JP2008111435A - Asymmetric compressor air extraction method - Google Patents

Asymmetric compressor air extraction method Download PDF

Info

Publication number
JP2008111435A
JP2008111435A JP2007277085A JP2007277085A JP2008111435A JP 2008111435 A JP2008111435 A JP 2008111435A JP 2007277085 A JP2007277085 A JP 2007277085A JP 2007277085 A JP2007277085 A JP 2007277085A JP 2008111435 A JP2008111435 A JP 2008111435A
Authority
JP
Japan
Prior art keywords
casing
compressor
extraction
arc
stall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007277085A
Other languages
Japanese (ja)
Inventor
Steven M Schirle
スティーヴン・マーク・シルル
Donald Kasperski
ドナルド・カスパースキ
Nick Martin
ニック・マーティン
Robert M Zacharias
ロバート・エム・ザッカリアス
Timothy E Dejoris
ティモシー・イー・ディジョリス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2008111435A publication Critical patent/JP2008111435A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0223Control schemes therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/023Details or means for fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for mistuning rotating stall aerodynamics by preventing the formation of coherent unsteady loads. <P>SOLUTION: Compressor air is extracted in an asymmetric circumferential pattern (16). The asymmetric extract pattern disrupts the rotating stall cell (10) rotational pattern, preventing the formation of a coherent aerodynamic excitation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非対称式圧縮機抽気法に関する。   The present invention relates to an asymmetric compressor bleed method.

発電産業用軸流ガスタービンは、一定の回転速度及び出力で最適に作動するように設計さる。加えて、従来の産業用軸流ガスタービン圧縮機は可変翼段及び抽気部が限られている。こうした定速度運転、限られた可変翼段及び限られた抽気部という3つの要因は、始動及び停止操作時に著しい非設計(off-design)空力条件を生じる。軸流圧縮機ではこうした非設計運転時に旋回失速を起こす。   The axial flow gas turbine for the power generation industry is designed to operate optimally at a constant rotational speed and power. In addition, conventional industrial axial flow gas turbine compressors have limited variable vane stages and extraction sections. These three factors, constant speed operation, limited variable blade stage, and limited bleed, result in significant off-design aerodynamic conditions during start and stop operations. An axial compressor causes a rotating stall during such non-design operation.

旋回失速は、ホイール速度の約半分で回転する局所的な失速セルとして現れる。これらの失速セルは、動翼及び静翼の双方にコヒーレント非定常空力負荷を与える。ロータの速度が変わると、失速セル数が変化して、異なる節直径が設定される。旋回失速空力負荷による動翼及び静翼の振動応答は、翼の通常損傷に対する感受性を高め、早期破損を招きかねない。   The turning stall appears as a local stall cell that rotates at about half the wheel speed. These stall cells provide coherent unsteady aerodynamic loads on both the moving and stationary blades. As the rotor speed changes, the number of stalled cells changes and a different nodal diameter is set. The vibration response of the moving and stationary blades due to a rotating stall aerodynamic load increases the sensitivity of the blades to normal damage and can lead to premature failure.

本発明は、旋回失速に起因するコヒーレント空気力を解消又は低減することによって軸流圧縮機動翼及び静翼の耐久性を高める。具体的には、本発明は、旋回失速空気力をミスチューン(mistune)させてコヒーレント非定常負荷の形成を防ぐ方法を提供する。   The present invention enhances the durability of axial flow compressor blades and stationary blades by eliminating or reducing coherent aerodynamic forces due to swirling stall. Specifically, the present invention provides a method for preventing the formation of a coherent unsteady load by mistuning the turning stall aerodynamic force.

本発明は、圧縮機内の空気流を制御する方法であって、部品速度又は非設計運転によって発生する流れの擾乱に対して、圧縮機の所定の軸方向部分における一連の周方向に非対称に離隔した位置で流れを抽出して、流れの擾乱を打ち消す抽気パターンを生じさせることを含む方法として具体化される。   The present invention is a method for controlling the air flow in a compressor, wherein a series of circumferentially asymmetric separations in a predetermined axial portion of the compressor with respect to flow disturbances caused by part speed or non-design operation. The present invention is embodied as a method that includes extracting a flow at the location and generating a bleed pattern that counteracts the flow disturbance.

