JP2008111109A - Rubber composition for tire inner liner and pneumatic tire using the same - Google Patents

Rubber composition for tire inner liner and pneumatic tire using the same Download PDF

Info

Publication number
JP2008111109A
JP2008111109A JP2007252065A JP2007252065A JP2008111109A JP 2008111109 A JP2008111109 A JP 2008111109A JP 2007252065 A JP2007252065 A JP 2007252065A JP 2007252065 A JP2007252065 A JP 2007252065A JP 2008111109 A JP2008111109 A JP 2008111109A
Authority
JP
Japan
Prior art keywords
rubber
process oil
rubber composition
inner liner
tire inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007252065A
Other languages
Japanese (ja)
Other versions
JP4128210B2 (en
Inventor
Yoshihiko Suzuki
好彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2007252065A priority Critical patent/JP4128210B2/en
Publication of JP2008111109A publication Critical patent/JP2008111109A/en
Application granted granted Critical
Publication of JP4128210B2 publication Critical patent/JP4128210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition having a processability improved to be well-balanced before vulcanized, an air barrier property after vulcanized and an age resistance after vulcanized which is useful for manufacturing a tire inner liner. <P>SOLUTION: The rubber composition for the tire inner liner comprises: (A) a rubber component comprising 50 wt.% or more of one or more butyl-type rubbers selected from the group consisting of butyl rubbers and halogenated butyl rubbers; and (B) 3-20 pts.wt. of a process oil with respect to 100 pts.wt. of the above described rubber component (A), wherein the process oil is comprised of an aromatic hydrocarbon, a paraffinic hydrocarbon and a naphthenic hydrocarbon, and then the weight percentages of the carbons constituting the aromatic hydrocarbons C<SB>A</SB>, the carbons constituting the paraffinic hydrocarbons C<SB>p</SB>and the carbons constituting the naphthenic hydrocarbons C<SB>N</SB>in the process oil, as determined according to ASTM D2140, are respectively within a range as follows: 20 wt.%≤C<SB>A</SB>≤40 wt.%, 30 wt.%≤C<SB>p</SB>≤60 wt.%, and 20 wt.%≤C<SB>N</SB><30 wt.%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、タイヤインナーライナー用ゴム組成物に関する。より詳細には、本発明は、加硫前の加工性と、加硫後の空気遮断性と、加硫後の耐老化性をバランスよく改善したタイヤインナーライナー用ゴム組成物に関する。   The present invention relates to a rubber composition for a tire inner liner. More specifically, the present invention relates to a rubber composition for a tire inner liner that improves the workability before vulcanization, the air barrier property after vulcanization, and the aging resistance after vulcanization in a well-balanced manner.

空気入りタイヤは、一般的に、タイヤ気室の気密性の観点から、空気透過性が低い(または空気遮断性が高い)ことが特に要求され、空気入りタイヤの内面に設けられるインナーライナーは高い空気遮断性を有することが求められ、空気遮断性に優れたブチルゴムおよびハロゲン化ブチルゴムから選ばれるブチル系ゴムを主体としたゴム組成物がその製造に使用されることが多い。しかしながら、ブチルゴムおよびハロゲン化ブチルゴムは、圧延、押出、成形等による加硫前の加工性があまり良くないことは一般的に知られており、加硫前の加工性を改善するために、ゴム組成物の配合に通常使用されている種々の可塑剤および軟化剤を添加することが通常行われている。なお、可塑剤と軟化剤の名称は、一般的に、使用目的に応じて使い分けられているが、本質的には同じ機能を示し両者に明りょうな区別はないので、以下、可塑剤または軟化剤の機能を発揮するものを総称して可塑剤と呼ぶ。   In general, a pneumatic tire is particularly required to have low air permeability (or high air blocking property) from the viewpoint of airtightness of a tire air chamber, and an inner liner provided on the inner surface of the pneumatic tire is high. A rubber composition mainly composed of a butyl rubber selected from butyl rubber and halogenated butyl rubber, which is required to have air barrier properties and excellent in air barrier properties, is often used for the production thereof. However, it is generally known that butyl rubber and halogenated butyl rubber are not very good in processability before vulcanization by rolling, extrusion, molding, etc. In order to improve the processability before vulcanization, the rubber composition It is common practice to add various plasticizers and softeners that are commonly used in the formulation of products. The names of plasticizers and softeners are generally properly used according to the purpose of use. However, since the functions are essentially the same and there is no clear distinction between them, plasticizers or softeners are described below. Those that exhibit the function of the agent are collectively referred to as a plasticizer.

空気入りタイヤのインナーライナーを製造するためのゴム組成物に添加されるゴム用可塑剤として様々な炭化水素系可塑剤が知られており、炭化水素系可塑剤として、例えば、パラフィン系オイルを使用すること(特許文献1)、ナフテン系オイルとパラフィン系オイルの1種以上を使用すること(特許文献2)、パラフィン系オイルとアロマ系オイルの1種以上を使用すること(特許文献3)が提案されている。   Various hydrocarbon plasticizers are known as rubber plasticizers added to rubber compositions for producing inner liners of pneumatic tires. For example, paraffin oil is used as the hydrocarbon plasticizer. (Patent Document 1), using one or more of naphthenic oil and paraffinic oil (Patent Document 2), using one or more of paraffinic oil and aroma oil (Patent Document 3). Proposed.

しかしながら、従来のゴム用可塑剤を使用してインナーライナーを製造すると、加硫前の加工性と、加硫後の空気遮断性と、加硫後の耐老化性をバランスよく改善することはできなかった。   However, when an inner liner is produced using a conventional plasticizer for rubber, it is possible to improve the workability before vulcanization, the air barrier property after vulcanization, and the aging resistance after vulcanization in a balanced manner. There wasn't.

