従来例のコイルバネの有効巻数よりも少ない。そのため、このコイルバネ8aは、上記条件式(1)より、たわみ量(δ)=16[mm](コイルバネ長=7[mm])であるときには、荷重(P)=2[N]であり、たわみ量(δ)=17[mm](コイルバネ長=6[mm])であるときには、荷重(P)=2.125[N]である。つまり、コイルバネ8aの荷重は、使用時において、常に適正範囲の上限値である1.8[N]よりも大きい。   However, the effective number of turns of the coil spring 8a is 3, which is smaller than the effective number of turns of the conventional coil spring. Therefore, according to the conditional expression (1), the coil spring 8a has a load (P) = 2 [N] when the deflection amount (δ) = 16 [mm] (coil spring length = 7 [mm]). When the deflection amount (δ) = 17 [mm] (coil spring length = 6 [mm]), the load (P) = 2.125 [N]. That is, the load of the coil spring 8a is always larger than 1.8 [N] which is the upper limit value of the appropriate range during use.

次に、本実施例の第二の圧縮部材であるコイルバネ8bについて、具体的な数値データを用いて説明する。   Next, the coil spring 8b, which is the second compression member of this embodiment, will be described using specific numerical data.

本実施例に用いられているコイルバネ8bの仕様は以下の通りである。
材料 :ピアノ線
材料の横弾性係数(G) :78000[N/mm]
材料直径(d) :0.5[mm]
コイル平均径(D) :14[mm]
総巻数 :6
有効巻数(N) :4
自由長 :20[mm]
最圧縮時のコイルバネ長 :3.0[mm]
使用時の収縮範囲 :9〜10[mm]
使用時のたわみ量(δ) :11〜10[mm]
最大たわみ量 :17[mm]
バネ定数(K) :0.056[N/mm2
The specification of the coil spring 8b used in the present embodiment is as follows.
Material: Piano wire
Material transverse elastic modulus (G): 78000 [N / mm]
Material diameter (d): 0.5 [mm]
Coil average diameter (D): 14 [mm]
Total volume: 6
Effective number of turns (N): 4
Free length: 20 [mm]
Coil spring length at maximum compression: 3.0 [mm]
Shrinkage range during use: 9 to 10 [mm]
Deflection amount during use (δ): 11 to 10 [mm]
Maximum deflection: 17 [mm]
Spring constant (K): 0.056 [N / mm 2 ]

このコイルバネ8bにおいて、使用時のたわみ量は最大たわみ量の59〜65%となる。つまり、コイルバネ8bの使用時のたわみ量の値は、図7におけるa−bの範囲内の値、すなわち、上記条件式(1)が成り立つ範囲の値である。従って、コイルバネ8bも使用時に、その荷重が急激に変化することはない。   In the coil spring 8b, the amount of deflection during use is 59 to 65% of the maximum amount of deflection. That is, the value of the deflection when the coil spring 8b is used is a value within the range ab in FIG. 7, that is, a value within the range where the conditional expression (1) is satisfied. Accordingly, the load of the coil spring 8b does not change abruptly during use.

しかし、このコイルバネ8bの材料直径は0.5[mm]であり、従来例のコイルバネの材料直径よりも細い。そのため、このコイルバネ8bは、上記条件式(1)より、たわみ量(δ)=10[mm](コイルバネ長=10[mm])であるときには、荷重(P)=0.56[N]であり、たわみ量(δ)=9[mm](コイルバネ長=11[mm])であるときには、荷重(P)=0.616[N]である。つまり、コイルバネ8bの荷重は、使用時において、常に適正範囲の下限値である1[N]よりも小さい。   However, the material diameter of the coil spring 8b is 0.5 [mm], which is thinner than the material diameter of the coil spring of the conventional example. Therefore, according to the conditional expression (1), the coil spring 8b has a load (P) = 0.56 [N] when the deflection amount (δ) = 10 [mm] (coil spring length = 10 [mm]). When the deflection amount (δ) = 9 [mm] (coil spring length = 11 [mm]), the load (P) = 0.616 [N]. That is, the load of the coil spring 8b is always smaller than 1 [N], which is the lower limit value of the appropriate range during use.

