JP2008111810A - Comparison method of light intensity distribution data of diffracted/scattered light, and particle size distribution measuring device - Google Patents

Comparison method of light intensity distribution data of diffracted/scattered light, and particle size distribution measuring device Download PDF

Info

Publication number
JP2008111810A
JP2008111810A JP2006296571A JP2006296571A JP2008111810A JP 2008111810 A JP2008111810 A JP 2008111810A JP 2006296571 A JP2006296571 A JP 2006296571A JP 2006296571 A JP2006296571 A JP 2006296571A JP 2008111810 A JP2008111810 A JP 2008111810A
Authority
JP
Japan
Prior art keywords
light intensity
intensity distribution
distribution data
light
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006296571A
Other languages
Japanese (ja)
Other versions
JP4835389B2 (en
Inventor
Takeshi Kinoshita
健 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006296571A priority Critical patent/JP4835389B2/en
Publication of JP2008111810A publication Critical patent/JP2008111810A/en
Application granted granted Critical
Publication of JP4835389B2 publication Critical patent/JP4835389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a comparison method capable of clarifying a difference numerically by enlarging the difference to the utmost in numerical values of indexes showing the difference, when comparing each intensity distribution data of diffracted/scattered light having a small difference. <P>SOLUTION: This method includes a process for irradiating laser light to a dispersed particle group, a process for acquiring light intensity distribution data having each detected light quantity data as a component by detecting diffracted/scattered light from the dispersed particle group by a plurality of photodetection elements, and a process for comparing each light intensity distribution data acquired respectively relative to two different dispersed particle groups. The comparison process includes a process for treating each light intensity distribution data as a vector having each detected light quantity data as components, and calculating an intersectional angle index related to an intersectional angle formed by the two light intensity distribution data emphatically by operating a weight matrix thereto; and a process for determining the degree of a difference between the two light intensity distribution data based on the intersectional angle index determined in the calculation process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザ光が照射された分散粒子群から出てくる回折・散乱光の光強度分布データの比較方法、および、レーザ回折・散乱法を利用して粒子群の粒度分布を測る粒度分布測定装置に係り、特に回折・散乱光の光強度分布データ同士の比較が定量的におこなえるようにするための技術に関する。   The present invention relates to a method for comparing the light intensity distribution data of diffracted / scattered light emitted from a dispersed particle group irradiated with laser light, and the particle size distribution for measuring the particle size distribution of the particle group using the laser diffraction / scattering method. The present invention relates to a measurement apparatus, and more particularly to a technique for enabling quantitative comparison of light intensity distribution data of diffracted / scattered light.

従来のレーザ回折・散乱法による粒度分布測定では、測定光であるレーザ光が照射された分散粒子群(液体、気体、固体などの媒体中に分散させられた粒子群)からの回折・散乱光を複数の光検出素子で検出するとともに、各光検出素子の検出光量データをベクトル成分とする空間的な光強度分布データを、粒子の屈折率が関係する演算アルゴリズムにより粒度分布データに換算する構成になっている。このレーザ回折・散乱法による粒度分布測定方式は、測定可能な粒径範囲が非常に広く、測定時間も短い上に、再現性にも優れることなどから、粉体(粒子群)を原料や製品とする食料品・医薬品など各種の分野において、研究段階にある新規開発品の評価や、製品の品質管理に用いられている。   In the particle size distribution measurement by the conventional laser diffraction / scattering method, diffracted / scattered light from dispersed particle groups (particle groups dispersed in a medium such as liquid, gas, solid) irradiated with laser light as measurement light. Is used to detect spatial light intensity distribution data that uses detected light quantity data of each light detecting element as a vector component and converts it into particle size distribution data using a calculation algorithm related to the refractive index of the particles. It has become. This particle size distribution measurement method using the laser diffraction / scattering method has a very wide measurable particle size range, a short measurement time, and excellent reproducibility. In various fields such as food products and pharmaceuticals, it is used for evaluation of newly developed products in the research stage and product quality control.

しかしながら、従来の粒度分布測定の場合、光強度分布データ(ベクトル)を粒度分布データに換算するための演算アルゴリズムを実行する上で、粒子の屈折率を適切な値にセット(演算条件を選択)する必要がある。粒子の屈折率は直接測ることは困難なので、理科辞典などから調べた値で代用しているが、実際の粒子の屈折率との間に誤差があると、正確な粒度分布データが得られない。   However, in the case of conventional particle size distribution measurement, the refractive index of the particles is set to an appropriate value when selecting a calculation algorithm for converting light intensity distribution data (vector) into particle size distribution data (select calculation conditions). There is a need to. Since it is difficult to directly measure the refractive index of particles, the values obtained from scientific dictionaries are substituted. However, if there is an error between the refractive index of actual particles, accurate particle size distribution data cannot be obtained. .

セットした屈折率(演算条件)が適切か否かを、粒度分布データを逆換算アルゴリズムにより再び光強度分布データに逆換算して、換算前後の両光強度分布データの一致度により調べることはできる(例えば、特許文献1参照)。両光強度分布データの一致度が高いほど屈折率は適切なものとなるので、両者がよく一致するような屈折率を選択してセットすることが考えられる。しかし、前述のように、光強度分布データ同士の正確な比較結果が容易でないので、結局、適切な屈折率をセットすることは容易でない。   Whether or not the set refractive index (calculation conditions) is appropriate can be checked by converting the particle size distribution data back to light intensity distribution data again using an inverse conversion algorithm, and by checking the degree of coincidence of both light intensity distribution data before and after conversion. (For example, refer to Patent Document 1). The higher the coincidence between the two light intensity distribution data, the more appropriate the refractive index. Therefore, it is conceivable to select and set a refractive index that matches well. However, as described above, since an accurate comparison result between the light intensity distribution data is not easy, it is not easy to set an appropriate refractive index after all.

この問題を解決するため、光強度分布データを各々の検出光量データを成分とするベクトルとして扱い、2つの光強度分布データのなす交角に関連した「交角指標」(例えば両ベクトルの余弦)に基づいて、これら2つの光強度分布データの差異の程度を定量化して判定する手法(特許文献2参照)を発明し、回折・散乱光の光強度分布データ同士の定量的な比較を行えるようにした。
すなわち、2つの光強度分布データのグラフパターン(分布パターン)どうしの差を、ベクトルのなす交角として捉えることにより、グラフパターンが一致(光強度分布データが一致)する場合は、ベクトルの交角は0度(余弦値は1)、グラフパターンが全く一致しなければ90度(余弦値は0)として定量的に表現できるようにした。
特開平07−325026号公報 特許第3633169号公報
In order to solve this problem, the light intensity distribution data is treated as a vector having each detected light quantity data as a component, and based on an “intersection angle index” (for example, cosine of both vectors) related to the intersection angle formed by the two light intensity distribution data. Invented a method of quantifying and judging the degree of difference between these two light intensity distribution data (see Patent Document 2), and made it possible to quantitatively compare the light intensity distribution data of diffracted / scattered light. .
That is, when the graph pattern matches (the light intensity distribution data matches) by capturing the difference between the graph patterns (distribution patterns) of the two light intensity distribution data as the intersection angle formed by the vectors, the intersection angle of the vectors is 0. The degree (cosine value is 1) can be expressed quantitatively as 90 degrees (cosine value is 0) if the graph patterns do not match at all.
Japanese Patent Application Laid-Open No. 07-325026 Japanese Patent No. 3633169

上述した特許文献2に開示された方法によれば、比較する2つの光強度分布データの差異の大小に応じて、差異の大小を反映するような交角指標の値が得られる。したがって、2つの強度分布データの差異が見た目に大きいものどうし(特許文献2の図2参照)を比較すると、交角指標の数値が大きくばらつくので、差異が大きく表現されることになる。
しかし、見た目に大きい差の無いものどうし(特許文献2の図3参照)の光強度分布の比較にこの手法を適用したときには、分布データ同士の差を表す指標となる数値は大きい差が得られないことから、比較が容易でないことも生じた。
According to the method disclosed in Patent Document 2 described above, the value of the crossing angle index that reflects the magnitude of the difference is obtained according to the magnitude of the difference between the two light intensity distribution data to be compared. Therefore, when the difference between the two intensity distribution data is visually large (see FIG. 2 of Patent Document 2), the numerical value of the crossing angle index greatly varies, so that the difference is expressed greatly.
However, when this method is applied to the comparison of the light intensity distributions of the ones that do not have a large difference in appearance (see FIG. 3 of Patent Document 2), a large difference is obtained as a numerical value as an index representing the difference between the distribution data. It was not easy to make a comparison.

そこで、見た目に大きい差の無い光強度分布同士を比較する場合でも、分布データ同士の差を表す指標の数値に出来るだけ大きい差が生じるように工夫し、これにより、回折・散乱光の強度分布データの差異を数値的に明確にする比較方法を提供すること、およびそのような機能を備えた粒度分布測定装置を提供することを課題とする。   Therefore, even when comparing light intensity distributions that do not have a large difference in appearance, it is devised to produce as large a difference as possible in the numerical value of the index representing the difference between the distribution data. It is an object of the present invention to provide a comparison method for numerically clarifying a difference in data, and to provide a particle size distribution measuring apparatus having such a function.

