JP2008111475A - Electromagnetic control valve device - Google Patents

Electromagnetic control valve device Download PDF

Info

Publication number
JP2008111475A
JP2008111475A JP2006294349A JP2006294349A JP2008111475A JP 2008111475 A JP2008111475 A JP 2008111475A JP 2006294349 A JP2006294349 A JP 2006294349A JP 2006294349 A JP2006294349 A JP 2006294349A JP 2008111475 A JP2008111475 A JP 2008111475A
Authority
JP
Japan
Prior art keywords
valve body
electromagnetic force
pressure
displacement
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006294349A
Other languages
Japanese (ja)
Inventor
Takahiro Ito
貴廣 伊藤
Toshiya Osawa
俊哉 大澤
Tadaharu Yokota
忠治 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006294349A priority Critical patent/JP2008111475A/en
Publication of JP2008111475A publication Critical patent/JP2008111475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic control valve device having a configuration suitable for controlling a pressure fluctuation of hydraulic oil in an electronic controlled hydraulic brake device from high pressure to low pressure with a small amount of flow to give linear motion to a valve element with electromagnetic force, thus actualizing continuous pressure control while stabilizing the operation of the valve element in all pressure ranges. <P>SOLUTION: The electromagnetic control valve device comprises an electromagnetic force generating means 11, the valve element 14 to be moved with electromagnetic force, a seat portion 15 provided on the upper side of the valve element, and an elastic body 16 for energizing the valve element to be pushed against the seat portion. In the case where a current value required for separating the valve element from the seat portion is set to be a maximum working current when fluid has no pressure difference between a time before passing between the valve element and the seat portion and a time after that, the elastic body 16 has a load change rate which is positively and negatively opposite to and same in size as the change rate of the electromagnetic force to the displacement of the valve element when the maximum working current is applied to the electromagnetic force generating means 11 in the range of displacement (effective displacement) of the valve element where a flow amount passing between the valve element 14 and the seat portion 15 is changed with the movement of the valve element 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電磁式制御弁装置に係り、特に車両用の電子制御式液圧ブレーキ装置などの小流量で圧力が高圧から低圧まで大きく変化する装置において、作動油圧力変化の連続性を保ちながら圧力制御するのに適した電磁式制御弁装置に関する。   The present invention relates to an electromagnetic control valve device, and particularly to a device in which the pressure changes greatly from a high pressure to a low pressure at a small flow rate, such as an electronically controlled hydraulic brake device for a vehicle, while maintaining the continuity of hydraulic oil pressure change. The present invention relates to an electromagnetic control valve device suitable for pressure control.

近年、車両用の液圧式ブレーキ装置には、各輪制動力を独立に制御することによる横滑り防止機能や、ハイブリッド自動車の回生ブレーキとの協調制御など液圧を精密に制御することによる制動力制御に対する要求が増加している。   In recent years, hydraulic brake devices for vehicles have a side-slip prevention function by independently controlling the braking force of each wheel, and a braking force control by precisely controlling the hydraulic pressure, such as cooperative control with a regenerative brake of a hybrid vehicle. The demand for is increasing.

ブレーキ液圧の制御は一般的に電磁式制御弁装置によって行われる。この種の液圧ブレーキ装置では、特許文献1や特許文献2に記載のようなソレノイドを利用した、構造が単純で低コストな電磁制御弁を用いる。従来、特許文献1に記載のようなコイルに印加する電流をON−OFFすることで弁の全開全閉の2値で制御する弁が利用されてきた。しかし、近年、上記のように精密な制動力制御に対する要求から、特許文献2などでは印加する電流の大きさによって弁体位置を制御し、圧力の連続な制御が可能な制御弁に置き換えられつつある。   The brake fluid pressure is generally controlled by an electromagnetic control valve device. In this type of hydraulic brake device, an electromagnetic control valve having a simple structure and a low cost using a solenoid as described in Patent Document 1 or Patent Document 2 is used. Conventionally, a valve that is controlled by a binary value of full open / close of a valve by turning on and off a current applied to a coil as described in Patent Document 1 has been used. However, in recent years, due to the demand for precise braking force control as described above, Patent Document 2 and the like have been replaced with a control valve that can control the position of the valve body according to the magnitude of the applied current and can continuously control the pressure. is there.

このような液圧ブレーキ装置用の圧力の連続な制御を行うための電磁式制御弁装置による圧力制御の連続性が何等かの原因によって損なわれた場合、制御力の制御性が損なわれる可能性がある。そこで、形状の変更により磁気回路を工夫したり、吸引ギャップを大きく取ったりすることで、弁体変位に伴う電磁力の変化を小さくすることで制御性を向上させている。   If the continuity of pressure control by the electromagnetic control valve device for continuous control of pressure for such a hydraulic brake device is impaired due to any cause, the controllability of the control force may be impaired There is. Therefore, the controllability is improved by devising the magnetic circuit by changing the shape or by taking a large suction gap to reduce the change in electromagnetic force accompanying the displacement of the valve body.

さらに、特許文献2によく似た構造の電磁式制御弁装置で、弁体変位による電磁力の変化を取り去るための手法として特許文献3に記載されたものがある。給湯装置などで利用される電磁式制御弁装置において、変位によってばね定数が変化する弾性体を備えたことを特徴とする。つまり、ばね定数を変化させることによって電磁力の弁体変位に対する吸引力の変化特性を打ち消し、電磁式制御弁装置による流量の制御性を向上させている。
特開平6−312653号公報 特開平10−315946号公報 特開平7−217766号公報
Further, there is an electromagnetic control valve device having a structure similar to that of Patent Document 2 described in Patent Document 3 as a technique for removing a change in electromagnetic force due to valve body displacement. An electromagnetic control valve device used in a hot water supply device or the like is characterized by including an elastic body whose spring constant changes due to displacement. That is, by changing the spring constant, the change characteristic of the attractive force with respect to the displacement of the electromagnetic force with respect to the valve body is canceled, and the controllability of the flow rate by the electromagnetic control valve device is improved.
Japanese Patent Laid-Open No. 6-312653 JP-A-10-315946 JP-A-7-217766

精度よい制動力制御の実現には、電子制御液圧ブレーキ装置で使用される電磁式制御弁装置では高圧から低圧までを連続に制御する必要がある。しかし、従来の制御弁の場合、弁体とシート部との間を通過する前後で流体の圧力差が小さいときに、弁体の動作が不安定となり圧力変化の連続性が損なわれ、精度の高い制動力制御ができない可能性がある。   In order to realize accurate braking force control, it is necessary to continuously control from high pressure to low pressure in an electromagnetic control valve device used in an electronically controlled hydraulic brake device. However, in the case of the conventional control valve, when the fluid pressure difference is small before and after passing between the valve body and the seat part, the operation of the valve body becomes unstable, and the continuity of the pressure change is impaired. High braking force control may not be possible.

上記特許文献3に記載の手法では変位に対して非線形な特性を持つばねを利用することが必要となるためコストの増加や、ばねが大きくなることにより電磁制御弁装置が大きくなる可能性がある。   In the method described in Patent Document 3, it is necessary to use a spring having a non-linear characteristic with respect to the displacement, so that there is a possibility that the electromagnetic control valve device becomes large due to an increase in cost and an increase in the spring. .

また、ブレーキ装置では配管内を移動する液量は小さいが、大きな液圧の変化がある。そのため、弁体位置を微小な範囲で制御する必要がある。さらに、小型電磁弁で電磁力の弁体変位に対する変化を軽減するために大きな吸引ギャップを持つという特徴がある。電磁力特性は印加される電流値、弁体変位によって変化率が異なるため、すべての状態を考慮したばね定数を実現できる非線形な特性を持つばねを実現することは困難である。   Further, in the brake device, the amount of fluid moving in the pipe is small, but there is a large change in fluid pressure. Therefore, it is necessary to control the valve body position within a minute range. Furthermore, a small solenoid valve has a feature that it has a large suction gap in order to reduce changes in electromagnetic force with respect to the valve body displacement. Since the rate of change of the electromagnetic force characteristics varies depending on the applied current value and valve body displacement, it is difficult to realize a spring having non-linear characteristics that can realize a spring constant in consideration of all states.

本発明は、構造が単純で小型の、電子制御液圧ブレーキ装置などの小流量で高圧から低圧まで作動油圧力変化を制御する場合に好適な、電磁力によって弁体を直動させる形態を持つ電磁式制御弁装置において、その弁体動作を全圧力範囲において安定化し、連続的な圧力制御を実現することのできる電磁式制御弁装置を提供することを目的とする。   The present invention has a configuration in which the valve body is directly moved by electromagnetic force, which is suitable for controlling a change in hydraulic oil pressure from a high pressure to a low pressure with a small flow rate such as an electronically controlled hydraulic brake device having a simple structure and a small size. An object of the electromagnetic control valve device is to provide an electromagnetic control valve device capable of stabilizing the valve body operation in the entire pressure range and realizing continuous pressure control.