このように、本実施例における圧縮部材である二つのコイルバネ8a,8bのそれぞれの荷重の値は、使用時に、いずれも急激に変化することはないが、いずれも適正範囲内の値ではない。しかし、本実施例の補正環付き対物レンズにおいては、上記したように、一方の圧縮部材による荷重の超過分を、他方の圧縮部材による荷重が相殺するように配置されている。   As described above, the load values of the two coil springs 8a and 8b, which are compression members in the present embodiment, do not change abruptly during use, but are not within the proper range. However, in the objective lens with a correction ring of the present embodiment, as described above, it is arranged so that the excess load by one compression member cancels out the load by the other compression member.

具体的には、コイルバネ8aのたわみ量が最小となりコイルバネ8bのたわみ量が最大となる場合、すなわち、補正環7が先端部から最も離れた位置にある場合、コイルバネ8aの荷重は2[N]でありコイルバネ8bの荷重は0.616[N]であるため、圧縮部材全体の荷重は1.384[N]となる。逆に、コイルバネ8aのたわみ量が最大となりコイルバネ8bのたわみ量が最小となる場合、すなわち、補正環7が先端部に最も近い位置にある場合、コイルバネ8aの荷重は2.125[N]でありコイルバネ8bの荷重は0.56[N]であるため、圧縮部材全体の荷重は1.565[N]となる。従って、本実施例の二つの圧縮部材により、補正レンズ群鏡枠3aに加えられる荷重は、1.384〜1.565[N]となり、この値は適正範囲内の値である。   Specifically, when the amount of deflection of the coil spring 8a is minimized and the amount of deflection of the coil spring 8b is maximized, that is, when the correction ring 7 is located farthest from the tip, the load of the coil spring 8a is 2 [N]. Since the load of the coil spring 8b is 0.616 [N], the load of the entire compression member is 1.384 [N]. Conversely, when the amount of deflection of the coil spring 8a is maximized and the amount of deflection of the coil spring 8b is minimized, that is, when the correction ring 7 is located closest to the tip, the load of the coil spring 8a is 2.125 [N]. Since the load of the coil spring 8b is 0.56 [N], the load of the entire compression member is 1.565 [N]. Therefore, the load applied to the correction lens group frame 3a by the two compression members of the present embodiment is 1.384 to 1.565 [N], which is a value within an appropriate range.

このように、本実施例の補正環付き対物レンズは、使用時において、補正レンズ群鏡枠3aに加えられる荷重の値が圧縮部材のたわみ量に比例した安定した値である。そのため、補正レンズ群鏡枠3aやビス4や補正環7に破損や変形が生じることはなく、当然ながら、補正環の回転力量も適正な値となる。   As described above, in the objective lens with a correction ring of the present example, the value of the load applied to the correction lens group lens barrel 3a is a stable value proportional to the amount of deflection of the compression member when in use. Therefore, the correction lens group frame 3a, the screw 4 and the correction ring 7 are not damaged or deformed, and naturally, the rotational force amount of the correction ring is also an appropriate value.

なお、本実施例における第二の圧縮部材であるコイルバネ8bは、光軸に沿う方向の荷重が小さいため、光軸を横切る方向に荷重や偏位が生じやすい。そこで、本実施例においては、コイルバネ8bの自由長やたわみ量を通常よりも小さくすることにより、光軸を横切る方向の荷重や偏位の発生を抑えている。しかし、このように圧縮部材自体の仕様を調整したとしても、補正環付き対物レンズを構成する圧縮部材以外の部材の製造上の誤差などにより、圧縮部材には光軸を横切る方向の荷重や偏位が発生してしまう。   In addition, since the load in the direction along the optical axis is small, the coil spring 8b which is the second compression member in the present embodiment is likely to generate a load or a deviation in the direction crossing the optical axis. Therefore, in the present embodiment, the free length and the amount of deflection of the coil spring 8b are made smaller than usual so as to suppress the occurrence of load and displacement in the direction crossing the optical axis. However, even if the specifications of the compression member itself are adjusted in this way, due to errors in the manufacture of members other than the compression member constituting the objective lens with a correction ring, the compression member has a load or a deviation in the direction crossing the optical axis. Will occur.