上記課題を解決するためになされた本発明にかかる回折・散乱光の光強度分布データの比較方法は、分散粒子群にレーザ光を照射して、分散粒子群からの回折・散乱光を複数の光検出素子で検出して各検出光量データを成分とする光強度分布データを得る。そして異なる二つの分散粒子群について各々得られた光強度分布データを比較する際に、各光強度分布データを、各々の検出光量データを成分とするベクトルとして扱い、各ベクトルに光強度分布データの特徴が現れた部分を強調することができる適切な重みマトリックスを作用させた上で、これら二つの光強度分布データのなす交角に関連した交角指標を算出する。そして、算出された交角指標に基づいて二つの光強度分布データの差異の程度を判定する。   In order to solve the above-mentioned problems, a method for comparing the light intensity distribution data of diffracted / scattered light according to the present invention includes irradiating a dispersed particle group with laser light, and diffracting / scattered light from the dispersed particle group. Light intensity distribution data having each detected light quantity data as a component is obtained by detection with a light detecting element. When comparing the obtained light intensity distribution data for two different dispersed particle groups, each light intensity distribution data is treated as a vector having each detected light quantity data as a component, and each vector contains the light intensity distribution data. An appropriate weight matrix capable of emphasizing the portion where the feature appears is applied, and then an intersection angle index related to the intersection angle formed by these two light intensity distribution data is calculated. Then, the degree of difference between the two light intensity distribution data is determined based on the calculated intersection angle index.

すなわち、光強度分布データ(ベクトル)同士を比較する際に用いる交角指標を算出する際、光強度ベクトルをそのまま演算に供するのではなく、適当な重みマトリックスを乗じてから演算に供することにより、一致度の高い場合と低い場合に相当する交角指標の数値の間に、より大きい差異を生じさせることが可能になるとの推論を立てた。   That is, when calculating the crossing angle index used when comparing light intensity distribution data (vectors), the light intensity vector is not subjected to calculation as it is, but is multiplied by an appropriate weight matrix before being used for calculation. We inferred that it would be possible to make a larger difference between the values of the crossing angle index corresponding to the high and low degrees.

この推論の妥当性を調べるため、図2のように見た目には僅かな差しか無い4つの光強度分布データ1〜4についてチェックをおこなった。光強度分布データ1と1〜4を比較したのである。交角指標としては交角の余弦(cosθ)を用いた。重みマトリックス(ここでは後述する逆微分型関数の重みマトリックス(1a))を乗じない場合と乗じた場合の演算結果は以下のとおりである。
なお、図2に示されるような、見た目には僅かな差しか無い複数の光強度分布データは、実際に異なるサンプルどうしの比較を行う場合でも発生するが、後述する粒度分布測定装置の屈折率選択に利用するアルゴリズム中での光強度分布データの比較の場合において発生する。
In order to examine the validity of this inference, the four light intensity distribution data 1 to 4 that are slightly different in appearance as shown in FIG. 2 were checked. The light intensity distribution data 1 and 1-4 were compared. As the intersection angle index, the cosine of the intersection angle (cos θ) was used. The calculation results when the weight matrix (here, the weight matrix (1a) of the inverse differential function described later) is not multiplied and when it is multiplied are as follows.
Note that, as shown in FIG. 2, a plurality of light intensity distribution data that are slightly different in appearance are generated even when actually comparing different samples, but the refractive index of a particle size distribution measuring apparatus described later is used. This occurs in the case of comparison of light intensity distribution data in an algorithm used for selection.

<重みマトリックスを乗じない場合>
1:光強度分布データの組み合わせ:1,1,cosθ:1
2:光強度分布データの組み合わせ:1,2,cosθ:0.997727
3:光強度分布データの組み合わせ:1,3,cosθ:0.993703
4:光強度分布データの組み合わせ:1,4,cosθ:0.990132
<重みマトリックスを乗じた場合>
1:光強度分布データの組み合わせ:1,1,cosθ:1
2:光強度分布データの組み合わせ:1,2,cosθ:0.997631
3:光強度分布データの組み合わせ:1,3,cosθ:0.993165
4:光強度分布データの組み合わせ:1,4,cosθ:0.988670
<When weight matrix is not multiplied>
1: Combination of light intensity distribution data: 1, 1, cos θ: 1
2: Combination of light intensity distribution data: 1, 2, cos θ: 0.997727
3: Combination of light intensity distribution data: 1, 3, cos θ: 0.993703
4: Combination of light intensity distribution data: 1, 4, cos θ: 0.990132
<When weight matrix is multiplied>
1: Combination of light intensity distribution data: 1, 1, cos θ: 1
2: Combination of light intensity distribution data: 1, 2, cos θ: 0.9976631
3: Combination of light intensity distribution data: 1, 3, cos θ: 0.993165
4: Combination of light intensity distribution data: 1, 4, cos θ: 0.988670

重みマトリックスを乗じた方が、重みマトリックスを乗じない場合より、交角の余弦により大きな差を生じさせることができ、より一致度の違いを明確にできている。これをグラフ化したのが図3である。   When the weight matrix is multiplied, a larger difference can be generated in the cosine of the crossing angle than when the weight matrix is not multiplied, and the difference in the degree of coincidence can be clarified. This is graphed in FIG.

ところで、この重みマトリックスとしてどのような形のものが良いかであるが、このケースでは図2の光強度分布から判断している。図2から分かるように、この4つの光強度分布の間で差異があるのは、光強度分布がピークを示すセンサ素子番号59番を中心とした左部分と右部分である。したがって、重みマトリックスとしてはこの部分の差異を強調する形のものが適すると考えられる。そこで上の例では、既述のように次式(1a)で示される逆微分型関数の重みマトリックスを採用した。   By the way, what kind of shape is suitable as the weight matrix is determined from the light intensity distribution of FIG. 2 in this case. As can be seen from FIG. 2, the difference between the four light intensity distributions is the left part and the right part centering on sensor element number 59 in which the light intensity distribution shows a peak. Therefore, a weight matrix that emphasizes the difference in this portion is considered suitable. Therefore, in the above example, as described above, the weight matrix of the inverse differential function represented by the following equation (1a) is adopted.

(1a)式において、iはセンサ素子番号、ipは光強度がピークを示すセンサ素子番号(=59)、σは分布の広がりを決定するパラメータ(標準偏差)であり次式であらわされるが、この例ではσ=3である。(1)式をグラフとして示したのが図4である。 In equation (1a), i is the sensor element number, i p is the sensor element number (= 59) at which the light intensity peaks, and σ is a parameter (standard deviation) that determines the spread of the distribution, and is expressed by the following equation. In this example, σ = 3. FIG. 4 shows the equation (1) as a graph.

重みマトリックスとしては、比較対象の光強度データに応じて、これに代えて、次式(1b)、(1c)で表される微分型関数、積分型関数を用いてもよい。すなわち、光強度分布データに応じて、最適なものを用いればよい(実際にはそれぞれの重みマトリックスを用いて演算を行い、後で最適なものを選択すればよい)。   As the weight matrix, a differential function or an integral function represented by the following expressions (1b) and (1c) may be used instead of this depending on the light intensity data to be compared. In other words, an optimum one may be used in accordance with the light intensity distribution data (actually, calculation is performed using each weight matrix, and the optimum one may be selected later).

したがって、この回折・散乱光の光強度分布データの比較方法によれば、二つの光強度分布データのベクトルの交角に対応する交角指標を算出し、得られた交角指標の数値でもって定量的な比較結果が分かる。例えば、交角指標が両ベクトルの交角のcosθである場合、両光強度分布データが完全に一致していれば、cosθ=1となり、両光強度分布データが全く一致していなければ、cosθ=0となり(cosθは負となることはない)、cosθが大きいほど両光強度分布データの一致度が高いことになる。
当然のことながら、比較する2つの光強度分布の差が小さければ交角の余弦の差も小さくなる。そこで、重みマトリックスを乗じた上で算出すれば、より接近した2つの光強度分布から算出された交角の余弦の数値の差は、より大きくなる。
Therefore, according to the comparison method of the light intensity distribution data of the diffracted / scattered light, the crossing angle index corresponding to the crossing angle of the vectors of the two light intensity distribution data is calculated, and the numerical value of the obtained crossing angle index is quantitative. You can see the comparison result. For example, when the crossing angle index is cosθ of the crossing angle of both vectors, cosθ = 1 if the two light intensity distribution data completely match, and cosθ = 0 if the two light intensity distribution data do not match at all. (Cos θ is never negative), and the larger cos θ, the higher the coincidence of both light intensity distribution data.
Naturally, if the difference between the two light intensity distributions to be compared is small, the difference between the cosines of the crossing angles is also small. Therefore, if the calculation is performed after multiplying by the weight matrix, the difference between the numerical values of the cosines of the intersection angles calculated from the two closer light intensity distributions becomes larger.