前記目的を達成するために、本発明は主として次のような構成を採用する。
目標となる制御量に応じた電流値を計算し出力する電流制御手段と、印加する電流値によって発生する電磁力が変化する電磁力発生手段と、前記電磁力発生手段によって発生した電磁力で移動する弁体と、前記弁体に向かい合うように設置されたシート部と、前記弁体を付勢する弾性体と、から構成される電磁式制御弁装置において、前記弁体と前記シート部との間を通過する前後の流体に圧力差が無いときに、前記弁体を前記シート部から離間させるのに必要な電流値を最大使用電流とした場合、前記弁体の移動に連動して前記弁体と前記シート部との間を通過する流体の流量が変化する前記弁体の変位の範囲内で、前記最大使用電流を前記電磁力発生手段に印加したときの、前記弁体の変位に対する電磁力の変化率と正負が逆で同じ大きさの荷重変化率をもつ前記弾性体を備える構成とする。
In order to achieve the above object, the present invention mainly adopts the following configuration.
Current control means for calculating and outputting a current value corresponding to the target control amount, electromagnetic force generation means for changing the electromagnetic force generated by the applied current value, and movement by the electromagnetic force generated by the electromagnetic force generation means In an electromagnetic control valve device comprising: a valve body that is configured to seat, a seat portion that is disposed so as to face the valve body, and an elastic body that biases the valve body, the valve body and the seat portion When there is no pressure difference between the fluid before and after passing between the valve body and the current value necessary for separating the valve body from the seat portion is the maximum working current, the valve body is interlocked with the movement of the valve body. When the maximum operating current is applied to the electromagnetic force generating means within the range of displacement of the valve body in which the flow rate of the fluid passing between the body and the seat portion changes, the electromagnetic force with respect to the displacement of the valve body Force change rate and positive / negative are opposite and the same magnitude A structure comprising the elastic body having a load change rate.

また、前記電磁式制御弁装置において、前記弾性体は、前記弁体の変位の範囲内で、前記電磁力の変化特性を線形に近似したときの、前記弁体の変位に対する電磁力の変化率と正負が逆で同じ大きさの荷重変化率を持つ線形特性をもつ弾性体である構成とする。さらに、前記電磁式制御弁装置において、前記弾性体は、前記弁体を前記シート部に押し付ける方向に付勢するように配置する構成とする。さらに、前記電磁式制御弁装置において、前記弁体と前記シート部との間を通過前後の流体の圧力差が、前記圧力差が無いときに代えて、前記弁体に加わる最大圧力の1/4以下のときに、前記弁体の始動に必要な電流を低圧時必要電流とした場合、前記弁体の移動に連動して前記弁体と前記シート部との間を通過する流量が変化する前記弁体の変位の範囲内で、前記低圧時必要電流を前記電磁力発生手段に印加したときの、前記弁体の変位に対する電磁力の変化特性を線形に近似した時の変位に対する変化率と正負が逆で同じ大きさの荷重変化率をもつ線形特性の前記弾性体を備える構成とする。さらに、前記電磁式制御弁装置において、前記弁体の移動に連動して前記弁体と前記シート部との間を通過する流体の流量が変化する前記弁体の変位の範囲よりもさらに小さい範囲内で、前記最大使用電流を前記電磁力発生手段に印加したときの、前記弁体の変位に対する電磁力の変化率と正負が逆で同じ大きさの荷重変化率をもつ前記弾性体を備える構成とする。   Further, in the electromagnetic control valve device, the elastic body has a rate of change of electromagnetic force with respect to the displacement of the valve body when the electromagnetic force change characteristic is linearly approximated within the range of displacement of the valve body. The structure is an elastic body having a linear characteristic that is opposite to the positive and negative and has the same rate of load change. Furthermore, in the electromagnetic control valve device, the elastic body is arranged to be urged in a direction in which the valve body is pressed against the seat portion. Further, in the electromagnetic control valve device, the pressure difference of the fluid before and after passing between the valve body and the seat portion is replaced with 1 / of the maximum pressure applied to the valve body instead of when there is no pressure difference. When the current required for starting the valve body is a low-voltage required current when the pressure is 4 or less, the flow rate passing between the valve body and the seat portion changes in conjunction with the movement of the valve body. Within the range of displacement of the valve body, when the low-voltage required current is applied to the electromagnetic force generating means, the rate of change relative to the displacement when linearly approximating the change characteristics of the electromagnetic force relative to the displacement of the valve body; The structure is provided with the elastic body having a linear characteristic that is opposite in polarity and has a load change rate of the same magnitude. Further, in the electromagnetic control valve device, a range smaller than a range of displacement of the valve body in which a flow rate of a fluid passing between the valve body and the seat portion changes in conjunction with the movement of the valve body. A configuration in which the elastic body has a load change rate of the same magnitude as the rate of change of the electromagnetic force with respect to the displacement of the valve body, but opposite in polarity when the maximum operating current is applied to the electromagnetic force generating means. And

本発明によれば、所定の弁体変位の範囲と所定の電磁力発生手段への印加電流値において、電磁力特性の弁体変位に対する変化を打ち消すような荷重変化率を設定した線形な特性を持つ弾性体を用いる。これによって、単純な構造、小型の装置で、弁体動作の安定化し、圧力変化の連続性を維持した圧力制御を実現することが可能となる。これによって、低コストで制御性の高い電子制御液圧ブレーキ装置を実現することができる。   According to the present invention, in a predetermined valve body displacement range and a current value applied to a predetermined electromagnetic force generating means, a linear characteristic in which a load change rate is set so as to cancel the change of the electromagnetic force characteristic with respect to the valve body displacement. Use elastic body. As a result, it is possible to realize pressure control that stabilizes the valve body operation and maintains the continuity of the pressure change with a simple structure and a small device. As a result, an electronically controlled hydraulic brake device with high controllability can be realized at low cost.

本発明の実施例1と実施例2に係る電磁式制御弁装置について、図1〜図10を参照しながら以下説明する。   The electromagnetic control valve device according to the first and second embodiments of the present invention will be described below with reference to FIGS.

本発明を実施するための最良の形態を実施例1に基づいて説明する。図1は本発明の実施例1に係る液圧式ブレーキ装置で使用される電磁式制御弁装置10の断面概略図を示す。本実施例1に係る電磁式制御弁装置は、コイルによる電磁力発生手段11によって電磁力が発生し、この電磁力によってコア12の吸引面に引き付けられる向きに力が働くことでシリンダ13内を弁体14が可動する。また、本実施例1は、図1の下方に設けられ、弁体14との間隔により電磁式制御弁装置10を通過する流量を調整するシート部15を有する。さらに、弁体14は弾性体16により付勢されており、図1のような構成の電磁式制御弁装置10の場合、電磁力発生手段11に電流が通電されない状態で弁体14はシート部15に押し付けられる。   A best mode for carrying out the present invention will be described based on a first embodiment. FIG. 1 is a schematic cross-sectional view of an electromagnetic control valve device 10 used in a hydraulic brake device according to a first embodiment of the present invention. In the electromagnetic control valve device according to the first embodiment, an electromagnetic force is generated by the electromagnetic force generating means 11 using a coil, and the force acts in the direction attracted to the suction surface of the core 12 by the electromagnetic force, thereby causing the inside of the cylinder 13 to move. The valve body 14 moves. Further, the first embodiment includes a seat portion 15 that is provided below the FIG. 1 and adjusts the flow rate that passes through the electromagnetic control valve device 10 according to the distance from the valve body 14. Further, the valve body 14 is urged by an elastic body 16, and in the case of the electromagnetic control valve device 10 having the configuration as shown in FIG. 1, the valve body 14 is seated in a state where no current is supplied to the electromagnetic force generating means 11. 15 is pressed.

また、図1のシート部15の下側に高圧部が接続され、出口側にはリザーバや加圧対象が接続される。また、電磁力発生手段11にはドライバ回路17、コントローラ18が接続される。コントローラ18は、ブレーキ装置の液圧、運転者のブレーキ操作量、車両運動量などを検出する各種センサ19からの情報により目標制動力発生できる作動液圧力を計算し、ドライバ回路17への指令値を算出する。ドライバ回路17からの電流値の大きさによって電磁力発生手段11の電磁力の大きさが決まる。この電磁力と弾性体16による荷重、図1中下方からの圧力による力がつりあう位置が、弁体14の位置となる。本実施例1で対象とする電磁式制御弁装置では、弁体14の位置の制御性を向上させるため、ギャップ20(コア12に対する弁体14の可動範囲)を大きくとっているものとする。   Further, a high-pressure part is connected to the lower side of the seat part 15 in FIG. 1, and a reservoir and a pressurizing object are connected to the outlet side. A driver circuit 17 and a controller 18 are connected to the electromagnetic force generating means 11. The controller 18 calculates hydraulic fluid pressure that can generate a target braking force based on information from various sensors 19 that detect the hydraulic pressure of the brake device, the amount of brake operation by the driver, the amount of vehicle movement, and the like, and outputs a command value to the driver circuit 17. calculate. The magnitude of the electromagnetic force of the electromagnetic force generating means 11 is determined by the magnitude of the current value from the driver circuit 17. The position where the electromagnetic force and the load due to the elastic body 16 and the force due to the pressure from below in FIG. In the electromagnetic control valve device targeted in the first embodiment, the gap 20 (the movable range of the valve body 14 with respect to the core 12) is set large in order to improve the controllability of the position of the valve body 14.

本発明の実施例1では、上述した構成を有する電磁式制御弁装置10において、あらかじめ計測又は計算によって求められた電磁力発生手段11の電磁力と弁体14変位の関係から求められる値の荷重変化率、つまりばね定数を持つ弾性体16を選択して使用する。本実施例1に係る電磁式制御弁装置の具体的な機能と動作態様について、図2を参照しながら以下説明する。図2は本実施例1に係る電磁力発生手段における電磁力と弁体変位の関係と有効変位とを表す図である。   In the first embodiment of the present invention, in the electromagnetic control valve device 10 having the above-described configuration, a load having a value obtained from the relationship between the electromagnetic force of the electromagnetic force generating means 11 and the displacement of the valve body 14 obtained in advance by measurement or calculation. An elastic body 16 having a rate of change, that is, a spring constant is selected and used. Specific functions and operation modes of the electromagnetic control valve device according to the first embodiment will be described below with reference to FIG. FIG. 2 is a diagram illustrating the relationship between the electromagnetic force and the valve body displacement and the effective displacement in the electromagnetic force generating means according to the first embodiment.