このため、本実施例においては、第二の圧縮部材であるコイルバネ8bにより生じる光軸を横切る方向の荷重と偏位も相殺することができるように、第一の圧縮部材であるコイルバネ8aの配置や仕様を調整している。つまり、本実施例においては、一つの圧縮部材において光軸を横切る方向に荷重や偏位が生じたとしても、他の圧縮部材によりそのような荷重や偏位を相殺することができる。従って本実施例の構成を用いれば、使用時に、圧縮部材に生じてしまう光軸を横切る方向の荷重や偏位を、従来例よりもさらに微小なものとすることができ、補正レンズ群を偏心させることなく光軸に沿って移動させることができる。   For this reason, in this embodiment, the arrangement of the coil spring 8a as the first compression member can be offset so that the load and the displacement in the direction across the optical axis generated by the coil spring 8b as the second compression member can be offset. And the specifications are adjusted. That is, in this embodiment, even if a load or deviation occurs in a direction across the optical axis in one compression member, such a load or deviation can be offset by another compression member. Therefore, when the configuration of this embodiment is used, the load and the deviation in the direction crossing the optical axis that occurs in the compression member during use can be made even smaller than in the conventional example, and the correction lens group can be decentered. It is possible to move along the optical axis without making it.

次に、図2を用いて、実施例2の補正環付き対物レンズの構成を説明する。図2は本実施例に係る補正環付き対物レンズの構成を示す一部断面図である。なお、本実施例の補正環付き対物レンズにおけるいくつかの部材や部位は、図1を用いて説明した実施例1や図3〜図5を用いて説明した従来例と、ほぼ同じ形状や機能を備えている。そこで、本実施例の構成説明は、それらの補正環付き対物レンズとは異なる部材や構成についてのみ行う。また、それらの部材や部位については、図1、図3〜図5の場合と同じ符号を付け、説明は省略する。   Next, the configuration of the objective lens with a correction ring according to the second embodiment will be described with reference to FIG. FIG. 2 is a partial cross-sectional view showing the configuration of the objective lens with a correction ring according to the present embodiment. In addition, some members and parts in the objective lens with a correction ring of the present embodiment are substantially the same in shape and function as those of the first embodiment described with reference to FIG. 1 and the conventional example described with reference to FIGS. It has. Therefore, the configuration of the present embodiment will be described only for members and configurations different from those of the objective lens with a correction ring. Further, those members and parts are denoted by the same reference numerals as those in FIGS. 1 and 3 to 5, and description thereof is omitted.

本実施例の補正環付き対物レンズは、実施例1における第一の圧縮部材としてのコイルバネ8aの代わりに、コイルバネ8cとコイルバネ8dという二つのコイルバネを備えている。これらのコイルバネのうち、コイルバネ8cは、従来例のコイルバネ8や実施例1のコイルバネ8aと同様に、対物胴1と補正レンズ群鏡枠3aとの間に配置されている。また、コイルバネ8dは、補正レンズ群鏡枠3aとその補正レンズ群鏡枠3aに隣接し且つ対物胴1側に配置されている鏡枠3との間に配置されている。なお、第二の圧縮部材であるコイルバネ8bは、実施例1と同様に、補正レンズ群鏡枠3aを挟んで、第一の圧縮部材の反対側の位置に配置されている。また、これらのコイルバネは、それぞれコイル有効径等の仕様が異なっている。   The objective lens with a correction ring of the present embodiment includes two coil springs, a coil spring 8c and a coil spring 8d, instead of the coil spring 8a as the first compression member in the first embodiment. Among these coil springs, the coil spring 8c is disposed between the objective cylinder 1 and the correction lens group lens frame 3a, like the conventional coil spring 8 and the coil spring 8a of the first embodiment. The coil spring 8d is disposed between the correction lens group lens frame 3a and the lens frame 3 adjacent to the correction lens group lens frame 3a and disposed on the objective cylinder 1 side. The coil spring 8b, which is the second compression member, is disposed at a position opposite to the first compression member with the correction lens group lens frame 3a interposed therebetween, as in the first embodiment. These coil springs have different specifications such as effective coil diameter.

本実施例はこのような構成を備えているため、第一の圧縮部材の荷重、すなわち、第一の圧縮部材のバネ定数は、コイルバネ8cとコイルバネ8dのバネ定数の和により決定される。   Since the present embodiment has such a configuration, the load of the first compression member, that is, the spring constant of the first compression member is determined by the sum of the spring constants of the coil spring 8c and the coil spring 8d.