また、別の観点からなされた本発明の粒度分布装置は、分散粒子群にレーザ光を照射する光照射手段と、前記分散粒子群からの回折・散乱光を複数の光検出素子で検出して各検出光量データを成分とする光強度分布データを得る光検出手段と、前記実測された光強度分布データを、前記分散粒子群を構成する粒子の屈折率に関係した複数種類の係数行列を使った演算アルゴリズムにより、前記各係数行列に対応した粒度分布データに換算する粒度分布求出手段と、前記各係数行列ごとの粒度分布データを前記係数行列を使った逆演算アルゴリズムにより、各係数行列に対応した光強度分布データに逆換算する光強度分布逆求出手段と、前記実測された光強度分布データと前記逆換算された各係数行列ごとの光強度分布データとを各々比較して、前記逆換算された複数の光強度分布データの中から、前記実測された光強度分布データに対して一致度の高い前記逆換算の光強度分布データを捜し出し、その逆換算の光強度分布データに対応した係数行列を最適な演算条件として選択する光強度分布比較手段と、前記選択された係数行列を使って求められた粒度分布データを前記分散粒子群の妥当な粒度分布として確定する粒度分布確定手段とを備えた粒度分布測定装置において、前記光強度分布比較手段は、前記実測された光強度分布データおよび前記逆換算された光強度分布データを、各々の検出光量データを成分とするベクトルとして扱い、前記実測された光強度分布データと前記逆換算された各係数行列ごとの光強度分布データのなす交角に関連した交角指標をそれぞれ重みマトリックスを作用させた形で算出する交角指標算出手段と、前記算出された各係数行列に対応した交角指標を比較することにより、前記実測された光強度分布データに対して一致度の高い前記逆換算の光強度分布データを捜し出し、その逆換算の光強度分布データに対応した係数行列を最適な演算条件として選択する選択手段を備えるようにしている。   Further, the particle size distribution apparatus of the present invention, which is made from another viewpoint, detects light irradiating means for irradiating a dispersed particle group with laser light, and diffracted / scattered light from the dispersed particle group by a plurality of light detecting elements. The light detection means for obtaining light intensity distribution data having each detected light quantity data as a component, and the actually measured light intensity distribution data using a plurality of types of coefficient matrices related to the refractive index of the particles constituting the dispersed particle group. The particle size distribution obtaining means for converting into the particle size distribution data corresponding to each coefficient matrix by the calculation algorithm and the particle size distribution data for each coefficient matrix are converted into each coefficient matrix by the inverse operation algorithm using the coefficient matrix. A light intensity distribution reverse finding means for inversely converting into corresponding light intensity distribution data, and comparing the actually measured light intensity distribution data with the inversely converted light intensity distribution data for each coefficient matrix; From the plurality of inversely converted light intensity distribution data, search for the inversely converted light intensity distribution data having a high degree of coincidence with the actually measured light intensity distribution data, and to the inversely converted light intensity distribution data. Light intensity distribution comparison means for selecting a corresponding coefficient matrix as an optimal calculation condition, and particle size distribution determination for determining the particle size distribution data obtained using the selected coefficient matrix as an appropriate particle size distribution of the dispersed particle group In the particle size distribution measuring apparatus, the light intensity distribution comparison means uses the measured light intensity distribution data and the inversely converted light intensity distribution data as vectors having respective detected light amount data as components. The intersection angle index related to the intersection angle between the measured light intensity distribution data and the inversely converted light intensity distribution data for each coefficient matrix By comparing the intersection angle index calculation means for calculating the measured light intensity distribution data and the intersection angle index corresponding to each calculated coefficient matrix, the inverse of the measured light intensity distribution data having a high degree of coincidence. Selection means is provided for searching for converted light intensity distribution data and selecting a coefficient matrix corresponding to the inverse converted light intensity distribution data as an optimum calculation condition.

そして、この粒度分布装置においても、重みマトリックスとして、上述した(1a)(1b)(1c)のいずれかを用いるようにするのが好ましい。   And also in this particle size distribution apparatus, it is preferable to use any of the above-mentioned (1a), (1b) and (1c) as the weight matrix.

この発明の粒度分布測定装置によれば、粒子群の粒度分布データを求める場合、レーザ光が照射された分散粒子群からの回折・散乱光を検出する各光検出素子の検出光量データをベクトル成分とする光強度分布データを、粒子の屈折率が関係する係数行列を使った演算アルゴリズムにより、粒度分布データに換算する。ここで、粒子の屈折率は確定していないので、複数種類の屈折率を適当に設定し、それぞれの屈折率に関係した複数種類の係数行列(演算条件)を用いて演算を行う。したがって、粒度分布データは各係数行列ごとに求められる。   According to the particle size distribution measuring apparatus of the present invention, when obtaining the particle size distribution data of the particle group, the detected light amount data of each light detecting element that detects the diffracted / scattered light from the dispersed particle group irradiated with the laser beam is used as the vector component. Is converted into particle size distribution data by an arithmetic algorithm using a coefficient matrix related to the refractive index of the particles. Here, since the refractive index of the particles has not been determined, a plurality of types of refractive indexes are appropriately set, and calculation is performed using a plurality of types of coefficient matrices (calculation conditions) related to the respective refractive indexes. Therefore, the particle size distribution data is obtained for each coefficient matrix.

続いて、各粒度分布データを逆演算アルゴリズムにより、光強度分布データに逆換算する。逆換算された各係数行列ごとの光強度分布データの中、実測された光強度分布データに最も近い値をもつものを見つければ、その逆換算の光強度分布データを求めるのに使った係数行列(演算条件)が適当であったことになる。そこで、実測された光強度分布データと逆換算された光強度分布データ(この逆換算された光強度分布データは「見た目に大きい差の無いものどうしの光強度分布データ」であることが多い)をそれぞれベクトルとして扱い、両ベクトルの交角指標を各係数行列ごとに求める。これらの交角指標を比較することにより、実測された光強度分布データに対して、最も一致度の高い逆換算の光強度分布データを捜し出し、最適な係数行列を決定する。この係数行列を用いて算出された粒度分布データが、測定対象である分散粒子群の妥当な粒度分布データを与えることになる。   Subsequently, each particle size distribution data is inversely converted into light intensity distribution data by an inverse operation algorithm. If you find the light intensity distribution data for each inversely converted coefficient matrix that has the closest value to the measured light intensity distribution data, the coefficient matrix used to determine the inversely converted light intensity distribution data (Calculation conditions) was appropriate. Therefore, the light intensity distribution data inversely converted from the actually measured light intensity distribution data (the light intensity distribution data converted in reverse is often “light intensity distribution data with no apparent difference”). Are treated as vectors, and an intersection angle index of both vectors is obtained for each coefficient matrix. By comparing these intersection angle indexes, the light intensity distribution data having the highest degree of coincidence is searched for the actually measured light intensity distribution data, and the optimum coefficient matrix is determined. The particle size distribution data calculated using this coefficient matrix gives valid particle size distribution data of the dispersed particle group to be measured.

この一連の操作の中で、最適な屈折率の近傍では逆変換された各係数行列に対応する光強度分布データ間の値の差も僅かなものになる可能性が高いが、重みマトリックスを作用させることでこの差を拡大させることができ、最適な係数行列に辿り着くことが容易になる。 In this series of operations, in the vicinity of the optimum refractive index, there is a high possibility that the value difference between the light intensity distribution data corresponding to each inversely transformed coefficient matrix will be small, but the weight matrix is applied. By doing so, this difference can be enlarged, and it becomes easy to arrive at the optimum coefficient matrix.

本発明の比較方法によれば、強度分布データの比較結果が、二つの光強度分布データをベクトルとして取り扱ったときの両ベクトルの交角に対応する交角指標というかたちで定量的に示されることから、光強度分布データの比較を容易かつ的確におこなうことができる。   According to the comparison method of the present invention, the comparison result of the intensity distribution data is quantitatively shown in the form of an intersection angle index corresponding to the intersection angle of both vectors when the two light intensity distribution data are handled as vectors. Comparison of light intensity distribution data can be performed easily and accurately.

本発明の粒度分布測定装置によれば、測定対象である粒子群の実測された光強度分布データと、適宜に設定された屈折率に関係した係数行列ごとに逆換算して得られた複数の光強度分布データとの一致度に基づいて、最適な係数行列を選択する際に、実測された光強度分布データと逆換算して得られた光強度分布データとの交角指標によって、両データの一致度を定量的に判定することができるので、粒度分布測定の演算アルゴリズムの実行過程における前記係数行列の選択を容易かつ的確に行うことができる。   According to the particle size distribution measuring apparatus of the present invention, a plurality of light intensity distribution data actually measured for the particle group to be measured and a plurality of coefficients obtained by inverse conversion for each coefficient matrix related to an appropriately set refractive index. When selecting the optimal coefficient matrix based on the degree of coincidence with the light intensity distribution data, the intersection angle index between the measured light intensity distribution data and the light intensity distribution data obtained by inverse conversion is used to determine the Since the degree of coincidence can be determined quantitatively, the coefficient matrix can be easily and accurately selected in the execution process of the calculation algorithm for particle size distribution measurement.

