JP2008107233A - Incineration processing method of molding used in nuclear power generation facility - Google Patents

Incineration processing method of molding used in nuclear power generation facility Download PDF

Info

Publication number
JP2008107233A
JP2008107233A JP2006291133A JP2006291133A JP2008107233A JP 2008107233 A JP2008107233 A JP 2008107233A JP 2006291133 A JP2006291133 A JP 2006291133A JP 2006291133 A JP2006291133 A JP 2006291133A JP 2008107233 A JP2008107233 A JP 2008107233A
Authority
JP
Japan
Prior art keywords
incineration
molded product
power generation
nuclear power
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006291133A
Other languages
Japanese (ja)
Inventor
Masahiro Hagiwara
正弘 萩原
Takeshi Izumi
丈志 出水
Takashi Otsu
孝 大津
Hirobumi Inagawa
博文 稲川
Masayuki Arai
正幸 荒井
Masaharu Tsujita
正治 辻田
Mitsuhiko Nomi
光彦 能見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006291133A priority Critical patent/JP2008107233A/en
Publication of JP2008107233A publication Critical patent/JP2008107233A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of performing inexpensive, efficient and stable incineration processing of a rubber or plastic molding used in a nuclear power generation facility. <P>SOLUTION: In the method for performing the incineration processing of the rubber or plastic molding used in the nuclear power generation facility, the molding is frozen and embrittled in an atmosphere of an ultra-low temperature, and the frozen and embrittled molding is crushed into particles, and then mixed with a combustible binder to form a solidified body, and then incinerated. The atmosphere of the ultra-low temperature is below -70°C, and the molding crushed into particles has a particle size of 5 mm, preferably 1.5 mm or less. The binder has a melting point of 80°C or below, and solid oil paraffin or vegetable wax can be used therefor at a room temperature, and the mixing ratio between the binder and crushed objects of the molding may be 3/1-1/3 in the weight ratio, and slaked lime may be mixed additionally at a mixing time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原子力発電施設で使用した成形品の処理技術に係り、特に、機器運転や点検作業などで大量に発生するゴム手袋、ゴム長靴、難燃シートなどの放射性を含む成形品を凍結粉砕し、焼却処理する技術に関わるものであり、既設の焼却炉により放射性の成形品を容易に焼却処理ための有効的手段を提供するものである。   The present invention relates to processing technology for molded products used in nuclear power generation facilities, and in particular freeze-grinds molded products containing radioactive materials such as rubber gloves, rubber boots, and flame retardant sheets that are generated in large quantities during equipment operation and inspection work. However, the present invention relates to a technique for incineration, and provides an effective means for easily incinerating a radioactive molded product with an existing incinerator.

原子力発電施設の運転、定期点検、改造工事などにおいて発生する放射能を有するゴム手袋、ゴム長靴、難燃シートなどの放射性で焼却しにくい成形品(以下、難燃物という)は、発電施設内の焼却炉により、大量の可燃物と一緒に焼却処理している。最近、防災上の理由により発電施設内への可燃物の持ち込みが規制され可燃物が減少しており、これに伴い、難燃物の処理も円滑でなくなり、施設内に固体廃棄物として保管される量も増加している。また、上記の放射性難燃物はカサが大きいため、そのまま焼却処理した場合、十分に燃焼されず、焼却残渣が増加し、効率的な焼却ができない問題も持っている。更には、これら放射性難燃物は、通常の手段では粉砕することができない等取り扱い上の問題も持っている。   Radioactive rubber gloves, rubber boots, flame retardant sheets, and other molded articles that are difficult to incinerate (hereinafter referred to as flame retardants) are generated within the power generation facility. Incinerators are incinerated with a large amount of combustible materials. Recently, the introduction of combustible materials into power generation facilities has been restricted due to disaster prevention reasons, and combustible materials have been reduced. As a result, the treatment of incombustible materials has become unsmooth and is stored as solid waste in the facility. The amount is increasing. Moreover, since the above-mentioned radioactive flame retardant has a large body, when it is incinerated as it is, it is not combusted sufficiently, the incineration residue increases, and there is a problem that efficient incineration cannot be performed. Furthermore, these radioactive flame retardants also have problems in handling such that they cannot be pulverized by ordinary means.