本発明は、圧縮機内の空気流を制御する方法であって、圧縮機空気の抽出を、旋回失速のような擾乱を打ち消すように圧縮機のケーシングの外周で非対称に作動させることを含む方法としても具体化される。   The present invention is a method for controlling the air flow in a compressor, the method comprising operating the extraction of the compressor air asymmetrically around the outer casing of the compressor so as to counteract disturbances such as swirling stall. Is also materialized.

発電産業用軸流ガスタービンは、一定の回転速度及び出力で最適に作動するように設計さる。加えて、従来の産業用軸流ガスタービン圧縮機は可変翼段及び抽気部が限られている。こうした3つの要因は、始動及び停止操作時に著しい非設計空力条件を生じる。軸流圧縮機ではこうした非設計運転時に旋回失速を起こしかねない。   The axial flow gas turbine for the power generation industry is designed to operate optimally at a constant rotational speed and power. In addition, conventional industrial axial flow gas turbine compressors have limited variable vane stages and extraction sections. These three factors create significant non-design aerodynamic conditions during start and stop operations. Axial flow compressors can cause rotational stall during such non-design operations.

図1に図式的に示した旋回失速は、ホイール速度の約半分で回転する局所的な失速セル10(ωstall cells〜1/2ωengine)として現れる。これらの失速セルは、動翼及び静翼12の双方にコヒーレント非定常空力負荷を与える。ロータの速度が変わると、失速セル数が変化して異なる励振特性(節直径として知られる)が設定される。旋回失速空力負荷による動翼及び静翼の振動応答は、翼の通常損傷に対する感受性を高め、早期破損を招きかねない。 The turning stall shown schematically in FIG. 1 appears as a local stall cell 10 (ω stall cells ˜½ω engine ) that rotates at about half the wheel speed. These stall cells provide coherent unsteady aerodynamic loads on both the moving blades and the stationary blades 12. As the rotor speed changes, the number of stalled cells changes and different excitation characteristics (known as nodal diameters) are set. The vibration response of the moving and stationary blades due to the rotating stall aerodynamic load increases the sensitivity of the blades to normal damage and can lead to premature failure.

旋回失速に起因するコヒーレント空気力を解消又は低減することによって軸流圧縮機ブレードの耐久性が向上する。このような空力振動負荷の低減によって、翼先端の摩擦、腐食、前縁の異物損傷のような通常運転損傷に対する翼の損傷耐性が高まる。   The durability of the axial compressor blade is improved by eliminating or reducing the coherent aerodynamic force caused by the rotating stall. This reduction in aerodynamic vibration load increases the blade's damage resistance to normal operating damage such as blade tip friction, corrosion, and leading edge foreign object damage.

本発明は、旋回失速による軸流圧縮機動翼及び静翼での空力励振を解消又は低減することによって、軸流圧縮機動翼及び静翼の耐久性を向上させる。具体的には、本発明は、コヒーレント非定常負荷の発生を防ぐことによって旋回失速空気力をミスチューンさせる方法を提供する。   The present invention improves the durability of the axial compressor rotor blades and stationary blades by eliminating or reducing the aerodynamic excitation of the axial compressor rotor blades and stationary blades due to rotational stall. Specifically, the present invention provides a method for mistuning a rotating stall aerodynamic force by preventing the occurrence of a coherent unsteady load.

そこで具体的には、圧縮機内の旋回失速のような擾乱を解消又は低減する新規な方法について提案する。例えば1以上の所定の軸方向位置(段)において一連の周方向に離隔した位置で、圧縮機空気を、振動源に応じて周方向に選択的に、旋回失速の流れの擾乱を打ち消すように非対称に選択的に抽気する。このような場合に、抽気プロセスが開始され、空気の非対称抽出によって旋回失速状態又は潜在的な失速状態が打ち消される。これは作動状態(部品速度及び/又は部品負荷)によって定まる現象であるので、センサは必要ない。   Therefore, specifically, a new method for eliminating or reducing disturbances such as turning stall in the compressor is proposed. For example, at a predetermined axial position (stage) of one or more, the compressor air is selectively moved in the circumferential direction according to the vibration source so as to cancel the flow disturbance of the rotating stall. Extract asymmetrically selectively. In such a case, the bleed process is initiated and the turning stall condition or potential stall condition is canceled by asymmetric extraction of air. Since this is a phenomenon determined by the operating state (part speed and / or part load), no sensor is required.