以下、この発明の一実施例を、図面を参照しながら詳しく説明する。図1は実施例の粒度分布測定装置の全体構成をあらわすブロック図である。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the overall configuration of the particle size distribution measuring apparatus of the embodiment.

実施例の粒度分布測定装置では、図1に示すように、透明材料製の試料セル1の中の分散粒子群2に対して、コリメータ3を介して平行レーザ光を照射するレーザ光源4と、分散粒子群2からの回折・散乱光を検出するよう空間配置された光センサ5a〜5cとが設けられている。光センサ5aはリングディテクタタイプの前方散乱・回折光検出用センサであり、検出面が集光レンズ6でリング状に結像する回折・散乱光像に対応してリング状ないし半リング状に分割されており、各分割区画が一つの光検出素子となる。また、光センサ5bは側方散乱光検出用センサであり、光センサ5cは、後方散乱光検出用センサである。さらに、実施例装置では、媒液と粒子群を攪拌して粒子群を液媒に分散させる攪拌器7を備えた分散槽8が設けられている。試料セル1と分散槽8とは、ポンプ9を介設した流路によって接続されていて、媒液と粒子群の混合物が試料セル1と分散槽8の間を循環する構成となっている。   In the particle size distribution measuring apparatus of the embodiment, as shown in FIG. 1, a laser light source 4 that irradiates a parallel particle beam via a collimator 3 to a dispersed particle group 2 in a sample cell 1 made of a transparent material; Optical sensors 5a to 5c arranged in space so as to detect diffracted / scattered light from the dispersed particle group 2 are provided. The optical sensor 5a is a ring detector type forward scattering / diffracted light detection sensor, and the detection surface is divided into a ring shape or a semi-ring shape corresponding to the diffraction / scattered light image formed in a ring shape by the condenser lens 6. Each divided section becomes one photodetecting element. The optical sensor 5b is a side scattered light detection sensor, and the optical sensor 5c is a backscattered light detection sensor. Further, in the embodiment apparatus, there is provided a dispersion tank 8 provided with a stirrer 7 for stirring the liquid medium and the particle group to disperse the particle group in the liquid medium. The sample cell 1 and the dispersion tank 8 are connected by a flow path provided with a pump 9, and the mixture of the liquid medium and the particle group is circulated between the sample cell 1 and the dispersion tank 8.

この実施例装置は、光センサ5a〜5cの検出信号を増幅するプリアンプ11および増幅された検出信号をディジタル信号に変換するA/D変換部12を備える。A/D変換部12からの出力信号は、各検出光量データを成分とした光強度分布データとして光強度分布メモリ13に記憶される。また、CPU14は、実測された光強度分布データを粒子の屈折率が関係する係数行列を使った演算アルゴリズムにより粒度分布データに換算する演算や、この演算で得られた粒度分布データを逆換算アルゴリズムにより光強度分布データに逆換算する演算をおこなうとともに、二つの光強度分布データの交角に対応する交角指標を算出する演算などもおこなう。すなわち、このCPU14は、この発明における粒度分布求手段、光強度分布逆求出手段、光強度分布比較手段(強調交角指標算出手段、選択手段を含む)、粒度分布確定手段に相当する。   The apparatus according to this embodiment includes a preamplifier 11 that amplifies the detection signals of the optical sensors 5a to 5c and an A / D conversion unit 12 that converts the amplified detection signal into a digital signal. The output signal from the A / D conversion unit 12 is stored in the light intensity distribution memory 13 as light intensity distribution data using each detected light amount data as a component. Further, the CPU 14 converts the actually measured light intensity distribution data into particle size distribution data by a calculation algorithm using a coefficient matrix related to the refractive index of the particles, or inverse conversion algorithm for the particle size distribution data obtained by the calculation. In addition to performing the inverse conversion to the light intensity distribution data, the calculation of the intersection angle index corresponding to the intersection angle of the two light intensity distribution data is also performed. That is, the CPU 14 corresponds to a particle size distribution obtaining unit, a light intensity distribution inverse obtaining unit, a light intensity distribution comparing unit (including an emphasized intersection angle index calculating unit and a selecting unit), and a particle size distribution determining unit in the present invention.

また、実施例装置は、操作部16から入力された屈折率に基づいてCPU14が算出した、演算アルゴリズムで使われる係数行列や重みマトリックス(重み行列)を保持する係数保持部15を備えている。さらに、実施例装置は、出力部17として、TVモニタや液晶パネルなどの映像表示機器あるいはおよびプリンタなどの印刷機器を備えている。   In addition, the apparatus according to the embodiment includes a coefficient holding unit 15 that holds a coefficient matrix and a weight matrix (weight matrix) calculated by the CPU 14 based on the refractive index input from the operation unit 16 and used in an arithmetic algorithm. Further, the embodiment apparatus includes, as the output unit 17, a video display device such as a TV monitor or a liquid crystal panel or a printing device such as a printer.

次に実施例装置において実行される光強度分布データと粒度分布データ間の変換用の演算アルゴリズムや交角指標を求める過程について説明する。
図1に示すように、分散粒子群2にレーザ光を照射すると、空間的に回折・散乱光の光強度分布パターンが生ずる。この光強度分布パターンは、粒子の大きさによって変化する。実際の試料では大きさの異なる粒子が混在しているので、光強度分布パターンはそれぞれの粒子からの回折・散乱光の重ね合わせとなる結果、光強度分布データ(ベクトル)sは、m個の光検出素子の検出光量データに(入射光量)をベクトル成分(要素)s(i=1,2,・・・,m)とする下記の(2)式で示すs(ベクトル)としてあらわせる。
Next, a description will be given of a process for obtaining a calculation algorithm and an intersection angle index for conversion between light intensity distribution data and particle size distribution data, which is executed in the embodiment apparatus.
As shown in FIG. 1, when the dispersed particle group 2 is irradiated with laser light, a light intensity distribution pattern of diffracted / scattered light is spatially generated. This light intensity distribution pattern changes depending on the size of the particles. Since particles of different sizes are mixed in an actual sample, the light intensity distribution pattern is a combination of diffracted and scattered light from each particle. As a result, the light intensity distribution data (vector) s is m pieces. The detected light amount data of the light detection element is expressed as s (vector) represented by the following equation (2), where (incident light amount) is a vector component (element) s i (i = 1, 2,..., M). .

一方、粒度分布データ(ベクトル)qは、測定対象の粒子径範囲(最大粒子径X,最小粒子径Xn+1 )をn分割の粒子径区間〔x,xj+1 〕(j=1,2,・・・,n)に区分けした時に各粒子径区間の粒子量データをベクトル成分(要素)q(j=1,2,・・・,n)とする下記の(3)式で示すq(ベクトル)としてあらわせる。粒度分布が頻度分布%の場合、(q+q+…+q+…+q)=1(100%)となるよう正規化(ノルマライズ)が行われる。 On the other hand, the particle size distribution data (vector) q is a particle size range [x j , x j + 1 ] (j = 1, 2) obtained by dividing the particle size range (maximum particle size X 1 , minimum particle size X n + 1 ) to be measured into n parts. ,..., N) are expressed by the following formula (3) in which the particle amount data of each particle diameter section is a vector component (element) q j (j = 1, 2,..., N). This is expressed as q (vector). When the particle size distribution is the frequency distribution%, normalization is performed so that (q 1 + q 2 +... + Q j +... + Q n ) = 1 (100%).

そして、光強度分布データ(ベクトル)sと粒度分布データ(ベクトル)qは、粒子の屈折率と関連する係数行列(マトリクス)Aを媒介にして、下記の(4)式で示す関係にある。したがって、粒度分布データ(ベクトル)qを光強度分布データ(ベクトル)sに逆変換する逆演算アルゴリズムは、(4)式に示されるように、係数行列Aと粒度分布データ(ベクトル)qの乗算となる。 The light intensity distribution data (vector) s and the particle size distribution data (vector) q are in a relationship represented by the following expression (4) through a coefficient matrix (matrix) A related to the refractive index of the particles. Therefore, the inverse operation algorithm for inversely transforming the particle size distribution data (vector) q into the light intensity distribution data (vector) s is obtained by multiplying the coefficient matrix A and the particle size distribution data (vector) q as shown in the equation (4). It becomes.