図2の下図に示した流量と弁体14変位のように、弁体14の変位によって流量が変化する変位の範囲を有効変位とする。この有効変位は、シート部15の流路面積A1よりも弁体14がシート部15から離れることによって形成される流路面積A2が小さい範囲に相当し、この有効変位はギャップ20と等しい最大変位量と比べて小さくなる。   Like the flow rate and the displacement of the valve body 14 shown in the lower diagram of FIG. This effective displacement corresponds to a range in which the flow path area A2 formed by the valve element 14 being separated from the seat part 15 is smaller than the flow path area A1 of the seat part 15, and this effective displacement is the maximum displacement equal to the gap 20. Smaller than the amount.

図2の上図に示すような電磁力特性で、この有効変位よりも小さい変位の範囲において、弁体14変位に対する電磁力の変化を打ち消すように弾性体16のばね定数を決定する。ここで、変位、力はシート部から遠ざかる方向を正としている。さらに、電磁力の特性は図2上図に示すように電流値が大きくなるにつれて電磁力の弁体14変位に対する変化が大きくなるという傾向がある。すなわち、C1の変化>C3の変化、となる。   The spring constant of the elastic body 16 is determined so as to cancel the change of the electromagnetic force with respect to the displacement of the valve body 14 in the displacement range smaller than the effective displacement with the electromagnetic force characteristics as shown in the upper diagram of FIG. Here, the displacement and force are positive in the direction away from the seat portion. Further, as shown in the upper diagram of FIG. 2, the electromagnetic force characteristics tend to increase as the current value increases with respect to the displacement of the valve body 14. That is, change in C1> change in C3.

なお、当然のことであるが、図1に示す電磁力発生手段(コイル)への印加電流を大きくすると電磁力もそれに連れて大きくなり、弁体の変位量も増加して、図2に示す有効変位の範囲内で制御弁10の流路面積も増加する。さらに、弁体14には、弁体とシート部の流路前後に加わる作動液(例えば、ブレーキ液)の圧力差が弁体をシート部から離間する方向に加わることになり、例えば、同一の弁体変位量であっても(図2の有効変位の範囲内の適宜の変位Xi)、圧力差が小さいときにはそれの大きいときに比べて、より大きな電流をコイルに印加する必要がある。   As a matter of course, when the current applied to the electromagnetic force generating means (coil) shown in FIG. 1 is increased, the electromagnetic force is increased accordingly, and the displacement amount of the valve body is increased. The flow path area of the control valve 10 also increases within the range of displacement. Furthermore, the pressure difference between the hydraulic fluid applied to the valve body 14 before and after the flow path between the valve body and the seat portion (for example, brake fluid) is applied in the direction separating the valve body from the seat portion. Even with the valve body displacement amount (appropriate displacement Xi within the effective displacement range in FIG. 2), it is necessary to apply a larger current to the coil when the pressure difference is small than when the pressure difference is large.

そこで、弁体14とシート部15を通過する前後で作動液の圧力差が小さいとき(弁体14を動作させるために、圧力差大に比べてより大きな電流値が必要となる)の電磁力特性に対して補正するように弾性体16のばね定数を決定する。ここでは、最も大きな電流が必要となり、且つ圧力差がないときに弁体14をシート部15より離間させるのに必要な電流値としては、電磁力発生手段11に印加した時の電磁力特性を表す曲線で示すと、C2であると仮定する(電磁力C2を発生させれば作動液の圧力差のないときに弁体を有効変位の最大値まで可動させることが可能)。   Therefore, the electromagnetic force when the pressure difference of the hydraulic fluid is small before and after passing through the valve body 14 and the seat portion 15 (a larger current value is required than the large pressure difference in order to operate the valve body 14). The spring constant of the elastic body 16 is determined so as to correct the characteristic. Here, as the current value required to separate the valve element 14 from the seat portion 15 when the largest current is required and there is no pressure difference, the electromagnetic force characteristic when applied to the electromagnetic force generating means 11 is used. It is assumed that the curve is represented by C2 (when the electromagnetic force C2 is generated, the valve body can be moved to the maximum effective displacement when there is no pressure difference of the hydraulic fluid).

図3は本実施例1に係る弾性体のばね定数による電磁力特性(図2の上図を参照)の補正機能を表す図である。図3(a)は図2のC2を有効変位の範囲で拡大して表示したものである。ここで、破線で示すように、曲線(実線)を直線で近似するときの弁体14変位xに対する電磁力Fの変化率はΔF/Δxとなる。このときに、本実施例1では、ばねの荷重変化が図3(b)の特性になるようなばね定数を持つばねとする。つまり、弾性体16ばね定数をKとすると、C2で示した電磁力の特性を直線で近似した際の変化率と正負が逆の変化になるように、K=−ΔF/Δx、の特性を有するばねとする。こうした状態で、図3(a)の電磁力特性と図3(b)の弾性体の荷重特性とを足し合わせることによって得られる合力の絶対値を示したものが図3(c)になる。このように、差動液の圧力差が無いときの電磁力とのバランスを考慮してばね定数を決めておけば、仮に圧力差が高くなった場合においてもこのばね定数の設定で弁体の動作が不安定になることはない。   FIG. 3 is a diagram illustrating a correction function of the electromagnetic force characteristic (see the upper diagram of FIG. 2) according to the spring constant of the elastic body according to the first embodiment. FIG. 3A is an enlarged view of C2 in FIG. 2 within the effective displacement range. Here, as indicated by a broken line, the rate of change of the electromagnetic force F with respect to the displacement 14 of the valve body 14 when the curve (solid line) is approximated by a straight line is ΔF / Δx. At this time, in the first embodiment, the spring has a spring constant such that the load change of the spring has the characteristics shown in FIG. That is, if the elastic body 16 spring constant is K, the characteristic of K = −ΔF / Δx is set so that the rate of change when the electromagnetic force characteristic indicated by C2 is approximated by a straight line and the change in polarity are opposite. It is assumed to have a spring. FIG. 3 (c) shows the absolute value of the resultant force obtained by adding the electromagnetic force characteristics of FIG. 3 (a) and the load characteristics of the elastic body of FIG. 3 (b) in such a state. In this way, if the spring constant is determined in consideration of the balance with the electromagnetic force when there is no differential liquid pressure difference, even if the pressure difference becomes high, the spring constant can be set by setting this spring constant. Operation is not unstable.

上述したように、線形な特性を持つ弾性体16のばね定数を設定することによって、電磁力Fと弾性体16の荷重FSとを足し合わせた力の弁体14変位に対する変化を小さくすることができる。このときに弁体14の最大変位(図2を参照)に対して、電磁力特性を補正する弁体14変位の範囲(図2に示す有効変位)を小さくとっているので、線形のばねによる補正によって電磁力の弁体14変位に対する変化を十分に小さくすることができる。上述した構成による電磁式制御弁装置10は、ブレーキ液の圧力変動の大きな環境で使用される場合においても連続した圧力変化による圧力制御を実現することができる。換言すると、ブレーキ液の圧力差がないときのばね定数の条件設定をしたので、圧力差が拡大したときでも十分に適用可能なものである。因みに、従来技術における弾性体の条件設定は、コイルへの印加電流が零のときに図1に示す下からのブレーキ液圧力に対抗して弁が閉じていることである。   As described above, by setting the spring constant of the elastic body 16 having linear characteristics, it is possible to reduce the change of the force obtained by adding the electromagnetic force F and the load FS of the elastic body 16 with respect to the displacement of the valve body 14. it can. At this time, the range of displacement (effective displacement shown in FIG. 2) for correcting the electromagnetic force characteristics is made smaller than the maximum displacement of the valve body 14 (see FIG. 2). By the correction, the change of the electromagnetic force relative to the displacement of the valve body 14 can be made sufficiently small. The electromagnetic control valve device 10 having the above-described configuration can realize pressure control by continuous pressure change even when used in an environment where the pressure fluctuation of the brake fluid is large. In other words, since the condition of the spring constant is set when there is no pressure difference of the brake fluid, it is sufficiently applicable even when the pressure difference increases. Incidentally, the condition setting of the elastic body in the prior art is that the valve is closed against the brake fluid pressure from below shown in FIG. 1 when the current applied to the coil is zero.

ここで、電磁式制御弁装置10に、図4の上図に示すように電流をランプ状に入力して(比例入力を印加し)、蓄圧されたブレーキキャリパから圧力を低圧側(リザーバ)に逃がす場合を想定して、電磁式制御弁装置の動作を説明する。図4は従来技術の電磁式制御弁装置における、ランプ状電流入力に対する弁体変位と流入口圧力変化を表す図である。図4の中段図によると、弁体変位を開方向にシフトするために印加電流を増加したときに、図2の上図に示したように、或る変位位置で弁体変位による電磁力増加の影響もあって弁体変位位置が不安定になって上下動し弁体変位の位置制御が困難となる。   Here, as shown in the upper diagram of FIG. 4, a current is input into the electromagnetic control valve device 10 in a ramp shape (a proportional input is applied), and the pressure is applied to the low pressure side (reservoir) from the accumulated brake caliper. The operation of the electromagnetic control valve device will be described assuming the case of escape. FIG. 4 is a diagram showing valve body displacement and inlet pressure change with respect to a ramp-like current input in a conventional electromagnetic control valve device. According to the middle diagram of FIG. 4, when the applied current is increased to shift the valve body displacement in the opening direction, the electromagnetic force increases due to the valve body displacement at a certain displacement position as shown in the upper diagram of FIG. As a result, the valve body displacement position becomes unstable and moves up and down, making it difficult to control the position of the valve body displacement.