図2及び図3に図式的に示したような本発明の例示的な実施形態では、圧縮機空気は、外径流路壁18に設けられた一連の一般形状の孔又はスロットを通して非対称な周方向パターンで抽出される。抽気パターンは、旋回失速節直径パターン及びセルの空力強度の関数として決まる。非対称多段抽気パターンは、旋回失速セルの回転パターンを乱して、コヒーレント空力励振の形成を防ぐ。   In the exemplary embodiment of the present invention as schematically shown in FIGS. 2 and 3, the compressor air is asymmetric circumferentially through a series of generally shaped holes or slots provided in the outer diameter channel wall 18. Extracted by pattern. The bleed pattern is determined as a function of the turning stall node diameter pattern and the aerodynamic strength of the cell. The asymmetric multistage bleed pattern disturbs the rotation pattern of the rotating stall cell and prevents the formation of coherent aerodynamic excitation.

図3は、本発明の例示的な実施形態による一般形状の抽気孔又はスロットを備えた軸流圧縮機を図式的に示す。一般形状の抽気孔又はスロット16は、圧縮機空気を圧縮機ケーシングを通して選択的に抽気するように規定される。入口は、抽出空気を除去し必要又は所望に応じて抽出空気を再循環するための高速遮断弁(図示せず)を解して導管(図示せず)によって補正される。何カ所かの軸方向位置に同様の抽気孔が設けている場合には、2以上の軸方向位置で周方向に対応する抽気管は同じ制御弁を共有していてもよい。周方向の抽気孔又はスロット列を通常同時に作動させる場合には、周方向の抽気管列を共通の制御弁に接続してもよい。高圧空気の抽出を節約するため、失速セルが抑制されたら、制御装置で1以上の弁を閉鎖すべきである。ある例示的な実施形態では、抽出は所定期間継続した後、終了する。別の例示的な実施形態では、抽気量は、抽出開始後に徐々に減少される。必要又は所望に応じて、その他の抽出プロトコルを採用してもよい。   FIG. 3 schematically illustrates an axial compressor with a generally shaped bleed hole or slot according to an exemplary embodiment of the present invention. A generally shaped bleed hole or slot 16 is defined to selectively bleed the compressor air through the compressor casing. The inlet is corrected by a conduit (not shown) through a high speed shut-off valve (not shown) for removing the extracted air and recirculating the extracted air as needed or desired. When similar bleed holes are provided at several axial positions, the bleed pipes corresponding to the circumferential direction at two or more axial positions may share the same control valve. When the circumferential bleed holes or slot trains are normally operated simultaneously, the circumferential bleed tube rows may be connected to a common control valve. To conserve high pressure air extraction, one or more valves should be closed in the controller once the stall cell is suppressed. In one exemplary embodiment, the extraction ends after a predetermined period of time. In another exemplary embodiment, the amount of bleed is gradually reduced after extraction begins. Other extraction protocols may be employed as needed or desired.