係数行列Aは、下記の(4)式で示すように、粒度分布データ(ベクトル)qを光強度分布データ(ベクトル)sに変換するためのマトリクスである。Aの成分(要素)aij(i=1,2,・・・,m,j=1,2,・・・,n)の物理的意味は,粒子径区間〔x,xj+1 〕に属する単位粒子量の粒子群によって回折/散乱した光のi番目の光検出素子に入射する光量である。aijの数値は予め理論的に計算することができる。これには、粒子径が照射するレーザ光の波長に比べて十分に大きい場合はFraunhofer回折理論が適用される。一方、粒子径が照射するレーザ光の波長と同程度のサブミクロンの領域では、Mie 散乱理論が適用される。Fraunhofer回折理論はMie 散乱理論の特定の場合の近似、すなわち、前方微小角散乱において、粒子径が照射するレーザ光の波長に比べて十分大きな場合に有効な近似と考えられる。 The coefficient matrix A is a matrix for converting the particle size distribution data (vector) q into light intensity distribution data (vector) s as shown by the following equation (4). The physical meaning of the component (element) a ij (i = 1, 2,..., M, j = 1, 2,..., N) in the particle diameter interval [x j , x j + 1 ] This is the amount of light incident on the i-th photodetecting element of light diffracted / scattered by the particle group of the unit particle amount to which it belongs. The numerical value of a ij can be theoretically calculated in advance. For this, the Fraunhofer diffraction theory is applied when the particle diameter is sufficiently larger than the wavelength of the laser beam irradiated. On the other hand, the Mie scattering theory is applied in a sub-micron region where the particle diameter is approximately the same as the wavelength of the laser beam irradiated. The Fraunhofer diffraction theory is considered to be an effective approximation when it is an approximation in a specific case of the Mie scattering theory, that is, in the forward minute angle scattering, when the particle diameter is sufficiently larger than the wavelength of the laser beam irradiated.

上記の理論に従って、係数行列Aの要素aijを求めるには、粒子および、それを分散させるための媒体の屈折率を操作部16から入力(セット)する。この場合、セットされる屈折率は一般的に複素数であらわされる。実施例装置では、操作部16から入力された屈折率に基づいて、それに対応した係数行列AをCPU14が算出する構成になっている。つまり、屈折率を変更すると、異なる係数行列Aが求められる(演算条件としての係数行列Aが変更される)のである。 In order to obtain the element a ij of the coefficient matrix A according to the above theory, the refractive index of the particle and the medium for dispersing the particle is input (set) from the operation unit 16. In this case, the set refractive index is generally expressed as a complex number. In the embodiment apparatus, the CPU 14 calculates a coefficient matrix A corresponding to the refractive index input from the operation unit 16. That is, when the refractive index is changed, a different coefficient matrix A is obtained (the coefficient matrix A as a calculation condition is changed).

一方、上記の(4)式に基づいて、最小自乗法で求められた粒度分布データ(ベクトル)qの解は下記の(5)式のとおりである。この(5)式は、光強度分布データ(ベクトル)sを粒度分布データ(ベクトル)qに変換する演算アルゴリズムである。勿論、演算アルゴリズムや逆演算アルゴリズムは、ここに例示したものは一例であり、様々なバリエーションが可能である。   On the other hand, the solution of the particle size distribution data (vector) q obtained by the least square method based on the above equation (4) is as shown in the following equation (5). This equation (5) is an arithmetic algorithm for converting the light intensity distribution data (vector) s into the particle size distribution data (vector) q. Of course, the calculation algorithm and the inverse calculation algorithm are just examples, and various variations are possible.

但し、AはAの転置行列であり、( )−1は逆行列であることを示す。
続いて、二つの光強度分布データ(ベクトル)の交角指標の算出過程について説明する。この実施例では、交角指標は重みマトリックスを乗じた後の交角の余弦である。
Here, AT is a transposed matrix of A, and () -1 indicates an inverse matrix.
Subsequently, a process of calculating an intersection angle index between two light intensity distribution data (vectors) will be described. In this embodiment, the intersection angle index is the cosine of the intersection angle after being multiplied by the weight matrix.

二つの光強度分布データ(ベクトル)を下記の(6)、(7)式に示すように、一方をr、他方をsとする。そうすると、それぞれに(8)式で示す重みマトリックスWを乗じた光強度分布データ(ベクトル)(Wr)と(Ws)の交角θの余弦(cosθ)は下記の(9)式で示すものとなる。下記の(9)式のcosθは、ベクトルの大きさに依存しない、すなわち粒子群の分散濃度が結果に影響しない好ましいかたちである。   As shown in the following equations (6) and (7), one of the two light intensity distribution data (vectors) is r and the other is s. Then, the cosine (cos θ) of the intersection angle θ between the light intensity distribution data (vector) (Wr) and (Ws) multiplied by the weight matrix W expressed by the expression (8) is expressed by the following expression (9). . The cos θ in the following equation (9) does not depend on the magnitude of the vector, that is, it is a preferable form in which the dispersion concentration of the particle group does not affect the result.

(9)式において、(Wr,Ws)は、(ベクトル)Wrと(ベクトル)Wsの内積である。また、|Wr|、|Ws|はそれぞれWr、Wsの大きさである。すなわち、|Wr|=√((Wr,Wr))、|Ws|=√((Ws,Ws))である。但し、(Wr,Wr)は、WrとWrの内積、(Ws,Ws)は、WsとWsの内積である。   In equation (9), (Wr, Ws) is the inner product of (vector) Wr and (vector) Ws. | Wr | and | Ws | are the sizes of Wr and Ws, respectively. That is, | Wr | = √ ((Wr, Wr)), | Ws | = √ ((Ws, Ws)). However, (Wr, Wr) is the inner product of Wr and Wr, and (Ws, Ws) is the inner product of Ws and Ws.

次に、上述の構成を有する実施例の粒度分布測定装置による測定動作を図8に示したフローチャートを参照して説明する。   Next, the measurement operation by the particle size distribution measuring apparatus of the embodiment having the above-described configuration will be described with reference to the flowchart shown in FIG.

ステップS1:測定対象である粒子群を溶媒に分散させて試料セル1に送り込み、この試料セル1にレーザ光を照射し、光センサ5a〜5cで回折・散乱光の光強度分布データ(ベクトル)rを測定する。測定した光強度分布データは光強度分布メモリ13に記憶する。   Step S1: Particle groups to be measured are dispersed in a solvent and sent to the sample cell 1, the sample cell 1 is irradiated with laser light, and light intensity distribution data (vector) of diffracted / scattered light by the optical sensors 5a to 5c. Measure r. The measured light intensity distribution data is stored in the light intensity distribution memory 13.

ステップS2:粒子の屈折率として複数種類の屈折率を操作部16を介して適宜にセットする。そして、CPU14は、まず第1番目の屈折率(具体的には媒液との相対屈折率)を使って、光強度分布データを粒子分布データに換算する演算アルゴリズムに用いる係数行列Aを求める。さらにCPU14は、この係数行列Aを使って、(5)式の(ベクトル)sに(ベクトル)rを代入した演算アルゴリズムを用いた計算により、ステップS1で計測された光強度分布データ(ベクトル)rを粒子分布データ(ベクトル)qに換算する。 Step S2: A plurality of types of refractive indexes are appropriately set via the operation unit 16 as the refractive indexes of the particles. And CPU14 calculates | requires the coefficient matrix A used for the calculation algorithm which converts light intensity distribution data into particle distribution data first using the 1st refractive index (specifically relative refractive index with a liquid medium). Further, the CPU 14 uses the coefficient matrix A to calculate the light intensity distribution data (vector) measured in step S1 by calculation using an arithmetic algorithm in which (vector) r is substituted for (vector) s in equation (5). r is converted into particle distribution data (vector) q.

ステップS3:CPU14は、(4)式で表された逆換算アルゴリズムより、ステップS2で求められた粒子分布データ(ベクトル)qを光強度分布データ(ベクトル)sに逆換算する。 Step S3: The CPU 14 inversely converts the particle distribution data (vector) q obtained in step S2 into light intensity distribution data (vector) s by the inverse conversion algorithm expressed by the equation (4).

ステップS4:光強度分布メモリ13に記憶されている実測された光強度分布データ(ベクトル)rと、ステップ3で求められた逆換算の光強度分布データ(ベクトル)sとをベクトルとして扱い、両ベクトルの交角指標としての余弦(cosθ)を、重みマトリックスを組み込んだ(9)式により求めて記憶する。 Step S4: The actually measured light intensity distribution data (vector) r stored in the light intensity distribution memory 13 and the inversely converted light intensity distribution data (vector) s obtained in step 3 are treated as vectors. The cosine (cos θ) as a vector crossing angle index is obtained and stored by the equation (9) incorporating a weight matrix.

ステップS5:セットした全ての屈折率に対して、cos θの計算を繰り返して行う。 Step S5: Repeat the calculation of cos θ for all the set refractive indexes.

ステップS6:別の屈折率に切り換えてステップS2に戻り、ステップS5までの処理を繰り返し実行する。 Step S6: Switch to another refractive index, return to Step S2, and repeat the process up to Step S5.

ステップS7:算出されたcos θのうちから、最も「1」に近いものを選択する。 Step S7: From the calculated cos θ, the one closest to “1” is selected.