放射性難燃物質の処理方法としては、従来から多くの方法が提案され、適用が試みられている。
具体的には、化学処理方式として、過酸化水素の酸化力を利用して分解する湿式分解方式(「廃樹脂減容装置の開発」;FAPIG 第121号・1989−3;p.42〜46)や、圧力容器内に水を入れて温度及び圧力を上昇させて得られる気一液一体の臨界状態の活性化された水分子を利用して有機分子を分解する超臨界水処理方式(「超臨界水を用いた廃棄物処理システム」;東芝レビュー Vol.56No.9(2001);p.58〜61)などが提案されている。熱分解方式として、ロータリーキルン法や、ICプラズマ(高周波誘導結合プラズマ)法(「実規模1Cプラズマ廃樹脂減容装置の実証性能試験」;火力原子力発電
Vol.54No.1Jan.2003)などが提案されているが、これらは水分の存在を嫌うので、予め樹脂粒内水まで除くことが必要である。スチーム方式として、水蒸気を接触させて分解させるスチームリフォーマ一法(THOR法:Thermal0rganic Reduction Process:熱有機還元法)が提案されている(「放射性廃棄物処理における最近の動き」;FAPIG No.157(2001−3),p18)が、装置が大型化してしまい設備投資及びランニングコストが高いという問題がある。溶融処理方式として、高周波により溶融させた金属中に合成樹脂を添加して溶融させる高周波溶融処理法(「放射性固体廃棄物の高周波溶融処理システム開発」;FAPIG No.162(2002−11);p.18〜23)が開発段階にある。直接処理方式として、焼却処理する方法(「使用済イオン交換樹脂の焼却」;火力原子力発電 Vol.41No.5,May1990;p.70〜77)が実用化に向けての研究が行われているが、合成樹脂焼却時のSOx発生の問題がある。また、セメント中に合成樹脂を添加する脱水セメント固化法(「放射性廃棄物管理日本の技術開発と計画」日本原子力産業会議1997年7月31日;p.80〜82)が提案されているが、減容ができず、処分費用が高くなりすぎてしまう、という問題がある。
As a method for treating radioactive flame retardant materials, many methods have been proposed and applied.
Specifically, as a chemical treatment method, a wet decomposition method that utilizes the oxidizing power of hydrogen peroxide ("development of waste resin volume reduction device"; FAPIG 121, 1989-3; p.42-46). ), Or supercritical water treatment system that decomposes organic molecules using activated water molecules in a gas-liquid integrated state obtained by putting water in a pressure vessel and raising the temperature and pressure (""Waste treatment system using supercritical water"; Toshiba review Vol. 56 No. 9 (2001); As a thermal decomposition method, a rotary kiln method, an IC plasma (high frequency inductively coupled plasma) method (“demonstration performance test of a real scale 1C plasma waste resin volume reduction device”, thermal nuclear power generation Vol. However, since they dislike the presence of moisture, it is necessary to remove the water in the resin grains in advance. As a steam method, a steam reformer method (THOR method: Thermal reduction process: thermal organic reduction method) in which water vapor is contacted and decomposed has been proposed ("Recent movements in radioactive waste treatment"; FAPIG No. 157). (2001-3), p18), there is a problem that the apparatus becomes large and the equipment investment and running cost are high. As a melting method, a high-frequency melting method in which a synthetic resin is added and melted in a metal melted by high-frequency (“Development of a high-frequency melting processing system for radioactive solid waste”; FAPIG No. 162 (2002-11); p. 18-23) are in the development stage. As a direct treatment method, an incineration method (“incineration of used ion exchange resin”; thermal nuclear power generation Vol. 41 No. 5, May 1990; p. 70-77) has been studied for practical use. However, there is a problem of SOx generation during synthetic resin incineration. In addition, a dehydrating cement solidification method (“Radioactive Waste Management Japanese Technology Development and Planning”, Japan Nuclear Industry Council, July 31, 1997; p. 80-82) has been proposed in which synthetic resin is added to the cement. There is a problem that the volume cannot be reduced and the disposal cost becomes too high.

このように、これまで提案されている種々の方式では、装置が複雑で制御が困難であること、処理コストがかかり過ぎること、安定した運転ができないこと、故障が多いこと、材料上に問題があること、などの種々の理由によって実用化されていないか、または実用化されていても問題が多いのが現状である。
なお、本発明に関連する従来技術として、RDF(廃棄物固形)燃料があるが、この技術は、廃棄物を細断の後、加圧成型する方法であり、ごみの燃料化が目的であるので、当該技術のようにバインダーによる混合体形成により、放射能を含んだ廃棄物を安全、且つ容易に処分する技術とは根本的に相違する技術である。
As described above, in the various methods proposed so far, the apparatus is complicated and difficult to control, the processing cost is excessive, the stable operation cannot be performed, there are many failures, and there are problems in materials. At present, there are many problems even if it has not been put into practical use for various reasons such as, or has been put into practical use.
In addition, although there exists RDF (waste solid) fuel as a prior art relevant to this invention, this technique is the method of pressure-molding after shredding waste, and the objective is to make waste into fuel. Therefore, this technique is fundamentally different from the technique of safely and easily disposing of radioactive waste by forming a mixture with a binder as in this technique.

「廃樹脂減容装置の開発」;FAPIG 第121号・1989−3;p.42〜46“Development of waste resin volume reduction device”; FAPIG No. 121, 1989-3; p. 42-46 「超臨界水を用いた廃棄物処理システム」;東芝レビューVol.56No.9(2001);p.58〜61“Waste treatment system using supercritical water”; Toshiba Review Vol. 56No. 9 (2001); p. 58-61 「実規模1Cプラズマ廃樹脂減容装置の実証性能試験」;火力原子力発電 Vol.54No.1Jan.2003“Demonstration performance test of real scale 1C plasma waste resin volume reduction device”; Thermal nuclear power generation Vol. 54No. 1 Jan. 2003 「放射性固体廃棄物の高周波溶融処理システム開発」;FAPIGNo.162(2002−11);p.18〜23“Development of high-frequency melting treatment system for radioactive solid waste”; 162 (2002-11); p. 18-23 「使用済イオン交換樹脂の焼却」;火力原子力発電 Vol.41No.5,May1990;P.70〜77“Incineration of used ion exchange resin”; Thermal Power Generation Vol. 41No. 5, May 1990; 70-77 「放射性廃棄物処理における最近の動き」;FAPIG No.157(2001−3),P18“Recent developments in radioactive waste treatment”; 157 (2001-3), P18 「放射性廃棄物管理日本の技術開発と計画」日本原子力産業会議1997年7月31日;p.80〜82"Radioactive Waste Management Japanese Technology Development and Planning" Japan Nuclear Industry Council July 31, 1997; p. 80-82

本発明は、上述の焼却処理に属するものであり、従来技術の問題点である難燃物の粉砕ができない(焼却処理に必要な粒子化が不可能)、可燃物の確保が難しい、従来の焼却炉での焼却の難しさ(カサがあり、炉底部に溜まり十分に焼却されない)などを全て解消し、低コストで効率的、且つ安定的な焼却処理を可能にした焼却処理方法を提供することを課題とする。   The present invention belongs to the above-mentioned incineration treatment, flame retardant which is a problem of the prior art cannot be pulverized (cannot be granulated necessary for the incineration treatment), it is difficult to ensure combustible materials, To provide an incineration method that eliminates all the difficulties of incineration in the incinerator (there is rust and does not accumulate enough at the bottom of the incinerator) and enables efficient and stable incineration at low cost. This is the issue.

