JP2008108887A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2008108887A
JP2008108887A JP2006289889A JP2006289889A JP2008108887A JP 2008108887 A JP2008108887 A JP 2008108887A JP 2006289889 A JP2006289889 A JP 2006289889A JP 2006289889 A JP2006289889 A JP 2006289889A JP 2008108887 A JP2008108887 A JP 2008108887A
Authority
JP
Japan
Prior art keywords
semiconductor device
conductivity type
semiconductor substrate
region
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006289889A
Other languages
Japanese (ja)
Inventor
Akira Nakamori
昭 中森
Takasato Oe
崇智 大江
Shigemi Miyazawa
繁美 宮沢
Tatsu Saito
龍 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2006289889A priority Critical patent/JP2008108887A/en
Publication of JP2008108887A publication Critical patent/JP2008108887A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of performing resin sealing in a chip scale package in size being substantially the same as the two-dimensional size of a composite semiconductor device even concerning the composite semiconductor device having the semiconductor device where a main electric current flows in the thickness direction of a semiconductor substrate. <P>SOLUTION: The semiconductor device includes: p-type well regions 3 selectively formed on an n-type drift layer 2 on an n-type low resistance semiconductor substrate 1; n-type source regions 4 selectively formed on the p-type well regions 3; gate insulating films 5 and gate electrodes 6 which are formed on the surface of the p-type well regions 3 held between the n-type drift layer 2 and the surfaces of the n-type source regions 4; and an n-type drain region 9 arranged on the surface being the same as that of the p-type well regions 3 and separated at desired distance. The desired distance is set in the semiconductor device, so as to allow the electric resistance of the electron to be the smallest when passing the low resistance semiconductor substrate 1 and reaching the drain region 9, in a case where the electron passing a channel is made to flow from the source regions 4 toward the drain region 9 by way of the drift region 2 at turning-on time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体基板の厚さ方向に主電流が流れる半導体素子、すなわち、縦型半導体装置を内蔵する半導体素子に関し、特には縦型MOSFETを内蔵する半導体装置に関する。   The present invention relates to a semiconductor element in which a main current flows in the thickness direction of a semiconductor substrate, that is, a semiconductor element incorporating a vertical semiconductor device, and more particularly to a semiconductor device incorporating a vertical MOSFET.

従来の縦型MOSFETを同一半導体基板内に集積させて内蔵する半導体装置のMOSFET部分の要部断面図を図13に示す。この半導体装置を従来技術で樹脂封止した構造の内部を明示するため封止樹脂の上半分を除去した状態の上面図を図14に示す。同様に、CSP(Chip Scale Package)方式で樹脂封止した場合の縦断面図を図15に示す。   FIG. 13 shows a cross-sectional view of a main part of a MOSFET portion of a semiconductor device in which a conventional vertical MOSFET is integrated and built in the same semiconductor substrate. FIG. 14 is a top view showing a state in which the upper half of the sealing resin is removed in order to clearly show the inside of the structure in which this semiconductor device is sealed with resin according to the prior art. Similarly, FIG. 15 shows a vertical cross-sectional view when resin sealing is performed by a CSP (Chip Scale Package) method.

まず、前記図13に示す従来技術による半導体装置のうち、縦型MOSFET部分は、低抵抗のn半導体基板1の一面上に形成された高抵抗nドリフト層2の表面層にpウエル領域3を形成し、このpウエル領域3の表面層に選択的にnソース領域4を形成し、nドリフト層2の表面とnソース領域4表面とに挟まれる前記pウエル領域3の表面にゲート絶縁膜5を介してゲート電極6を設け、さらに、nソース領域4とpウエル領域3の表面には共通に接触する金属電極膜からなるソース電極7を設け、n基板1の他面には金属電極膜からなるドレイン電極8を設けてなる構成を備えている。この縦型MOSFETは、オン時に電流がドレイン電極8からドレイン領域1、ドリフト領域2、前記ゲート電極直下のpウエル領域3部分(nチャネル−図示せず)およびソース領域4を通ってソース電極7に抜ける従来の通常の縦型MOSFETの構成となっている。 First, of the semiconductor device according to the prior art shown in FIG. 13, a vertical MOSFET portion, the high-resistance n formed on one surface of a low-resistance n + semiconductor substrate 1 - p-well region in a surface layer of the drift layer 2 3, an n + source region 4 is selectively formed on the surface layer of the p well region 3, and the p well region 3 sandwiched between the surface of the n drift layer 2 and the surface of the n + source region 4 is formed. surface of the gate electrode 6 is provided via the gate insulating film 5, further a source electrode 7 made of a metal electrode film in contact with the common provided on the surface of the n + source region 4 and the p-well region 3, n + substrate 1 The other surface is provided with a drain electrode 8 made of a metal electrode film. When this vertical MOSFET is turned on, the current flows from the drain electrode 8 to the drain region 1, the drift region 2, the p-well region 3 portion (n channel—not shown) immediately below the gate electrode, and the source region 7. This is a conventional normal vertical MOSFET structure.

このような従来の縦型MOSFETの構成を同一半導体基板内に内蔵する半導体装置を樹脂封止する場合は、図14の上面図に示すように、樹脂パッケージ100に設けられる一つのピンに電気的に接続された金属製ダイパッド101上に、前記縦型MOSFETを同一半導体基板上に形成した半導体装置すなわちICチップ102の裏面を接触させて前記ピンを縦型MOSFETのドレイン電極端子とする必要がある。ICチップ102の裏面とダイパッド101は半田を介して接続され固定される。このICチップの周囲に配置され、一端側がパッケージ100内に固定され、他端側が外部接続のためパッケージから突出する形状の複数のピン(電極端子)104と、前記ICチップ102の表面に設けられる幾つかのICパッド103とは、それぞれボンディングワイヤにより導電接続されるように構成した上で樹脂封止して作製される。   When a semiconductor device incorporating such a conventional vertical MOSFET structure in the same semiconductor substrate is resin-sealed, as shown in a top view of FIG. 14, one pin provided in the resin package 100 is electrically connected. On the metal die pad 101 connected to the semiconductor device, a semiconductor device in which the vertical MOSFET is formed on the same semiconductor substrate, that is, the back surface of the IC chip 102 is brought into contact, and the pin needs to be a drain electrode terminal of the vertical MOSFET. . The back surface of the IC chip 102 and the die pad 101 are connected and fixed via solder. A plurality of pins (electrode terminals) 104 are arranged around the IC chip, one end side is fixed in the package 100 and the other end side protrudes from the package for external connection, and provided on the surface of the IC chip 102. Some of the IC pads 103 are formed by resin sealing after being configured to be conductively connected by bonding wires.