ステップS8:一方、交角指標としての余弦(cosθ)の値が、最も「1」に近い場合、すなわち、両光強度分布データが最も一致していると見做すことができる場合は、そのときの粒子分布データを妥当なものとして出力部17に表示出力する。また、そのときの係数行列(換言すれば、屈折率)が演算条件として適当なものであったと判断して、その係数行列を係数保持部15に保持する。以下、同じ材質で構成される粒子群の粒子分布データを測定する場合は、係数保持部15に保持された係数行列を用いて、(5)式の演算アルゴリズムにより、粒子分布データを求めることができる。 Step S8: On the other hand, when the value of the cosine (cos θ) as the intersection angle index is closest to “1”, that is, when it can be considered that the two light intensity distribution data are the best match, then Are output to the output unit 17 as appropriate. Further, it is determined that the coefficient matrix at that time (in other words, the refractive index) is appropriate as a calculation condition, and the coefficient matrix is held in the coefficient holding unit 15. Hereinafter, when measuring particle distribution data of a group of particles made of the same material, the particle distribution data can be obtained by the calculation algorithm of equation (5) using the coefficient matrix held in the coefficient holding unit 15. it can.

以下に、上述した実施例装置を用いて得られた具体的な測定結果を示す。
ここでは測定対象として、例えば粒子径1μm程度のポリスチレンラテックス粒子群を試料として用いるとともに、媒液として水を用いた。このときの光強度分布データを図5に示す。
The specific measurement result obtained using the Example apparatus mentioned above is shown below.
Here, as a measurement target, for example, a polystyrene latex particle group having a particle diameter of about 1 μm was used as a sample, and water was used as a liquid medium. The light intensity distribution data at this time is shown in FIG.

光強度分布データの測定の後、粒子の屈折率を例えば下記の7通りでセットするとともに、水の屈折率については、全て(1.33−0.00i)をセットした。そして、各々の場合について、光強度分布データに対する粒度分布データ(ベクトル)q(1)〜q(8)を、(5)式の演算アルゴリズムにより求めた。さらに、求出した各粒度分布データ(ベクトル)q(1)〜q(8)おのおのについて、(4)式の逆演算アルゴリズムにより光強度分布データs(1)〜s(8)を逆換算した。これらをまとめて図6に示す。このグラフから、光強度に差があるのはセンサ素子番号59番を中心とした前後の部分(本実施例では特に後の部分)であることが分かる。したがって、上記の例と同様、重みマトリックスとしても同じ形のもの(すなわち式(1a))を採用することができる。計測された光強度分布データ(ベクトル)rと、逆換算した各光強度分布データ(ベクトル)s(1)〜s(8)のそれぞれとの交角θの余弦(cosθ)を(9)式に従って求めた。結果は、以下のとおりである。また、比較のために重みマトリックスを乗じないときの交角の余弦も示した。また、これをグラフ化したものを図7に示す。   After the measurement of the light intensity distribution data, the refractive index of the particles was set, for example, in the following seven ways, and the refractive index of water was all set to (1.33-0.00i). In each case, the particle size distribution data (vectors) q (1) to q (8) with respect to the light intensity distribution data was obtained by the calculation algorithm of the equation (5). Further, the light intensity distribution data s (1) to s (8) is inversely converted by the inverse calculation algorithm of the equation (4) for each obtained particle size distribution data (vector) q (1) to q (8). . These are shown together in FIG. From this graph, it can be seen that there is a difference in light intensity between the front and rear portions (especially the rear portion in this embodiment) around sensor element number 59. Therefore, as in the above example, the same weight matrix (that is, the formula (1a)) can be adopted. The cosine (cos θ) of the intersection angle θ between the measured light intensity distribution data (vector) r and each of the inversely converted light intensity distribution data (vectors) s (1) to s (8) is calculated according to equation (9). Asked. The results are as follows. For comparison, the cosine of the intersection angle when the weight matrix is not multiplied is also shown. A graph of this is shown in FIG.

屈折率 重みなし交角余弦 重み付き交角余弦
設定1 1.40-0.00i 0.995745 0.991471
設定2 1.45-0.00i 0.996917 0.993811
設定3 1.50-0.00i 0.996903 0.993768
設定4 1.55-0.00i 0.998266 0.996547
設定5 1.60-0.00i 0.996629 0.993213
設定6 1.65-0.00i 0.995967 0.991862
設定7 1.70-0.00i 0.994711 0.989153
設定8 1.80-0.00i 0.992230 0.984441
Refractive index Unweighted intersection cosine Weighted intersection cosine setting 1 1.40-0.00i 0.995745 0.991471
Setting 2 1.45-0.00i 0.996917 0.993811
Setting 3 1.50-0.00i 0.996903 0.993768
Setting 4 1.55-0.00i 0.998266 0.996547
Setting 5 1.60-0.00i 0.996629 0.993213
Setting 6 1.65-0.00i 0.995967 0.991862
Setting 7 1.70-0.00i 0.994711 0.989153
Setting 8 1.80-0.00i 0.992230 0.984441

重みなしの場合に比べて重み付きの場合は,より,適正値(最大の交角余弦値)と不適正値の差が大きくなっていることがわかる。   It can be seen that the difference between the appropriate value (maximum intersection cosine value) and the inappropriate value is larger in the case of weighting than in the case of no weighting.

(他の実施形態)
次に、この発明の別実施例について説明する。上述した実施例では、二つ光強度分布データの交角指標を使って両データの差異の程度を判定するという手法を、逆換算で求められた光強度分布データに対応した複数の係数行列(つまり、複数の屈折率)の中から、最適な係数行列(つまり、最適な屈折率)を選択するという過程に適用した。しかし、この発明に係る回折・散乱光の光強度分布データの比較方法は、例えばサンプル粒子群の粒度分布をはじめ、粒子の表面状態や粒子の形状などの総合的な物性の良否を判定する場合にも適用することができる。上述したように回折・散乱光の光強度分布データは、それ自身に粒度分布の情報以外に、測定対象であるサンプル粒子群の表面状態や粒子形状などの物性面の総合的な情報を含んでいるので、そのサンプル粒子群の光強度分布データを、予め得られている良品の粒子群の光強度分布データと比較して両者の差異の程度を知ることにより、サンプル粒子群の良否を判定することができる。
(Other embodiments)
Next, another embodiment of the present invention will be described. In the embodiment described above, the method of determining the degree of difference between the two data using the intersection angle index of the two light intensity distribution data is a plurality of coefficient matrices corresponding to the light intensity distribution data obtained by inverse conversion (that is, , A plurality of refractive indices) is applied to the process of selecting the optimum coefficient matrix (that is, the optimum refractive index). However, the comparison method of the light intensity distribution data of the diffracted / scattered light according to the present invention is, for example, when determining the quality of the overall physical properties such as the particle size distribution of the sample particle group, the surface state of the particle and the shape of the particle. It can also be applied to. As described above, the light intensity distribution data of diffracted / scattered light itself contains comprehensive information on the physical properties such as the surface state and particle shape of the sample particle group to be measured, in addition to the particle size distribution information. Therefore, the light intensity distribution data of the sample particle group is compared with the light intensity distribution data of the non-defective particle group obtained in advance to determine the degree of difference between the two, thereby determining the quality of the sample particle group. be able to.

このようなサンプル粒子群の良否を判定する装置では、図1中に示したような基準光強度分布メモリ18が設けられる。この基準光強度分布メモリ18には、基準となる光強度分布データ(この例では、良品の粒子群の光強度分布データ)が予め記憶されている。以下、図8に示したフローチャートを参照して、サンプル粒子群の良否を判定する装置の動作を説明する。 In such an apparatus for determining the quality of the sample particle group, a reference light intensity distribution memory 18 as shown in FIG. 1 is provided. In the reference light intensity distribution memory 18, reference light intensity distribution data (in this example, light intensity distribution data of a good particle group) is stored in advance. Hereinafter, the operation of the apparatus for determining the quality of the sample particle group will be described with reference to the flowchart shown in FIG.

まず、サンプル粒子群の光強度分布データを測定し(ステップS11)、この光強度分布データと、基準光強度分布データとの交角指標としての余弦(cosθ)を算出する(ステップS12)このときの余弦の算出に、重みマトリックスを組み込んだ(9)式が用いられる。求められた交角指標cosθが予め定められた所定値よりも大きいか否かを判断する(ステップS13)。この所定値は、サンプル粒子群の光強度分布データが、基準となる良品の粒子群の光強度分布データに対して、どの程度一致していた場合に、そのサンプル粒子群を良品と判断するかを定めた値であり、予め実験的に求められる。交角指標cosθが所定値よりも大きい場合は、サンプル粒子群の粒度分布をはじめ、その表面状態や粒子形状などの総合的な物性が、良品の粒子群に近いものであるので、サンプル粒子群を良品と判定する(ステップS14)。一方、交角指標cosθが所定値よりも小さい場合は、サンプル粒子群の総合的な物性が良品の粒子群のそれに対して相当に隔たっているので、そのサンプル粒子群を不良品と判定する(ステップS15)。以上のような実施例装置によれば、粉体を扱う医薬や食品などの製造工程において的確な品質管理を行うことができる。 First, the light intensity distribution data of the sample particle group is measured (step S11), and a cosine (cos θ) as an intersection angle index between the light intensity distribution data and the reference light intensity distribution data is calculated (step S12). For calculating the cosine, equation (9) incorporating a weight matrix is used. It is determined whether or not the obtained intersection angle index cos θ is larger than a predetermined value (step S13). This predetermined value is the extent to which the light intensity distribution data of the sample particle group matches the light intensity distribution data of the reference non-defective particle group to determine that the sample particle group is non-defective The value is determined experimentally in advance. When the crossing angle index cos θ is larger than the predetermined value, the sample particle group has a particle size distribution and the overall physical properties such as the surface state and particle shape thereof are close to the non-defective particle group. It determines with a non-defective product (step S14). On the other hand, when the intersection angle index cos θ is smaller than the predetermined value, the overall physical properties of the sample particle group are considerably separated from those of the non-defective particle group. S15). According to the embodiment apparatus as described above, accurate quality control can be performed in the manufacturing process of medicines and foods that handle powder.