上記課題を解決するために、本発明では、原子力発電施設で使用したゴム製又はプラステチック製の成形品を焼却処理する方法において、前記成形品を超低温下の雰囲気中で凍結脆化させ、該凍結脆化させた成形品を粒子状に粉砕した後、可燃性の結合剤と混合し、通常の焼却炉で焼却可能な固化体に成形したのち、焼却することを特徴とする焼却処理方法としたものである。
前記焼却処理方法において、超低温下の雰囲気は、成形品が凍結脆化できる温度であればよく、成形品がゴム製の場合は−75℃以下、成形品がプラステチック製の場合は−70℃以下とするのがよく、前記粒子状に粉砕した成形品は、粒子径が5mm以下、特に、1.5mm以下であるのがよく、また、前記可燃性の結合剤は、融点が80℃以下で、常温では固体である石油パラフィン又は植物性ワックスであるのがよく、前記可燃性の結合剤と成形品の粉砕物との混合割合は、重量比で3/1〜1/3であるのがよい。
さらに、前記可燃性の結合剤と成形品の粉砕物との混合においては、焼却する際に有害なSOxなどのガスの発生を防止するために、カルシウム化合物、望ましくは、消石灰を添加することができ、前記焼却処理するゴム製又はプラステチック製の成形品には、原子力発電施設で発生する放射性イオン交換樹脂を混合することができる。
In order to solve the above problems, in the present invention, in a method of incinerating a rubber or plastic molded product used in a nuclear power generation facility, the molded product is freeze embrittled in an atmosphere at an ultra-low temperature, An incineration processing method characterized in that after freeze-brittled molded product is pulverized into particles, mixed with a combustible binder, formed into a solidified body that can be incinerated in a normal incinerator, and then incinerated. It is a thing.
In the incineration method, the atmosphere under ultra-low temperature may be a temperature at which the molded product can be freeze embrittled, and is −75 ° C. or lower when the molded product is made of rubber, and −70 ° C. when the molded product is made of plastic. The molded product pulverized into particles is preferably 5 mm or less, particularly 1.5 mm or less, and the combustible binder has a melting point of 80 ° C. or less. Therefore, it is preferable to use petroleum paraffin or vegetable wax that is solid at normal temperature, and the mixing ratio of the combustible binder and the pulverized product is 3/1 to 1/3 in weight ratio. Is good.
Further, in the mixing of the combustible binder and the pulverized product, a calcium compound, preferably slaked lime, may be added in order to prevent generation of harmful gases such as SOx during incineration. The rubber or plastic molded product to be incinerated can be mixed with a radioactive ion exchange resin generated in a nuclear power generation facility.

本発明は、通常での取り扱いが難しい、これら放射性難燃物を液体窒素ガスなどに接触させて凍結粉砕し、石油パラフィンなどの低融点可燃性物質で固形化し、容易に搬送し、既設の焼却設備により焼却処理が可能な状態にすることにより、放射性廃棄物処理の問題を解決する画期的手段である。
本発明は、原子力発電施設において、適切な処理方法がないため保管量が増加しつつあり、今後もプラントの高経年化により増加することが予測されているゴム手袋、ゴム長靴、難燃性プラスチックシートなどの放射性難燃物をシュレッター等でひも状に切断し、液体窒素などによる超低温雰囲気下で凍結し、粒子状に粉砕した後、粒状石油パラフィン等の可燃性結合材と均一に混合し、混錬式押出し成型機により適切な寸法の固化体に成型することにより、各施設が放射性雑固体の焼却のために設置している既設の焼却設備により、容易に焼却可能にする技術を提供するものである。
これにより、原子力発電施設に大量に保管されている放射性難燃物を既設の焼却設備を改造することなく、従来の雑固体を焼却する要領で容易に、且つ効率的に、低コストで焼却することが可能となるため、放射性廃棄物処理コストの低減につながる技術であり、その波及効果は絶大である。
The present invention is difficult to handle normally, these radioactive flame retardants are brought into contact with liquid nitrogen gas, frozen and pulverized, solidified with a low melting point combustible material such as petroleum paraffin, easily transported, existing incineration It is an epoch-making means to solve the problem of radioactive waste disposal by making the incineration process possible with equipment.
In the nuclear power generation facility, the storage amount is increasing because there is no appropriate treatment method, and rubber gloves, rubber boots, flame retardant plastics, which are expected to increase due to aging of the plant in the future. Sheets and other radioactive flame retardants are cut into a string with a Schretter etc., frozen in an ultra-low temperature atmosphere with liquid nitrogen, etc., pulverized into particles, and then mixed uniformly with a combustible binder such as granular petroleum paraffin, Providing technology that enables easy incineration using existing incineration facilities installed at each facility for incineration of radioactive miscellaneous solids by molding into solidified bodies of appropriate dimensions using a kneading type extrusion molding machine Is.
In this way, radioactive flame retardants stored in large quantities at nuclear power generation facilities can be incinerated easily and efficiently at a low cost in the same way as incineration of conventional miscellaneous solids without modifying existing incineration facilities. Therefore, it is a technology that leads to a reduction in radioactive waste disposal costs, and its ripple effect is enormous.