特開平6−192508号公報JP-A-6-192508 特開2002−88191号公報JP 2002-88191 A 特開2005−60442号公報Japanese Patent Laid-Open No. 2005-60442

上記のとおり、空気入りタイヤのインナーライナーの製造に種々のゴム用可塑剤を使用することが知られているが、ブチルゴムおよびハロゲン化ブチルゴムから成る群から選ばれるブチル系ゴムを含んで成るゴム組成物において、加硫前の加工性と、加硫後の空気遮断性と、加硫後の耐老化性をバランスよく改善することはこれまで提案されていない。   As described above, it is known to use various rubber plasticizers in the production of an inner liner of a pneumatic tire, but a rubber composition comprising a butyl rubber selected from the group consisting of butyl rubber and halogenated butyl rubber In the past, it has not been proposed to improve the workability before vulcanization, the air barrier property after vulcanization, and the aging resistance after vulcanization in a well-balanced manner.

従って、本発明の目的は、加硫前の加工性と、加硫後の空気遮断性と、加硫後の耐老化性をバランスよく改善したタイヤインナーライナー用ゴム組成物を提供することにある。   Accordingly, an object of the present invention is to provide a rubber composition for a tire inner liner that improves the workability before vulcanization, the air barrier property after vulcanization, and the aging resistance after vulcanization in a well-balanced manner. .

本発明者は、上記の課題を解決すべく鋭意研究した結果、ブチルゴムおよびハロゲン化ブチルゴムから成る群から選ばれる1種以上のブチル系ゴムを50重量%以上含むゴム成分に、特定割合のアロマ系炭化水素とパラフィン系炭化水素とナフテン系炭化水素から成るプロセスオイルを特定量配合すると、タイヤインナーライナーの製造に有用なバランスよく改善された加硫前の加工性と、加硫後の空気遮断性と、加硫後の耐老化性を有するゴム組成物が得られることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventor has found that a rubber component containing 50% by weight or more of at least one butyl rubber selected from the group consisting of butyl rubber and halogenated butyl rubber has a specific ratio of aroma system When a specific amount of process oil composed of hydrocarbon, paraffinic hydrocarbon and naphthenic hydrocarbon is blended, the balance is improved and the processability before vulcanization, which is useful for the production of tire inner liners, and the air barrier after vulcanization are improved. The inventors have found that a rubber composition having aging resistance after vulcanization can be obtained, and have completed the present invention.

本発明に従えば、
(A)ブチルゴムおよびハロゲン化ブチルゴムから成る群から選ばれる1種以上のブチル系ゴムを50重量%以上含むゴム成分と、
(B)前記ゴム成分(A)100重量部に対して3〜20重量部のプロセスオイル、
を含むタイヤインナーライナー用ゴム組成物であって、前記プロセスオイルがアロマ系炭化水素とパラフィン系炭化水素とナフテン系炭化水素から成り、ASTM D2140に準拠して求めた前記プロセスオイル中のアロマ系炭化水素、パラフィン系炭化水素およびナフテン系炭化水素を構成する炭素の重量百分率をそれぞれCA 、CP およびCN と表わした場合に、CA 、CP およびCN が、それぞれ、20重量%≦CA ≦40重量%、30重量%≦CP ≦60重量%、20重量%≦CN <30重量%の範囲にあることを特徴とするタイヤインナーライナー用ゴム組成物が提供される。
According to the present invention,
(A) a rubber component containing 50% by weight or more of at least one butyl rubber selected from the group consisting of butyl rubber and halogenated butyl rubber;
(B) 3 to 20 parts by weight of process oil with respect to 100 parts by weight of the rubber component (A),
A rubber composition for a tire inner liner, the process oil comprising an aromatic hydrocarbon, a paraffinic hydrocarbon, and a naphthenic hydrocarbon, and the aromatic carbonization in the process oil determined in accordance with ASTM D2140 hydrogen, paraffinic hydrocarbons and naphthenic constituting the hydrocarbon respectively C a weight percentage of carbon, when expressed as C P and C N, is C a, C P and C N, respectively, 20 wt% ≦ There is provided a rubber composition for a tire inner liner, wherein C A ≦ 40 wt%, 30 wt% ≦ C P ≦ 60 wt%, and 20 wt% ≦ C N <30 wt%.

本発明のタイヤインナーライナー用ゴム組成物におけるゴム成分(A)は、その合計重量を基準にして50重量%以上のブチルゴムおよびハロゲン化ブチルゴムからなる群から選ばれる1種以上のブチル系ゴムを含む。ブチルゴムおよびハロゲン化ブチルゴムとしては、市販されているものを使用できる。ブチル系ゴムとしては、ハロゲン化ブチルゴムが好ましい。ハロゲン化ブチルゴムの例としては、例えば、塩素化ブチルゴム、臭素化ブチルゴムが挙げられる。   The rubber component (A) in the rubber composition for a tire inner liner of the present invention contains at least one butyl rubber selected from the group consisting of 50% by weight or more of butyl rubber and halogenated butyl rubber based on the total weight thereof. . Commercially available butyl rubber and halogenated butyl rubber can be used. As the butyl rubber, halogenated butyl rubber is preferable. Examples of the halogenated butyl rubber include chlorinated butyl rubber and brominated butyl rubber.

ブチルゴムおよびハロゲン化ブチルゴムから成る群から選ばれる1種以上のブチル系ゴム以外に上記ゴム成分中に含めることのできるゴムとしては、天然ゴム、ブタジエンゴム、イソプレンゴム、スチレン−ブタジエンゴムなどのジエン系ゴム、およびエチレン−プロピレンゴムなどの非ジエン系ゴムから選ばれるゴムが挙げられる。本発明のゴム組成物は、これらの1種以上を、ゴム成分(A)がブチルゴムおよびハロゲン化ブチルゴムから成る群から選ばれる1種以上のブチル系ゴムを上記の割合で含む限り、任意の割合で含んでいてもよい。   In addition to one or more butyl rubbers selected from the group consisting of butyl rubber and halogenated butyl rubber, rubbers that can be included in the rubber component include diene rubbers such as natural rubber, butadiene rubber, isoprene rubber, and styrene-butadiene rubber. Examples thereof include rubbers and rubbers selected from non-diene rubbers such as ethylene-propylene rubber. The rubber composition of the present invention may contain any one or more of these as long as the rubber component (A) contains at least one butyl rubber selected from the group consisting of butyl rubber and halogenated butyl rubber in the above ratio. May be included.