上述のように、コヒーレント非定常負荷の形成を防いで旋回失速空気力をミスチューンするため、本発明は、図2の実施例に示すように、外径流路壁18上の一連の一般形状の孔又はスロット16を通して非対称周方向パターンで圧縮機空気を抽出するアセンブリを提供する。抽気パターンは、旋回失速節直径パターン及びセルの空力強度の関数として実験又は解析で求めることができる。これらの抽気部は、旋回失速の性状、必要な抽気流量及びエンジン構成の制約条件に応じて単一の軸方向位置又は複数の軸方向位置に配設し得る。図3にみられるように、この例示的な実施形態は、2つの軸方向位置での非対称抽出配置を表す。軸方向位置の数、周方向円弧の長さ、抽気孔の形状及び数は、旋回失速の性状に基づいて規定される。非対称多段抽気パターンは、旋回失速セルの回転パターンを乱して、図2に概念的に示すようにコヒーレント空力励振の形成を防止する。   As described above, in order to prevent the formation of coherent unsteady loads and mistune the rotating stall aerodynamic force, the present invention provides a series of general shapes on the outer diameter flow path wall 18 as shown in the embodiment of FIG. An assembly is provided for extracting compressor air through holes or slots 16 in an asymmetric circumferential pattern. The bleed pattern can be determined by experiment or analysis as a function of the turning stall node diameter pattern and the aerodynamic strength of the cell. These bleed parts can be arranged at a single axial position or at multiple axial positions depending on the nature of the turning stall, the required bleed flow rate and the engine configuration constraints. As seen in FIG. 3, this exemplary embodiment represents an asymmetric extraction arrangement at two axial positions. The number of axial positions, the length of the circumferential arc, and the shape and number of bleed holes are defined based on the properties of the turning stall. The asymmetric multi-stage bleed pattern disturbs the rotational pattern of the rotating stall cell and prevents the formation of coherent aerodynamic excitation as conceptually shown in FIG.

以上の説明から明らかであろうが、非対称抽気機構は、圧縮機ケーシング18の各々の所定の軸方向位置20において所定の円周位置の所定の円弧長Θarcの範囲内に、必要な総抽気流量をもたらす所定の抽出形状を有する非対称に離隔した抽気部16を含む。例示的な実施形態では、円弧長Θarcは約90度である。 As will be apparent from the above description, the asymmetric bleed mechanism has a total bleed required within a predetermined arc length Θ arc at a predetermined circumferential position at a predetermined axial position 20 of each compressor casing 18. An asymmetrically spaced bleed portion 16 having a predetermined extraction shape that provides a flow rate is included. In the exemplary embodiment, the arc length Θ arc is approximately 90 degrees.

分割ケーシング用途では、抽気部16はトップハーフケーシングに配設され、現場で容易に改造でき、抽気マニホルド及び配管(図示せず)へのアクセスの改善が得られる。以上の説明から明らかな通り、多段抽気では、ユニットから流れ送るために抽気マニホルドが必要となろう。   For split casing applications, the bleed portion 16 is disposed in the top half casing and can be easily modified in the field, resulting in improved access to the bleed manifold and piping (not shown). As is apparent from the above description, multi-stage bleed will require a bleed manifold to flow from the unit.

従って、本発明では、1)翼でのコヒーレント非定常空力励振の低減/解消、2)既存エンジンの分割ケーシング設計での改造が可能であること、3)最新型の空力翼で実現できること、4)翼先端での摩擦、腐食孔及び前縁損傷に対する損傷耐性の増大による圧縮機翼耐久性の向上、という利点が得られる。   Therefore, according to the present invention, 1) reduction / elimination of coherent unsteady aerodynamic excitation at the blade, 2) modification of the existing engine with a split casing design is possible, and 3) realization with the latest aerodynamic blade. ) Benefits of improved compressor blade durability due to increased damage resistance to blade tip friction, corrosion holes and leading edge damage.

現時点で最も実用的で好ましいと思料される実施形態に関して本発明を説明してきたが、本発明は、開示した実施形態に限定されるものではなく、特許請求の範囲の技術的思想及び技術的範囲に属する様々な修正及び均等な構成を包括するものである。   Although the present invention has been described with respect to the most practical and preferred embodiments at the present time, the present invention is not limited to the disclosed embodiments, and the technical idea and scope of the claims. Various modifications and equivalent configurations belonging to the above are included.

旋回失速の概略図。Schematic of turning stall. 本発明の例示的な実施形態による非対称式圧縮機抽気の概略図。1 is a schematic diagram of an asymmetric compressor bleed according to an exemplary embodiment of the present invention. FIG. 本発明の例示的な実施形態による非対称式圧縮機抽気に適合化させた圧縮機の概略斜視図。1 is a schematic perspective view of a compressor adapted for asymmetric compressor bleed according to an exemplary embodiment of the present invention. FIG.