原子力発電施設では、可燃性廃棄物の処理を行うため、焼却装置を有している。一般には、ゴム手袋、ゴム長靴、難燃性プラスチックシートなどの難燃物質は、難燃性ではあるが高温で分解して燃焼が可能であるため、他の廃棄物と混合して焼却炉に投入し焼却を行っている。しかしながら、ゴム手袋、ゴム長靴、難燃性プラスチックシートなどはカサが大きいため、未焼却のまま残ってしまう。
このため、現状の各原子力発電施設においては、これら放射性難燃物は、大量の可燃性廃棄物と一緒に少量づつ焼却処理しているが、処理量が発生量に追いつかず、各施設内の固体廃棄物保管場所に保管され、その保管量も増加しつつある。
今後、発電施設の高経年化により、年間発生する放射性難燃物もさらに増加することが予想される。そのため、これら放射性難燃物の処理は、原子力発電所にとって最優先課題の一つになっている。
本発明は、これら保管中のゴム手袋、ゴム長靴、難燃性プラスチックシートなどの放射性難燃物を凍結粉砕した後、石油パラフィンや植物性ワックスなどの比較的低融点で、且つ常温で固体である粒状物質と混合し、混錬押出し成型法などにより、通常の焼却炉に容易に装荷、焼却可能なサイズの球状、棒状などの塊状固化体に成型することにより、原子力発電施設で所有する既設の焼却施設によって処理可能な手段を提供するものである。
The nuclear power generation facility has an incinerator for processing combustible waste. In general, flame retardants such as rubber gloves, rubber boots, and flame retardant plastic sheets are flame retardant but can be decomposed and burned at high temperatures, so they can be mixed with other wastes into incinerators. It is thrown in and incinerated. However, rubber gloves, rubber boots, flame retardant plastic sheets, etc. are large and therefore remain unburned.
For this reason, in each current nuclear power generation facility, these radioactive flame retardants are incinerated with small amounts of flammable waste, but the amount of processing cannot keep up with the amount generated, It is stored in a solid waste storage area, and its storage volume is also increasing.
In the future, it is expected that the amount of radioactive flame retardants generated annually will increase further with the aging of power generation facilities. Therefore, the treatment of these radioactive flame retardants has become one of the top priorities for nuclear power plants.
The present invention freezes and pulverizes radioactive flame retardants such as rubber gloves, rubber boots and flame retardant plastic sheets during storage, and then has a relatively low melting point such as petroleum paraffin and vegetable wax, and is solid at room temperature. Existing plant owned by nuclear power generation facilities by mixing with a certain granular material and forming it into a solidified solid body such as a spherical or rod-like size that can be easily loaded into an incinerator and incinerated by a kneading extrusion molding method. It provides a means that can be handled by an incineration facility.

以下、本発明を詳細に説明する。
本発明で焼却処理されるゴム製又はプラスチック製の成形品としたは、ゴム手袋、ゴム長靴、難燃性プラスチックシート等であり、これらは通常の燃焼では、ガサが大きく炉底に溜まり未焼却のまま残ってしまう難燃性の物質であり、本発明では、これらを難燃物と称している。
本発明では、前記成形品を適宜裁断して凍結処理でき、超低温雰囲気下とは、前記の成形品が凍結脆下される温度であり、これらの温度は、ゴムでは−75℃以下、プラステチックでは−70℃以下であり、例えば、液体窒素(−195.8℃)、液体空気(−195.8℃℃)、液体酸素(−183℃)などの超低温冷媒と接触させる方法、或いは、ドライアイス又はドライアイスとメタノール、エタノール、アセトン、エーテル等の溶剤との寒剤を用いることができる。
The present invention will be described in detail below.
The rubber or plastic molded products to be incinerated in the present invention are rubber gloves, rubber boots, flame retardant plastic sheets, etc., and these are usually incinerated due to the large amount of gas accumulated at the bottom of the furnace. In the present invention, these are referred to as flame retardants.
In the present invention, the molded product can be appropriately cut and frozen, and the ultra-low temperature atmosphere is a temperature at which the molded product is frozen and embrittled. Is a temperature of −70 ° C. or lower, for example, a method of contacting with a cryogenic refrigerant such as liquid nitrogen (−195.8 ° C.), liquid air (−195.8 ° C.), liquid oxygen (−183 ° C.), or dry A cryogen of ice or dry ice and a solvent such as methanol, ethanol, acetone, or ether can be used.

また、凍結脆下された成形品は、ハンマーミル、ボールミル等の一般に使用されている粉砕機を用いて容易に粉砕でき、粉砕された成形品の粒子径は、可燃性結合剤と混合して固化体とした際の強度、形状を考慮すると、5mm以下、特に1.5mm以下とするのがよい。
本発明において用いることができる可燃性結合剤は、融点が80℃以下で且つ常温で固体である物質からなることが好ましい。好ましくは、融点が50℃〜70℃程度であることが好ましく、特に50℃以上60℃以下であることが好ましい。融点が80℃を越える可燃性結合剤を用いることができないわけではないが、可燃性結合剤を液化する為に要するエネルギーが増加するので好ましくない。
また、本発明において可燃性結合剤を混練する場合には、可燃性結合剤を融点以下の軟化した状態で用いることが好ましい。
In addition, the freeze-fried molded product can be easily pulverized using a commonly used pulverizer such as a hammer mill, a ball mill, etc. The particle size of the pulverized molded product is mixed with a combustible binder. Considering the strength and shape of the solidified body, it should be 5 mm or less, particularly 1.5 mm or less.
The combustible binder that can be used in the present invention is preferably made of a substance having a melting point of 80 ° C. or lower and a solid at room temperature. Preferably, the melting point is about 50 ° C. to 70 ° C., and particularly preferably 50 ° C. or more and 60 ° C. or less. Although it is not impossible to use a combustible binder having a melting point exceeding 80 ° C., it is not preferable because the energy required for liquefying the combustible binder increases.
In the present invention, when the combustible binder is kneaded, it is preferable to use the combustible binder in a softened state below the melting point.