一方、図15の断面図に示す従来のCSP方式による樹脂封止半導体装置は、ICチップ200の裏面202側をこの図面では上にし、ICパッド203が複数設けられる表面201側を下にして、複数のICパッド203を除くICチップ表面201上に絶縁膜204を形成し、その絶縁膜204上に金属製のポスト台座205を作り、各ポスト台座を各ICパッド203と導電接続する。ポスト台座205の上には、円柱形の金属製のポスト206が作製され、各ポスト206の上にハンダバンプ207を作成して入出力ピンとする。最後に絶縁膜204上からポスト206の高さまでを樹脂208で覆って樹脂封止をすることによりCSP方式の半導体装置とする。CSPでは全ての箇所のハンダバンプ207はICチップ200の入出力ピン(電極端子)となる。このCSP方式の半導体装置のパッケージの2次元サイズはチップサイズとほぼ同一となる。更に、ICチップ200の裏面202からは電極端子(ピン)に導電接続されることがなく、また、樹脂で覆われることもなく露出しているので、パッケージの厚さも、入出力ピンの高さ分の樹脂厚さは必要であるが、それ以外は最小限に薄くすることが可能である。   On the other hand, in the resin-encapsulated semiconductor device by the conventional CSP method shown in the sectional view of FIG. 15, the back surface 202 side of the IC chip 200 is up in this drawing, and the front surface 201 side where a plurality of IC pads 203 are provided is down. An insulating film 204 is formed on the IC chip surface 201 excluding the plurality of IC pads 203, a metal post pedestal 205 is formed on the insulating film 204, and each post pedestal is conductively connected to each IC pad 203. A cylindrical metal post 206 is formed on the post pedestal 205, and solder bumps 207 are formed on each post 206 to serve as input / output pins. Finally, the resin from the top of the insulating film 204 to the height of the post 206 is covered with resin 208 and sealed with a resin, thereby obtaining a CSP type semiconductor device. In the CSP, the solder bumps 207 at all locations serve as input / output pins (electrode terminals) of the IC chip 200. The two-dimensional size of the package of this CSP type semiconductor device is almost the same as the chip size. Further, since the back surface 202 of the IC chip 200 is not conductively connected to the electrode terminals (pins) and is exposed without being covered with the resin, the thickness of the package is also the height of the input / output pins. A resin thickness of a minute is necessary, but other thicknesses can be minimized.

MOSFETを同一半導体基板に内蔵する複合半導体装置としては、横型MOSFETを内蔵させたインテリジェントスイッチデバイスが知られている(特許文献1)
特開2005−136290号公報(要約)
As a composite semiconductor device in which a MOSFET is built in the same semiconductor substrate, an intelligent switch device having a built-in lateral MOSFET is known (Patent Document 1).
JP 2005-136290 A (summary)

しかしながら、前記図13で示すような従来の縦型MOSFETを内蔵するICチップを樹脂封止する場合に必要な前記図14で示す樹脂パッケージは、その占有スペースを低減してさらにパッケージを小型化することが求められているが、そのままでは、これ以上の小型化は困難である。CSP方式を適用すれば、小型化ができるが、従来の縦型MOSFETは、ICチップの表面と裏面の両方を電極として利用する必要があるため、図15で示すような従来のCSP方式の樹脂封止体とすることが難しいのである。   However, the resin package shown in FIG. 14 that is required when resin-sealing an IC chip incorporating the conventional vertical MOSFET as shown in FIG. 13 reduces the occupied space and further downsizes the package. However, it is difficult to further reduce the size as it is. If the CSP method is applied, the size can be reduced. However, since the conventional vertical MOSFET needs to use both the front and back surfaces of the IC chip as electrodes, the conventional CSP resin as shown in FIG. It is difficult to obtain a sealed body.

本発明は以上述べた点に鑑みてなされたものであり、本発明の目的は、主電流が半導体基板の厚さ方向に流れる縦型半導体素子を同一半導体基板に有する複合半導体装置であっても、この複合半導体装置の半導体基板の2次元サイズとほぼ同一のチップスケールパッケージに樹脂封止することができる半導体装置を提供することである。   The present invention has been made in view of the above points, and an object of the present invention is a composite semiconductor device having a vertical semiconductor element in which the main current flows in the thickness direction of the semiconductor substrate on the same semiconductor substrate. Another object of the present invention is to provide a semiconductor device that can be resin-sealed in a chip scale package that is substantially the same as the two-dimensional size of the semiconductor substrate of the composite semiconductor device.

特許請求の範囲の請求項1記載の発明によれば、一導電型低抵抗半導体基板の一方の主面上の一導電型ドリフト層の表面層に選択的に形成される他導電型ウエル領域と、該他導電型ウエル領域の表面層に選択的に形成される一導電型ソース領域と、前記一導電型ドリフト層表面と前記一導電型ソース領域表面とに挟まれる前記他導電型ウエル領域表面上にゲート絶縁膜を介して形成されるゲート電極と、前記他導電型ウエル領域と同一表面に所要の距離に離間されて配置される一導電型ドレイン領域とを備える半導体装置において、前記ゲート電極に閾値電圧以上の電圧印加時に前記ゲート絶縁膜直下の他導電型ウエル領域表面に形成されるチャネルを通って電子がソース領域から前記ドリフト領域内を通過して前記ドレイン領域へ向かって流れる際、前記所要の距離を、この電子の受ける電気抵抗が前記一導電型低抵抗半導体基板を通って前記ドレイン領域へ抜ける場合に最も小さくなるように設定する半導体装置とすることにより、前記本発明の目的は達成される。   According to the first aspect of the present invention, the other conductivity type well region selectively formed on the surface layer of the one conductivity type drift layer on the one main surface of the one conductivity type low resistance semiconductor substrate, One conductivity type source region selectively formed on the surface layer of the other conductivity type well region, and the other conductivity type well region surface sandwiched between the one conductivity type drift layer surface and the one conductivity type source region surface In a semiconductor device comprising: a gate electrode formed on a gate insulating film thereon; and a one-conductivity-type drain region disposed on the same surface as the other-conductivity-type well region and spaced apart by a required distance. When a voltage equal to or higher than the threshold voltage is applied, electrons pass from the source region to the drain region through the channel formed in the surface of the other conductivity type well region immediately below the gate insulating film. In the semiconductor device, the required distance is set to be the smallest when the electrical resistance received by the electrons passes through the one-conductivity type low-resistance semiconductor substrate to the drain region. The object of the invention is achieved.

特許請求の範囲の請求項2記載の発明によれば、前記ドレイン領域底部が前記一導電型低抵抗半導体基板に接触していない特許請求の範囲の請求項1記載の半導体装置とすることが好ましい。
特許請求の範囲の請求項3記載の発明によれば、前記ドレイン領域底部が前記一導電型低抵抗半導体基板に接触している特許請求の範囲の請求項1記載の半導体装置とすることも好ましい。
According to the second aspect of the present invention, it is preferable that the bottom of the drain region is not in contact with the one-conductivity type low-resistance semiconductor substrate. .
According to a third aspect of the present invention, the bottom of the drain region is preferably in contact with the one-conductivity type low-resistance semiconductor substrate. .