符号の説明Explanation of symbols

10 失速セル
12 翼
16 抽気孔又はスロット
18 圧縮機ケーシング/壁
20 軸方向位置
10 Stall cell 12 Wings 16 Bleed holes or slots 18 Compressor casing / wall 20 Axial position

Claims (10)

圧縮機内の空気流を制御する方法であって、圧縮機の所定の軸方向部分(20)の近傍又は下流からケーシング(18)を通して高圧空気を、旋回失速のような流れの擾乱を打ち消す周方向非対称パターンで抽出する段階(16)を含む方法。 A method for controlling the air flow in a compressor, in which the high-pressure air is passed through a casing (18) from the vicinity or downstream of a predetermined axial portion (20) of the compressor, and the circumferential direction cancels out flow disturbances such as swirling stall. Extracting with an asymmetric pattern (16). 前記高圧空気の抽出が、圧縮機のケーシング(18)の外周に非対称に配設された複数の孔又はスロット(16)を通して行われる、請求項1記載の方法。 The method according to claim 1, wherein the extraction of the high-pressure air takes place through a plurality of holes or slots (16) arranged asymmetrically around the outer circumference of the compressor casing (18). 前記ケーシングが分割ケーシングであり、前記高圧空気の抽出が分割ケーシングのトップケーシング部に配設された複数の孔又はスロットを通して行われる、請求項1記載の方法。 The method of claim 1, wherein the casing is a split casing, and the extraction of the high pressure air is performed through a plurality of holes or slots disposed in a top casing portion of the split casing. 所要流量及び旋回失速形成の性状によって定まる円弧Θarc内に配設された複数の孔又はスロットを通して高圧空気を抽出することを含む、請求項1記載の方法。 2. The method of claim 1, comprising extracting high pressure air through a plurality of holes or slots disposed in an arc Θ arc defined by the required flow rate and the nature of the swirl stall formation. 前記孔又はスロット(16)が円弧Θarc内に非対称に配設される、請求項4記載の方法。 The method of claim 4, wherein the holes or slots (16) are disposed asymmetrically within the arc Θ arc . 前記抽出を所定の期間後に終了する、請求項1記載の方法。 The method of claim 1, wherein the extraction is terminated after a predetermined period. 前記抽出をその開始後に徐々に減少させる、請求項1記載の方法。 The method of claim 1, wherein the extraction is gradually reduced after its start. 圧縮機内の空気流を制御する方法であって、圧縮機空気の抽出(16)を、旋回失速のような擾乱を打ち消すように圧縮機のケーシング(18)の外周で非対称に作動させることを含む方法。 A method for controlling air flow in a compressor, comprising operating a compressor air extraction (16) asymmetrically around the circumference of the compressor casing (18) to counteract disturbances such as swirling stall. Method. 高圧空気の抽出が、圧縮機のケーシング(18)の外周の円弧Θarc内に配設された複数の孔又はスロット(16)を通して行われ、該円弧が所要流量及び旋回失速形成の性状によって定まる、請求項8記載の方法。 Extraction of high pressure air is performed through a plurality of holes or slots (16) disposed in an arc Θ arc on the outer periphery of the compressor casing (18), which arc is determined by the required flow rate and the nature of the rotating stall formation. The method according to claim 8. 前記ケーシングが分割ケーシングであり、前記高圧空気の抽出が分割ケーシングのトップケーシング部に配設された複数の孔又はスロットを通して行われる、請求項8記載の方法。 The method according to claim 8, wherein the casing is a split casing, and the extraction of the high-pressure air is performed through a plurality of holes or slots disposed in a top casing portion of the split casing.
JP2007277085A 2006-10-27 2007-10-25 Asymmetric compressor air extraction method Withdrawn JP2008111435A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/588,389 US20080101922A1 (en) 2006-10-27 2006-10-27 Asymmetric compressor air extraction method

Publications (1)

Publication Number Publication Date
JP2008111435A true JP2008111435A (en) 2008-05-15