本実施例のように、圧縮部材の数が多くなれば、それらの部材の有効巻数や材料直径やコイル平均径などの設定の自由度が高くなる。そのため、補正環の回転力量と補正環等に加わる荷重を適正な値に設定しやすくなる。さらに、使用時に一つの圧縮部材に生じてしまう光軸を横切る方向の荷重や偏位を、他の圧縮部材により相殺しやすくなる。   If the number of compression members increases as in the present embodiment, the degree of freedom for setting the effective number of turns, material diameter, coil average diameter and the like of these members increases. Therefore, it becomes easy to set the rotational force amount of the correction ring and the load applied to the correction ring to appropriate values. Furthermore, it becomes easy to cancel a load or a deviation in a direction crossing the optical axis, which occurs in one compression member during use, by another compression member.

なお、本実施例においては、圧縮部材であるコイルバネを3つ備えているが、補正環付き対物レンズ内にさらにスペースが確保できる場合には、4つ以上備えても良い。   In the present embodiment, three coil springs that are compression members are provided. However, if more space can be secured in the objective lens with a correction ring, four or more coil springs may be provided.

本発明は、上記2つの実施例のような形態のみに限定されるものではなく、要旨を変更しない範囲で適宜変形して実施しても構わない。   The present invention is not limited only to the forms as in the two embodiments described above, and may be appropriately modified without departing from the scope of the invention.

実施例1に係る補正環付き対物レンズの構成を示す一部断面図である。3 is a partial cross-sectional view illustrating a configuration of an objective lens with a correction ring according to Embodiment 1. FIG. 実施例2に係る補正環付き対物レンズの構成を示す一部断面図である。FIG. 6 is a partial cross-sectional view illustrating a configuration of an objective lens with a correction ring according to a second embodiment. 従来の補正環付き対物レンズの構成を示す一部断面図である。It is a partial cross section figure which shows the structure of the conventional objective lens with a correction | amendment ring. 従来の補正環付き対物レンズに用いられる補正環のカム部を設けられた面を光軸に沿う方向から見た図である。It is the figure which looked at the surface provided with the cam part of the correction ring used for the conventional objective lens with a correction ring from the direction along an optical axis. (a)は従来の補正環付き対物レンズに用いられる補正環とビスとの関係を示す断面図であり、(b)は(a)を上から見た断面図である。(A) is sectional drawing which shows the relationship between the correction | amendment ring and bis | screw used for the conventional objective lens with a correction | amendment ring, (b) is sectional drawing which looked at (a) from the top. 補正環付き対物レンズに一般的に用いられるコイルバネの形状を示す図である。It is a figure which shows the shape of the coil spring generally used for the objective lens with a correction | amendment ring. コイルバネのたわみ量による荷重特性を示すグラフである。It is a graph which shows the load characteristic by the deflection amount of a coil spring.

符号の説明Explanation of symbols

1 対物胴
2 レンズ部
2a 補正レンズ群
3 鏡枠
3a 補正レンズ群鏡枠
4 ビス
5 カバー
6 指標環
7 補正環
7a カム部
7a1 カム部端面
7b ストッパー溝
7b1 ストッパー溝端面
8、8a、8b、8c、8d コイルバネ
9 ストッパービス
CG カバーガラス
DESCRIPTION OF SYMBOLS 1 Objective cylinder 2 Lens part 2a Correction lens group 3 Mirror frame 3a Correction lens group Mirror frame 4 Screw 5 Cover 6 Index ring 7 Correction ring 7a Cam part 7a 1 Cam part end surface 7b Stopper groove 7b 1 Stopper groove end surface 8, 8a, 8b , 8c, 8d Coil spring 9 Stopper screw CG Cover glass

Claims (4)