特許請求の範囲の請求項4記載の発明によれば、前記一導電型低抵抗半導体基板の厚さが50μm以上で特許請求の範囲の請求項1乃至3のいずれか一項に記載の半導体装置とすることがより好ましい。
特許請求の範囲の請求項5記載の発明によれば、前記一導電型低抵抗半導体基板の他方の主面に金属薄膜がオーミック接触している特許請求の範囲の請求項1乃至3のいずれか一項に記載の半導体装置とすることも望ましい。
According to a fourth aspect of the present invention, the semiconductor device according to any one of the first to third aspects, wherein the thickness of the one-conductivity type low-resistance semiconductor substrate is 50 μm or more. More preferably.
According to the invention described in claim 5, the metal thin film is in ohmic contact with the other main surface of the one-conductivity-type low-resistance semiconductor substrate. The semiconductor device described in one item is also desirable.

特許請求の範囲の請求項6記載の発明によれば、特許請求の範囲の請求項1乃至5のいずれか一項に記載の半導体装置の他方の主面を露出させて樹脂封止するチップスケールパッケージにおいて、前記半導体装置の露出面にヒートシンクが設けられている半導体装置のチップスケールパッケージとすることも好適である。
特許請求の範囲の請求項7記載の発明によれば、前記一導電型低抵抗半導体基板内を主面に平行に流れる電流による電気抵抗成分を低減するためにソース電極よりドレイン電極の数が多く設けられる特許請求の範囲の請求項1乃至4のいずれか一項に記載の半導体装置において、ソース電極と同じ数のドレイン電極にはハンダバンプが設けられ、残りのドレイン電極は金属配線により接続されて前記ハンダバンプされたドレイン電極に接続されている半導体装置のチップスケールパッケージとすることがより好適である。
According to the invention described in claim 6, the chip scale which is resin-sealed by exposing the other main surface of the semiconductor device according to any one of claims 1 to 5. It is also preferable that the package is a chip scale package of a semiconductor device in which a heat sink is provided on the exposed surface of the semiconductor device.
According to the seventh aspect of the present invention, the number of drain electrodes is larger than that of the source electrode in order to reduce the electric resistance component due to the current flowing in the one-conductivity type low-resistance semiconductor substrate in parallel with the main surface. 5. The semiconductor device according to claim 1, wherein the same number of drain electrodes as the source electrodes are provided with solder bumps, and the remaining drain electrodes are connected by metal wiring. It is more preferable to use a chip scale package of a semiconductor device connected to the solder bumped drain electrode.

本発明によれば、縦型半導体素子を同一半導体基板内に有する複合半導体装置であっても、半導体基板の2次元サイズとほぼ同一のチップスケールパッケージに樹脂封止する半導体装置を提供することができる。   According to the present invention, it is possible to provide a semiconductor device that is resin-sealed in a chip scale package that is substantially the same as the two-dimensional size of the semiconductor substrate, even if it is a composite semiconductor device having vertical semiconductor elements in the same semiconductor substrate. it can.

以下、本発明にかかる半導体装置の一実施例について、図面を参照しつつ詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
図1は本発明の実施例1にかかる縦型MOSFETの要部断面図、図2は本発明の実施例1にかかるICチップの要部断面図、図3は本発明の実施例2にかかる縦型MOSFETの要部断面図、図4は本発明の実施例2にかかる縦型MOSFETの要部断面図、図5は本発明の実施例3にかかる縦型MOSFETの要部断面図、図6は本発明の実施例3にかかる縦型MOSFETの要部断面図、図7は本発明の実施例3にかかるCSP樹脂封止体の透視上面図、図8は本発明の実施例3にかかるICチップの断面図、図9は本発明の実施例4にかかる縦型MOSFETの要部断面図、図10は本発明の実施例5にかかるCSP樹脂封止体の断面図、図11は本発明の実施例6にかかるCSP樹脂封止体の透視上面図、図12は本発明の実施例6にかかるICチップの断面図である。
Hereinafter, an embodiment of a semiconductor device according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.
1 is a cross-sectional view of a main part of a vertical MOSFET according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a main part of an IC chip according to the first embodiment of the present invention, and FIG. 3 is a second embodiment according to the present invention. FIG. 4 is a cross-sectional view of the main part of the vertical MOSFET according to the second embodiment of the present invention, and FIG. 5 is a cross-sectional view of the main part of the vertical MOSFET according to the third embodiment of the present invention. 6 is a cross-sectional view of the main part of the vertical MOSFET according to the third embodiment of the present invention, FIG. 7 is a transparent top view of the CSP resin sealing body according to the third embodiment of the present invention, and FIG. 8 is a third embodiment of the present invention. FIG. 9 is a cross-sectional view of an essential part of a vertical MOSFET according to Example 4 of the present invention, FIG. 10 is a cross-sectional view of a CSP resin encapsulant according to Example 5 of the present invention, and FIG. 12 is a perspective top view of a CSP resin encapsulant according to Example 6 of the present invention, and FIG. 12 is an example of the present invention. It is a cross-sectional view of a IC chip.

図1は実施例1にかかる複合半導体装置(以降、ICチップと記す)と同一の半導体基板内に内蔵される縦型MOSFET部分の半導体基板の要部断面図である。実施例1では、このような縦型半導体装置を内蔵するICチップを用いた場合でも、チップサイズと同程度にまで小型化されたCSP方式で樹脂封止することのできる半導体装置について説明する。本発明にかかる半導体装置は、CSP方式による樹脂封止を可能にするために、ICチップに内蔵される縦型MOSFET部分の表面側にソース電極とドレイン電極を設ける構成とすることを特徴としている。さらに、説明を加えると、本発明にかかる縦型MOSFETは半導体基板の同一表面側にソース電極とドレイン電極とを離間して形成する構成であるにもかかわらず、主電流は半導体基板の厚さ方向、すなわち、ドレイン−ソース間の高抵抗領域(ドリフト領域)を縦方向に流れるように構成するのである。この点において、同様にMOSFETの半導体基板の同一表面側にドレイン電極とソース電極とが設けられるが、主電流がドレイン−ソース間の、半導体基板の高抵抗領域(ドリフト領域)を主面に平行な方向に流れる、いわゆる横型MOSFETとは異なる。   FIG. 1 is a cross-sectional view of a main part of a semiconductor substrate of a vertical MOSFET portion built in the same semiconductor substrate as a composite semiconductor device (hereinafter referred to as an IC chip) according to a first embodiment. In the first embodiment, a semiconductor device that can be resin-sealed by the CSP method that is miniaturized to the same size as the chip size even when an IC chip incorporating such a vertical semiconductor device is used will be described. A semiconductor device according to the present invention is characterized in that a source electrode and a drain electrode are provided on the surface side of a vertical MOSFET portion built in an IC chip in order to enable resin sealing by the CSP method. . Further, in addition, although the vertical MOSFET according to the present invention has a configuration in which the source electrode and the drain electrode are separately formed on the same surface side of the semiconductor substrate, the main current is the thickness of the semiconductor substrate. The direction, that is, the drain-source high resistance region (drift region) is configured to flow in the vertical direction. In this respect, the drain electrode and the source electrode are similarly provided on the same surface side of the semiconductor substrate of the MOSFET, but the main current is between the drain and source, and the high resistance region (drift region) of the semiconductor substrate is parallel to the main surface. This is different from so-called lateral MOSFETs that flow in different directions.