Family

ID=39244627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277085A Withdrawn JP2008111435A (en) 2006-10-27 2007-10-25 Asymmetric compressor air extraction method

Country Status (5)

Country Link
US (1) US20080101922A1 (en)
JP (1) JP2008111435A (en)
KR (1) KR20080038041A (en)
CN (1) CN101169137A (en)
DE (1) DE102007051633A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274537A1 (en) * 2010-05-09 2011-11-10 Loc Quang Duong Blade excitation reduction method and arrangement
KR20120077335A (en) * 2010-12-30 2012-07-10 한국항공우주연구원 Axial compressor and method to stabilize fluid thereof
WO2014052967A1 (en) * 2012-09-28 2014-04-03 United Technologies Corporation Case assembly for a gas turbine engine
JP6037996B2 (en) * 2013-10-17 2016-12-07 三菱重工業株式会社 Compressor and gas turbine
US11635030B2 (en) 2017-06-13 2023-04-25 General Electric Company Compressor bleed apparatus for a turbine engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196472A (en) * 1977-09-09 1980-04-01 Calspan Corporation Stall control apparatus for axial flow compressors
US5340271A (en) * 1990-08-18 1994-08-23 Rolls-Royce Plc Flow control method and means
US5462403A (en) * 1994-03-21 1995-10-31 United Technologies Corporation Compressor stator vane assembly
US5984625A (en) * 1996-10-15 1999-11-16 California Institute Of Technology Actuator bandwidth and rate limit reduction for control of compressor rotating stall
US6098010A (en) * 1997-11-20 2000-08-01 The Regents Of The University Of California Method and apparatus for predicting and stabilizing compressor stall
US6409469B1 (en) * 2000-11-21 2002-06-25 Pratt & Whitney Canada Corp. Fan-stator interaction tone reduction
US6506010B1 (en) * 2001-04-17 2003-01-14 General Electric Company Method and apparatus for compressor control and operation in industrial gas turbines using stall precursors

Also Published As

Publication number Publication date
CN101169137A (en) 2008-04-30
US20080101922A1 (en) 2008-05-01
DE102007051633A1 (en) 2008-04-30
KR20080038041A (en) 2008-05-02

Similar Documents

Publication Publication Date Title
US11448127B2 (en) Translating inlet for adjusting airflow distortion in gas turbine engine
US11073090B2 (en) Valved airflow passage assembly for adjusting airflow distortion in gas turbine engine
US8123471B2 (en) Variable stator vane contoured button
US10794281B2 (en) Gas turbine engine having instrumented airflow path components
JP2008303877A (en) Span divided variable guide vane and method related thereto
JP2006226285A (en) Takeout of air from tip of rotor wheel of high pressure compressor in turbojet
JP2016109124A (en) Axial compressor endwall treatment for controlling leakage flow
CN105736460B (en) Axial compressor rotor incorporating non-axisymmetric hub flowpath and splitter blades
CN101403321A (en) Axial flow turbine and stage structure thereof
JP2008111435A (en) Asymmetric compressor air extraction method
US8628297B2 (en) Tip flowpath contour
US8591184B2 (en) Hub flowpath contour
US8500399B2 (en) Method and apparatus for enhancing compressor performance
EP3516240B1 (en) A technique for controlling rotating stall in compressor for a gas turbine engine
JP2009036118A (en) Axial-flow exhaust gas turbine
JP5653486B2 (en) Fixed vane assembly for axial turbines
EP2527617B1 (en) A vortex reducer
US11047393B1 (en) Multi-stage centrifugal compressor, casing, and return vane
US20230122939A1 (en) Gas turbine engine with compressor bleed system for combustor start assist
Numakura Performance of a small-size two-stage centrifugal compressor
CN110382825A (en) Method and system for the gas of resistance to ice raft removal
US11391288B2 (en) System and method for operating a compressor assembly
EP2873830A1 (en) Turbocharger, turbine nozzle, and ship
Li et al. Numerical investigation of VSVs mal-schedule effects in a three-stage axial compressor
JP2018053767A (en) Fluid machine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110104