本発明において用いることができる可燃性結合剤としては、石油パラフィン、植物性ワックス、木蝋、白蝋などを好ましく挙げることができる。石油パラフィンとしては、融点が50℃以上のパラフィンワックス、例えばJISK2235に規定されている125P、130P、135P、140P、145P、150P、155Pなどを好ましく用いることができる。可燃性結合剤を液状で用いる場合には、130Pが好ましい。可燃性結合剤を粉末又は粒状で用いる場合には、155P(粒状、顆粒状、紛状)や140P(顆粒状)が好ましい。なお、パラフィンワックスについて「融点」とは、溶融した試料を既定の条件で放冷したとき、試料の温度降下速度が規定の速度以下となったときの温度である(JISK2235)。
本発明において、可燃性結合剤と成形品の粉砕物との混合割合は、重量比で3/1〜1/3がよく、より好ましくは2/1〜1/2の範囲がよい。また、これらの混合では、カルシウム化合物、特に消石灰を、処理する成形品の硫黄分の含有量に応じて適宜に添加することができる。通常、処理する成形品の5重量%以下で十分である。
Preferred examples of the combustible binder that can be used in the present invention include petroleum paraffin, vegetable wax, wood wax, and white wax. As the petroleum paraffin, a paraffin wax having a melting point of 50 ° C. or more, for example, 125P, 130P, 135P, 140P, 145P, 150P, 155P, etc. defined in JISK2235 can be preferably used. When the combustible binder is used in liquid form, 130P is preferable. When the combustible binder is used in powder or granular form, 155P (granular, granular, powdery) or 140P (granular) is preferred. Note that the “melting point” of paraffin wax is the temperature at which the temperature drop rate of the sample falls below a prescribed rate when the molten sample is allowed to cool under predetermined conditions (JISK2235).
In the present invention, the mixing ratio of the combustible binder and the pulverized product is preferably 3/1 to 1/3, more preferably 2/1 to 1/2. Moreover, in these mixing, a calcium compound, especially slaked lime can be appropriately added according to the content of sulfur in the molded product to be treated. Usually, 5% by weight or less of the molded product to be treated is sufficient.

本発明の粉砕物と結合剤との固化体の形状、寸法は、特に限定されるものではないが、汽力発電施設などが保有する通常の焼却設備で焼却処理可能な形状、寸法であることが好ましい。例えば、焼却設備の火格子を通過しない程度の寸法、好ましくは、直径2〜3cm、長さ3〜5cm程度の寸法で、球状、円柱状、角柱状などの形状であることが好ましい。
また、該固化体は、一般的な原子力発電所が保有する焼却設備で焼却することができるような強度を有する。具体的には、焼却設備に投入した際に破砕しない程度の強度、典型的には、直径3cm、長さ5cmの集合固化体を3メートルの高さ位置からコンクリートの平坦な床に自由落下させた場合に、目視観察で有意な変形やひび割れが生じない程度の強度を有することが好ましい。
The shape and size of the solidified product of the pulverized product and the binder of the present invention are not particularly limited, but may be a shape and size that can be incinerated with ordinary incineration facilities possessed by steam power generation facilities and the like. preferable. For example, it is preferably a size that does not pass through the grate of the incinerator, preferably a size of about 2 to 3 cm in diameter and about 3 to 5 cm in length, and has a spherical shape, a cylindrical shape, a prismatic shape, or the like.
Further, the solidified body has such a strength that it can be incinerated with an incineration facility owned by a general nuclear power plant. Specifically, the solidified body with a strength not to be crushed when it is put into an incineration facility, typically 3 cm in diameter and 5 cm in length, is freely dropped from a height of 3 meters onto a flat concrete floor. In such a case, it is preferable to have a strength that does not cause significant deformation or cracking by visual observation.

次に、原子力発電施設で保有している難燃性物質と同等と見なせる、ゴム手袋を使用した焼却処理例を示す。
原子力発電施設で使用されているゴム手袋と同等と見なせる使用済ゴム手袋を大量に準備し、必要に応じてシュレッターなどで裁断する。
裁断されたゴム手袋は、コンベアなどにより冷凍室に移送され、冷凍室内で−196℃の液体窒素のミストが裁断されたゴム手袋に降りかけられると、ミストは直ちに蒸発し、裁断されたゴム手袋の熱が奪われ、脆化する。窒素ガスを冷凍室内に循環することにより、冷却効果を促進させることができる。
凍結されたゴム手袋は、コンベアなどにより、粉砕工程に移送され、ハンマーミルなどにより粉砕される。
粉砕時の粒径は、0.5〜1.0mm程度に調整される。
Next, an example of incineration using rubber gloves that can be regarded as equivalent to a flame-retardant material held in a nuclear power generation facility is shown.
Prepare a large amount of used rubber gloves that can be regarded as equivalent to the rubber gloves used in nuclear power generation facilities, and cut them with a shredder if necessary.
The cut rubber gloves are transferred to the freezer compartment by a conveyor or the like, and when the mist of liquid nitrogen at −196 ° C. is dropped on the cut rubber gloves, the mist immediately evaporates and the cut rubber gloves are cut. Is deprived of heat and becomes brittle. By circulating nitrogen gas into the freezer compartment, the cooling effect can be promoted.
The frozen rubber gloves are transferred to a pulverization process by a conveyor or the like and pulverized by a hammer mill or the like.
The particle size at the time of pulverization is adjusted to about 0.5 to 1.0 mm.