補正レンズ群を補正環の回転に応動させて光軸に沿う方向へ移動させる補正環付き対物レンズであって、
前記補正レンズ群を保持する補正レンズ群鏡枠を押圧する複数の圧縮部材を備えていることを特徴とする補正環付き対物レンズ。
An objective lens with a correction ring that moves the correction lens group in a direction along the optical axis in response to rotation of the correction ring,
An objective lens with a correction ring, comprising: a plurality of compression members that press a correction lens group frame holding the correction lens group.
前記複数の圧縮部材が、前記補正レンズ群鏡枠を先端部方向へ押圧する第一の圧縮部材と前記補正レンズ群鏡枠を先端部方向とは反対の方向へ押圧する第二の圧縮部材であることを特徴とする請求項1に記載の補正環付き対物レンズ。   The plurality of compression members are a first compression member that presses the correction lens group lens frame in the tip direction and a second compression member that presses the correction lens group lens frame in a direction opposite to the tip direction. The objective lens with a correction ring according to claim 1, wherein the objective lens has a correction ring. 前記補正レンズ群鏡枠に対して前記第一の圧縮部材により加えられる荷重と前記第二の圧縮部材により加えられる荷重とが同一の大きさではないことを特徴とする請求項2に記載の補正環付き対物レンズ。   The correction according to claim 2, wherein the load applied by the first compression member and the load applied by the second compression member to the correction lens group lens frame are not the same magnitude. Objective lens with ring. 前記圧縮部材は、コイルバネであることを特徴とする請求項1乃至3のいずれか1項に記載の補正環付き対物レンズ。   The objective lens with a correction ring according to any one of claims 1 to 3, wherein the compression member is a coil spring.
JP2006294634A 2006-10-30 2006-10-30 Objective lens with correction ring Expired - Fee Related JP4838686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006294634A JP4838686B2 (en) 2006-10-30 2006-10-30 Objective lens with correction ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006294634A JP4838686B2 (en) 2006-10-30 2006-10-30 Objective lens with correction ring

Publications (2)

Publication Number Publication Date
JP2008111981A true JP2008111981A (en) 2008-05-15
JP4838686B2 JP4838686B2 (en) 2011-12-14

Family

ID=39444521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006294634A Expired - Fee Related JP4838686B2 (en) 2006-10-30 2006-10-30 Objective lens with correction ring

Country Status (1)

Country Link
JP (1) JP4838686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808933B2 (en) 2020-03-02 2023-11-07 Kyocera Soc Corporation Liquid immersion objective, microscope, and observation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248995A (en) * 1998-03-06 1999-09-17 Olympus Optical Co Ltd Objective with correction ring
JP2003148339A (en) * 2001-11-15 2003-05-21 Matsushita Electric Ind Co Ltd Linear compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248995A (en) * 1998-03-06 1999-09-17 Olympus Optical Co Ltd Objective with correction ring
JP2003148339A (en) * 2001-11-15 2003-05-21 Matsushita Electric Ind Co Ltd Linear compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808933B2 (en) 2020-03-02 2023-11-07 Kyocera Soc Corporation Liquid immersion objective, microscope, and observation method

Also Published As

Publication number Publication date
JP4838686B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP3739529B2 (en) Zoom lens
JP5475401B2 (en) Large-aperture telephoto zoom lens with anti-vibration function
JP6463250B2 (en) Zoom lens and imaging apparatus having the same
US20080100924A1 (en) High zoom ratio zoom lens system
JP5537750B1 (en) Endoscope objective lens
JP2003248171A (en) Variable power imaging device having temperature compensating function, and video camera
JP5558281B2 (en) Inner focus type macro lens with anti-vibration function
JP2000162514A (en) Objective lens for endoscope
US20110063735A1 (en) Immersion microscope objective lens
JPH08234105A (en) Telephoto zoom lens
WO2014041873A1 (en) Zoom lens system and electronic imaging device provided with same
JPH1152231A (en) Read-out lens
WO2017179373A1 (en) Objective optical system for endoscope
JP2011170128A (en) Large-aperture medium telephoto lens
JP4838686B2 (en) Objective lens with correction ring
JP2006139187A (en) Zoom lens
JP2008015418A (en) Eyepiece
JP2013242505A (en) Two-group zoom lens, zoom lens drive device, zoom camera and electronic apparatus
US6249380B1 (en) Image-blur correcting optical system for a viewing optical apparatus
JP6221642B2 (en) Zoom lens system
JPH06347696A (en) Zoom lens
JP5646304B2 (en) Microscope objective lens
JP4258827B2 (en) Objective lens
JPH0567003B2 (en)
JP2007279335A (en) Wide-angle zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4838686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371