図4の下図には、本実施例1を適用しない電磁式制御弁装置10の流入口の圧力変化を示している。流入口の圧力が低圧になると、それまで連続的に変化していた圧力が不連続な変化を示す。この不連続変化は、低圧になると弁体14とシート部15の間を通過する前後の作動液の圧力差が小さくなることで、弁体14を図1の下方から押し上げる力が小さくなり、この状態では弁体14に働く力のうち電磁力の割合が大きくなって、電磁力特性の変化の影響を大きく受けるようになるためである。さらに、このときには弁体14を動作させるために必要な電流値も大きくなるため(前述したように、仮定したC2に近い値になるため)、図2で示したように電磁力の弁体14変位に対する変化率がより大きくなる。   The lower diagram of FIG. 4 shows the pressure change at the inlet of the electromagnetic control valve device 10 to which the first embodiment is not applied. When the pressure at the inlet becomes low, the pressure continuously changing until then shows a discontinuous change. This discontinuous change is that when the pressure becomes low, the pressure difference between the hydraulic fluid before and after passing between the valve body 14 and the seat portion 15 becomes small, and the force that pushes up the valve body 14 from below in FIG. This is because, in the state, the ratio of the electromagnetic force out of the force acting on the valve body 14 is increased, and the influence of the change in the electromagnetic force characteristics is greatly affected. Further, at this time, the current value necessary for operating the valve body 14 also becomes large (because it is close to the assumed C2 as described above), so that the electromagnetic force valve body 14 as shown in FIG. The rate of change with respect to displacement is greater.

また、圧力差が小さい時の吸引電磁力と弾性体16荷重との合力の絶対値と電磁式制御弁装置10を通過する流体による力(圧力差×受圧面積+流体力)の絶対値を示したものは図5(b)のようになる。ここで、図5は従来技術の電磁式制御弁装置における、圧力差大のときと圧力差小のときの電磁力と弾性体荷重の合力の絶対値と通過流体による力との関係を表す図である。   In addition, the absolute value of the resultant force between the suction electromagnetic force and the load of the elastic body 16 when the pressure difference is small and the absolute value of the force (pressure difference × pressure receiving area + fluid force) caused by the fluid passing through the electromagnetic control valve device 10 are shown. The result is as shown in FIG. Here, FIG. 5 is a diagram showing the relationship between the absolute value of the resultant force of the electromagnetic force and the elastic body load when the pressure difference is large and when the pressure difference is small, and the force caused by the passing fluid in the electromagnetic control valve device of the prior art. It is.

図5(a)のように差圧が大きいときには2曲線の交点は独立した1点であり、この場合弁体動作は安定する。しかし、図5(b)のように圧力差が小さい場合、電磁力と弾性体荷重の合力の曲線が、一部で流体による力の曲線と線上に重なる部分が生じる。この場合、弁体14の位置が不定になる可能性が高く、弁体動作が安定しなくなる可能性がある。ここで、図5(b)において、実線の曲線が図5(a)との対比で弁体変位xの大きさとともに低下するのは、前述したように圧力差が小さいときに弁体14に働く力のうちで電磁力の割合が大きくなるためである。なお、従来技術における弾性体荷重は、印加電流が零のときに図1に示す下からのブレーキ液圧力と釣り合って閉じているようにとの観点から設計されるものである。因みに、本実施例1を示す図7(b)の弾性体荷重は図5の(b)のそれよりも或る程度大となるものである。   When the differential pressure is large as shown in FIG. 5A, the intersection of the two curves is an independent point, and in this case, the valve body operation is stabilized. However, when the pressure difference is small as shown in FIG. 5B, a part of the curve of the resultant force of the electromagnetic force and the elastic body load partially overlaps the curve of the force due to the fluid. In this case, there is a high possibility that the position of the valve body 14 will be indefinite, and the valve body operation may become unstable. Here, in FIG. 5B, the solid line curve decreases with the magnitude of the valve element displacement x in contrast to FIG. 5A, as described above, in the valve element 14 when the pressure difference is small. This is because the ratio of electromagnetic force among working forces increases. It should be noted that the elastic body load in the prior art is designed from the viewpoint of being closed in balance with the brake fluid pressure from below shown in FIG. 1 when the applied current is zero. Incidentally, the elastic body load of FIG. 7B showing the first embodiment is somewhat larger than that of FIG. 5B.

これに対して、本発明の実施例1を適用して弾性体16のばね定数を決定した場合の電磁力と弾性体16荷重の合力の絶対値を図6に示す。ここでは図2上で示した電磁力特性も同時に破線で表示している。上述したように仮に曲線C2を平坦化するようなばね定数の線形の変化特性をもつ弾性体16を使用すると、実線C1’〜C3’に示すような合力が得られる。ここに示すように、C2’は弁体14の変位に対して力がほとんど変化しなくなる。このときに図5と同様の弁体14に作用する流体による力と電磁力と弾性体16の荷重との合力の絶対値を示したものが図7になる。   On the other hand, the absolute value of the resultant force of the electromagnetic force and the elastic body 16 load when the spring constant of the elastic body 16 is determined by applying the first embodiment of the present invention is shown in FIG. Here, the electromagnetic force characteristics shown in FIG. 2 are also indicated by broken lines. As described above, if the elastic body 16 having a linear change characteristic of the spring constant that flattens the curve C2 is used, the resultant force shown by the solid lines C1 'to C3' is obtained. As shown here, the force of C2 'hardly changes with the displacement of the valve body 14. FIG. 7 shows the absolute value of the resultant force of the force by the fluid acting on the valve body 14 and the electromagnetic force and the load of the elastic body 16 as in FIG.

図7に示すように、圧力差小(図7(b))の場合、電磁力と弾性体16荷重との合力の絶対値の曲線変化率が小さくなるので、2曲線の交点が独立した一つの点となり弁体16動作が安定する。また、電流が低い場合の電磁力特性、ここではC3がこの補正によってC3’のように右下がりの曲線となる(図6を参照)。このため、圧力差大(図7(a))の場合、電磁力と弾性体16による荷重の合力の絶対値は右上がりの特性を持つことになる。この場合、図からも明らかなように右上がりになる分には弁体14動作の安定性は損なわれない。また、圧力差大のときの弁体14動作に必要な電流値が若干増加するが、最大電流値を印加した時の電磁力特性に対して補正しているため、電磁制御弁装置の最大電流値は変化しないという利点がある。また、C1は補正によってC1’となり、電磁力の特性が右上がりになるが、この部分では本方式の電磁式制御弁装置による圧力制御は行わないので関係ない。   As shown in FIG. 7, in the case of a small pressure difference (FIG. 7B), the curve change rate of the absolute value of the resultant force of the electromagnetic force and the elastic body 16 load becomes small. The operation of the valve body 16 becomes stable. Further, the electromagnetic force characteristics when the current is low, here, C3 becomes a curve with a downward slope like C3 'by this correction (see FIG. 6). For this reason, in the case of a large pressure difference (FIG. 7A), the absolute value of the resultant force of the electromagnetic force and the load by the elastic body 16 has a characteristic of rising to the right. In this case, as is apparent from the drawing, the stability of the operation of the valve body 14 is not impaired as much as it rises to the right. Further, although the current value necessary for the operation of the valve body 14 when the pressure difference is large slightly increases, the maximum current value of the electromagnetic control valve device is corrected because the electromagnetic force characteristic when the maximum current value is applied is corrected. There is an advantage that the value does not change. Also, C1 becomes C1 'by the correction, and the electromagnetic force characteristic increases to the right. However, this portion is not relevant because pressure control by the electromagnetic control valve device of this system is not performed.

上述したような補正を施した弾性体16を利用した本実施例1に係る電磁式制御弁装置10に対して、図4と同様に電流をランプ状に入力した際の圧力変化を図8に表す。図8で点線で示すのが図4と同様の本発明を適用しない場合の圧力変化を、実線で示したのが本実施例1を適用した場合の圧力変化を示している。ここに示すように本実施例1を適用した場合、高圧、低圧を問わず圧力の急変が生じず、連続的な圧力変化を実現できる。そのため、圧力の制御性が向上し、電磁式制御弁装置10を使った精度よい制動力制御が実現でき、精密な車両運動制御や回生ブレーキとの協調が実現できる。また、線形な特性を持つ弾性体16によって電磁力特性を補正するため、小型、低コストな装置を実現できる。   For the electromagnetic control valve device 10 according to the first embodiment using the elastic body 16 subjected to the correction as described above, the pressure change when a current is input in a ramp shape as in FIG. 4 is shown in FIG. To express. In FIG. 8, the dotted line indicates the pressure change when the present invention is not applied, as in FIG. 4, and the solid line indicates the pressure change when the first embodiment is applied. As shown here, when Example 1 is applied, there is no sudden change in pressure regardless of whether the pressure is high or low, and a continuous pressure change can be realized. Therefore, the controllability of the pressure is improved, the braking force control with high accuracy using the electromagnetic control valve device 10 can be realized, and the cooperation with the precise vehicle motion control and the regenerative brake can be realized. Further, since the electromagnetic force characteristic is corrected by the elastic body 16 having a linear characteristic, a small and low-cost device can be realized.