本発明のゴム組成物において可塑剤として含まれるプロセスオイル(B)は、芳香族系炭化水素とパラフィン系炭化水素とナフテン系炭化水素から成り、ASTM D2140に準拠して求めたアロマ系炭化水素、パラフィン系炭化水素およびナフテン系炭化水素を構成する炭素の重量百分率をそれぞれCA 、CP およびCNと表わした場合に、CA 、CP およびCN が、それぞれ、20重量%≦CA ≦40重量%、30重量%≦CP ≦60重量%、20重量%≦CN <30重量%の範囲内にあるものである。プロセスオイル(B)は、1種のプロセスオイルから成るか、または複数種のプロセスオイルの混合物から成ることができる。プロセスオイル(B)が複数種のプロセスオイルの混合物から成る場合に、当該プロセスオイルの混合物のCA 、CP およびCN がそれぞれ上記の所定の範囲内にある限り、当該複数種のプロセスオイル間でCA 、CP およびCN がそれぞれ互いに異なっていてもよい。 The process oil (B) contained as a plasticizer in the rubber composition of the present invention is composed of an aromatic hydrocarbon, a paraffinic hydrocarbon, and a naphthenic hydrocarbon, and is an aroma based hydrocarbon determined in accordance with ASTM D2140. paraffinic hydrocarbons and naphthenic hydrocarbons constituting each C a weight percentage of carbon, when expressed as C P and C N, C a, C P and C N, respectively, 20 wt% ≦ C a ≦ 40 wt%, 30 wt% ≦ C P ≦ 60 wt%, 20 wt% ≦ C N <30 wt%. Process oil (B) can consist of one process oil or a mixture of several process oils. When the process oil (B) is composed of a mixture of plural kinds of process oils, as long as C A , C P and C N of the mixture of the process oils are within the predetermined range, the plural kinds of process oils C A , C P and C N may be different from each other.

一般的に、ゴム用プロセスオイルとしては、高沸点の石油留分が用いられ、炭化水素の化学構造によって、鎖状飽和炭化水素であるパラフィン系炭化水素と、環状飽和炭化水素であるナフテン系炭化水素と、芳香族炭化水素であるアロマ系炭化水素に分類される。これらの炭化水素は、一般的に、粘度比重定数(以下、「VGC」とよぶ)として知られている数値により区別され、アロマ系炭化水素は0.900以上のVGCを有し、パラフィン系炭化水素は0.790〜0.849のVGCを有し、ナフテン系炭化水素は0.850〜0.899のVGCを有する。ASTM D2140などの環分析法として知られている分析法に従って、試料のVGCと屈折率、比重、動粘度などの値から、その試料についてのパラフィン系炭化水素、ナフテン系炭化水素およびアロマ系炭化水素を構成する炭素の割合(重量%)を求めることができる。   Generally, a high-boiling petroleum fraction is used as a process oil for rubber. Depending on the chemical structure of the hydrocarbon, paraffinic hydrocarbons, which are chain saturated hydrocarbons, and naphthenic hydrocarbons, which are cyclic saturated hydrocarbons, are used. It is classified into hydrogen and aromatic hydrocarbons that are aromatic hydrocarbons. These hydrocarbons are generally distinguished by a numerical value known as a viscosity specific gravity constant (hereinafter referred to as “VGC”). Aromatic hydrocarbons have a VGC of 0.900 or more, and paraffinic carbonization. Hydrogen has a VGC of 0.790 to 0.849, and naphthenic hydrocarbons have a VGC of 0.850 to 0.899. According to an analysis method known as a ring analysis method such as ASTM D2140, from the values of VGC and refractive index, specific gravity, kinematic viscosity, etc. of the sample, paraffinic hydrocarbon, naphthenic hydrocarbon and aroma hydrocarbon of the sample The proportion (% by weight) of carbon that constitutes can be determined.

本発明のゴム組成物は、ゴム成分(A)100重量部に対して3〜20重量部、好ましくは7〜18重量部のプロセスオイル(B)を含む。プロセスオイル(B)の量が、ゴム成分(A)100重量部当たり3重量部未満である場合には、加硫前の加工性を十分に改善することはできず、また、ゴム成分(A)100重量部当たり20重量部を超える場合には、加硫前の加工性は向上するが、空気遮断性は低下してしまう。   The rubber composition of the present invention contains 3 to 20 parts by weight, preferably 7 to 18 parts by weight of the process oil (B) with respect to 100 parts by weight of the rubber component (A). When the amount of the process oil (B) is less than 3 parts by weight per 100 parts by weight of the rubber component (A), the processability before vulcanization cannot be sufficiently improved, and the rubber component (A ) When the amount exceeds 20 parts by weight per 100 parts by weight, the workability before vulcanization is improved, but the air barrier property is lowered.

本発明のゴム組成物には、上記ゴム成分(A)およびプロセスオイル(B)に加えて、タイヤ用ゴム組成物に一般的に配合される、カーボンブラックなどの補強充填剤、空気遮断性を向上させることが一般的に知られているクレーおよびタルクなどの無機充填剤、ステアリン酸、加硫または架橋剤、加硫または架橋促進剤、老化防止剤などの各種配合剤を一般的な使用量で配合することができる。   In addition to the rubber component (A) and the process oil (B), the rubber composition of the present invention has a reinforcing filler such as carbon black, which is generally blended in a tire rubber composition, and air barrier properties. General amounts of various additives such as clays and talc, which are generally known to improve, stearic acid, vulcanization or crosslinking agents, vulcanization or crosslinking accelerators, anti-aging agents, etc. Can be blended.