この発明は、上記の実施例に限られるものではなく、以下のように変形実施することができる。
(1)この発明に係る回折・散乱光の光強度分布データの比較方法は、粒度分布測定や粒子群の良品の判定以外に、例えばサンプル粒子群のランク分けなど、種々の用途に適用することができる。
The present invention is not limited to the above embodiment, and can be modified as follows.
(1) The method for comparing the light intensity distribution data of diffracted / scattered light according to the present invention may be applied to various uses, such as sample particle group ranking, in addition to particle size distribution measurement and particle group non-defective determination. Can do.

(2)上記の実施例では、二つの光強度分布データの交角に対応する交角指標が、交角の余弦であったが、交角指標は、交角の正弦(sinθ)、あるいは交角そのものであってもよい。正弦の場合は、『0』の時が両光強度分布データが完全一致となり、『1』の時が両光強度分布データが全く不一致となる。交角そのものの場合は、『0°』の時が両光強度分布データが完全一致となり、『90°』の時が両光強度分布データが全く不一致となる。 (2) In the above embodiment, the crossing angle index corresponding to the crossing angle of the two light intensity distribution data is the cosine of the crossing angle, but the crossing angle index may be the sine of the crossing angle (sin θ) or the crossing angle itself. Good. In the case of sine, both light intensity distribution data are completely coincident when “0”, and both light intensity distribution data are completely unmatched when “1”. In the case of the intersection angle itself, both light intensity distribution data are completely coincident at “0 °”, and both light intensity distribution data are completely unmatched at “90 °”.

本発明は、粒度分布測定装置に利用することができる。   The present invention can be used in a particle size distribution measuring apparatus.

実施例の粒度分布測定装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the particle size distribution measuring apparatus of an Example. 僅かに差のある光強度分布の例である。It is an example of the light intensity distribution with a slight difference. 僅かに差のある光強度分布の交角の余弦である。It is the cosine of the intersection angle of the light intensity distribution with a slight difference. 重みマトリックスの要素である。It is an element of the weight matrix. 粒子径1μm程度のポリスチレンラテックス粒子群の光強度分布データである。It is light intensity distribution data of a polystyrene latex particle group having a particle diameter of about 1 μm. 粒子径1μm程度のポリスチレンラテックス粒子群の光強度分布データから、種々、屈折率を変更し得られた粒度分布から逆変換によって得られた光強度分布データである。It is the light intensity distribution data obtained by inverse conversion from the particle size distribution obtained by changing the refractive index in various ways from the light intensity distribution data of the polystyrene latex particle group having a particle diameter of about 1 μm. 図5の光強度分布データに基づく交角の余弦を示すグラフである。It is a graph which shows the cosine of the crossing angle based on the light intensity distribution data of FIG. 実施例装置による粒度分布測定のフローチャートである。It is a flowchart of the particle size distribution measurement by an Example apparatus.

符号の説明Explanation of symbols

2 …分散粒子群
4 …レーザ光源
5a〜5c…光センサ
13 …光強度分布メモリ
14 …CPU
15 …係数保持部
17 …基準光強度分布メモリ
2 ... Dispersed particle group 4 ... Laser light sources 5a to 5c ... Optical sensor 13 ... Light intensity distribution memory 14 ... CPU
15 ... Coefficient holding unit 17 ... Reference light intensity distribution memory

Claims (4)

分散粒子群にレーザ光を照射する過程と、前記分散粒子群からの回折・散乱光を複数の光検出素子で検出して各検出光量データを成分とする光強度分布データを得る過程と、異なる二つの分散粒子群について各々得られた光強度分布データを比較する過程とを含む方法において、前記比較過程は、前記各光強度分布データを、各々の検出光量データを成分とするベクトルとして扱い、これら二つの光強度分布データのなす交角に関連した交角指標を重みマトリックスを作用させることにより強調して算出する過程と、前記算出過程で求めた交角指標に基づいて前記二つの光強度分布データの差異の程度を判定する過程とを含むことを特徴とする回折・散乱光の光強度分布データの比較方法。   The process of irradiating the dispersed particle group with laser light is different from the process of detecting diffracted / scattered light from the dispersed particle group with a plurality of light detection elements and obtaining light intensity distribution data using each detected light quantity data as a component. And comparing the light intensity distribution data obtained for each of the two dispersed particle groups, the comparison process treats each light intensity distribution data as a vector having each detected light quantity data as a component, A process of calculating an intersection angle index related to the intersection angle formed by these two light intensity distribution data by emphasizing the weight matrix by applying a weight matrix, and the two light intensity distribution data based on the intersection angle index obtained in the calculation process. A method for comparing light intensity distribution data of diffracted / scattered light, comprising a step of determining a degree of difference. 次式(1a)〜(1c)のいずれかの関数形が対角成分であり、対角成分以外が0である重みマトリックスが用いられることを特徴とする請求項1に記載の回折・散乱光の光強度分布データの比較方法。
2. The diffracted / scattered light according to claim 1, wherein a weight matrix in which any one of the following formulas (1a) to (1c) is a diagonal component and a value other than the diagonal component is 0 is used. Comparison method of light intensity distribution data.
分散粒子群にレーザ光を照射する光照射手段と、前記分散粒子群からの回折・散乱光を複数の光検出素子で検出して各検出光量データを成分とする光強度分布データを得る光検出手段と、前記実測された光強度分布データを、前記分散粒子群を構成する粒子の屈折率に関係した複数種類の係数行列を使った演算アルゴリズムにより、前記各係数行列に対応した粒度分布データに換算する粒度分布求出手段と、前記各係数行列ごとの粒度分布データを前記係数行列を使った逆演算アルゴリズムにより、各係数行列に対応した光強度分布データに逆換算する光強度分布逆求出手段と、前記実測された光強度分布データと前記逆換算された各係数行列ごとの光強度分布データとを各々比較して、前記逆換算された複数の光強度分布データの中から、前記実測された光強度分布データに対して一致度の高い前記逆換算の光強度分布データを捜し出し、その逆換算の光強度分布データに対応した係数行列を最適な演算条件として選択する光強度分布比較手段と、前記選択された係数行列を使って求められた粒度分布データを前記分散粒子群の妥当な粒度分布として確定する粒度分布確定手段とを備えた粒度分布測定装置において、前記光強度分布比較手段は、前記実測された光強度分布データおよび前記逆換算された光強度分布データを、各々の検出光量データを成分とするベクトルとして扱い、前記実測された光強度分布データと前記逆換算された各係数行列ごとの光強度分布データのなす交角に関連した交角指標をそれぞれ重みマトリックスを作用させることにより強調して算出する強調交角指標算出手段と、前記算出された各係数行列に対応した交角指標を比較することにより、前記実測された光強度分布データに対して一致度の高い前記逆換算の光強度分布データを捜し出し、その逆換算の光強度分布データに対応した係数行列を最適な演算条件として選択する選択手段を備えたことを特徴とする粒度分布測定装置。   Light irradiating means for irradiating the dispersed particle group with laser light, and light detection for detecting diffracted / scattered light from the dispersed particle group with a plurality of light detecting elements and obtaining light intensity distribution data using each detected light quantity data as a component Means and the measured light intensity distribution data are converted into particle size distribution data corresponding to each coefficient matrix by an arithmetic algorithm using a plurality of types of coefficient matrices related to the refractive index of the particles constituting the dispersed particle group. Light intensity distribution inverse calculation that reversely converts the particle size distribution data for each coefficient matrix into light intensity distribution data corresponding to each coefficient matrix by means of an inverse operation algorithm using the coefficient matrix. Each of the measured light intensity distribution data and the inversely converted light intensity distribution data for each coefficient matrix, and from among the plurality of inversely converted light intensity distribution data, The light intensity distribution is searched for the inverse converted light intensity distribution data having a high degree of coincidence with the actually measured light intensity distribution data, and the coefficient matrix corresponding to the inverse converted light intensity distribution data is selected as the optimum calculation condition. In the particle size distribution measuring apparatus, comprising: a comparison unit; and a particle size distribution determination unit that determines the particle size distribution data obtained by using the selected coefficient matrix as an appropriate particle size distribution of the dispersed particle group. The comparison unit treats the actually measured light intensity distribution data and the inversely converted light intensity distribution data as vectors having respective detected light amount data as components, and is inversely converted to the actually measured light intensity distribution data. Emphasis is calculated by emphasizing the intersection angle index related to the intersection angle formed by the light intensity distribution data for each coefficient matrix by applying a weight matrix. By comparing the angle index calculation means and the intersection angle index corresponding to each of the calculated coefficient matrices, the light intensity distribution data of the inverse conversion having a high degree of coincidence with the actually measured light intensity distribution data is searched for, A particle size distribution measuring apparatus comprising selection means for selecting a coefficient matrix corresponding to the inversely converted light intensity distribution data as an optimum calculation condition. 次式(1a)〜(1c)のいずれかの関数形が対角成分であり、対角成分以外が0である重みマトリックスが用いられることを特徴とする請求項3に記載の粒度分布測定装置。

4. The particle size distribution measuring apparatus according to claim 3, wherein a weight matrix in which any one of the following formulas (1a) to (1c) is a diagonal component and a value other than the diagonal component is 0 is used. .