また、ほぼ同様の効果は、弾性体16のばね定数を決定する際に、圧力差が電磁式制御弁に加わる最大圧力の1/4以下のときに(上述の説明では圧力差が零であることを条件としていたが、多少の圧力差が存在する、最大圧力の1/4程度のときに(可成り小さい圧力下で))、弁体をシート部15から離間させるのに必要な電流値を電磁力発生手段11に印加する場合の、弁体16変位に対する電磁力変化率と正負が逆で同じ大きさになるようにしても得られる。ここで1/4というのはブレーキ装置などの電磁式制御弁装置の高圧側にかかる最大圧力が15〜20MPa程度とした場合、3〜5MPa程度になった場合のことを示す。つまり、弁体動作が不安定になり始めるところで弁体動作が安定するように補正することによって、それ以降の動作の不安定になるのを予防する。   Further, almost the same effect is obtained when the spring constant of the elastic body 16 is determined when the pressure difference is equal to or less than ¼ of the maximum pressure applied to the electromagnetic control valve (in the above description, the pressure difference is zero). However, when there is a slight pressure difference, when the pressure is about 1/4 of the maximum pressure (under a considerably small pressure), the current value necessary to separate the valve body from the seat portion 15 When the electromagnetic force is applied to the electromagnetic force generating means 11, the rate of change of the electromagnetic force with respect to the displacement of the valve body 16 and the positive and negative values are reversed and have the same magnitude. Here, ¼ indicates that the maximum pressure applied to the high pressure side of the electromagnetic control valve device such as a brake device is about 3 to 5 MPa when the maximum pressure is about 15 to 20 MPa. That is, by correcting the valve body operation so that it becomes stable when the valve body operation starts to become unstable, the subsequent operation is prevented from becoming unstable.

また、圧力を制御するときの弁体変位は流路面積を変えられる変位の範囲(図2に示す有効変位の範囲)よりも限られた小さい範囲内(弁体変位0から有効変位よりも小さい弁体変位までの範囲内)で使うこともあるが、その範囲での電磁力の弁体変位に対する変化特性を打ち消すように、弾性体16のばね定数を決定することとしてもほぼ同様の効果が得られる。   Further, the displacement of the valve body when controlling the pressure is within a small range (smaller than the displacement from the valve body displacement 0 to the effective displacement) than the range of displacement in which the flow path area can be changed (the effective displacement range shown in FIG. 2). In the range up to the displacement of the valve body), the same effect can be obtained by determining the spring constant of the elastic body 16 so as to cancel the change characteristic of the electromagnetic force with respect to the displacement of the valve body in that range. can get.

また、図9に示すように弁体14に付勢し、電流を印加しない状態でシート部に弁体14を押し付ける弾性体16とは別の電磁力特性補正用弾性体111を備える。この場合にも図3に示した手順とほぼ同様にして弁体14の変位により流量が変化する弁体14変位の範囲で、電磁力発生手段11により発生する電磁力と弾性体16の荷重との合力の弁体変位に対する変化を打ち消すようなばね定数を有する電磁力特性補正用弾性体111を用いることにしても同様の効果を得ることができる。換言すると、従来技術の図1に示す下からの作動油圧力に対抗(印加電流零のとき)するばね16と電磁力特性補正用の弾性体111との組み合わせで、図3(b)の機能を奏させるのである。   Further, as shown in FIG. 9, an electromagnetic force characteristic correcting elastic body 111 different from the elastic body 16 that urges the valve body 14 and presses the valve body 14 against the seat portion without applying an electric current is provided. In this case as well, the electromagnetic force generated by the electromagnetic force generating means 11 and the load of the elastic body 16 are within the range of the displacement of the valve body 14 where the flow rate changes due to the displacement of the valve body 14 in substantially the same manner as shown in FIG. Even if the electromagnetic force characteristic correcting elastic body 111 having a spring constant that cancels the change of the resultant force with respect to the valve body displacement is used, the same effect can be obtained. In other words, the function shown in FIG. 3B is obtained by combining the spring 16 that opposes the hydraulic oil pressure from the bottom shown in FIG. 1 of the prior art (when the applied current is zero) and the elastic body 111 for electromagnetic force characteristic correction. Is played.

本発明の実施例2に係る電磁式制御弁装置について、図10に基づいて詳細に説明する。図10は本発明の実施例2に係る電磁式制御弁装置であって、実施例1の構成を利用した電子制御液圧ブレーキ装置の全体構成図である。以下、図10では、図1と異なる構成に関してのみ説明し、図1と同様の構成に関しては同一符号を付して重複した説明は省略する。   An electromagnetic control valve device according to Embodiment 2 of the present invention will be described in detail with reference to FIG. FIG. 10 is an electromagnetic control valve device according to a second embodiment of the present invention, and is an overall configuration diagram of an electronically controlled hydraulic brake device using the configuration of the first embodiment. In the following, in FIG. 10, only the configuration different from that in FIG. 1 will be described, and the same configuration as in FIG.

図10に示す構成は、電子制御液圧ブレーキ装置の1輪分に対応するものである。本実施例1で説明した電磁式制御弁装置10,201(符号10と同様構成)をポンプ202とブレーキキャリパ203の間と、ブレーキキャリパ203とリザーバ204の間とに配置し、それぞれを油圧配管206で接続する。また、ポンプ202はポンプコントローラ207で制御され、その圧力を検出するための圧力センサ208を設ける。   The configuration shown in FIG. 10 corresponds to one wheel of an electronically controlled hydraulic brake device. The electromagnetic control valve devices 10 and 201 (same configuration as the reference numeral 10) described in the first embodiment are arranged between the pump 202 and the brake caliper 203, and between the brake caliper 203 and the reservoir 204, and each is hydraulic piping. Connect at 206. The pump 202 is controlled by a pump controller 207, and a pressure sensor 208 for detecting the pressure is provided.

図10に示すような構成による電子制御液圧ブレーキ装置ではポンプコントローラ207によってポンプ202が制御されリザーバ204からの作動液が送り出される。そして、電磁式制御弁装置10を駆動することによって、ブレーキキャリパ203の圧力を上昇させ、ピストンによりブレーキパッドをブレーキディスクに押し付けることによって制動力を発生させる。また、電磁式制御弁装置10を閉じ、もう一方の電磁式制御弁装置201を駆動することでブレーキキャリパ203から作動液をリザーバ204に開放し、ピストンにかかる圧力を下げ、制動を解除する。   In the electronically controlled hydraulic brake device having the configuration as shown in FIG. 10, the pump 202 is controlled by the pump controller 207 and the hydraulic fluid is sent out from the reservoir 204. Then, by driving the electromagnetic control valve device 10, the pressure of the brake caliper 203 is increased, and a braking force is generated by pressing the brake pad against the brake disc by the piston. Further, the electromagnetic control valve device 10 is closed and the other electromagnetic control valve device 201 is driven to release the hydraulic fluid from the brake caliper 203 to the reservoir 204, thereby reducing the pressure applied to the piston and releasing the braking.

図10に示す電子制御液圧ブレーキ装置において、本実施例1の電磁式制御弁装置(図3の機能を備えた弾性体)を用いると、圧力の連続的な変化が保証されるため、ブレーキキャリパ203の前に検出手段を設けることなしに、ピストンにかかる油圧力を予測することが可能となる。   In the electronically controlled hydraulic brake device shown in FIG. 10, when the electromagnetic control valve device (the elastic body having the function of FIG. 3) of the first embodiment is used, a continuous change in pressure is guaranteed. Without providing a detection means in front of the caliper 203, it is possible to predict the oil pressure applied to the piston.

次に、図10に示す本実施例2の動作と機能について具体的に説明する。圧力センサ208によって、電磁式制御弁装置10の前の圧力のみを計測する。予め、電磁式制御弁装置10,201への印加電流−差圧−圧力の時間変化の関係を計算、或いは計測により算出しておく。電磁式制御弁装置10の圧力の時間変化をΔP、電磁式制御弁装置10を駆動する前のピストンにかかるの圧力をP1とした場合に、t秒後のピストンにかかる圧力P1は、P1=ΔP・t+P0、となる。このときにΔPは印加電流と差圧とによって決定する。本実施例2に係る電磁式制御弁装置10は圧力を連続的に制御することができるため、上述の動作、手法によって圧力を推定した場合でも誤差が小さくなる。   Next, the operation and function of the second embodiment shown in FIG. 10 will be specifically described. Only the pressure before the electromagnetic control valve device 10 is measured by the pressure sensor 208. The relationship between the applied current to the electromagnetic control valve devices 10 and 201, the differential pressure and the pressure change over time is calculated or measured in advance. When the time change of the pressure of the electromagnetic control valve device 10 is ΔP and the pressure applied to the piston before driving the electromagnetic control valve device 10 is P1, the pressure P1 applied to the piston after t seconds is P1 = ΔP · t + P0. At this time, ΔP is determined by the applied current and the differential pressure. Since the electromagnetic control valve device 10 according to the second embodiment can continuously control the pressure, the error is reduced even when the pressure is estimated by the above-described operation and method.

また、電磁式制御弁装置201を駆動して制動を解除する場合にも、同様にしてピストンにかかるの圧力を推定することができる。これを用いることにより、制動力のフィードフォワード制御の精度を向上させることができ、応答時間を短縮することが可能となる。   Further, when the electromagnetic control valve device 201 is driven to release the braking, the pressure applied to the piston can be estimated in the same manner. By using this, the accuracy of the feedforward control of the braking force can be improved, and the response time can be shortened.