本発明のゴム組成物は、ゴム組成物の製造に通常用いられているバンバリーミキサーやニーダーなどの混合または混練装置を使用して一般的な混合または混練方法および操作条件で製造することができる。本発明のゴム組成物は、所定量の上記成分とその他の一般的な配合剤と共に混練するか、あるいは予め特定成分のゴム混合物(マスターバッチ)を調製してから所定の成分と混合または混練することによって製造できる。本発明のゴム組成物を、混練後、圧延機あるいは押出機で所望の厚さにし、適当な大きさに切断することによって、タイヤのインナーライナーを形成できる。   The rubber composition of the present invention can be produced by a general mixing or kneading method and operating conditions using a mixing or kneading apparatus such as a Banbury mixer or a kneader that is usually used for the production of a rubber composition. The rubber composition of the present invention is kneaded with a predetermined amount of the above components and other general compounding agents, or a rubber mixture (master batch) of specific components is prepared in advance and then mixed or kneaded with the predetermined components. Can be manufactured. After kneading the rubber composition of the present invention, the inner liner of the tire can be formed by making a desired thickness with a rolling mill or an extruder and cutting the rubber composition into an appropriate size.

以下の例により本発明を更に説明するが、本発明の範囲を限定するものでないことは言うまでもない。   The following examples further illustrate the invention, but it should be understood that it is not intended to limit the scope of the invention.

標準例、実施例1〜8および比較例1〜5のゴム組成物の調製
下記表1に示す配合(重量部)において、硫黄と加硫促進剤と酸化亜鉛を除く成分を、60℃に調節されたBB−2型ミキサーにより回転数30rpmで3〜5分間混練し、110℃で混練物を放出した。オープンロールで硫黄と加硫促進剤と酸化亜鉛を配合し、各例のゴム組成物を調製した。得られた各ゴム組成物を、ムーニー粘度試験を除いて下記の各試験に必要な形状にし、150℃で30分間加硫した。
Preparation of rubber compositions of standard examples, Examples 1 to 8 and Comparative Examples 1 to 5 In the blending (parts by weight) shown in Table 1 below, components other than sulfur, a vulcanization accelerator and zinc oxide were adjusted to 60 ° C. The resulting BB-2 mixer was kneaded for 3 to 5 minutes at a rotation speed of 30 rpm, and the kneaded product was discharged at 110 ° C. The rubber composition of each example was prepared by compounding sulfur, a vulcanization accelerator and zinc oxide with an open roll. Each rubber composition obtained was formed into the shape required for the following tests except for the Mooney viscosity test, and vulcanized at 150 ° C. for 30 minutes.

Figure 2008111109
Figure 2008111109

註:
(1)ブロモブチル2255(日本ブチル(株)製)
(2)ブチル268(日本ブチル(株)製)
(3)シーストV(東海カーボン(株)製)
(4)工業用ステアリン酸(日本油脂(株)製)
(5)酸化亜鉛3種(正同化学工業(株)製)
(6)ノクセラーDM(大内新興化学工業(株)製)
(7)粉末硫黄(細井化学工業(株)製)
(8)プロセスオイルP−100(富士興産(株)製)(CA =5重量%、CP =67重量%、CN =28重量%)
(9)エキストラクト4号S(昭和シェル石油(株)製)(CA =28重量%、CP =48重量%、CN =24重量%)
(10)AH24(出光興産(株)製)(CA =44重量%、CP =25重量%、CN =31重量%)
(11)Calsol 810(Calmet Oil社製)(CA =12重量%、CP =40重量%、CN =48重量%)
(12)プロセスオイル1とプロセスオイル2の重量比1:1混合物(CA =25重量%、CP =46重量%、CN =29重量%)
(13)プロセスオイル1とプロセスオイル2の重量比34:66混合物(CA =20重量%、CP =55重量%、CN =25重量%)
(14)プロセスオイル1とプロセスオイル3の重量比61:39混合物(CA =20重量%、CP =51重量%、CN =29重量%)
(15)プロセスオイル2とプロセスオイル3の重量比25:75混合物(CA =40重量%、CP =31重量%、CN =29重量%)
註:
(1) Bromobutyl 2255 (Nippon Butyl Co., Ltd.)
(2) Butyl 268 (Nippon Butyl Co., Ltd.)
(3) Seast V (manufactured by Tokai Carbon Co., Ltd.)
(4) Industrial stearic acid (manufactured by NOF Corporation)
(5) Three types of zinc oxide (manufactured by Shodo Chemical Industry Co., Ltd.)
(6) Noxeller DM (Ouchi Shinsei Chemical Co., Ltd.)
(7) Powdered sulfur (made by Hosoi Chemical Co., Ltd.)
(8) Process oil P-100 (Fuji Kosan Co., Ltd.) (C A = 5 wt%, C P = 67 wt%, C N = 28 wt%)
(9) Extract No. 4 S (manufactured by Showa Shell Sekiyu KK) (C A = 28 wt%, C P = 48 wt%, C N = 24 wt%)
(10) AH24 (made by Idemitsu Kosan Co., Ltd.) (C A = 44% by weight, C P = 25% by weight, C N = 31% by weight)
(11) Calsol 810 (manufactured by Calmet Oil) (C A = 12 wt%, C P = 40 wt%, C N = 48 wt%)
(12) A 1: 1 mixture by weight of process oil 1 and process oil 2 (C A = 25 wt%, C P = 46 wt%, C N = 29 wt%)
(13) Weight ratio 34:66 mixture of process oil 1 and process oil 2 (C A = 20 wt%, C P = 55 wt%, C N = 25 wt%)
(14) Process oil 1 and process oil 3 weight ratio 61:39 mixture (C A = 20 wt%, C P = 51 wt%, C N = 29 wt%)
(15) Mixture ratio of process oil 2 and process oil 3 25:75 (C A = 40 wt%, C P = 31 wt%, C N = 29 wt%)