次に、図1に示す、実施例1にかかる縦型MOSFETについて説明する。低抵抗n基板1上に配設される高抵抗nドリフト領域2の表面層に選択的にpウエル領域3を形成し、さらにそのpウエル領域3の表面層に選択的にnソース領域4を形成する。nドリフト領域2の表面とnソース領域4表面とに挟まれたpウエル領域3の表面上に、ゲート絶縁膜(酸化膜)5を介して導電型ポリシリコンなどからなるゲート電極6を設け、nソース領域4とpウエル領域3の表面に共通に接続されるAl−Siなどの金属膜からなるソース電極7を設ける。前記pウエル領域3の表面のゲート絶縁膜直下にnチャネル(図示せず)が形成される側の表面の端から所要の距離だけ離間するnドリフト領域2の表面にnドレイン領域9を配置する。このnドレイン領域9の表面にドレイン電極10としてAl−Siなどの金属膜をオーミック接触させる。この際、前記ドリフト領域2の表面から内部に向かって形成されるnドレイン領域9の底部は低抵抗n基板1とは連結されていないが、主電流20はドレイン電極10からnドレイン領域9の底部を通って低抵抗n基板に流れる構成にされている。続いて、主電流20はこの低抵抗n基板内を主面に平行な方向に流れ、nドリフト領域2内を厚さ方向に表面に向かって流れる。そしてpウエル領域3の表面に形成される前記nチャネルを通り、nソース領域4に入りソース電極7に主電流20がぬけるように、前記pウエル領域3とnドレイン領域9との間のドリフト領域の距離を大きくして、その間の横方向抵抗をドリフト領域を厚さ方向(縦方向)抵抗より大きくするように設定する構成とすれば、縦型半導体装置を内蔵する半導体装置であっても、図15で示すような従来のCSPの樹脂封止方法でもパッケージすることが可能となる。 Next, the vertical MOSFET according to the first embodiment illustrated in FIG. 1 will be described. Low resistance n + A p well region 3 is selectively formed in the surface layer of the high resistance n drift region 2 disposed on the substrate 1, and n is selectively formed in the surface layer of the p well region 3. + Source region 4 is formed. On the surface of the p well region 3 sandwiched between the surface of the n drift region 2 and the surface of the n + source region 4, a gate electrode 6 made of conductive polysilicon or the like via a gate insulating film (oxide film) 5. And a source electrode 7 made of a metal film such as Al—Si connected to the surfaces of the n + source region 4 and the p well region 3 in common. An n + drain region 9 is formed on the surface of the n drift region 2 that is separated from the end of the surface on the side where an n channel (not shown) is formed immediately below the gate insulating film on the surface of the p well region 3. Place. A metal film such as Al—Si is brought into ohmic contact with the surface of the n + drain region 9 as the drain electrode 10. At this time, the bottom of the n + drain region 9 formed from the surface of the drift region 2 toward the inside is not connected to the low resistance n + substrate 1, but the main current 20 is supplied from the drain electrode 10 to the n + drain. It is configured to flow through the bottom of region 9 to the low resistance n + substrate. Subsequently, the main current 20 flows in the low resistance n + substrate in a direction parallel to the main surface, and flows in the n drift region 2 in the thickness direction toward the surface. Then, the p well region 3, the n + drain region 9 and the n + source region 4 pass through the n channel formed on the surface of the p well region 3 and enter the n + source region 4 and the main current 20 is passed to the source electrode 7. If the distance between the drift regions is increased and the lateral resistance between them is set to be greater than the resistance in the thickness direction (vertical direction), the semiconductor device incorporating the vertical semiconductor device Even so, it is possible to package by a conventional CSP resin sealing method as shown in FIG.

ただし、実施例1にかかる図1に示す縦型MOSFETでは、用途によっては、ソース電極7からドレイン電極10へ負方向に電流が流れる場合がある。負方向に流れるドレイン電流30を図2の太線で示す。この場合、この負方向ドレイン電流の内、所定の割合でnドレイン領域9の底部を越えて、隣接する低電圧回路のNMOSFET領域50へ流れ込むドレイン漏れ電流40が発生する。このドレイン漏れ電流40が大きくなると、NMOSFET50の誤動作や破壊にいたる問題が発生することがある。この問題が懸念される場合は、次に示す実施例2の構成の縦型MOSFETとすることが好ましい。 However, in the vertical MOSFET shown in FIG. 1 according to the first embodiment, a current may flow from the source electrode 7 to the drain electrode 10 in the negative direction depending on the application. The drain current 30 flowing in the negative direction is indicated by a thick line in FIG. In this case, a drain leakage current 40 is generated which flows into the NMOSFET region 50 of the adjacent low-voltage circuit beyond the bottom of the n + drain region 9 at a predetermined ratio in the negative direction drain current. When this drain leakage current 40 becomes large, there may be a problem that the NMOSFET 50 malfunctions or is destroyed. When this problem is concerned, it is preferable to use a vertical MOSFET having the configuration of the second embodiment shown below.

図3は実施例2にかかる縦型MOSFET部分の半導体基板の断面図である。この実施例2にかかる縦型MOSFETの構成は、前記実施例1で説明した図2の負電流30が流れる際に、隣接する低電圧回路のNMOSFET領域50へ流れ込むドレイン漏れ電流40によって生じる障害を回避するための構成である。前記図1とこの図3に示す縦型MOSFETの違いは、図3に示す縦型MOSFETでは、nドレイン領域9の底部が低抵抗n基板1に到達して連結されていることである。この構成とすることにより、前記図2を用いて説明した負電流30が流れるような用途であっても、ドレイン漏れ電流40の発生を完全に防ぐことが可能である。 FIG. 3 is a cross-sectional view of the semiconductor substrate of the vertical MOSFET portion according to the second embodiment. The configuration of the vertical MOSFET according to the second embodiment is a failure caused by the drain leakage current 40 flowing into the NMOSFET region 50 of the adjacent low voltage circuit when the negative current 30 of FIG. 2 described in the first embodiment flows. This is a configuration for avoiding the problem. The difference between the vertical MOSFET shown in FIG. 1 and FIG. 3 is that the bottom of the n + drain region 9 reaches the low resistance n + substrate 1 and is connected in the vertical MOSFET shown in FIG. . With this configuration, it is possible to completely prevent the generation of the drain leakage current 40 even in applications where the negative current 30 described with reference to FIG. 2 flows.