以上説明したように、本発明の実施例は、次のような課題を解決するために、以下のような構成を備え、機能乃至作用を奏することを特徴とするものである。すなわち、作動油(ブレーキ液)の圧力が急変し圧力変化の連続性が損なわれるのは、弁体とシート部の前後での圧力差が小さいときに弁体の動作が不安定になることがあるためである。つまり、圧力差が小さい場合、ブレーキ液より弁体に働く力が小さくなり、弁体に働く力のうち電磁力の割合が大きくなるため、電磁力の変化の影響を受けやすくなる。本発明の実施例で取り上げている電磁力により弁体を直動する形態の電磁式制御弁装置の場合、電磁力が弁体変位に対して変化するため、その影響をうけ、弁体動作が不安定になりやすい。さらに、電磁力が変位に対して変化することで、圧力差が小さいところで弁体に働く力がつりあう弁体位置が近い変位に複数存在するようになるため、弁体位置が不定となり、不安定になりやすい。   As described above, in order to solve the following problems, the embodiment of the present invention is characterized by having the following configuration and having functions or actions. That is, the pressure of the hydraulic fluid (brake fluid) changes suddenly and the continuity of the pressure change is impaired because the operation of the valve body becomes unstable when the pressure difference between the valve body and the seat portion is small. Because there is. That is, when the pressure difference is small, the force acting on the valve body is smaller than that of the brake fluid, and the ratio of the electromagnetic force out of the force acting on the valve body is increased, so that it is easily affected by changes in the electromagnetic force. In the case of an electromagnetic control valve device in which the valve body is directly moved by the electromagnetic force taken up in the embodiment of the present invention, the electromagnetic force changes with respect to the valve body displacement. Prone to instability. Furthermore, since the electromagnetic force changes with respect to the displacement, there are multiple valve body positions in close displacement where the force acting on the valve body is balanced when the pressure difference is small, so the valve body position becomes unstable and unstable. It is easy to become.

そこで、本実施例の電磁式制御弁装置は目標となる制御量に応じた電流値を計算し出力する電流制御手段と、印加する電流値によって発生する電磁力が変化する電磁力発生手段と、前記電磁力発生手段によって発生した電磁力で移動する弁体と、前記弁体の向かい合うように設置されたシート部と、前記弁体に付勢する弾性体と、から構成される電磁式制御弁装置において、前記弁体と前記シート部との間を通過前後の流体に圧力差がない時に、前記弁体を前記シート部から離間させるのに必要な電流値を最大使用電流とした場合、前記弁体の移動によって前記弁体と前記シート部との間を通過する流量が変化する前記弁体の変位の範囲内で、前記最大使用電流を前記電磁力発生手段に印加したときの、前記弁体変位に対する電磁力の変化率と正負が逆で同じ大きさの荷重変化率を持つ前記弾性体を有することを特徴とする。   Therefore, the electromagnetic control valve device of the present embodiment calculates and outputs a current value corresponding to the target control amount, an electromagnetic force generating means that changes the electromagnetic force generated by the applied current value, An electromagnetic control valve comprising: a valve body that is moved by electromagnetic force generated by the electromagnetic force generating means; a seat portion that is installed so as to face the valve body; and an elastic body that is urged against the valve body. In the apparatus, when there is no pressure difference in the fluid before and after passing between the valve body and the seat portion, when the current value necessary to separate the valve body from the seat portion is the maximum use current, The valve when the maximum operating current is applied to the electromagnetic force generating means within a range of displacement of the valve body in which a flow rate passing between the valve body and the seat portion is changed by movement of the valve body. Rate of change of electromagnetic force against body displacement And having the elastic body sign has the same size load change rate in the reverse.

本実施例によれば、前記弁体に付勢する前記弾性体による荷重が前記弁体変位に伴う電磁力大きさの変化とは反対に変化するように設定することで、電磁力と前記弾性体の荷重を足し合わせた力が前記弁体変位に対して変化しないようにできるため前記弁体動作を安定化することができ、圧力変化の連続性を損なわない圧力制御が可能となる。また、補正対象となる電磁力の前記弁体変位に対する特性を決定する際に、前記圧力差の大小に関係ない弁体動作の安定化を単純な構造により実現することが可能となり、小型、低コストを維持することができる。   According to the present embodiment, the electromagnetic force and the elasticity are set by setting the load by the elastic body biased to the valve body to be opposite to the change in the magnitude of the electromagnetic force accompanying the displacement of the valve body. The force obtained by adding the body load can be prevented from changing with respect to the displacement of the valve body, so that the valve body operation can be stabilized, and pressure control can be performed without impairing the continuity of the pressure change. Further, when determining the characteristics of the electromagnetic force to be corrected with respect to the displacement of the valve body, it is possible to realize stabilization of the valve body operation regardless of the magnitude of the pressure difference with a simple structure. Cost can be maintained.

また、前記電磁式制御弁装置において、前記弁体に対して付勢する前記弾性体は、前記弁体の移動によって前記弁体と前記シート部との間を通過する流量が変化する前記弁体の変位の範囲内で、電磁力の変化特性を線形に近似した時の、前記弁体変位に対する変化率と正負が逆で同じ大きさの荷重変化率を持つ、線形な特性を持つ弾性体であることを特徴とする。この構成によれば、弁体の最大変位に対して小さい前記シートを通過する流量が変化する前記弁体変位の範囲内に、弁体変位に対する電磁力の変化を補正する範囲を限定する。このことによって、前記弾性体として線形な特性をもつものを用いて、電磁式制御弁装置の有効範囲内で弁体動作を安定化し、連続した圧力変化を維持しつつ圧力制御を行うことができる。また、小型、低コストも実現できる。   In the electromagnetic control valve device, the elastic body that urges the valve body may change a flow rate that passes between the valve body and the seat portion due to the movement of the valve body. This is an elastic body with linear characteristics that has the same rate of load change rate as the rate of change with respect to the displacement of the valve body when the electromagnetic force change characteristic is linearly approximated within the displacement range of It is characterized by being. According to this structure, the range which correct | amends the change of the electromagnetic force with respect to a valve body displacement is limited in the range of the said valve body displacement from which the flow volume which passes the said small seat with respect to the largest displacement of a valve body changes. As a result, the elastic body having linear characteristics can be used to stabilize the valve body operation within the effective range of the electromagnetic control valve device and perform pressure control while maintaining a continuous pressure change. . In addition, small size and low cost can be realized.

また、前記電磁式制御弁装置において、前記弾性体は前記弁体を前記シート部に押し付ける方向に付勢するように配置したことを特徴とする。この構成の電磁式制御弁装置の場合、上述した前記弁体動作の安定化の効果が大きく、圧力制御の安定化が実現できる。   Further, in the electromagnetic control valve device, the elastic body is disposed so as to urge the valve body in a direction in which the valve body is pressed against the seat portion. In the case of the electromagnetic control valve device having this configuration, the effect of stabilizing the valve body operation described above is great, and stabilization of pressure control can be realized.

また、前記電磁式制御弁装置において、前記圧力差(弁体とシート部間を流体が通過する前後の流体圧力差)が電磁式制御弁装置に加わる最大圧力の1/4以下の時に(圧力差が無いときだけに限らず、最大圧力差に対して可成り小さい圧力差のときに)、前記弁体の始動に必要な電流を低圧時必要電流とした場合、前記弁体の移動によって前記弁体と前記シート部との間を通過する流量が変化する前記弁体の変位の範囲内で、前記低圧時必要電流を前記電磁力発生手段に印加したときの、弁体変位に対する電磁力の変化特性を線形に近似した時の変位に対する変化率と正負が逆で同じ大きさの荷重変化率を持つ前記弾性体を有することを特徴とする。   In the electromagnetic control valve device, when the pressure difference (the fluid pressure difference before and after the fluid passes between the valve body and the seat portion) is ¼ or less of the maximum pressure applied to the electromagnetic control valve device (pressure Not only when there is no difference, but also when the current required for starting the valve body is a low-current required current when the pressure difference is sufficiently small with respect to the maximum pressure difference) The electromagnetic force relative to the displacement of the valve body when the required current during low pressure is applied to the electromagnetic force generation means within the range of displacement of the valve body where the flow rate passing between the valve body and the seat portion changes. It is characterized in that the elastic body has the load change rate of the same magnitude with the change rate with respect to the displacement when the change characteristic is approximated linearly and opposite in polarity.

また、前記電磁式制御弁装置は、前記弁体の移動によって前記シート部との間に形成される流路面積を変化させることができる前記弁体の変位の範囲よりも小さい範囲で、前記最大使用電流を前記電磁力発生手段に印加したときの、前記弁体変位に対する電磁力の変化率と正負が逆で同じ大きさの荷重変化率を持つ前記弾性体を有することを特徴とする。この構成によれば、前記弁体変位によって前記弁体と前記シート部の間を通過する流量が変化する弁体変位の範囲として、前記弁体変位によって前記流路面積を変化する弁体変位の範囲を選ぶことによって弁体の最大変位に対して小さい変位の範囲を選択することができるため、線形特性を持つ前記弾性体の荷重変化率による電磁力特性の補正が容易となる。   Further, the electromagnetic control valve device may be configured such that the flow path area formed between the valve body and the seat portion can be changed by movement of the valve body in a range smaller than a displacement range of the valve body. It is characterized in that the elastic body has a load change rate having the same magnitude as the rate of change of the electromagnetic force with respect to the displacement of the valve body when the operating current is applied to the electromagnetic force generating means. According to this configuration, as a range of the valve body displacement in which the flow rate passing between the valve body and the seat portion is changed by the valve body displacement, the valve body displacement of which the flow passage area is changed by the valve body displacement. By selecting the range, it is possible to select a range of displacement that is smaller than the maximum displacement of the valve body. Therefore, the electromagnetic force characteristics can be easily corrected by the load change rate of the elastic body having linear characteristics.