この粉砕物を固定するため1例として、粒子状の石油パラフィンを用いた。その混合比は、重量割合で以下の通りとした。
ゴム手袋の粉砕物:70部 石油パラフィン:30部
結合材としての粒状石油パラフィンとゴム手袋の粉砕物を計量、混合した後、混錬式押出し成型機に投入し、焼却炉で成型可能な混合固化体を製造する。
製造した固化体は、抜き取りで、外観、形状、硬度、強度を検査し、規格に収まっていることを確認する。
外観:目視により、樹脂とバインダーが均一に混合されていること、有害な割れ、引け巣などがないことを確認する。
寸法:φ20×30mm程度
強度:3m程度の高さから落下させ、割れないことを確認。
形状:変形、つぶれ等がないことを目視により確認する。
各原子力発電施設が保有している焼却炉等を使用し、上述の手段により製造した固化体を焼却温度700〜800℃で焼却する。
In order to fix the pulverized product, particulate petroleum paraffin was used as an example. The mixing ratio was as follows by weight ratio.
Grinded rubber gloves: 70 parts Petroleum paraffin: 30 parts Weighed and mixed granular petroleum paraffin as a binder and crushed rubber gloves, put them into a kneading type extrusion molding machine, and mixed in an incinerator. A solidified body is produced.
The manufactured solid is sampled and inspected for appearance, shape, hardness and strength to confirm that it is within the standards.
Appearance: Visually confirm that the resin and binder are uniformly mixed and that there are no harmful cracks, shrinkage cavities, etc.
Dimensions: φ20 × 30mm Strength: Drop from a height of about 3m and confirm that it does not break.
Shape: Visually confirm that there is no deformation or crushing.
Using an incinerator or the like possessed by each nuclear power generation facility, the solidified body produced by the above-described means is incinerated at an incineration temperature of 700 to 800 ° C.

次に、本発明の処理フローの一例を示す図1及び図2のフロー構成図を用いて説明する。
図1において、原子力発電施設で使用したゴム手袋等の成形品を貯槽1に保管し、保管した成形品を貯槽1から取り出して、超低温雰囲気下の凍結脆下装置10に導入して凍結脆下し、凍結脆下した成形品を粉砕装置20で粒子状に粉砕し、粉砕物を搬送手段30を用いて混合槽40に供給する。混合槽40は、撹拌装置を備えており、混合槽40では、可燃性結合剤として石油パラフィンを溶解槽50で溶解させて、溶解した石油パラフィンを80℃程度に保温しながら、前記成形品の粉砕物と均一になるまで混合してスラリーを形成させる。
得られたスラリーを成形機60で成形して固化体を得、固化体受槽70に送られて、焼却処理に供されるまで保管される。
Next, description will be made with reference to the flow configuration diagrams of FIGS. 1 and 2 showing an example of the processing flow of the present invention.
In FIG. 1, a molded product such as a rubber glove used in a nuclear power generation facility is stored in a storage tank 1, and the stored molded product is taken out from the storage tank 1 and introduced into a freeze brittle apparatus 10 in an ultra-low temperature atmosphere. Then, the freeze-fried molded product is pulverized into particles by the pulverizer 20, and the pulverized product is supplied to the mixing tank 40 using the conveying means 30. The mixing tank 40 includes a stirrer. In the mixing tank 40, petroleum paraffin is dissolved in the dissolution tank 50 as a combustible binder, and the dissolved petroleum paraffin is kept at about 80 ° C. while maintaining the temperature of the molded product. Mix with pulverized product until uniform to form slurry.
The obtained slurry is molded by the molding machine 60 to obtain a solidified body, which is sent to the solidified body receiving tank 70 and stored until it is subjected to incineration.

図2は、本発明のもう一つの例を示すフロー構成図であり、図2においては、次のようなフローで処理される。
使用済みゴム手袋を準備する→シュレッターにかけて裁断する→冷凍室に移送し液体窒素で凍結し脆化させる→破砕工程に送られハンマーミルで粉砕される→計量された後、石油パラフィンと混合される→混錬式押出し成型機に投入される→成型した固化体を搬送容器に受けて、焼却炉に運搬し焼却処分する。
FIG. 2 is a flowchart showing another example of the present invention. In FIG. 2, processing is performed according to the following flow.
Prepare used rubber gloves → Cut with a shredder → Transfer to a freezer and freeze with liquid nitrogen to embrittle → Send to the crushing process and pulverize with a hammer mill → Weigh and then mix with petroleum paraffin → Then it is put into a kneading type extrusion molding machine. → The molded solidified body is received in a transport container and transported to an incinerator for incineration.

以下、本発明を実施例により具体的に説明する。
実施例1
原子力発電施設で使用しているゴム手袋と同等と見なせるゴム手袋を準備し、シュレッターでひも状に切断するし、金属製容器に切断したゴム手袋を入れ、液体窒素を注入し、切断したゴム手袋が脆化し変色したら、取り出し、乳鉢に入れ粉砕する。
粉末の粒度を0.5mm程度に調整する。
石油パラフィン0〜15g、粉砕したゴム手袋5g、を計量する。
使用する石油パラフィンは、炭化水素100%のC2n+2で表される顆粒状の固形パラフィンであり、融点が69℃、引火点が270℃のものを用いた。
石油パラフィンをビーカに入れ、80℃に加熱し溶解し、溶解した石油パラフィンに粉砕したゴム手袋を投入し、撹拌機により目視で均一になるまで撹拌する。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
Prepare a rubber glove that can be regarded as equivalent to the rubber glove used at nuclear power generation facilities, cut it into a string with a shreter, put the cut rubber glove into a metal container, inject liquid nitrogen, cut the rubber glove When it becomes brittle and discolored, it is taken out and placed in a mortar and crushed.
Adjust the particle size of the powder to about 0.5 mm.
Weigh 0-15 g of petroleum paraffin and 5 g of crushed rubber gloves.
The petroleum paraffin used is a granular solid paraffin represented by C n H 2n + 2 having 100% hydrocarbon, and has a melting point of 69 ° C. and a flash point of 270 ° C.
Petroleum paraffin is put into a beaker, heated to 80 ° C. to dissolve, and a rubber glove crushed into the dissolved petroleum paraffin is added and stirred with a stirrer until visually uniform.