試験方法
(1)環分析
ASTM D2140に準拠して、上記標準例、実施例および比較例に使用したプロセスオイル1〜8についてのアロマ系炭化水素、パラフィン系炭化水素およびナフテン系炭化水素を構成する炭素の重量百分率CA 、CP およびCN をそれぞれ求めた。ASTM D2140に規定されているCA 、CP およびCN の値を求める手順を要約すると、以下のとおりである。
まず、ASTM D1481またはD4052に準拠して20℃における密度dを求め、そしてこの密度dの値を15.6℃における比重Gに換算し、さらに、ASTM D445に準拠して37.8℃における動粘度V(cSt)を求め、ASTM D1218に準拠してナトリウムD線を用いて20℃における屈折率nD 20を求める。次に、求められた比重Gおよび動粘度Vを下式:
VGC=(G+0.0887-0.776loglog(10V-4))/(1.082-0.72loglog(10V-4))
に代入して、粘度比重定数VGCを求め、さらに、密度dおよび屈折率nD 20を下式:
i =nD 20−(d/2)
に代入してri を求める。次に、ASTM D2140の図1に記載の相関図を用いて、VGCおよびri の値から対応するCA 、CP およびCN の値を求める。
試料オイルが0.8%以上の硫黄を含む場合には、ASTM D2140の図1に記載の相関図を用いて求められたCA 、CP およびCN の値の精度(以下、それぞれ、「補正前のCA 」、「補正前のCp 」、「補正前のCN 」という)は、下記式を用いて補正することにより高めることができる。
補正後のCN =(補正前のCA )−S/0.288
補正後のCP =(補正前のCP )−S/0.216
補正後のCA =100−(CN +CP
これらの式中、Sは、ASTM D129に準拠して求められた試料オイルの硫黄含有量(重量%)を表す。
以下の標準例、実施例および比較例についてのCA 、CP およびCN の導出は、ASTM D4052に対応するJIS K2249に準拠して浮きはかり法により20℃で求められた密度dと、この密度から換算した15.6℃における比重Gと、ASTM D445に対応するJIS K2283に準拠してキャノン・フェンスケ粘度計を用いて37.8℃で求められた動粘度V(cSt)と、ASTM D1218に対応するJIS C2101に準拠してアタゴ(株)製の屈折計3型を使用して20℃で求められた屈折率nD 20を用いて行った。
Test Method (1) Ring Analysis According to ASTM D2140, aromatic hydrocarbons, paraffinic hydrocarbons and naphthenic hydrocarbons for process oils 1 to 8 used in the above standard examples, examples and comparative examples are constituted. Carbon weight percentages C A , C P and C N were determined, respectively. The procedure for obtaining the values of C A , C P, and C N defined in ASTM D2140 is summarized as follows.
First, the density d at 20 ° C. is obtained according to ASTM D1481 or D4052, and the value of this density d is converted to the specific gravity G at 15.6 ° C., and further, the density d at 37.8 ° C. according to ASTM D445. obtains a viscosity V (cSt), we obtain the refractive index n D 20 at 20 ° C. with sodium D line in compliance with ASTM D1218. Next, the obtained specific gravity G and kinematic viscosity V are expressed by the following formula:
VGC = (G + 0.0887-0.776loglog (10V-4)) / (1.082-0.72loglog (10V-4))
Into the viscosity specific gravity constant VGC, and the density d and the refractive index n D 20 are expressed by the following formula:
r i = n D 20- (d / 2)
Substituting into, find r i . Next, using the correlation diagram shown in FIG. 1 of ASTM D2140, the corresponding values of C A , C P and C N are obtained from the values of VGC and r i .
When the sample oil contains 0.8% or more of sulfur, the accuracy of the values of C A , C P and C N obtained using the correlation diagram described in FIG. 1 of ASTM D2140 (hereinafter, “ (C A before correction ”,“ C p before correction ”, and“ C N before correction ”) can be increased by correcting using the following equations.
C N after correction = (C A before correction) −S / 0.288
After the correction C P = (before correction of C P) -S / 0.216
C A after correction = 100− (C N + C P )
In these formulas, S represents the sulfur content (% by weight) of the sample oil determined in accordance with ASTM D129.
The derivation of C A , C P and C N for the following standard examples, examples and comparative examples is as follows: density d determined at 20 ° C. by the floating scale method according to JIS K2249 corresponding to ASTM D4052; Specific gravity G at 15.6 ° C. converted from density, kinematic viscosity V (cSt) determined at 37.8 ° C. using a Canon-Fenske viscometer according to JIS K2283 corresponding to ASTM D445, and ASTM D1218 The refractive index n D 20 determined at 20 ° C. using a refractometer type 3 manufactured by Atago Co., Ltd. in accordance with JIS C2101 corresponding to the above.

(2)ムーニー粘度
JIS K6300に準拠して、L形ローター(試験機:島津製作所製のSMV300J)を使用し、予熱時間1分、ローター回転時間4分、温度100℃で、ムーニー粘度を測定した。ムーニー粘度は、ゴム組成物の加硫前の加工性の指標であり、ムーニー粘度の値が小さいことは、加硫前の粘度が低く、加工性に優れていることを意味する。
(2) Mooney viscosity In accordance with JIS K6300, Mooney viscosity was measured using an L-shaped rotor (tester: SMV300J manufactured by Shimadzu Corporation) at a preheating time of 1 minute, a rotor rotation time of 4 minutes, and a temperature of 100 ° C. . The Mooney viscosity is an index of processability before vulcanization of the rubber composition, and a small Mooney viscosity value means that the viscosity before vulcanization is low and the processability is excellent.