また、前記電磁式制御弁装置において、前記弾性体とは別に電磁力特性補正弾性体を備え、前記弾性体と前記電磁力特性補正弾性体の荷重変化率の総和を、前記弁体の移動によって前記弁体と前記シート部との間を通過する流量が変化する前記弁体の変位の範囲内で、前記最大使用電流を前記電磁力発生手段に印加したときの、前記弁体変位に対する電磁力の変化率と、正負が逆で同じ大きさの荷重変化率を持つ前記電磁力特性補正弾性体を有することを特徴とする。この構成によれば、電磁力特性の補正専用の弾性体を追加することによって同様の効果を得ることができる。   The electromagnetic control valve device may further include an electromagnetic force characteristic correcting elastic body separately from the elastic body, and the total load change rate of the elastic body and the electromagnetic force characteristic correcting elastic body may be determined by moving the valve body. Electromagnetic force with respect to displacement of the valve body when the maximum operating current is applied to the electromagnetic force generating means within a range of displacement of the valve body in which a flow rate passing between the valve body and the seat portion changes. And the electromagnetic force characteristic correcting elastic body having the same rate of change and a load change rate of the same magnitude. According to this structure, the same effect can be acquired by adding the elastic body only for correction | amendment of an electromagnetic force characteristic.

また、本発明を適用した自動車として、作動油の圧力によって駆動するピストンとブレーキパッドをなえたブレーキキャリパと、前記作動油の圧力を作り出す圧力生成手段と、前記圧力生成手段の圧力を検出する圧力検出手段と、運転者の操作や車両状態から目標の制動力を算出し、作動油圧力を制御する制動力制御手段と、前記圧力生成手段と前記ブレーキキャリパとの間、リザーバと前記キャリパの間に設置された前記電磁式制御弁装置と、により構成される電子制御液圧ブレーキ装置において、前記電磁式制御弁装置の前記弾性体は、前記弁体の移動によって前記弁体と前記シート部との間を通過する流量が変化する前記弁体の変位の範囲内で、前記最大使用電流を前記電磁力発生手段に印加したときの、前記弁体変位に対する電磁力の変化率と正負が逆で同じ大きさの荷重変化率を持つ前記弾性体を有することを特徴とした電子制御液圧ブレーキ装置を備えた構成とする。この構成によれば、小流量で電磁式制御弁装置を通過する前後で流体の差圧が大きく変化する液圧式ブレーキ装置において、電磁式制御弁装置の弁体動作を安定化することができ、圧力制御を行う際に連続した圧力変化を維持することができる。さらに、同時に小型、低コストも達成することができる。また、圧力変化の連続性が維持されるため、圧力の推定が容易となりフィードフォワード的な操作が可能となるため、応答性を向上させることも可能となる。   Further, as an automobile to which the present invention is applied, a brake caliper having a piston and a brake pad driven by hydraulic oil pressure, pressure generating means for generating the hydraulic oil pressure, and pressure for detecting the pressure of the pressure generating means A detecting means, a braking force control means for calculating a target braking force from a driver's operation and a vehicle state, and controlling a hydraulic oil pressure; between the pressure generating means and the brake caliper; and between a reservoir and the caliper. In the electronically controlled hydraulic brake device configured by the electromagnetic control valve device installed in the electromagnetic control valve device, the elastic body of the electromagnetic control valve device is configured to move the valve body and the seat portion by moving the valve body. The electromagnetic force with respect to the displacement of the valve body when the maximum operating current is applied to the electromagnetic force generation means within the range of displacement of the valve body in which the flow rate passing between them varies. The rate of change in polarity is configured to include an electronic control hydraulic brake apparatus comprises said elastic member having a load change rate of the same magnitude in the opposite. According to this configuration, in the hydraulic brake device in which the differential pressure of the fluid greatly changes before and after passing through the electromagnetic control valve device at a small flow rate, the valve body operation of the electromagnetic control valve device can be stabilized, It is possible to maintain a continuous pressure change when performing pressure control. Furthermore, at the same time, small size and low cost can be achieved. In addition, since the continuity of the pressure change is maintained, the pressure can be easily estimated and a feedforward operation can be performed, so that the responsiveness can be improved.

本発明の実施例1に係る、液圧式ブレーキ装置で使用される電磁式制御弁装置の断面概略図を示す図である。It is a figure which shows the cross-sectional schematic of the electromagnetic control valve apparatus used with the hydraulic brake device based on Example 1 of this invention. 本実施例1に係る電磁力発生手段における電磁力と弁体変位の関係と有効変位とを表す図である。It is a figure showing the relationship between the electromagnetic force in the electromagnetic force generation means which concerns on the present Example 1, valve body displacement, and effective displacement. 本実施例1に係る弾性体のばね定数による電磁力特性(図2の上図を参照)の補正機能を表す図である。It is a figure showing the correction | amendment function of the electromagnetic force characteristic (refer the upper figure of FIG. 2) by the spring constant of the elastic body which concerns on the present Example 1. FIG. 従来技術の電磁式制御弁装置における、ランプ状電流入力に対する弁体変位と流入口圧力変化を表す図である。It is a figure showing the valve body displacement with respect to a ramp-shaped electric current input, and an inflow pressure change in the electromagnetic control valve apparatus of a prior art. 従来技術の電磁式制御弁装置における、圧力差大のときと圧力差小のときの電磁力と弾性体荷重の合力の絶対値と通過流体による力との関係を表す図である。It is a figure showing the relationship between the absolute value of the resultant force of the electromagnetic force and the elastic body load when the pressure difference is large and when the pressure difference is small, and the force by the passing fluid in the electromagnetic control valve device of the prior art. 本実施例1に係る電磁式制御弁装置における電磁力と弾性体荷重の合力の絶対値と弁体変位との関係を表す図である。It is a figure showing the relationship between the absolute value of the resultant force of the electromagnetic force and elastic body load in the electromagnetic control valve apparatus which concerns on the present Example 1, and valve body displacement. 本実施例1に係る電磁式制御弁装置における、圧力差大のときと圧力差小のときの電磁力と弾性体荷重の合力の絶対値と通過流体による力との関係を表す図である。It is a figure showing the relationship between the absolute value of the resultant force of the electromagnetic force, the elastic body load, and the force by the passing fluid when the pressure difference is large and when the pressure difference is small in the electromagnetic control valve device according to the first embodiment. 本実施例1に係る電磁式制御弁装置における、ランプ状電流入力に対する流入口圧力変化を表す図である。It is a figure showing the inlet_port | entrance pressure change with respect to a ramp-shaped electric current input in the electromagnetic control valve apparatus which concerns on the present Example 1. FIG. 本実施例1に係る電磁式制御弁装置に用いられる弾性体の別構成を示す図である。It is a figure which shows another structure of the elastic body used for the electromagnetic control valve apparatus which concerns on the present Example 1. FIG. 本発明の実施例2に係る電磁式制御弁装置であって、実施例1の構成を利用した電子制御液圧ブレーキ装置の全体構成図である。It is an electromagnetic control valve apparatus which concerns on Example 2 of this invention, Comprising: It is a whole block diagram of the electronically controlled hydraulic brake apparatus using the structure of Example 1. FIG.

符号の説明Explanation of symbols

11 電磁力発生手段
13 シリンダ
14 弁体
15 シート部
16 弾性体
17 ドライバ回路
18 コントローラ
19 各種センサ
20 ギャップ
202 ポンプ
203 ブレーキキャリパ
204 リザーバ
206 油圧配管
207 コントローラ
208 圧力センサ
DESCRIPTION OF SYMBOLS 11 Electromagnetic force generation means 13 Cylinder 14 Valve body 15 Seat part 16 Elastic body 17 Driver circuit 18 Controller 19 Various sensors 20 Gap 202 Pump 203 Brake caliper 204 Reservoir 206 Hydraulic piping 207 Controller 208 Pressure sensor

Claims (7)