石油パラフィンと粉砕したゴム手袋の混合物を、予め準備した円筒の型枠に流し込み室温にて冷却固化する。
十分に冷却した後、型枠を外して固化体を取り出し、外観及び形状の確認、硬度計による硬度の測定を行い、焼却可能な固化体であることを確認した。(図3及び硬度データの通り)また、固化体の落下試験の結果、破損もなく、焼却炉への投入についても強度上問題ないことを確認した。
固化体は、実際の焼却炉と同等の温度条件の電気炉を使用し焼却処分を行い、完全に焼却できることを確認した。(図5〜7の通り)
なお、比較のために、ゴム手袋をそのまま焼却した際の焼却状態を図4に示す。
固化体は、粉砕したゴム手袋と結合剤の比率を変えて複数個作成し、結合剤/粉砕したゴム手袋の比率が重量比で3/1から1/3まで成型及び焼却が可能であることを確認した。
結果を表1に示す。
A mixture of petroleum paraffin and crushed rubber gloves is poured into a cylindrical form prepared in advance and cooled and solidified at room temperature.
After sufficiently cooling, the mold was removed and the solidified body was taken out. The appearance and shape were confirmed, and the hardness was measured with a hardness meter to confirm that the solidified body could be incinerated. (As shown in FIG. 3 and hardness data) Further, as a result of the drop test of the solidified body, it was confirmed that there was no breakage and that there was no problem in strength when it was put into the incinerator.
The solidified body was incinerated using an electric furnace with the same temperature conditions as the actual incinerator, and it was confirmed that it could be completely incinerated. (As shown in FIGS. 5-7)
For comparison, FIG. 4 shows an incineration state when the rubber gloves are incinerated as they are.
A plurality of solidified bodies can be prepared by changing the ratio of crushed rubber gloves and binder, and the ratio of binder / crushed rubber gloves can be molded and incinerated from 3/1 to 1/3 by weight. It was confirmed.
The results are shown in Table 1.

Figure 2008107233
Figure 2008107233

結合材の種類については、石油パラフィン以外に植物性ワックスについても同様の試験を実施した結果、石油パラフィンと同等の満足行く結果が得られた。   As for the type of the binder, the same test was performed on vegetable wax in addition to petroleum paraffin, and as a result, satisfactory results equivalent to those of petroleum paraffin were obtained.

本発明の焼却処理方法の処理フローの一例を示すフロー構成図である。It is a flow block diagram which shows an example of the processing flow of the incineration processing method of this invention. 本発明の処理フローの別の例を示すフロー構成図である。It is a flow block diagram which shows another example of the processing flow of this invention. 実施例1において成形した本発明の固化体を示す写真である。2 is a photograph showing the solidified body of the present invention molded in Example 1. FIG. 比較のために、ゴム手袋をそのまま焼却した際の焼却処理後の残渣状態を示す写真である。It is a photograph which shows the residue state after incineration processing at the time of incinerating rubber gloves as it is for comparison. 実施例1において成形した本発明の固化体の焼却処理後の残渣状態を示す写真である。It is a photograph which shows the residue state after the incineration processing of the solidified body of this invention shape | molded in Example 1. FIG. 実施例1において成形した本発明の固化体の焼却処理後の残渣状態を示す写真である。It is a photograph which shows the residue state after the incineration processing of the solidified body of this invention shape | molded in Example 1. FIG. 実施例1において成形した本発明の固化体の焼却処理後の残渣状態を示す写真である。It is a photograph which shows the residue state after the incineration processing of the solidified body of this invention shape | molded in Example 1. FIG.

符号の説明Explanation of symbols

1:原料貯槽、10:凍結脆化装置、20:粉砕装置、30:搬送手段、40:混合槽、60:成形機、70:固化体受槽   1: Raw material storage tank, 10: Freezing embrittlement apparatus, 20: Crushing apparatus, 30: Conveying means, 40: Mixing tank, 60: Molding machine, 70: Solidified body receiving tank

Claims (7)