(3)ムーニースコーチ指数
JIS K6300に準拠して、L形ローター(試験機:島津製作所製のSMV300J)を使用し、125℃にて粘度が5ポイント上昇するまでの時間を求め、各実施例および比較例について求めた時間を、標準例について求められた時間を100とする指数値で表わした。指数が小さいほど、スコーチ時間が短く、焼けやすい。
(3) Mooney scorch index In accordance with JIS K6300, an L-shaped rotor (testing machine: SMV300J manufactured by Shimadzu Corporation) was used, and the time until the viscosity increased by 5 points at 125 ° C. was determined. The time obtained for the comparative example was expressed as an index value with the time obtained for the standard example being 100. The smaller the index, the shorter the scorch time and the easier it is to burn.

(4)空気透過性
JIS K7126の「プラスチックフィルムおよびシートの気体透過度試験方法(A法)」に準拠して行った。試験に用いた気体は空気(窒素:酸素=約8:2)であり、試験温度は30℃であった。結果は、標準例の空気透過係数を100とする指数値で示した。この値が小さいほど、空気透過性が低いこと、すなわち空気遮断性により優れていることを示す。
(4) Air permeability It was performed in accordance with “Test method for gas permeability of plastic film and sheet (Method A)” of JIS K7126. The gas used for the test was air (nitrogen: oxygen = about 8: 2), and the test temperature was 30 ° C. The results are shown as index values with the air permeability coefficient of the standard example as 100. The smaller this value, the lower the air permeability, that is, the better the air barrier property.

(5)耐老化性
金型でプレス加硫することにより15cm×15cm×0.2cmの大きさの試験片を作製し、試験片を、JIS K6257に準拠して、空気で満たされ120℃に設定されたオーブン内で96時間加熱し、加速老化させた。老化の前および後に試験片の切断時伸び(引張速度:500mm/分)を測定し、下記式:
切断時伸びの残留率(%)=(老化後の切断時伸び)/(老化前の切断時伸び)×100
に従って、切断時伸びの残留率(%)を求めた。この切断時伸びの残留率の値が大きいほど耐老化性により優れていることを示す。
(5) Aging resistance A test piece having a size of 15 cm × 15 cm × 0.2 cm is produced by press vulcanization with a mold, and the test piece is filled with air in accordance with JIS K6257 and heated to 120 ° C. It was heated in a set oven for 96 hours to accelerate aging. The elongation at break (tensile speed: 500 mm / min) of the specimen was measured before and after aging, and the following formula:
Residual rate of elongation at cutting (%) = (Elongation at cutting after aging) / (Elongation at cutting before aging) × 100
Accordingly, the residual ratio (%) of elongation at break was determined. It shows that it is excellent by aging resistance, so that the value of the residual rate of elongation at the time of cutting | disconnection is large.

(6)空気圧保持性
標準例、実施例1〜8および比較例1〜5のゴム組成物をシート状に加工し、これらをインナーライナーに用いたタイヤサイズ11R22.5 14PRのトラックバススチールラジアルタイヤを作製した。これらのタイヤについてタイヤの空気圧を700kPaにした後、室温21℃、無負荷条件にて3ヶ月放置し、4日毎にタイヤの内圧を測定した。初期圧力をP0、測定された圧力をPt、経過日数をtとして、式Pt/P0=exp(−αt)に回帰させることによりα値を求め、次に、得られたα値とt=30を式:β=[1−exp(−αt)]×100に代入して1ヶ月あたりの空気圧低下率を求め、この空気圧低下率を、空気圧保持性を表す指標とした。実施例1〜8並びに比較例2、3および5の空気圧保持性は、標準例を100としたときの指数値で表わした。この指数値が小さいほど、空気圧保持性に優れていることを示す。
(6) Pneumatic pressure retention truck bus steel radial tire of tire size 11R22.5 14PR using the rubber compositions of the standard examples, Examples 1-8 and Comparative Examples 1-5 as sheets and using them as inner liners Was made. After setting the tire air pressure to 700 kPa for these tires, the tire was allowed to stand for 3 months at a room temperature of 21 ° C. under no load conditions, and the tire internal pressure was measured every 4 days. The initial value is P 0 , the measured pressure is P t , the elapsed days is t, and the α value is obtained by regressing the equation P t / P 0 = exp (−αt), and then the obtained α value And t = 30 were substituted into the formula: β = [1-exp (−αt)] × 100 to determine the air pressure reduction rate per month, and this air pressure reduction rate was used as an index representing air pressure retention. The air pressure retention of Examples 1 to 8 and Comparative Examples 2, 3 and 5 was expressed as an index value when the standard example was 100. A smaller index value indicates better air pressure retention.

上記(2)〜(6)の試験方法に従って、上記標準例、実施例1〜8および比較例1〜5の各ゴム組成物について試験を行なった。試験結果を下記表2に示す。なお、比較例1および4のゴム組成物については、ムーニー粘度が高いことによりシートに圧延加工するのが困難なためタイヤの作製ができなかったことから、空気圧保持性の試験は行わなかった。   According to the test methods of (2) to (6) above, the rubber compositions of the standard examples, Examples 1 to 8 and Comparative Examples 1 to 5 were tested. The test results are shown in Table 2 below. The rubber compositions of Comparative Examples 1 and 4 were not tested for air pressure retention because the tires could not be produced because the Mooney viscosity was high and it was difficult to roll into sheets.

Figure 2008111109
Figure 2008111109

表2に示した結果から判るように、環分析法により求めた場合にCA =5重量%、CP =67重量%およびCN =28重量%のプロセスオイル1を使用しなかったことを除いて標準例と同じ組成を有する比較例1では、空気遮断性が大幅に改善したが、ムーニー粘度が大幅に上昇し、このムーニー粘度の大幅な増加はシートに圧延加工できないほどの加工性の低下をもたらした。ゴム成分100重量部に対してプロセスオイル2を7重量部配合した実施例1は、標準例とほぼ同程度のムーニー粘度およびムーニースコーチ指数を示し、空気遮断性およびタイヤ空気圧保持性が改善し、耐老化性も向上した。ゴム成分100重量部に対してプロセスオイル2を4重量部配合した実施例2では、実施例1よりもムーニー粘度がやや上昇し、ムーニースコーチ指数はやや減少したが、これらの粘度特性の変化は加工上許容可能な範囲であり、空気遮断性およびタイヤ空気圧保持性がより改善され、耐老化性も実施例1とほぼ同程度であった。ゴム成分100重量部に対してプロセスオイル2を18重量部配合した実施例3では、実施例1よりもムーニー粘度が大幅に低下し、ムーニースコーチ指数は大幅に増加し、加工はより容易になり、空気遮断性、タイヤ空気圧保持性および耐老化性は標準例よりも改善された。本発明の範囲よりもCA %およびCN %が上回り、CP %が下回る比較例2では、空気遮断性、タイヤ空気圧保持性および耐老化性が標準例よりも改善されたが、標準例よりもムーニースコーチ指数が減少し、加工性が低下した。本発明の範囲よりもCA %が下回り、CN %が上回る比較例3では、空気遮断性およびタイヤ空気圧保持性が標準例よりも改善され、標準例と比較してムーニー粘度がほぼ同程度で、ムーニースコーチ指数が増加し、加工性は改善されたが、耐老化性が低下した。プロセスオイル1とプロセスオイル3とを重量比1:1で混合することにより得られた混合物(CA =25重量%,CP =46重量%、CN =29重量%)を実施例1と同じ量で配合した場合(実施例4)に、実施例1と同様な効果が得られた。実施例4と同様に、複数種のプロセスオイルを混合することにより得られたプロセスオイルの混合物であって、CA 、CP およびCN がそれぞれ本発明の範囲に含まれる値を有する混合物を実施例1と同じ量で配合した場合(実施例5〜8)に、実施例1と同様の効果が得られた。本発明の範囲よりも少ない量のプロセスオイルを配合した比較例4では、ムーニー粘度が大幅に上昇し、ムーニースコーチ指数は減少し、加工性が低下した。本発明の範囲よりも多い量のプロセスオイルを配合した比較例5では、耐老化性が低下し、空気遮断性および空気圧保持性はほとんど改善されなかった。 As can be seen from the results shown in Table 2, it was found that process oil 1 with C A = 5 wt%, C P = 67 wt% and C N = 28 wt% was not used when determined by ring analysis. Except for the comparative example 1 having the same composition as the standard example, the air barrier property was greatly improved, but the Mooney viscosity increased significantly, and this significant increase in Mooney viscosity was so high that the sheet could not be rolled. Brought down. Example 1, in which 7 parts by weight of process oil 2 was blended with 100 parts by weight of the rubber component, showed a Mooney viscosity and Mooney scorch index that were almost the same as those of the standard example, and improved air barrier properties and tire pressure retention, Aging resistance was also improved. In Example 2 in which 4 parts by weight of process oil 2 was blended with 100 parts by weight of the rubber component, the Mooney viscosity increased slightly and the Mooney scorch index decreased slightly compared to Example 1, but changes in these viscosity characteristics were This was an acceptable range for processing, the air barrier property and the tire air pressure retention property were further improved, and the aging resistance was substantially the same as in Example 1. In Example 3 in which 18 parts by weight of process oil 2 is blended with 100 parts by weight of the rubber component, the Mooney viscosity is significantly lower than in Example 1, the Mooney scorch index is greatly increased, and the processing becomes easier. In addition, the air barrier property, the tire air pressure retention property and the aging resistance were improved as compared with the standard example. In Comparative Example 2 in which C A % and C N % exceed the range of the present invention and C P % falls, the air barrier property, tire air pressure retention and aging resistance are improved as compared with the standard example. More than the Mooney scorch index, the workability decreased. In Comparative Example 3, in which C A % is lower than C N % and C N % is higher than the range of the present invention, the air barrier property and the tire air pressure retention are improved as compared with the standard example, and the Mooney viscosity is almost the same as the standard example. However, the Mooney scorch index increased and the workability improved, but the aging resistance decreased. A mixture obtained by mixing process oil 1 and process oil 3 at a weight ratio of 1: 1 (C A = 25 wt%, C P = 46 wt%, C N = 29 wt%) and Example 1 was used. When blended in the same amount (Example 4), the same effect as in Example 1 was obtained. As in Example 4, a mixture of process oils obtained by mixing a plurality of types of process oils, wherein C A , C P and C N each have a value within the scope of the present invention. When blended in the same amount as in Example 1 (Examples 5 to 8), the same effect as in Example 1 was obtained. In Comparative Example 4 in which an amount of process oil less than the range of the present invention was blended, the Mooney viscosity increased significantly, the Mooney scorch index decreased, and the processability decreased. In Comparative Example 5 in which a larger amount of process oil than the range of the present invention was blended, the aging resistance was lowered, and the air barrier property and the air pressure retention property were hardly improved.

Claims (5)

(A)ブチルゴムおよびハロゲン化ブチルゴムから成る群から選ばれる1種以上のブチル系ゴムを50重量%以上含むゴム成分と、
(B)前記ゴム成分(A)100重量部に対して3〜20重量部のプロセスオイル、
を含むタイヤインナーライナー用ゴム組成物であって、前記プロセスオイルがアロマ系炭化水素とパラフィン系炭化水素とナフテン系炭化水素から成り、ASTM D2140に準拠して求めた前記プロセスオイル中のアロマ系炭化水素、パラフィン系炭化水素およびナフテン系炭化水素を構成する炭素の重量百分率をそれぞれCA 、CP およびCN と表わした場合に、CA 、CP およびCN が、それぞれ、20重量%≦CA ≦40重量%、30重量%≦CP ≦60重量%、20重量%≦CN <30重量%の範囲内にあることを特徴とするタイヤインナーライナー用ゴム組成物。
(A) a rubber component containing 50% by weight or more of at least one butyl rubber selected from the group consisting of butyl rubber and halogenated butyl rubber;
(B) 3 to 20 parts by weight of process oil with respect to 100 parts by weight of the rubber component (A),
A rubber composition for tire inner liners, wherein the process oil comprises an aromatic hydrocarbon, a paraffinic hydrocarbon, and a naphthenic hydrocarbon, and the aromatic carbonization in the process oil determined in accordance with ASTM D2140 hydrogen, paraffinic hydrocarbons and naphthenic constituting the hydrocarbon respectively C a weight percentage of carbon, when expressed as C P and C N, is C a, C P and C N, respectively, 20 wt% ≦ A rubber composition for a tire inner liner, wherein C A ≦ 40 wt%, 30 wt% ≦ C P ≦ 60 wt%, 20 wt% ≦ C N <30 wt%.
前記プロセスオイル(B)が、1種のプロセスオイルから成るか、または複数種のプロセスオイルの混合物から成り、プロセスオイル(B)が複数種のプロセスオイルの混合物から成る場合には、当該混合物のCA 、CP およびCN がそれぞれ請求項1に記載の所定の範囲内にある、請求項1に記載のタイヤインナーライナー用ゴム組成物。 When the process oil (B) is composed of one process oil or a mixture of a plurality of process oils, and the process oil (B) is composed of a mixture of a plurality of process oils, The rubber composition for a tire inner liner according to claim 1, wherein C A , C P and C N are each within the predetermined range according to claim 1. 前記1種以上のブチル系ゴムがハロゲン化ゴムから成る請求項1または2に記載のタイヤインナーライナー用ゴム組成物。   The rubber composition for a tire inner liner according to claim 1 or 2, wherein the at least one butyl rubber is a halogenated rubber. 前記ゴム成分がブチル系ゴムのみから成る請求項1〜3のいずれか1項に記載のタイヤインナーライナー用ゴム組成物。   The rubber composition for a tire inner liner according to any one of claims 1 to 3, wherein the rubber component comprises only a butyl rubber. 請求項1〜4のいずれか1項に記載のタイヤインナーライナー用ゴム組成物を使用して製造されたタイヤインナーライナーを含んで成る空気入りタイヤ。   A pneumatic tire comprising a tire inner liner manufactured using the rubber composition for a tire inner liner according to any one of claims 1 to 4.
JP2007252065A 2006-10-02 2007-09-27 Rubber composition for tire inner liner and pneumatic tire using the same Active JP4128210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252065A JP4128210B2 (en) 2006-10-02 2007-09-27 Rubber composition for tire inner liner and pneumatic tire using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006270970 2006-10-02
JP2007252065A JP4128210B2 (en) 2006-10-02 2007-09-27 Rubber composition for tire inner liner and pneumatic tire using the same

Publications (2)

Publication Number Publication Date
JP2008111109A true JP2008111109A (en) 2008-05-15
JP4128210B2 JP4128210B2 (en) 2008-07-30

Family

ID=39443808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252065A Active JP4128210B2 (en) 2006-10-02 2007-09-27 Rubber composition for tire inner liner and pneumatic tire using the same

Country Status (1)

Country Link
JP (1) JP4128210B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039000A (en) * 2017-08-23 2019-03-14 Jxtgエネルギー株式会社 Process oil and rubber composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039000A (en) * 2017-08-23 2019-03-14 Jxtgエネルギー株式会社 Process oil and rubber composition
JP7061942B2 (en) 2017-08-23 2022-05-02 Eneos株式会社 Process oil and rubber composition

Also Published As

Publication number Publication date
JP4128210B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
EP2957592B1 (en) Tire
JP2012062429A (en) Rubber composition for rim cushion
JP2009203331A (en) Rubber composition for tire tread
JP5309730B2 (en) Rubber composition for undertread
EP1928951B1 (en) Rubber mixture for inner liner of pneumatic vehicle tyres
US20080085970A1 (en) Rubber composition for tire inner liner and pneumatic tire using the same
JP2010077233A (en) Rubber composition for tire and pneumatic tire using the same
JP2009269962A (en) Rubber composition for sidewall
JP5217130B2 (en) Rubber composition for tire inner liner and pneumatic tire using the same
JP4128210B2 (en) Rubber composition for tire inner liner and pneumatic tire using the same
JP4102075B2 (en) Rubber softener, rubber composition using the same, and oil-extended rubber
JP5034248B2 (en) Rubber composition for tire inner liner
JP2004217804A (en) Softener for rubber and rubber composition
JP6237013B2 (en) Rubber composition for tire inner liner and pneumatic tire using the same
JP2009292880A (en) Rubber composition for fender
JP4984684B2 (en) Rubber composition for tire inner liner and pneumatic tire using the same
JP4583023B2 (en) Rubber composition for tire sidewall
JP6852985B2 (en) Rubber composition
JP2005290356A (en) Rubber composition and pneumatic tire
JP3627863B2 (en) Rubber process oil and rubber composition
JP2004155959A (en) Rubber composition
KR100768723B1 (en) Self-sealing rubber composition and preparation method of the same
JP7381846B2 (en) Rubber composition for tires, method for producing the same, and pneumatic tires
JP4194825B2 (en) Rubber composition
JP2009161653A (en) Rubber composition

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4128210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350