目標となる制御量に応じた電流値を計算し出力する電流制御手段と、印加する電流値によって発生する電磁力が変化する電磁力発生手段と、前記電磁力発生手段によって発生した電磁力で移動する弁体と、前記弁体に向かい合うように設置されたシート部と、前記弁体を付勢する弾性体と、から構成される電磁式制御弁装置において、
前記弁体と前記シート部との間を通過する前後の流体に圧力差が無いときに、前記弁体を前記シート部から離間させるのに必要な電流値を最大使用電流とした場合、前記弁体の移動に連動して前記弁体と前記シート部との間を通過する流体の流量が変化する前記弁体の変位の範囲内で、前記最大使用電流を前記電磁力発生手段に印加したときの、前記弁体の変位に対する電磁力の変化率と正負が逆で同じ大きさの荷重変化率をもつ前記弾性体を備える
ことを特徴とする電磁式制御弁装置。
Current control means for calculating and outputting a current value corresponding to the target control amount, electromagnetic force generation means for changing the electromagnetic force generated by the applied current value, and movement by the electromagnetic force generated by the electromagnetic force generation means In an electromagnetic control valve device composed of a valve body that performs, a seat portion installed so as to face the valve body, and an elastic body that biases the valve body,
When there is no pressure difference between the fluid before and after passing between the valve body and the seat portion, when the current value necessary to separate the valve body from the seat portion is the maximum operating current, the valve When the maximum operating current is applied to the electromagnetic force generating means within the displacement range of the valve body in which the flow rate of the fluid passing between the valve body and the seat portion changes in conjunction with the movement of the body An electromagnetic control valve device comprising: the elastic body having a load change rate having the same magnitude as the rate of change of the electromagnetic force with respect to the displacement of the valve body but opposite in polarity.
請求項1において、
前記弾性体は、前記弁体の変位の範囲内で、前記電磁力の変化特性を線形に近似したときの、前記弁体の変位に対する電磁力の変化率と正負が逆で同じ大きさの荷重変化率を持つ線形特性をもつ弾性体である
ことを特徴とする電磁式制御弁装置。
In claim 1,
The elastic body is a load having the same magnitude as the rate of change of the electromagnetic force with respect to the displacement of the valve body, but with the opposite polarity when the change characteristic of the electromagnetic force is linearly approximated within the range of displacement of the valve body. An electromagnetic control valve device characterized by being an elastic body having a linear characteristic with a change rate.
請求項1において、
前記弾性体は、前記弁体を前記シート部に押し付ける方向に付勢するように配置することを特徴とする電磁式制御弁装置。
In claim 1,
The electromagnetic control valve device, wherein the elastic body is disposed so as to urge the valve body in a direction in which the valve body is pressed against the seat portion.
請求項1において、
前記弁体と前記シート部との間を通過前後の流体の圧力差が、前記圧力差が無いときに代えて、前記弁体に加わる最大圧力の1/4以下のときに、前記弁体の始動に必要な電流を低圧時必要電流とした場合、前記弁体の移動に連動して前記弁体と前記シート部との間を通過する流量が変化する前記弁体の変位の範囲内で、前記低圧時必要電流を前記電磁力発生手段に印加したときの、前記弁体の変位に対する電磁力の変化特性を線形に近似した時の変位に対する変化率と正負が逆で同じ大きさの荷重変化率をもつ線形特性の前記弾性体を備える
ことを特徴とする電磁式制御弁装置。
In claim 1,
When the pressure difference of the fluid before and after passing between the valve body and the seat portion is not equal to or less than the maximum pressure applied to the valve body instead of when there is no pressure difference, When the current required for starting is set as the current required at low pressure, within the range of displacement of the valve body in which the flow rate passing between the valve body and the seat portion changes in conjunction with the movement of the valve body, When the required current at the time of low pressure is applied to the electromagnetic force generating means, the rate of change with respect to displacement when the change characteristic of electromagnetic force with respect to the displacement of the valve body is approximated linearly and the load change with the same magnitude are opposite. An electromagnetic control valve device comprising: the elastic body having a linear characteristic having a rate.
請求項1において、
前記弁体の移動に連動して前記弁体と前記シート部との間を通過する流体の流量が変化する前記弁体の変位の範囲よりもさらに小さい範囲内で、前記最大使用電流を前記電磁力発生手段に印加したときの、前記弁体の変位に対する電磁力の変化率と正負が逆で同じ大きさの荷重変化率をもつ前記弾性体を備える
ことを特徴とする電磁式制御弁装置。
In claim 1,
The maximum operating current is set within the range that is smaller than the range of displacement of the valve body in which the flow rate of the fluid passing between the valve body and the seat portion changes in conjunction with the movement of the valve body. An electromagnetic control valve device, comprising: the elastic body having a load change rate of the same magnitude as the rate of change of the electromagnetic force with respect to the displacement of the valve body when the force is applied to the valve body.
請求項1において、
前記電磁力発生手段に印加する電流が零のときに前記流体による前記弁体への圧力に対抗して前記弁体を前記シート部から離間させ得ないばね定数をもつ弾性体を設けるとともに、電磁力特性補正用の補正用弾性体を設け、
前記弾性体と前記補正用弾性体の荷重変化率の総和が、前記最大使用電流を前記電磁力発生手段に印加したときの、前記弁体の変位に対する電磁力の変化率と正負が逆で同じ大きさである
ことを特徴とした電磁式制御弁装置。
In claim 1,
An elastic body having a spring constant that prevents the valve body from being separated from the seat portion against the pressure applied to the valve body by the fluid when the current applied to the electromagnetic force generating means is zero is provided. Provide a correction elastic body for force characteristic correction,
The sum of the load change rates of the elastic body and the correcting elastic body is the same as the rate of change of the electromagnetic force with respect to the displacement of the valve body when the maximum operating current is applied to the electromagnetic force generating means. An electromagnetic control valve device characterized by its size.
作動油の圧力によって駆動するピストンとブレーキパッドを有するブレーキキャリパと、前記作動液のリザーバと、前記作動油の圧力を作り出す圧力生成手段と、前記圧力生成手段の圧力を検出する圧力検出手段と、運転者による操作量と車両の運転状態量から目標の制動力を算出して作動油圧力を制御する制動力制御手段と、前記圧力生成手段と前記ブレーキキャリパとの間、前記リザーバと前記キャリパの間に設置される電磁式制御弁装置と、からなる電子制御液圧ブレーキ装置を備えた自動車であって、
電磁力発生手段の電磁力で移動し且つ弾性体によって付勢される弁体と前記弁体に対向配置されるシート部との間を通過する前後の作動油に圧力差が無いときに、前記弁体を前記シート部から離間させるのに必要な電流値を最大使用電流とした場合、前記弁体の移動に連動して前記弁体と前記シート部との間を通過する作動油の流量が変化する前記弁体の変位の範囲内で、前記最大使用電流を前記電磁力発生手段に印加したときの、前記弁体の変位に対する電磁力の変化率と正負が逆で同じ大きさの荷重変化率をもつ前記弾性体を有する
ことを特徴とする前記電磁式制御弁装置を持つ電子制御液圧ブレーキ装置を備えた自動車。
A brake caliper having a piston and a brake pad driven by the pressure of the hydraulic oil, a reservoir of the hydraulic fluid, a pressure generating means for generating the pressure of the hydraulic oil, and a pressure detecting means for detecting the pressure of the pressure generating means; A braking force control means for controlling a hydraulic oil pressure by calculating a target braking force from an operation amount by the driver and a driving state quantity of the vehicle; between the pressure generation means and the brake caliper; between the reservoir and the caliper; An automobile equipped with an electronically controlled hydraulic brake device comprising an electromagnetic control valve device installed in between,
When there is no pressure difference between the hydraulic oil before and after passing between the valve body that is moved by the electromagnetic force of the electromagnetic force generating means and is urged by the elastic body and the seat portion that is disposed opposite to the valve body, When the current value necessary for separating the valve body from the seat portion is the maximum operating current, the flow rate of the hydraulic oil passing between the valve body and the seat portion in conjunction with the movement of the valve body is When the maximum operating current is applied to the electromagnetic force generating means within the range of the displacement of the valve body that changes, the load change of the same magnitude with the rate of change of the electromagnetic force with respect to the displacement of the valve body is opposite to the positive and negative An automobile equipped with an electronically controlled hydraulic brake device having the electromagnetic control valve device, characterized by comprising the elastic body having a rate.
JP2006294349A 2006-10-30 2006-10-30 Electromagnetic control valve device Pending JP2008111475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006294349A JP2008111475A (en) 2006-10-30 2006-10-30 Electromagnetic control valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006294349A JP2008111475A (en) 2006-10-30 2006-10-30 Electromagnetic control valve device

Publications (1)

Publication Number Publication Date
JP2008111475A true JP2008111475A (en) 2008-05-15

Family

ID=39444094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006294349A Pending JP2008111475A (en) 2006-10-30 2006-10-30 Electromagnetic control valve device

Country Status (1)

Country Link
JP (1) JP2008111475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975300A (en) * 2010-09-27 2011-02-16 苏明 Method and device for controlling high-speed electromagnetic switch valve to adapt to pressure change at oil supply port
CN115932683A (en) * 2023-02-20 2023-04-07 无锡学院 Electromagnetic force testing device and method for electromagnetic valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975300A (en) * 2010-09-27 2011-02-16 苏明 Method and device for controlling high-speed electromagnetic switch valve to adapt to pressure change at oil supply port
CN115932683A (en) * 2023-02-20 2023-04-07 无锡学院 Electromagnetic force testing device and method for electromagnetic valve

Similar Documents

Publication Publication Date Title
JP4797934B2 (en) Disc brake control device for vehicle
JP3972859B2 (en) Stroke simulator
JP5018093B2 (en) Braking control device
JP5892980B2 (en) Braking device for vehicle
US9505388B2 (en) Hydraulic brake system and hydraulic pressure controller
JP5081938B2 (en) Hydraulic control device
JP2015509460A (en) Method for operating a braking device
JP3915209B2 (en) Brake fluid temperature detection method and brake fluid pressure control method
JP2015202725A (en) Vehicular brake device
JPH1159403A (en) Hydraulic brake device
KR20160093461A (en) Operation method of the brake system
US9701288B2 (en) Hydraulic brake system
JP2017081522A (en) Fluid pressure control device
US20180345925A1 (en) Hydraulic pressure control device
JP2008111475A (en) Electromagnetic control valve device
JP5567854B2 (en) Brake control device
CN106364470B (en) Braking device for vehicle
WO2018047902A1 (en) Braking device for vehicle
JP4654791B2 (en) Braking control device
US20200180576A1 (en) Brake control device for vehicle
JP2003182547A (en) Braking pressure inferring device
JP6384445B2 (en) Braking device for vehicle
JP6575488B2 (en) Brake control device for vehicle
JP5402390B2 (en) Brake control device
JP2006168581A (en) Electronic brake device