原子力発電施設で使用したゴム製又はプラステチック製の成形品を焼却処理する方法において、前記成形品を超低温下の雰囲気中で凍結脆化させ、該凍結脆化させた成形品を粒子状に粉砕した後、可燃性の結合剤と混合し、通常の焼却炉で焼却可能な固化体に成形したのち、焼却することを特徴とする焼却処理方法。   In a method of incinerating a rubber or plastic molded product used in a nuclear power generation facility, the molded product is freeze embrittled in an atmosphere at an ultra-low temperature, and the freeze embrittled molded product is pulverized into particles. An incineration treatment method comprising: mixing with a combustible binder, forming into a solidified body that can be incinerated in a normal incinerator, and then incinerating. 前記超低温下の雰囲気は、成形品がゴム製の場合は−75℃以下、成形品がプラステチック製の場合は−70℃以下であることを特徴とする請求項1に記載の焼却処理方法。   2. The incineration treatment method according to claim 1, wherein the atmosphere under ultra-low temperature is −75 ° C. or lower when the molded product is made of rubber, and −70 ° C. or lower when the molded product is made of plastic. 前記粒子状に粉砕した成形品は、粒子径が5mm以下であることを特徴とする請求項1又は2に記載の焼却処理方法。   The incineration processing method according to claim 1 or 2, wherein the molded product pulverized into particles has a particle diameter of 5 mm or less. 前記可燃性の結合剤は、融点が80℃以下で、常温では固体である石油パラフィン又は植物性ワックスであることを特徴とする請求項1、2又は3に記載の焼却処理方法。   4. The incineration processing method according to claim 1, wherein the combustible binder is petroleum paraffin or vegetable wax having a melting point of 80 ° C. or less and solid at room temperature. 前記可燃性の結合剤と成形品の粉砕物との混合割合は、重量比で3/1〜1/3であることを特徴とする請求項1〜4のいずれか1項記載の焼却処理方法。   The incineration processing method according to any one of claims 1 to 4, wherein a mixing ratio of the combustible binder and the pulverized product is 3/1 to 1/3 in weight ratio. . 前記可燃性の結合剤と成形品の粉砕物との混合は、カルシウム化合物を添加して行うことを特徴とする請求項1〜5のいずれか1項記載の焼却処理方法。   The incineration processing method according to any one of claims 1 to 5, wherein the combustible binder and the pulverized product are mixed by adding a calcium compound. 前記ゴム製又はプラステチック製の成形品には、原子力発電施設で発生する放射性イオン交換樹脂を混合することを特徴とする請求項1〜6のいずれか1項記載の焼却処理方法。   The incineration processing method according to any one of claims 1 to 6, wherein a radioactive ion exchange resin generated in a nuclear power generation facility is mixed with the molded product made of rubber or plastic.
JP2006291133A 2006-10-26 2006-10-26 Incineration processing method of molding used in nuclear power generation facility Pending JP2008107233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006291133A JP2008107233A (en) 2006-10-26 2006-10-26 Incineration processing method of molding used in nuclear power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006291133A JP2008107233A (en) 2006-10-26 2006-10-26 Incineration processing method of molding used in nuclear power generation facility

Publications (1)

Publication Number Publication Date
JP2008107233A true JP2008107233A (en) 2008-05-08

Family

ID=39440694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006291133A Pending JP2008107233A (en) 2006-10-26 2006-10-26 Incineration processing method of molding used in nuclear power generation facility

Country Status (1)

Country Link
JP (1) JP2008107233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164399A (en) * 2012-02-13 2013-08-22 Shimizu Corp Volume reduction treatment method of combustible waste containing radioactive material
JP2015094730A (en) * 2013-11-14 2015-05-18 株式会社東芝 Waste carbon processing method and waste carbon processing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264507A (en) * 1985-09-17 1987-03-23 Mitsubishi Atom Power Ind Inc Reducing of volume of spent resin
JPH0894797A (en) * 1994-09-27 1996-04-12 Toshiba Corp Waste treatment system at nuclear power plant
JP2005031060A (en) * 2003-06-16 2005-02-03 Ebara Corp Molding and incineration method of solidified aggregate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264507A (en) * 1985-09-17 1987-03-23 Mitsubishi Atom Power Ind Inc Reducing of volume of spent resin
JPH0894797A (en) * 1994-09-27 1996-04-12 Toshiba Corp Waste treatment system at nuclear power plant
JP2005031060A (en) * 2003-06-16 2005-02-03 Ebara Corp Molding and incineration method of solidified aggregate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164399A (en) * 2012-02-13 2013-08-22 Shimizu Corp Volume reduction treatment method of combustible waste containing radioactive material
JP2015094730A (en) * 2013-11-14 2015-05-18 株式会社東芝 Waste carbon processing method and waste carbon processing system

Similar Documents

Publication Publication Date Title
EP1989483B1 (en) Method and apparatus of treating waste
Chen et al. Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate
US5476990A (en) Waste management facility
JP2008106270A (en) Method for manufacturing solid feedstock and fuel
JP2008107233A (en) Incineration processing method of molding used in nuclear power generation facility
US5154128A (en) Process for salvaging waste and device for preparing said waste
JP2008030980A (en) Method for manufacturing cement alternative
PT99938A (en) PROCESS FOR THE MANUFACTURE OF A SOLID COMBUSTIBLE MATERIAL FROM URBAN AND / OR INDUSTRIAL SOLID RESIDUES SIMILAR TO URBAN AND / OR AGRICULTURAL WASTE
JP2008081568A (en) Biomass fuel and method for producing the same
EP3865202A1 (en) Use of co2-containing gaseous effluent in wet concrete preparation
JP2006207909A (en) Waste and contaminant recycling device and method
US20130087085A1 (en) System and Method for Cleaning Coal and Biomass in Efficient Integration with Fuel Delivery to a Boiler
JP4985277B2 (en) Method for treating asbestos-containing material using cement production process and method for producing cement
JP4948235B2 (en) Incineration fly ash treatment method
JP4179948B2 (en) Millpyrite effective utilization method and apparatus
JP4036826B2 (en) Incineration melt cooling method
JP4224373B2 (en) Method of molding and incineration of aggregate solidified body
GB2388606A (en) Fuel composition comprising waste plastic in a hydrocarbon gel
JPH08311459A (en) Apparatus for thermally liquefying plastic waste
KR100287411B1 (en) Method and apparatus for incinerating waste by using freeze pulverizer
TWI829579B (en) Methods of making derived fuels from waste
JP2002301457A (en) Method for waste disposal
JP3963339B2 (en) Method and apparatus for melting incineration ash and dust collection ash
Shtripling et al. Geometric parameters determination of the installation for oil-contaminated soils decontamination in Russia, the Siberian region and the Arctic zones climatic conditions with reagent encapsulating
JP2003236507A (en) Backfilling soil and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207