実施例2にかかる図3に示す縦型MOSFETでは、図4の太線で示す主電流経路20のように、主電流はドレイン電極10から低抵抗n基板1、ドリフト領域2、nチャネル、ソース領域4を経てソース電極7に流れる。ただし、このドレイン電流20は、数Ω/□程度のシート抵抗をもつn基板1の場合、流れる距離が長いと、縦型MOSFETのオン抵抗の増加を無視できない。従って、大容量ドレイン電流20が必要となる用途においては、この縦型MOSFETのオン抵抗で発生する熱が、ICチップ全面に対して、ICチップ裏面の局所的な領域で発生するため、熱の拡散や放射の点で大きな問題となることがある。 In the vertical MOSFET shown in FIG. 3 according to the second embodiment, the main current flows from the drain electrode 10 to the low resistance n + substrate 1, the drift region 2, the n channel, and the source, as in the main current path 20 indicated by the thick line in FIG. 4. It flows to the source electrode 7 through the region 4. However, in the case of the n + substrate 1 having a sheet resistance of about several Ω / □, the drain current 20 cannot be ignored if the on-resistance of the vertical MOSFET increases when the flowing distance is long. Therefore, in applications that require a large drain current 20, heat generated by the on-resistance of the vertical MOSFET is generated in a local region on the back surface of the IC chip with respect to the entire surface of the IC chip. It can be a big problem in terms of diffusion and radiation.

図5は実施例3にかかる縦型MOSFET部分の半導体基板の断面図である。実施例3は、図3で示す実施例2の場合に問題になることがあるとした、大容量ドレイン電流が必要となる用途で、n基板1のシート抵抗分が無視できない場合を解消できる縦型MOSFETの構成である。前記図3と図5に示す縦型MOSFETの違いは、図5に示す縦型MOSFETでは、MOSゲート構造に対して2つのnドレイン領域9を配置されていることが図3の構成と異なる。ただし、nドレイン領域9は2つに分離されていなくても、MOSゲート構造を取り巻く構成であってもよい。この構成とすれば、縦型MOSFETに流れるドレイン電流20は、図6の太線20で示すようにn基板1内を主面に平行に流れる分の電流経路が図4の場合と比べて約半分となり、n基板1の抵抗分は等価的に低減されることになる。 FIG. 5 is a sectional view of the semiconductor substrate of the vertical MOSFET portion according to the third embodiment. The third embodiment can solve the case where the sheet resistance of the n + substrate 1 cannot be ignored in an application requiring a large capacity drain current, which may cause a problem in the second embodiment shown in FIG. This is a configuration of a vertical MOSFET. The difference between the vertical MOSFETs shown in FIGS. 3 and 5 is that the vertical MOSFET shown in FIG. 5 is different from the configuration of FIG. 3 in that two n + drain regions 9 are arranged with respect to the MOS gate structure. . However, the n + drain region 9 may not be separated into two but may have a configuration surrounding the MOS gate structure. According to this structure, the drain current 20 flowing through the vertical MOSFET, minute current path in parallel to n + substrate 1 on the main surface as shown by a bold line 20 in FIG. 6 is approximately as compared with the case of FIG. 4 The resistance of the n + substrate 1 is reduced equivalently.

一方、ドレイン電極9が複数となる場合のデメリットもある。この実施例3の縦型MOSFETを従来のCSP方式で樹脂封止する場合のICチップの透視上面図を図7に示す。ICチップ11内の縦型MOSFET部分の破線で示すソース電極パッド12の両側に、同じ縦型MOSFETのドレイン電極パッド13が前述したように2箇所存在する。これら2つの縦型MOSFETのドレイン電極パッド13に接続されている出力のハンダバンプ15の合計数は、ドレイン電極からソース電極に流れる電流が同じであることから、縦型MOSFETのソース電極パッド12に接続されているハンダバンプ15の合計数と同じであれば充分である。ところが、実施例3では、ドレイン電極パッド13に接続されている出力のハンダバンプ15の合計数はソース電極パッド12に接続されているハンダバンプ15の合計数より多いので、その多い分だけ、ハンダバンプ15が無駄になっている。これがデメリットである。   On the other hand, there is a demerit when there are a plurality of drain electrodes 9. A perspective top view of the IC chip when the vertical MOSFET of the third embodiment is resin-sealed by the conventional CSP method is shown in FIG. As described above, there are two drain electrode pads 13 of the same vertical MOSFET on both sides of the source electrode pad 12 indicated by a broken line in the vertical MOSFET portion in the IC chip 11. The total number of output solder bumps 15 connected to the drain electrode pads 13 of these two vertical MOSFETs is the same as the current flowing from the drain electrode to the source electrode, so that the connection is made to the source electrode pad 12 of the vertical MOSFET. It is sufficient if it is the same as the total number of solder bumps 15 that are applied. However, in Example 3, the total number of output solder bumps 15 connected to the drain electrode pad 13 is larger than the total number of solder bumps 15 connected to the source electrode pad 12. It is useless. This is a disadvantage.

図8は図7に対応する実施例3にかかるICチップ11の断面図である。このICチップ11は、図7と図8に示すように縦型MOSFET部と2点鎖線内に構成される制御回路部14とを備え、制御回路部14として、図8に示すように、半導体基板内に形成される横型NチャンネルMOSFET50と横型PチャンネルMOSFET60と横型ダイオード70と、半導体基板上にポリシリコンで形成される横型ダイオード80と抵抗90などから構成されている。図7の符号15はハンダバンプであり、符号16の鎖線は制御回路部の一パッドであり、符号17はハンダバンプ15とパッド16とを接続する配線である。   FIG. 8 is a cross-sectional view of the IC chip 11 according to the third embodiment corresponding to FIG. The IC chip 11 includes a vertical MOSFET section as shown in FIGS. 7 and 8 and a control circuit section 14 configured within a two-dot chain line. As shown in FIG. A lateral N-channel MOSFET 50, a lateral P-channel MOSFET 60, a lateral diode 70 formed in the substrate, a lateral diode 80 formed of polysilicon on a semiconductor substrate, a resistor 90, and the like are included. Reference numeral 15 in FIG. 7 is a solder bump, a chain line with a reference numeral 16 is one pad of the control circuit unit, and a reference numeral 17 is a wiring connecting the solder bump 15 and the pad 16.

図9は実施例4にかかる縦型MOSFET部分の半導体基板の断面図である。実施例4は、実施例3にかかる縦型MOSFETのオン抵抗を更に低減するための構成である。実施例4にかかる図9と、実施例3にかかる図5の縦型MOSFETの異なる点は、図9ではn基板1の表面(裏面側)に金属薄膜8が設けられていることである。この図9に示す縦型MOSFETの構成とすれば、前記図6のドレイン電流20は、主としてn基板1より抵抗の小さい、0.01Ω/□程度の小さいシート抵抗をもつ金属薄膜8を流れるため、縦型MOSFETのオン抵抗を大幅に低減することが可能である。さらに、縦型MOSFETのオン抵抗による局所的な領域で発生する熱は、ICチップ裏面に設けた金属薄膜8を通してICチップ全面に拡散され、その全面から空気中に放射する放熱機能に基づく効果も有する。以上の説明による図9に示す縦型MOSFETは、実施例4に適用する場合にだけ、その効果を発揮するのではなく、実施例1と実施例2にも金属薄膜8をICチップの裏面に適用すれば、同様の効果が得られる。 FIG. 9 is a sectional view of the semiconductor substrate of the vertical MOSFET portion according to the fourth embodiment. The fourth embodiment has a configuration for further reducing the on-resistance of the vertical MOSFET according to the third embodiment. The difference between FIG. 9 according to the fourth embodiment and the vertical MOSFET of FIG. 5 according to the third embodiment is that a metal thin film 8 is provided on the front surface (rear surface side) of the n + substrate 1 in FIG. . With the configuration of the vertical MOSFET shown in FIG. 9, the drain current 20 shown in FIG. 6 mainly flows through the metal thin film 8 having a smaller sheet resistance of about 0.01 Ω / □, which is smaller in resistance than the n + substrate 1. Therefore, the on-resistance of the vertical MOSFET can be greatly reduced. Furthermore, the heat generated in the local region due to the on-resistance of the vertical MOSFET is diffused to the entire surface of the IC chip through the metal thin film 8 provided on the back surface of the IC chip, and the effect based on the heat radiation function radiating into the air from the entire surface is also achieved. Have. The vertical MOSFET shown in FIG. 9 according to the above description does not exhibit its effect only when applied to the fourth embodiment. In the first and second embodiments, the metal thin film 8 is provided on the back surface of the IC chip. If applied, the same effect can be obtained.

実施例5について、図10に示すCSPの断面図を用いて説明する。この実施例5に示すCSP方式の樹脂パッケージは、前記図15により説明した従来のCSP方式の樹脂パッケージと同様の外径を有するが、前述の実施例1、2、3、4の各縦型MOSFETを備えるICチップ210をCSP方式で樹脂封止する点と、ICチップ裏面に露出する面にヒートシンク209を密着させて配置する点で構成が異なる。これにより、パッケージの熱放射機能はさらにいっそう向上し、許容損失を大幅に上げることが可能となる。   Example 5 will be described using the cross-sectional view of the CSP shown in FIG. The CSP resin package shown in the fifth embodiment has the same outer diameter as that of the conventional CSP resin package described with reference to FIG. 15, but each of the vertical types of the first, second, third, and fourth embodiments described above. The configuration differs in that the IC chip 210 including the MOSFET is resin-sealed by the CSP method and the heat sink 209 is disposed in close contact with the surface exposed on the back surface of the IC chip. As a result, the heat radiation function of the package is further improved, and the allowable loss can be greatly increased.

実施例6について説明する。図11は、図7で示したCSP方式で樹脂封止されるICチップのデメリットを解消する構成を示すCSP方式で樹脂封止されたICチップ11の透視上面図である。この実施例6では、前記実施例3に記載されているドレイン電極パッド13に接続されているハンダバンプ15の合計数を低減して、ソース電極パッド12に接続されているハンダバンプの合計数と同じにする構成の一例について説明する。図11に示すようにハンダバンプ15と縦型MOSFETのドレイン電極パッド13を配線17で接続する場合、新規の配線18で示すように、2箇所にある縦型MOSFETのドレイン電極パッド13の内、1箇所の縦型MOSFETのドレイン電極パッド13とハンダバンプ15を接続し、もう一方の縦型MOSFETのドレイン電極パッド13は、この新規の配線18に接続する構成とする。このような構成にすると、縦型MOSFETのドレイン電極パッドに接続されるハンダバンプ15の数とソース電極パッド12に接続されるハンダバンプ15の数は同一となり、縦型MOSFETに必要とするハンダバンプ15の数は低減できる。この実施例6は、ドレイン電極パッド13が複数存在する縦型MOSFETに適用可能である。   Example 6 will be described. FIG. 11 is a transparent top view of the IC chip 11 resin-sealed by the CSP method showing a configuration that eliminates the disadvantages of the IC chip resin-sealed by the CSP method shown in FIG. In the sixth embodiment, the total number of solder bumps 15 connected to the drain electrode pad 13 described in the third embodiment is reduced to be the same as the total number of solder bumps connected to the source electrode pad 12. An example of the configuration to be performed will be described. As shown in FIG. 11, when the solder bump 15 and the drain electrode pad 13 of the vertical MOSFET are connected by the wiring 17, as shown by the new wiring 18, the drain electrode pad 13 of the vertical MOSFET in two locations is 1 The drain electrode pad 13 of the vertical MOSFET and the solder bump 15 are connected to each other, and the drain electrode pad 13 of the other vertical MOSFET is connected to the new wiring 18. With this configuration, the number of solder bumps 15 connected to the drain electrode pad of the vertical MOSFET and the number of solder bumps 15 connected to the source electrode pad 12 are the same, and the number of solder bumps 15 required for the vertical MOSFET. Can be reduced. The sixth embodiment can be applied to a vertical MOSFET having a plurality of drain electrode pads 13.

図12は図11に対応する実施例6にかかるICチップ11の断面図である。このICチップ11は、前述の図7と図8と同様に、図11と図12に示す縦型MOSFET部と前記図7と同じ2点鎖線内に構成される制御回路部14とを備え、制御回路部14として図12に示すように、半導体基板内に形成される横型NチャンネルMOSFET50と横型PチャンネルMOSFET60と横型ダイオード70と半導体基板上にポリシリコンで形成される横型ダイオード80と抵抗90などを備えている。   FIG. 12 is a cross-sectional view of the IC chip 11 according to the sixth embodiment corresponding to FIG. This IC chip 11 includes the vertical MOSFET portion shown in FIGS. 11 and 12 and the control circuit portion 14 configured within the same two-dot chain line as in FIG. As shown in FIG. 12, the control circuit unit 14 includes a lateral N-channel MOSFET 50, a lateral P-channel MOSFET 60, a lateral diode 70, a lateral diode 80 formed of polysilicon on the semiconductor substrate, a resistor 90, and the like. It has.

実施例7について、図16、図17を用いて説明する。実施例7は、図6と図9にそれぞれ示す縦型MOSFETについて、そのオン抵抗成分のうちn基板の抵抗成分の低減に関する具体的な数値的説明である。図16にそれぞれ示すように、nドレイン領域9間の距離をx、縦型MOSFET領域の奥行きをy、n基板1の厚さをt、n基板1の抵抗率をρとしたとき、n基板1のオン抵抗成分R(n)は、 Example 7 will be described with reference to FIGS. 16 and 17. Example 7 is a specific numerical explanation regarding the reduction of the resistance component of the n + substrate among the on-resistance components of the vertical MOSFETs shown in FIGS. 6 and 9, respectively. As shown in FIG. 16, when the distance between the n + drain region 9 is x, the depth of the vertical MOSFET region is y, the thickness of the n + substrate 1 is t, and the resistivity of the n + substrate 1 is ρ. , N + on-resistance component R (n + ) of substrate 1 is

で表される。
さらに、図9に示す縦型MOSFETについて、その金属薄膜8の厚さをt、金属薄膜8の抵抗率をρとしたとき、金属薄膜8を含むn基板1のオン抵抗成分R(n)’は、
It is represented by
Further, regarding the vertical MOSFET shown in FIG. 9, when the thickness of the metal thin film 8 is t M and the resistivity of the metal thin film 8 is ρ M , the on-resistance component R of the n + substrate 1 including the metal thin film 8 ( n + ) '

で表される。
図17は、n基板1の抵抗率ρをたとえば5mΩ・cm、nドレイン領域9間の距離xをたとえば1500μm、縦型MOSFET領域の奥行きyをたとえば2500μmとしたときのn基板1の厚さtとオン抵抗成分R(n)との関係図である。この
図17によれば、n基板1の厚さtを50μm以上にすればn基板1のオン抵抗成分を150mΩ以下にできることが分かる。さらに、金属薄膜8の抵抗率ρをたとえば0.003mΩ・cm、金属薄膜8の厚さtをたとえば3μmとしたとき、n基板1のオン抵抗成分を1.5mΩ以下にまで低減できることが分かる。
It is represented by
17, n + resistivity ρ, for example 5 m [Omega · cm of the substrate 1, n + drain region 9 between the distance x, for example 1500 .mu.m, vertical MOSFET region when the depth y example the 2500 [mu] m n + substrate 1 FIG. 4 is a relationship diagram between a thickness t and an on-resistance component R (n + ). According to FIG. 17, it can be seen that if the thickness t of the n + substrate 1 is 50 μm or more, the on-resistance component of the n + substrate 1 can be 150 mΩ or less. Furthermore, when the resistivity ρ M of the metal thin film 8 is 0.003 mΩ · cm and the thickness t M of the metal thin film 8 is 3 μm, for example, the on-resistance component of the n + substrate 1 can be reduced to 1.5 mΩ or less. I understand.

以上説明したように、前記実施例1〜実施例7によれば、主電流が半導体基板の厚さ方向に流れる縦型MOSFETを同一半導体基板に有する複合半導体装置(ICチップ)であっても、半導体基板の2次元サイズとほぼ同一のチップスケールパッケージとして樹脂封止することができる小型のCSPを製造することが可能となる。   As described above, according to the first to seventh embodiments, even in a composite semiconductor device (IC chip) having a vertical MOSFET in which the main current flows in the thickness direction of the semiconductor substrate on the same semiconductor substrate, It becomes possible to manufacture a small CSP that can be resin-sealed as a chip scale package that is almost the same as the two-dimensional size of the semiconductor substrate.

本発明の実施例1にかかる縦型MOSFETの要部断面図である。It is principal part sectional drawing of the vertical MOSFET concerning Example 1 of this invention. 本発明の実施例1にかかるICチップの要部断面図である。It is principal part sectional drawing of the IC chip concerning Example 1 of this invention. 本発明の実施例2にかかる縦型MOSFETの要部断面図である。It is principal part sectional drawing of the vertical MOSFET concerning Example 2 of this invention. 本発明の実施例2にかかる縦型MOSFETの要部断面図である。It is principal part sectional drawing of the vertical MOSFET concerning Example 2 of this invention. 本発明の実施例3にかかる縦型MOSFETの要部断面図である。It is principal part sectional drawing of the vertical MOSFET concerning Example 3 of this invention. 本発明の実施例3にかかる縦型MOSFETの要部断面図である。It is principal part sectional drawing of the vertical MOSFET concerning Example 3 of this invention. 本発明の実施例3にかかるCSP樹脂封止体の透視上面図である。It is a see-through | perspective top view of the CSP resin sealing body concerning Example 3 of this invention. 本発明の実施例3にかかるICチップの断面図である。。It is sectional drawing of the IC chip concerning Example 3 of this invention. . 本発明の実施例4にかかる縦型MOSFETの要部断面図である。It is principal part sectional drawing of the vertical MOSFET concerning Example 4 of this invention. 本発明の実施例5にかかるCSP樹脂封止体の断面図である。It is sectional drawing of the CSP resin sealing body concerning Example 5 of this invention. 本発明の実施例6にかかるCSP樹脂封止体の透視上面図である。It is a see-through | perspective top view of the CSP resin sealing body concerning Example 6 of this invention. 本発明の実施例6にかかるICチップの断面図である。It is sectional drawing of the IC chip concerning Example 6 of this invention. 従来の縦型MOSFETの要部断面図である。It is principal part sectional drawing of the conventional vertical MOSFET. 従来のICチップの樹脂封止体の透視上面図である。It is a see-through | perspective top view of the resin sealing body of the conventional IC chip. 従来のCSP樹脂封止体の断面図Sectional drawing of the conventional CSP resin sealing body 本発明の実施例7にかかる縦型MOSFETの斜視断面図である。It is a perspective sectional view of a vertical MOSFET according to Example 7 of the present invention. 本発明の実施例7にかかる縦型MOSFETのn基板の厚さとオン抵抗成分との関係図である。It is a related figure of the thickness of n + board | substrate of the vertical MOSFET concerning Example 7 of this invention, and an ON-resistance component.

符号の説明Explanation of symbols

1 n基板
2 nドリフト領域
3 pウエル領域
4 nソース領域
5 ゲート絶縁膜
6 ゲート電極
7 ソース電極
8 金属薄膜
9 nドレイン領域
10 ドレイン電極
11 ICチップ
12 ソース電極パッド
13 ドレイン電極パッド
14 制御回路部
15 ハンダバンプ
17、18 配線
20 主電流経路
30 主電流経路
209 ヒートシンク
210 ICチップ。
1 n + substrate 2 n - drift region 3 p - well region 4 n + source region 5 gate insulating film 6 gate electrode 7 source electrode 8 metal thin film 9 n + drain region 10 drain electrode 11 IC chip 12 source electrode pad 13 drain electrode Pad 14 Control circuit section 15 Solder bump 17, 18 Wiring 20 Main current path 30 Main current path 209 Heat sink 210 IC chip.

Claims (7)

一導電型低抵抗半導体基板の一方の主面上の一導電型ドリフト層の表面層に選択的に形成される他導電型ウエル領域と、該他導電型ウエル領域の表面層に選択的に形成される一導電型ソース領域と、前記一導電型ドリフト層表面と前記一導電型ソース領域表面とに挟まれる前記他導電型ウエル領域表面上にゲート絶縁膜を介して形成されるゲート電極と、前記他導電型ウエル領域と同一表面に所要の距離に離間されて配置される一導電型ドレイン領域とを備える半導体装置において、前記ゲート電極に閾値電圧以上の電圧印加時に前記ゲート絶縁膜直下の他導電型ウエル領域表面に形成されるチャネルを通って電子がソース領域から前記ドリフト領域内を通過して前記ドレイン領域へ向かって流れる際、前記所要の距離を、この電子の受ける電気抵抗が前記一導電型低抵抗半導体基板を通って前記ドレイン領域へ抜ける場合に最も小さくなるように設定することを特徴とする縦型半導体装置。 Another conductivity type well region selectively formed in the surface layer of the one conductivity type drift layer on one main surface of the one conductivity type low resistance semiconductor substrate, and selectively formed in the surface layer of the other conductivity type well region A gate electrode formed on a surface of the other conductivity type well region sandwiched between the surface of the one conductivity type drift layer and the surface of the one conductivity type source region via a gate insulating film; In a semiconductor device comprising one conductivity type drain region disposed on the same surface and spaced apart by a required distance from the other conductivity type well region, other than immediately below the gate insulating film when a voltage higher than a threshold voltage is applied to the gate electrode When electrons flow from the source region to the drain region through the channel formed in the surface of the conductivity type well region, the required distance is received by the electron. Vertical semiconductor device, characterized in that the gas resistance is set to be smallest when the exit to the drain region through the one conductivity type low-resistance semiconductor substrate. 前記ドレイン領域底部が前記一導電型低抵抗半導体基板に接触していないことを特徴とする請求項1記載の縦型半導体装置。 2. The vertical semiconductor device according to claim 1, wherein a bottom of the drain region is not in contact with the one conductivity type low resistance semiconductor substrate. 前記ドレイン領域底部が前記一導電型低抵抗半導体基板に接触していることを特徴とする請求項1記載の縦型半導体装置。 2. The vertical semiconductor device according to claim 1, wherein the bottom of the drain region is in contact with the one-conductivity type low-resistance semiconductor substrate. 前記一導電型低抵抗半導体基板の厚さが50μm以上であることを特徴とする請求項1乃至3のいずれか一項に記載の縦型半導体装置。 4. The vertical semiconductor device according to claim 1, wherein a thickness of the one-conductivity-type low-resistance semiconductor substrate is 50 μm or more. 前記一導電型低抵抗半導体基板の他方の主面に金属膜がオーミック接触していることを特徴とする請求項1乃至3のいずれか一項に記載の縦型半導体装置。 4. The vertical semiconductor device according to claim 1, wherein a metal film is in ohmic contact with the other main surface of the one-conductivity-type low-resistance semiconductor substrate. 請求項1乃至5のいずれか一項に記載の縦型半導体装置の他方の主面を露出させて樹脂封止するチップスケールパッケージにおいて、前記縦型半導体装置の露出面にヒートシンクが設けられていることを特徴とする縦型半導体装置のチップスケールパッケージ。 6. A chip scale package in which the other main surface of the vertical semiconductor device according to any one of claims 1 to 5 is exposed and resin-sealed, and a heat sink is provided on the exposed surface of the vertical semiconductor device. A chip scale package of a vertical semiconductor device characterized by the above. 前記一導電型低抵抗半導体基板内を主面に平行に流れる電流による電気抵抗成分を低減するためにソース電極よりドレイン電極の数が多く設けられる請求項1乃至4のいずれか一項に記載の縦型半導体装置において、ソース電極と同じ数のドレイン電極にはハンダバンプが設けられ、残りのドレイン電極は金属配線により接続されて前記ハンダバンプされたドレイン電極に接続されていることを特徴とする縦型半導体装置のチップスケールパッケージ。 5. The drain electrode according to claim 1, wherein the number of drain electrodes is larger than the number of source electrodes in order to reduce an electrical resistance component due to a current flowing in parallel to the main surface in the one-conductivity type low-resistance semiconductor substrate. In the vertical semiconductor device, the same number of drain electrodes as the source electrodes are provided with solder bumps, and the remaining drain electrodes are connected by metal wiring and connected to the solder bumped drain electrodes. Chip scale package for semiconductor devices.
JP2006289889A 2006-10-25 2006-10-25 Semiconductor device Withdrawn JP2008108887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289889A JP2008108887A (en) 2006-10-25 2006-10-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289889A JP2008108887A (en) 2006-10-25 2006-10-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2008108887A true JP2008108887A (en) 2008-05-08

Family

ID=39441996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289889A Withdrawn JP2008108887A (en) 2006-10-25 2006-10-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2008108887A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249366A (en) * 1984-05-25 1985-12-10 Hitachi Ltd Semiconductor device
JPH07326742A (en) * 1994-05-30 1995-12-12 Toshiba Corp Semiconductor device and manufacture thereof
JPH11135778A (en) * 1997-10-28 1999-05-21 Rohm Co Ltd Semiconductor device and manufacture thereof
JP2004071886A (en) * 2002-08-07 2004-03-04 Renesas Technology Corp Vertical power semiconductor device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249366A (en) * 1984-05-25 1985-12-10 Hitachi Ltd Semiconductor device
JPH07326742A (en) * 1994-05-30 1995-12-12 Toshiba Corp Semiconductor device and manufacture thereof
JPH11135778A (en) * 1997-10-28 1999-05-21 Rohm Co Ltd Semiconductor device and manufacture thereof
JP2004071886A (en) * 2002-08-07 2004-03-04 Renesas Technology Corp Vertical power semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US10347567B2 (en) Semiconductor device and method of manufacturing the same
US6423623B1 (en) Low Resistance package for semiconductor devices
JP5526849B2 (en) Semiconductor device
TWI593031B (en) Semiconductor integrated circuit device
US12052014B2 (en) Semiconductor device
TW201140799A (en) Semiconductor device
WO2018135239A1 (en) Semiconductor device and power conversion apparatus
JP2023029412A (en) Semiconductor device
JP2023033627A (en) Optical coupling device
US11626399B2 (en) Semiconductor device
US11049856B2 (en) Semiconductor device
US9006830B2 (en) Semiconductor device
JP2007027404A (en) Semiconductor device
JP5361114B2 (en) Integrated circuit with stacked die type configuration utilizing substrate conduction
KR101999312B1 (en) Semiconductor device
KR102163602B1 (en) Semiconductor Device with Stacking Structure of Silicon-Conductor layer-Silicon
JP2011199039A (en) Semiconductor device
JP2008108887A (en) Semiconductor device
US10978588B2 (en) Semiconductor device
CN113496958B (en) Substrate and packaging structure
US20230369278A1 (en) Semiconductor device
CN109994445B (en) Semiconductor element and semiconductor device
JP2005085820A (en) Semiconductor device
CN118633167A (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2009152294A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120817