JP2006296571A 2006-10-31 2006-10-31 Method for comparing light intensity distribution data of diffracted / scattered light and particle size distribution measuring apparatus Expired - Fee Related JP4835389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296571A JP4835389B2 (en) 2006-10-31 2006-10-31 Method for comparing light intensity distribution data of diffracted / scattered light and particle size distribution measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296571A JP4835389B2 (en) 2006-10-31 2006-10-31 Method for comparing light intensity distribution data of diffracted / scattered light and particle size distribution measuring apparatus

Publications (2)

Publication Number Publication Date
JP2008111810A true JP2008111810A (en) 2008-05-15
JP4835389B2 JP4835389B2 (en) 2011-12-14

Family

ID=39444383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296571A Expired - Fee Related JP4835389B2 (en) 2006-10-31 2006-10-31 Method for comparing light intensity distribution data of diffracted / scattered light and particle size distribution measuring apparatus

Country Status (1)

Country Link
JP (1) JP4835389B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101653A (en) * 2008-10-21 2010-05-06 Shimadzu Corp Apparatus and program for measuring particle size distribution
JP2011179876A (en) * 2010-02-26 2011-09-15 Horiba Ltd Particle-size distribution measuring instrument
JP2011220918A (en) * 2010-04-13 2011-11-04 Shimadzu Corp Particle size distribution measurement apparatus and program
JP2016114613A (en) * 2016-02-15 2016-06-23 株式会社堀場製作所 Particle size distribution measuring apparatus
JP2019184373A (en) * 2018-04-06 2019-10-24 株式会社堀場製作所 Device and method for measuring particle size distribution and program for particle size distribution
CN113674705A (en) * 2021-08-27 2021-11-19 天津大学 Backlight extraction method based on radial basis function neural network proxy model assisted particle swarm algorithm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6240416B2 (en) * 2013-06-24 2017-11-29 株式会社堀場製作所 Particle size distribution measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171337A (en) * 1984-09-11 1986-04-12 ベクトン・デイツキンソン・アンド・カンパニー Device and method for detecting and sorting particle using flow sight metry method
JPH07325026A (en) * 1994-05-31 1995-12-12 Shimadzu Corp Particle size distribution measuring method
JPH10197438A (en) * 1997-01-08 1998-07-31 Shimadzu Corp Method for comparing particle size distribution data and particle size distribution measuring instrument
JP2002048700A (en) * 2000-08-07 2002-02-15 Natl Aerospace Lab Method and apparatus for measurement of particle size distribution
JP2003232718A (en) * 2002-02-06 2003-08-22 Horiba Ltd Particle size distribution-measuring apparatus
JP3633169B2 (en) * 1997-01-08 2005-03-30 株式会社島津製作所 Method for comparing light intensity distribution data of diffracted / scattered light and particle size distribution measuring apparatus
JP2006127077A (en) * 2004-10-28 2006-05-18 Sony Corp Information processing apparatus ane method, recording medium and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171337A (en) * 1984-09-11 1986-04-12 ベクトン・デイツキンソン・アンド・カンパニー Device and method for detecting and sorting particle using flow sight metry method
JPH07325026A (en) * 1994-05-31 1995-12-12 Shimadzu Corp Particle size distribution measuring method
JPH10197438A (en) * 1997-01-08 1998-07-31 Shimadzu Corp Method for comparing particle size distribution data and particle size distribution measuring instrument
JP3633169B2 (en) * 1997-01-08 2005-03-30 株式会社島津製作所 Method for comparing light intensity distribution data of diffracted / scattered light and particle size distribution measuring apparatus
JP2002048700A (en) * 2000-08-07 2002-02-15 Natl Aerospace Lab Method and apparatus for measurement of particle size distribution
JP2003232718A (en) * 2002-02-06 2003-08-22 Horiba Ltd Particle size distribution-measuring apparatus
JP2006127077A (en) * 2004-10-28 2006-05-18 Sony Corp Information processing apparatus ane method, recording medium and program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101653A (en) * 2008-10-21 2010-05-06 Shimadzu Corp Apparatus and program for measuring particle size distribution
JP2011179876A (en) * 2010-02-26 2011-09-15 Horiba Ltd Particle-size distribution measuring instrument
CN102192868A (en) * 2010-02-26 2011-09-21 株式会社堀场制作所 Particle size distribution measuring device
US9297736B2 (en) 2010-02-26 2016-03-29 Horiba, Ltd. Particle size distribution measuring device
JP2011220918A (en) * 2010-04-13 2011-11-04 Shimadzu Corp Particle size distribution measurement apparatus and program
JP2016114613A (en) * 2016-02-15 2016-06-23 株式会社堀場製作所 Particle size distribution measuring apparatus
JP2019184373A (en) * 2018-04-06 2019-10-24 株式会社堀場製作所 Device and method for measuring particle size distribution and program for particle size distribution
JP7045910B2 (en) 2018-04-06 2022-04-01 株式会社堀場製作所 Particle size distribution measuring device, particle size distribution measuring method and particle size distribution measuring program
CN113674705A (en) * 2021-08-27 2021-11-19 天津大学 Backlight extraction method based on radial basis function neural network proxy model assisted particle swarm algorithm
CN113674705B (en) * 2021-08-27 2023-11-07 天津大学 Backlight extraction method based on radial basis function neural network agent model auxiliary particle swarm algorithm

Also Published As

Publication number Publication date
JP4835389B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835389B2 (en) Method for comparing light intensity distribution data of diffracted / scattered light and particle size distribution measuring apparatus
Ma et al. New developments in particle characterization by laser diffraction: size and shape
Strokotov et al. Polarized light‐scattering profile—advanced characterization of nonspherical particles with scanning flow cytometry
Layden et al. Optimum selection of input polarization states in determining the sample Mueller matrix: a dual photoelastic polarimeter approach
Bodenschatz et al. Quantifying phase function influence in subdiffusively backscattered light
CN110687022B (en) Method and system for measuring particle refractive index by using polarization difference of scattered light
Brunt et al. Principal component analysis of spectral line data: analytic formulation
Slade et al. Calibrated near-forward volume scattering function obtained from the LISST particle sizer
Wishard et al. Dynamic light scattering–an all-purpose guide for the supramolecular chemist
Dillet et al. Size determination by use of two-dimensional Mueller matrices backscattered by optically thick random media
Koestner et al. Polarized light scattering measurements as a means to characterize particle size and composition of natural assemblages of marine particles
JP6880059B2 (en) Program for particle size distribution measuring device and particle size distribution measuring device
Babin et al. Determination of the volume scattering function of aqueous particle suspensions with a laboratory multi-angle light scattering instrument
JP3633169B2 (en) Method for comparing light intensity distribution data of diffracted / scattered light and particle size distribution measuring apparatus
Davies et al. Scattering signatures of suspended particles: an integrated system for combining digital holography and laser diffraction
CN116848394A (en) Dynamic light scattering measurement method and dynamic light scattering measurement device
JP6555164B2 (en) Particle size distribution measuring apparatus, data processing method, and data processing program
CN108872152B (en) Particle refractive index measuring method, computer device and computer readable storage medium
Kiselev et al. White-light optical particle spectrometer for in situ measurements of condensational growth of aerosol particles
Ugulen et al. Analysis of multiple scattering errors in LISST-VSF volume scattering function measurements using Monte Carlo simulations and experimental data
JP5228718B2 (en) Particle size distribution evaluation method and program, and particle size distribution evaluation apparatus
JP3633168B2 (en) Particle size distribution data comparison method and particle size distribution measuring apparatus
JP3235554B2 (en) Laser diffraction / scattering particle size distribution analyzer
Turcu et al. High-resolution angle-resolved measurements of light scattered at small angles by red blood cells in suspension
Wang et al. Resolving power of diffraction imaging with an objective: a numerical study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4835389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees