JP2008106950A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008106950A
JP2008106950A JP2006287231A JP2006287231A JP2008106950A JP 2008106950 A JP2008106950 A JP 2008106950A JP 2006287231 A JP2006287231 A JP 2006287231A JP 2006287231 A JP2006287231 A JP 2006287231A JP 2008106950 A JP2008106950 A JP 2008106950A
Authority
JP
Japan
Prior art keywords
unit
power
current
indoor unit
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006287231A
Other languages
Japanese (ja)
Inventor
Koji Utsunomiya
幸司 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006287231A priority Critical patent/JP2008106950A/en
Publication of JP2008106950A publication Critical patent/JP2008106950A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of supplying a peak current generated during operation by suppressing a current supplied from a commercial power source even if contract amperage is left in the present condition, and moreover of preventing a reverse tidal current to the commercial power source from a storage part. <P>SOLUTION: An indoor unit 11 supplies heat of a refrigerant indoors while an indoor temperature is set, and an outdoor unit 12 compresses and expands the refrigerant heat-exchanged in the indoor unit 11, exchanges heat of the refrigerant with outside air and circulates the refrigerant to the indoor unit 11 so that an indoor temperature becomes a set temperature. A power assist device 31 supplies a predetermined current from the commercial power source out of the peak current generated in operating the indoor unit 11 and outdoor unit 12, and a reverse tidal current preventing part 35 supplies a shortage part from the storage part 33 and prevents the reverse tidal flow of the current to the commercial power source from the storage part 33. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、室内の温度が設定温度になるように冷暖房を行う空気調和機に関する。   The present invention relates to an air conditioner that performs cooling and heating so that the indoor temperature becomes a set temperature.

一般に、住宅は電力会社との契約アンペア数の範囲内で電力の供給を受けるようになっており、電力供給の容量を上げるには契約アンペア数を大きくした契約を結ぶことが必要である。   Generally, houses are supplied with electric power within the range of contracted amperages with electric power companies, and it is necessary to conclude a contract with a larger contracted amperage in order to increase the capacity of power supply.

一方、集合住宅の場合は一棟全体に対して電力の総供給量があらかじめ決められていることが多く、そのため増量できる電力量が限られている。このような集合住宅の場合において、各住戸で容量を上げるには管理組合もしくはオーナー(賃貸の場合)の許可が必要であり、集合住宅全体として電力供給容量が不足することが予想される場合には、全体の総供給量を上げる必要がある。つまり、電気幹線の改修が必要となる。これは「共用部分の変更」となるため管理組合を通して住人全員の了解もしくは、オーナーの許可が必要となる。これが電化促進の弊害となっている一つの要因である。   On the other hand, in the case of an apartment house, the total amount of power supplied to the entire building is often determined in advance, and thus the amount of power that can be increased is limited. In the case of such a housing complex, the permission of the management association or owner (in the case of rental) is required to increase the capacity at each dwelling unit, and the power supply capacity of the entire housing complex is expected to be insufficient. Needs to increase the total supply. In other words, it is necessary to repair the electric trunk line. Since this is a “change in common area”, the consent of all residents or the owner's permission is required through the management association. This is one factor that has been a negative effect of promoting electrification.

そこで、契約アンペア数が現状のままでもオール電化を実現できることが望まれており、運転開始時にピーク電流が発生する電化機器のピーク電流を抑制することが考えられている。既存の集合住宅で使用される電化機器の中で、ピーク電流が出やすいものの一つとしてルームエアコン(以下、空気調和機という)がある。   Therefore, it is desired that all electrification can be realized even if the contracted amperage is as it is, and it is considered to suppress the peak current of the electric appliance that generates the peak current at the start of operation. Among electric appliances used in existing apartments, there is a room air conditioner (hereinafter referred to as an air conditioner) that tends to generate a peak current.

図6は従来の空気調和機の一例を示す外観構成図である。空気調和機は室内に設置される室内機11と室外に配置される室外機13とを主構成要素とし、リモコン13により室内機11に対し運転開始や停止あるいは室温の設定等の設定操作を行うようになっている。室外機12は圧縮機を有し冷媒を圧縮膨張させて外気と熱交換し、その冷媒を室内機11と室外機12との間に循環させて冷媒の保有する熱を室内機11に供給する。例えば、冷房運転のときは、冷媒の冷熱を室内機11から室内に供給し室内機11で熱交換して温められた冷媒の熱を冷媒室外機12から外気に放熱する。一方、暖房運転のときは、冷媒の温熱を室内機11から室内に供給し室内機11で熱交換して冷やされた冷媒の熱を室外機12から外気に放出し外気から受熱する。   FIG. 6 is an external configuration diagram showing an example of a conventional air conditioner. The air conditioner has an indoor unit 11 installed indoors and an outdoor unit 13 arranged outdoors as main components, and the remote controller 13 performs setting operations such as operation start / stop or room temperature setting on the indoor unit 11. It is like that. The outdoor unit 12 has a compressor, compresses and expands the refrigerant, exchanges heat with the outside air, circulates the refrigerant between the indoor unit 11 and the outdoor unit 12, and supplies the heat held by the refrigerant to the indoor unit 11. . For example, during the cooling operation, the cooling heat of the refrigerant is supplied from the indoor unit 11 to the room, and the heat of the refrigerant heated by the heat exchange in the indoor unit 11 is radiated from the refrigerant outdoor unit 12 to the outside air. On the other hand, during the heating operation, the heat of the refrigerant is supplied from the indoor unit 11 to the room, heat is exchanged by the indoor unit 11, and the heat of the cooled refrigerant is released from the outdoor unit 12 to the outside air and is received from the outside air.

図7は従来の空気調和機の一例を示すブロック構成図であり、図7(a)は装置構成図、図7(b)は電気接続構成図である。図7(a)に示すように、リモコン13はマイコン(マイクロコンピュータ)14を有し、設定ボタン15で設定された運転開始や停止あるいは室温の設定等の情報を無線(例えば赤外線)で室内機11に送信する。また、設定情報の一部はLCD表示器16に表示される。リモコン13の電源としては、例えば乾電池17が使用される。   FIG. 7 is a block diagram showing an example of a conventional air conditioner, FIG. 7 (a) is a device configuration diagram, and FIG. 7 (b) is an electrical connection configuration diagram. As shown in FIG. 7 (a), the remote controller 13 has a microcomputer 14, and information such as operation start / stop or room temperature setting set by the setting button 15 is transmitted wirelessly (for example, by infrared) to the indoor unit. 11 to send. A part of the setting information is displayed on the LCD display 16. As a power source for the remote controller 13, for example, a dry battery 17 is used.

室内機11はリモコン13からの設定情報をマイコン18で受信するとともに室内の温度や湿度も入力する。そして、これらの情報に基づきファンモータ19や風向きモータ20を駆動するとともにLCD表示器21に室内機11の状態を表示する。また、室外機12に対して、通信線22を介して冷暖房に必要な指令情報を送信する。室内機11の電源は商用電源から供給される。   The indoor unit 11 receives setting information from the remote controller 13 by the microcomputer 18 and inputs the indoor temperature and humidity. And based on these information, the fan motor 19 and the wind direction motor 20 are driven, and the state of the indoor unit 11 is displayed on the LCD display 21. In addition, command information necessary for air conditioning is transmitted to the outdoor unit 12 via the communication line 22. The power for the indoor unit 11 is supplied from a commercial power source.

室外機12は、室内機からの指令情報を通信線22を介してマイコン23で受信するとともに外気の温度を入力し、これらの情報に基づき冷暖暖房の切替を行い圧縮機24やファンモータ25を駆動する。室外機12の電源は商用電源から供給される。   The outdoor unit 12 receives command information from the indoor unit by the microcomputer 23 via the communication line 22 and inputs the temperature of the outside air, and switches between cooling and heating based on these information, and the compressor 24 and the fan motor 25 are switched on. To drive. The power of the outdoor unit 12 is supplied from a commercial power source.

図7(b)に示すように、室内機11及び室外機12は3個の電気接続端子を有しており、2端子は電源用に使用し1端子は通信用に使用される。電源は単相の100V/200Vの商用電源が室内機11に接続され、室内機11からケーブル26を介して室外機12に供給される。   As shown in FIG. 7B, the indoor unit 11 and the outdoor unit 12 have three electrical connection terminals. Two terminals are used for power and one terminal is used for communication. A single-phase 100 V / 200 V commercial power supply is connected to the indoor unit 11 and supplied from the indoor unit 11 to the outdoor unit 12 via the cable 26.

次に、図8は空気調和機の運転直後から目標とする室内温度に至るまでの消費電流及び室内温度の一例を示す特性図であり、図8(a)は外気温度が35℃で設定温度が28℃での冷房運転時の一例の特性図、図8(b)は外気温度が2℃で設定温度が25℃での暖房運転時の特性図である。図8(a)に示すように、冷房運転の場合には運転開始から約10分後に消費電流Iが12A〜13Aのピーク電流となり、このピーク電流のときに室温Tは急峻に設定温度に近づいている。そして、約15分後から約60分の間においてなだらかに消費電流Iが減少し、約60分経過後には3A程度となる特性を有する。   Next, FIG. 8 is a characteristic diagram showing an example of current consumption and room temperature from immediately after the operation of the air conditioner to the target room temperature, and FIG. 8A is a set temperature at an outside air temperature of 35 ° C. FIG. 8B is a characteristic diagram during heating operation when the outside air temperature is 2 ° C. and the set temperature is 25 ° C. FIG. As shown in FIG. 8A, in the case of the cooling operation, the consumption current I becomes a peak current of 12A to 13A about 10 minutes after the start of the operation. At this peak current, the room temperature T steeply approaches the set temperature. ing. The current consumption I gradually decreases after about 15 minutes to about 60 minutes, and has a characteristic of about 3 A after about 60 minutes.

また、図8(b)に示すように、暖房運転の場合には運転開始から約14分後に消費電流Iが16A〜17Aのピーク電流となり、このピーク電流のときに室温Tは急峻に設定温度に近づいている。そして、約45分後から約60分の間においてなだらかに消費電流が減少し、約60分経過後には5A程度となる特性を有する。   Further, as shown in FIG. 8B, in the heating operation, the consumption current I becomes a peak current of 16A to 17A about 14 minutes after the start of the operation, and at this peak current, the room temperature T is steeply set temperature. Is approaching. The current consumption gradually decreases between about 45 minutes and about 60 minutes, and has a characteristic of about 5 A after about 60 minutes.

一般の住宅においては契約アンペア数は30Aあるいは40Aが多いので、ピーク電流が12A〜13Aあるいは16A〜17Aに達すると、他の電化機器を同時に使用することが困難となる。なお、運転開始してから約60分経過後には安定した運転状態となり、その安定運転状態では消費電流は約3Aあるいは約5Aであることから、ピーク電流を抑制すれば契約アンペア数が現状のままでも空気調和機を使用できることが分かる。   In a general house, the contracted amperage is often 30A or 40A, so when the peak current reaches 12A to 13A or 16A to 17A, it becomes difficult to use other electric appliances at the same time. In addition, after about 60 minutes from the start of operation, it becomes a stable operation state, and in the stable operation state, the current consumption is about 3A or about 5A. Therefore, if the peak current is suppressed, the contracted amperage remains the same. But it turns out that an air conditioner can be used.

そこで、図9に示すように、空気調和機の運転開始時のピーク電流を抑制するためのピークカット装置27を設けることが考えられる。ピークカット装置27は、交流の商用電源を直流に変換する順変換器28と、直流を交流に変換する逆変換器29とを有し、さらに順変換器28で変換された直流を蓄電し空気調和機がピーク電流を必要とするときに逆変換器29に蓄電された電力を供給する蓄電部30を有する。   Therefore, as shown in FIG. 9, it is conceivable to provide a peak cut device 27 for suppressing the peak current at the start of the operation of the air conditioner. The peak cut device 27 includes a forward converter 28 that converts AC commercial power to DC, and an inverse converter 29 that converts DC to AC, and further stores the direct current converted by the forward converter 28 to store air. It has a power storage unit 30 that supplies the power stored in the inverse converter 29 when the conditioner requires a peak current.

すなわち、空気調和機を運転するときには商用電源からの電流を一定とし、空気調和機がピーク電流を必要とするときには不足分を蓄電部30から供給する。これにより、空気調和機の運転の際のピーク電流を商用電源から供給する必要がなくなるので、契約アンペア数が現状のままでも空気調和機を使用できる。この場合、蓄電部30からの直流は逆変換器29により交流に変換されて室外機12さらには室内機11に供給されるので、蓄電部30からの電力が商用電源側に逆潮流することはない。   That is, when operating the air conditioner, the current from the commercial power source is kept constant, and when the air conditioner requires a peak current, the shortage is supplied from the power storage unit 30. This eliminates the need to supply the peak current during operation of the air conditioner from the commercial power supply, so that the air conditioner can be used even if the contracted amperage remains unchanged. In this case, since the direct current from the power storage unit 30 is converted into alternating current by the reverse converter 29 and supplied to the outdoor unit 12 and further to the indoor unit 11, the power from the power storage unit 30 does not flow backward to the commercial power source side. Absent.

ここで、空気調和機に蓄電池を設けて、昼間の電力需要のピーク時には蓄電池の電力をインバータ回路に供給して空調機を運転し、蓄電池の充電に際しては、蓄電池の端子電圧が放電終止電圧以下のときに充電を開始する一方、放電終止電圧を超えるときには放電終止電圧まで負荷に放電させた後に充電を行い、高効率で昼間の電力ピーク時の電力シフト量を大きくし、かつ設備容量を低減させるようにしたものがある(例えば、特許文献1参照)。
特開平6−137652号公報
Here, a storage battery is provided in the air conditioner, and at the peak of the daytime power demand, the storage battery power is supplied to the inverter circuit to operate the air conditioner. When charging the storage battery, the terminal voltage of the storage battery is equal to or lower than the discharge end voltage. Charging starts at the time of discharge, but when the discharge end voltage is exceeded, the load is discharged to the discharge end voltage and then charged, increasing the amount of power shift during the daytime power peak with high efficiency and reducing the equipment capacity (For example, refer to Patent Document 1).
Japanese Patent Application Laid-Open No. 6-137652

しかし、特許文献1のものは電力系統全体のピーク電力を抑制するために空気調和機に蓄電池を用いたものであり、一般の住宅用の契約アンペア数を保持したまま空気調和機のピーク電流を抑制するものでない。また、図9に示したものでは、蓄電部30として鉛蓄電池を用いることになるので設置面積が大きくなる。また、順変換器28と逆変換器29との2個の変換器を必要とするので電力変換のロスが大きくなり効率も低下する。   However, the thing of patent document 1 uses the storage battery for the air conditioner in order to suppress the peak electric power of the whole electric power system, and keeps the peak current of an air conditioner, maintaining the contract amperage for general houses. It does not suppress. Moreover, in the thing shown in FIG. 9, since a lead storage battery is used as the electrical storage part 30, an installation area becomes large. Moreover, since two converters, the forward converter 28 and the reverse converter 29, are required, the power conversion loss increases and the efficiency also decreases.

また、順変換器28と逆変換器29との間に蓄電部30を接続し、蓄電部30の直流を逆変換器29で変換して空気調和機に供給するので、蓄電部30からの電力が商用電源側に逆潮流することはないが、順変換器28と逆変換器29とを1個の変換器にまとめた場合には、蓄電部30からの直流を変換器で変換した交流は空気調和機と商用電源との双方に接続されることになるので、蓄電部30からの直流を変換器で変換した交流が商用電源側に逆潮流することがある。   In addition, the power storage unit 30 is connected between the forward converter 28 and the reverse converter 29, and the direct current of the power storage unit 30 is converted by the reverse converter 29 and supplied to the air conditioner. However, when the forward converter 28 and the reverse converter 29 are combined into one converter, the alternating current obtained by converting the direct current from the power storage unit 30 with the converter is Since it is connected to both the air conditioner and the commercial power supply, the alternating current obtained by converting the direct current from the power storage unit 30 by the converter may flow backward to the commercial power supply side.

本発明の目的は、契約アンペア数が現状のままでも商用電源から供給する電流を抑制して運転の際に発生するピーク電流を供給することができ、しかも蓄電部から商用電源への逆潮流を防止できる空気調和機を提供することである。   The object of the present invention is to suppress the current supplied from the commercial power source even when the contracted amperage is as it is, to supply the peak current generated during operation, and to prevent the reverse power flow from the power storage unit to the commercial power source. It is to provide an air conditioner that can be prevented.

請求項1の発明に係わる空気調和機は、室内温度が設定されるとともに冷媒の熱を室内に供給する室内機と、前記室内機で熱交換された冷媒を圧縮膨張して外気と熱交換し室内温度が設定温度となるように冷媒を前記室内機に循環させる室外機と、前記室内機及び前記室外機の運転の際に発生するピーク電流のうち所定電流を商用電源から供給し不足分を蓄電部から供給するとともに前記蓄電部から商用電源に電流が逆潮流することを防止する逆潮流防止部を有したパワーアシスト装置とを具備したことを特徴とする。   An air conditioner according to a first aspect of the present invention includes an indoor unit in which the indoor temperature is set and the heat of the refrigerant is supplied to the room, and the refrigerant heat-exchanged in the indoor unit is compressed and expanded to exchange heat with the outside air. An outdoor unit that circulates refrigerant to the indoor unit so that the indoor temperature becomes a set temperature, and a predetermined current out of the peak current that is generated during operation of the indoor unit and the outdoor unit is supplied from a commercial power source to reduce the shortage. And a power assist device having a reverse power flow prevention unit that prevents a current from flowing backward from the power storage unit to a commercial power supply.

請求項2の発明に係わる空気調和機は、請求項1の発明において、前記パワーアシスト装置は、前記室内機及び前記室外機の運転状態を通信線を介して入力し、前記蓄電部の蓄電及び放電の制御を行うことを特徴とする。   An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect, wherein the power assist device inputs operating states of the indoor unit and the outdoor unit via a communication line, It is characterized by controlling discharge.

請求項3の発明に係わる空気調和機は、請求項1または2の発明において、前記パワーアシスト装置は、前記室内機と前記室外機との間の室外に設けられたことを特徴とする。   An air conditioner according to a third aspect of the invention is characterized in that, in the first or second aspect of the invention, the power assist device is provided outside the indoor unit and the outdoor unit.

本発明によれば、空気調和機の運転の際に発生するピーク電流のうち、所定電流を商用電源から供給し、不足分をパワーアシスト装置の蓄電部から供給するので、契約アンペア数が現状のままでも商用電源から供給する電流を抑制できる。また、パワーアシスト装置は、蓄電部から商用電源に電流が逆潮流することを防止する逆潮流防止部を有しているので、蓄電部から商用電源に電流が逆潮流することを防止できる。   According to the present invention, the predetermined current out of the peak current generated during the operation of the air conditioner is supplied from the commercial power source, and the shortage is supplied from the power storage unit of the power assist device. The current supplied from the commercial power source can be suppressed even if it remains. In addition, the power assist device includes the reverse power flow preventing unit that prevents the current from flowing backward from the power storage unit to the commercial power supply. Therefore, it is possible to prevent the current from flowing backward from the power storage unit to the commercial power supply.

図1は本発明の実施の形態に係わる空気調和装置の構成図である。図7(b)に示した従来例に対し、室内機11と室外機12との間にパワーアシスト装置31が設けられている。室内機11及び室外機12は3個の電気接続端子を有しており、2端子は電源用に使用され1端子は通信用に使用される。図1では端子1、2は電源線32に接続され、端子3は通信線22に接続されている。電源は単相の100V/200Vの商用電源が室内機11に接続され、室内機11から電源線32を介してパワーアシスト装置31及び室外機12に供給される。   FIG. 1 is a configuration diagram of an air conditioner according to an embodiment of the present invention. In contrast to the conventional example shown in FIG. 7B, a power assist device 31 is provided between the indoor unit 11 and the outdoor unit 12. The indoor unit 11 and the outdoor unit 12 have three electrical connection terminals. Two terminals are used for power and one terminal is used for communication. In FIG. 1, the terminals 1 and 2 are connected to the power supply line 32, and the terminal 3 is connected to the communication line 22. A single-phase 100V / 200V commercial power supply is connected to the indoor unit 11 and is supplied from the indoor unit 11 to the power assist device 31 and the outdoor unit 12 via the power line 32.

室内機11は、図7(a)に示すように構成され、図示省略のリモコン13から運転開始や停止あるいは室温の設定等の情報が設定されると、これらの情報に基づき室外機12から循環される冷媒の熱を室内に供給する。また、室外機12も図7(a)に示すように構成され、室内機11で熱交換された冷媒を圧縮膨張して外気と熱交換し、冷媒の温度を所定温度になるように調整し、所定温度の冷媒を室内機11に循環させる。   The indoor unit 11 is configured as shown in FIG. 7A. When information such as operation start / stop or room temperature setting is set from a remote controller 13 (not shown), the indoor unit 11 circulates from the outdoor unit 12 based on the information. The heat of the refrigerant is supplied into the room. The outdoor unit 12 is also configured as shown in FIG. 7A, and the refrigerant heat-exchanged in the indoor unit 11 is compressed and expanded to exchange heat with the outside air, and the refrigerant temperature is adjusted to a predetermined temperature. Then, a refrigerant having a predetermined temperature is circulated through the indoor unit 11.

パワーアシスト装置31は、蓄電部33とパワーアシスト部34と逆潮流防止部35とからなる。パワーアシスト部34は、室内機11及び室外機12の運転状態を通信線22を介して入力し、蓄電部33の蓄電及び放電の制御を行うものである。すなわち、パワーアシスト部34は単相100V/200Vの商用電源から室内機11を介して電源線32により交流電力の供給を受け、室外機12が停止しているときまたは軽負荷運転であるときに、交流を直流に変換して蓄電部33に蓄電する。また、パワーアシスト部34は室内機11及び室外機12の運転の際に発生するピーク電流のうちの一部を蓄電部33に蓄電された直流電力を交流に変換して室外機12に供給する。逆潮流防止部35は、蓄電部33からの直流電力をパワーアシスト部34で交流に変換した電流が商用電源に逆潮流することを防止するものであり、詳細については後述する。   The power assist device 31 includes a power storage unit 33, a power assist unit 34, and a reverse power flow prevention unit 35. The power assist unit 34 inputs operation states of the indoor unit 11 and the outdoor unit 12 via the communication line 22 and controls storage and discharge of the power storage unit 33. That is, the power assist unit 34 is supplied with AC power from the single-phase 100V / 200V commercial power source through the indoor unit 11 through the power line 32, and when the outdoor unit 12 is stopped or in a light load operation. Then, the alternating current is converted to direct current and stored in the power storage unit 33. In addition, the power assist unit 34 converts a part of the peak current generated during the operation of the indoor unit 11 and the outdoor unit 12 to DC power stored in the power storage unit 33 into alternating current and supplies the alternating current to the outdoor unit 12. . The reverse power flow prevention unit 35 prevents a current obtained by converting the DC power from the power storage unit 33 into an alternating current by the power assist unit 34 from flowing back to the commercial power source, and details thereof will be described later.

次に、図2は本発明の実施の形態に係わる空気調和機の運転直後から目標とする室内温度に至るまでの消費電流及び室内温度の一例を示す特性図であり、図2(a)は外気温度が35℃で設定温度が28℃での冷房運転時の一例の特性図、図2(b)は外気温度が2℃で設定温度が25℃での暖房運転時の特性図である。   Next, FIG. 2 is a characteristic diagram showing an example of current consumption and room temperature from immediately after the operation of the air conditioner according to the embodiment of the present invention to the target room temperature, and FIG. FIG. 2B is a characteristic diagram of an example during cooling operation when the outside air temperature is 35 ° C. and the set temperature is 28 ° C., and FIG. 2B is a characteristic diagram during heating operation when the outside air temperature is 2 ° C. and the set temperature is 25 ° C.

図2(a)及び図2(b)に示すように、空気調和機の運転の際に発生するピーク電流に対して、パワーアシスト部34は、商用電源から供給する電流を所定電流Ia(たとえば、6A)に抑制し、この所定電流Iaに対して不足分を蓄電部33から供給する。   As shown in FIGS. 2 (a) and 2 (b), for a peak current generated during operation of the air conditioner, the power assist unit 34 supplies a current supplied from a commercial power source to a predetermined current Ia (for example, , 6A), and a shortage with respect to the predetermined current Ia is supplied from the power storage unit 33.

冷房運転の場合には、図2(a)に示すように、運転開始から約2.5分で消費電流Iは所定電流Iaに達し、運転開始から約30分で所定電流Ia以下となる。そこで、運転開始から約2.5分〜約30分の間において、蓄電部33から不足分の電流を供給する。図2(a)の斜線部が不足分の電流でありTは室温である。   In the case of the cooling operation, as shown in FIG. 2A, the consumption current I reaches the predetermined current Ia in about 2.5 minutes from the start of operation, and becomes equal to or less than the predetermined current Ia in about 30 minutes from the start of operation. Therefore, a shortage of current is supplied from the power storage unit 33 between about 2.5 minutes and about 30 minutes from the start of operation. The shaded area in FIG. 2A is the shortage current, and T is room temperature.

一方、暖房運転の場合には、図2(b)に示すように、運転開始から約2.5分で消費電流Iは所定電流Iaに達し、運転開始から約55分で所定電流Ia以下となる。そこで、運転開始から約2.5分〜約55分の間において、蓄電部33から不足分の電流を供給する。図2(b)の斜線部が不足分の電流でありTは室温である。   On the other hand, in the case of heating operation, as shown in FIG. 2 (b), the consumption current I reaches the predetermined current Ia in about 2.5 minutes from the start of operation, and becomes less than the predetermined current Ia in about 55 minutes from the start of operation. Become. Therefore, a shortage of current is supplied from the power storage unit 33 between about 2.5 minutes and about 55 minutes from the start of operation. The shaded area in FIG. 2 (b) is the insufficient current, and T is room temperature.

これにより、空気調和機を運転する際にピーク電流が発生しても、商用電源から供給する消費電力は所定電流Ia(例えば、6A)に抑制できるので、契約アンペア数が多くの一般住宅で使用されている例えば30Aあるいは40Aであっても、24A〜34Aの余裕があるので空気調和機を使用できる。   As a result, even if a peak current is generated when operating the air conditioner, the power consumption supplied from the commercial power supply can be suppressed to a predetermined current Ia (for example, 6A). Even if it is 30A or 40A, for example, there is a margin of 24A to 34A, so an air conditioner can be used.

次に、図1に示すように、パワーアシスト装置31のパワーアシスト部34は、単相100V/200Vの商用電源から室内機11を介して電源線32により交流電力の供給を受け、交流を直流に変換して蓄電部33に蓄電するとともに、室内機11及び室外機12の運転の際に発生するピーク電流のうちの一部を蓄電部33から交流に変換して電源線32に出力し室外機12に供給するものである。従って、パワーアシスト装置31から、蓄電部30からの電力を電源線32に供給したとき、室外機12だけでなく室内機11を介して商用電源に逆潮流するおそれがある。そこで、この逆潮流を逆潮流防止部35で防止する。   Next, as shown in FIG. 1, the power assist unit 34 of the power assist device 31 is supplied with AC power from the single-phase 100 V / 200 V commercial power source through the indoor unit 11 through the power line 32, and converts the AC to DC. And is stored in the power storage unit 33, and a part of the peak current generated during the operation of the indoor unit 11 and the outdoor unit 12 is converted from the power storage unit 33 to alternating current and output to the power line 32 to be outdoor. Is supplied to the machine 12. Therefore, when power from the power storage unit 30 is supplied from the power assist device 31 to the power supply line 32, there is a possibility that the power flows backward to the commercial power supply not only through the outdoor unit 12 but also through the indoor unit 11. Therefore, the reverse power flow prevention unit 35 prevents this reverse power flow.

図3は本発明の実施の形態における逆潮流防止部35の一例を示す説明図であり、図3(a)は2個のサイリスタ素子を逆並列接続した場合の逆潮流防止部35の一例を示す回路構成図、図3(b)は図3(a)に示した逆潮流防止部35の動作説明図である。   FIG. 3 is an explanatory diagram showing an example of the reverse power flow prevention unit 35 according to the embodiment of the present invention. FIG. 3A shows an example of the reverse power flow prevention unit 35 when two thyristor elements are connected in reverse parallel. FIG. 3B is an operation explanatory diagram of the reverse power flow prevention unit 35 shown in FIG.

図3(a)に示すように、電圧位相検出器36は商用電源37の電圧位相を検出し同期回路38に出力する。同期回路38は商用電源37の電源電圧の電圧位相と同期した同期信号をゲート信号発生回路39に出力する。ゲート信号発生回路39は同期回路38の同期信号に基づきサイリスタ素子40a、40bに交互にゲート信号を出力する。   As shown in FIG. 3A, the voltage phase detector 36 detects the voltage phase of the commercial power source 37 and outputs it to the synchronization circuit 38. The synchronization circuit 38 outputs a synchronization signal synchronized with the voltage phase of the power supply voltage of the commercial power supply 37 to the gate signal generation circuit 39. The gate signal generation circuit 39 alternately outputs gate signals to the thyristor elements 40a and 40b based on the synchronization signal of the synchronization circuit 38.

図3(b)に示すように、同期回路38は電源電圧が負から正にゼロクロスする時点から正から負にゼロクロスする時点の間において同期信号1を出力し、電源電圧が正から負にゼロクロスする時点から負から正にゼロクロスする時点の間において同期信号2を出力する。ゲート信号発生回路39は同期信号1が入力されているときはサイリスタ40aにゲート信号1を出力し、同期信号2が入力されているときはサイリスタ40bにゲート信号2を出力する。   As shown in FIG. 3B, the synchronization circuit 38 outputs the synchronization signal 1 between the time when the power supply voltage is zero-crossed from negative to positive and the time when the power supply voltage is zero-crossed from positive to negative, and the power supply voltage is zero-crossed from positive to negative. The synchronization signal 2 is output between the time when the signal is crossed and the time when the zero crossing occurs from negative to positive. The gate signal generation circuit 39 outputs the gate signal 1 to the thyristor 40a when the synchronization signal 1 is input, and outputs the gate signal 2 to the thyristor 40b when the synchronization signal 2 is input.

ここで、負荷である室外機12は力率が1であるので、電源電圧と同位相の電流が負荷である室外機12に流れる。従って、図3(a)に示すように、電源電圧が正であるときには商用電源37から、サイリスタ40aを通って図3の矢印A方向に負荷である室外機12に電流が供給される。一方、電源電圧が負であるときには商用電源37からサイリスタ40bを通って図3の矢印B方向に負荷である室外機12に電流が供給される。これにより、電源電圧に同期した交流電流が供給され、負荷である室外機12側から交流電源37側に電流が逆潮流することを防止できる。   Here, since the outdoor unit 12 as a load has a power factor of 1, a current having the same phase as the power supply voltage flows to the outdoor unit 12 as a load. Therefore, as shown in FIG. 3A, when the power supply voltage is positive, current is supplied from the commercial power supply 37 to the outdoor unit 12 as a load in the direction of arrow A in FIG. 3 through the thyristor 40a. On the other hand, when the power supply voltage is negative, current is supplied from the commercial power supply 37 through the thyristor 40b to the outdoor unit 12 as a load in the direction of arrow B in FIG. Thereby, the alternating current synchronized with the power supply voltage is supplied, and it is possible to prevent the current from flowing backward from the outdoor unit 12 side which is a load to the alternating current power supply 37 side.

図4は本発明の実施の形態における逆潮流防止部35の他の一例を示す説明図であり、図4(a)はダイオードを並列接続した2個のスイッチング素子を直列接続した場合の逆潮流防止部35の一例を示す回路構成図、図4(b)は図4(a)に示した逆潮流防止部35の動作説明図である。   FIG. 4 is an explanatory diagram showing another example of the reverse power flow prevention unit 35 in the embodiment of the present invention, and FIG. 4 (a) shows a reverse power flow when two switching elements having diodes connected in parallel are connected in series. FIG. 4B is a circuit configuration diagram illustrating an example of the prevention unit 35, and FIG. 4B is an operation explanatory diagram of the reverse power flow prevention unit 35 illustrated in FIG. 4A.

図4(a)に示すように、電圧位相検出器36は商用電源37の電圧位相を検出し同期回路38に出力し、同期回路38は商用電源37の電源電圧の電圧位相と同期した同期信号をゲート信号発生回路39に出力する。ゲート信号発生回路39は同期回路38の同期信号に基づきダイオードD1を並列接続したスイッチング素子41a、あるいはダイオードD2を並列接続したスイッチング素子41bに交互にゲート信号を出力する。   As shown in FIG. 4A, the voltage phase detector 36 detects the voltage phase of the commercial power supply 37 and outputs it to the synchronization circuit 38. The synchronization circuit 38 synchronizes with the voltage phase of the power supply voltage of the commercial power supply 37. Is output to the gate signal generation circuit 39. Based on the synchronization signal of the synchronization circuit 38, the gate signal generation circuit 39 alternately outputs gate signals to the switching element 41a connected in parallel with the diode D1 or the switching element 41b connected in parallel to the diode D2.

図4(b)に示すように、同期回路38は電源電圧が負から正にゼロクロスする時点から正から負にゼロクロスする時点の間において同期信号1を出力し、電源電圧が正から負にゼロクロスする時点から負から正にゼロクロスする時点の間において同期信号2を出力する。ゲート信号発生回路39は同期信号1が入力されているときはスイッチ素子41aにゲート信号1を出力し、同期信号2が入力されているときはスイッチ素子41bにゲート信号2を出力する。   As shown in FIG. 4B, the synchronization circuit 38 outputs the synchronization signal 1 between the time when the power supply voltage zero-crosses from negative to positive and the time when the power supply voltage zero-crosses from positive to negative, and the power supply voltage is zero-crossed from positive to negative. The synchronization signal 2 is output between the time when the signal is crossed and the time when the zero crossing occurs from negative to positive. The gate signal generation circuit 39 outputs the gate signal 1 to the switch element 41a when the synchronization signal 1 is input, and outputs the gate signal 2 to the switch element 41b when the synchronization signal 2 is input.

ここで、負荷である室外機12は力率が1であるので、電源電圧と同位相の電流が負荷である室外機12に流れる。従って、図4(a)に示すように、電源電圧が正であるときには商用電源37からスイッチ素子41a及びダイオードD2を通って図4の矢印A方向に負荷である室外機12に電流が供給される。一方、電源電圧が負であるときには商用電源37からスイッチ素子41b及びダイオードD1を通って図3の矢印B方向に負荷である室外機12に電流が供給される。これにより、電源電圧に同期した交流電流が供給され、負荷である室外機12側から交流電源37側に電流が逆潮流することを防止できる。   Here, since the outdoor unit 12 as a load has a power factor of 1, a current having the same phase as the power supply voltage flows to the outdoor unit 12 as a load. Therefore, as shown in FIG. 4A, when the power supply voltage is positive, current is supplied from the commercial power source 37 through the switch element 41a and the diode D2 to the outdoor unit 12 as a load in the direction of arrow A in FIG. The On the other hand, when the power supply voltage is negative, current is supplied from the commercial power supply 37 through the switch element 41b and the diode D1 to the outdoor unit 12 that is a load in the direction of arrow B in FIG. Thereby, the alternating current synchronized with the power supply voltage is supplied, and it is possible to prevent the current from flowing backward from the outdoor unit 12 side which is a load to the alternating current power supply 37 side.

このように、逆潮流防止部35を交流電源37側である室内機11と負荷である室外機12との間に設け、パワーアシスト部34から出力される蓄電部33からの電力を交流電源側に逆潮流しないようにしている。   Thus, the reverse power flow prevention unit 35 is provided between the indoor unit 11 on the AC power source 37 side and the outdoor unit 12 as the load, and the power from the power storage unit 33 output from the power assist unit 34 is supplied to the AC power source side. To avoid reverse currents.

例えば、太陽光発電システム、燃料電池システム、電力貯蔵システム等では、電力系統に連系することを前提に構成され、電力会社からの受電点で逆潮流しないように監視用の継電器等を設置することが義務付けられているが、本発明のように住宅の電化機器へ電力のアシストをするパワーアシスト装置に対して、逆潮流を防止するために監視用の継電器を取り付けると高価なものとなり、一般家庭へのパワーアシスト装置の導入が困難なものとなってしまう。本発明では、図3及び図4に示すように、サイリスタ素子やスイッチング素子等により、ハードウェア的に逆潮流を防止する構成にしているので安価に構成できる。   For example, solar power generation systems, fuel cell systems, power storage systems, etc. are configured on the assumption that they will be linked to the power system, and monitoring relays are installed to prevent reverse power flow at power receiving points from power companies. However, it is expensive to install a monitoring relay in order to prevent reverse power flow for a power assist device that assists electric power to a residential electrical appliance as in the present invention. It becomes difficult to introduce the power assist device into the home. In the present invention, as shown in FIG. 3 and FIG. 4, a configuration in which reverse power flow is prevented by hardware using a thyristor element, a switching element, etc. can be configured at low cost.

次に、図5は本発明の実施の形態に係わる空気調和機の一例を示す外観構成図である。図6に示した従来例に対し、室内機11と室外機12との間に設けられるパワーアシスト装置31が室外の室外機12に併設されている。パワーアシスト装置31を室外の室外機12に併設することにより、室内の空間を既存の空気調和機と同様に広く使用できる。   Next, FIG. 5 is an external configuration diagram showing an example of an air conditioner according to an embodiment of the present invention. In contrast to the conventional example shown in FIG. 6, a power assist device 31 provided between the indoor unit 11 and the outdoor unit 12 is provided in the outdoor unit 12 outside. By installing the power assist device 31 in the outdoor unit 12 outside the room, the indoor space can be used widely as in the existing air conditioner.

本発明の実施の形態によれば、空気調和機の運転の際に発生するピーク電流のうち、所定電流(例えば6A)を商用電源から供給し、不足分をパワーアシスト装置31の蓄電部33から供給するので、空気調和機の使用時においても商用電源からの消費電力を抑制できる。従って、契約アンペア数(例えば、30Aや40A)であっても空気調和機を他の電化機器と同時に使用できる。   According to the embodiment of the present invention, a predetermined current (for example, 6 A) is supplied from the commercial power source among the peak current generated during the operation of the air conditioner, and the shortage is supplied from the power storage unit 33 of the power assist device 31. Since it supplies, the power consumption from a commercial power source can be suppressed also at the time of use of an air conditioner. Therefore, the air conditioner can be used simultaneously with other electric appliances even if the contracted amperage (for example, 30A or 40A).

また、パワーアシスト装置31は室内機11と室外機12との間に設けられ、室内機11及び室外機12の運転状態を通信線22を介して入力し、蓄電部33の蓄電及び放電の制御を行うので高効率化が図れる。また、パワーアシスト装置31は蓄電部33から商用電源に電流が逆潮流することを防止する逆潮流防止部35を有しているので、蓄電部33から商用電源に電流が逆潮流することを防止できる。さらに、パワーアシスト装置31を室外の室外機12に併設するので、室内の空間を既存の空気調和機と同様に広く使用できる。   In addition, the power assist device 31 is provided between the indoor unit 11 and the outdoor unit 12, and the operation state of the indoor unit 11 and the outdoor unit 12 is input via the communication line 22 to control the storage and discharge of the power storage unit 33. To achieve high efficiency. In addition, since the power assist device 31 includes the reverse flow prevention unit 35 that prevents the current from flowing backward from the power storage unit 33 to the commercial power supply, the current assist device 31 prevents the current from flowing backward from the power storage unit 33 to the commercial power supply. it can. Furthermore, since the power assist device 31 is provided in the outdoor unit 12 outside the room, the indoor space can be used widely as in the existing air conditioner.

本発明の実施の形態に係わる空気調和装置の構成図。The block diagram of the air conditioning apparatus concerning embodiment of this invention. 本発明の実施の形態に係わる空気調和機の運転直後から目標とする室内温度に至るまでの消費電流及び室内温度の一例を示す特性図。The characteristic view which shows an example of the consumption current from the time of operation | movement of the air conditioner concerning embodiment of this invention to target indoor temperature, and indoor temperature. 本発明の実施の形態における逆潮流防止部の一例を示す説明図。Explanatory drawing which shows an example of the reverse power flow prevention part in embodiment of this invention. 本発明の実施の形態における逆潮流防止部の他の一例を示す説明図。Explanatory drawing which shows another example of the reverse power flow prevention part in embodiment of this invention. 本発明の実施の形態に係わる空気調和機の一例を示す外観構成図。The external appearance block diagram which shows an example of the air conditioner concerning embodiment of this invention. 従来の空気調和機の一例を示す外観構成図。The external appearance block diagram which shows an example of the conventional air conditioner. 従来の空気調和機の一例を示すブロック構成図。The block block diagram which shows an example of the conventional air conditioner. 空気調和機の運転直後から目標とする室内温度に至るまでの消費電流及び室内温度の一例を示す特性図。The characteristic view which shows an example of the consumption current and room temperature from right after driving | running of an air conditioner to target indoor temperature. 従来の空気調和機の他の一例を示すブロック構成図。The block block diagram which shows another example of the conventional air conditioner.

符号の説明Explanation of symbols

11…室内機、12…室外機、13…リモコン、14…マイコン、15…設定ボタン、16…LCD表示器、17…乾電池、18…マイコン、19…ファンモータ、20…風向きモータ、21…LCD表示器、22…通信線、23…マイコン、24…圧縮機、25…ファンモータ、26…ケーブル、27…ピークカット装置、28…順変換器、29…逆変換器、30…蓄電部、31…パワーアシスト装置、32…電源線、33…蓄電部、34…パワーアシスト部、35…逆流防止部、36…電圧位相検出器、37…商用電源、38…同期回路、39…ゲート信号発生回路、40…サイリスタ素子、41…スイッチ素子 DESCRIPTION OF SYMBOLS 11 ... Indoor unit, 12 ... Outdoor unit, 13 ... Remote control, 14 ... Microcomputer, 15 ... Setting button, 16 ... LCD display, 17 ... Dry cell, 18 ... Microcomputer, 19 ... Fan motor, 20 ... Wind direction motor, 21 ... LCD Indicator 22 ... Communication line 23 ... Microcomputer 24 ... Compressor 25 ... Fan motor 26 ... Cable 27 ... Peak cut device 28 ... Forward converter 29 ... Reverse converter 30 ... Power storage unit 31 DESCRIPTION OF SYMBOLS ... Power assist apparatus, 32 ... Power supply line, 33 ... Power storage part, 34 ... Power assist part, 35 ... Backflow prevention part, 36 ... Voltage phase detector, 37 ... Commercial power supply, 38 ... Synchronous circuit, 39 ... Gate signal generation circuit 40 ... Thyristor element, 41 ... Switch element

Claims (3)

室内温度が設定されるとともに冷媒の熱を室内に供給する室内機と、前記室内機で熱交換された冷媒を圧縮膨張して外気と熱交換し室内温度が設定温度となるように冷媒を前記室内機に循環させる室外機と、前記室内機及び前記室外機の運転の際に発生するピーク電流のうち所定電流を商用電源から供給し不足分を蓄電部から供給するとともに前記蓄電部から商用電源に電流が逆潮流することを防止する逆潮流防止部を有したパワーアシスト装置とを具備したことを特徴とする空気調和機。 The indoor unit that sets the indoor temperature and supplies the heat of the refrigerant to the room, and the refrigerant that is compressed and expanded by the refrigerant heat-exchanged by the indoor unit and exchanges heat with the outside air so that the indoor temperature becomes the set temperature. An outdoor unit to be circulated to the indoor unit, and a predetermined current out of a peak current generated during operation of the indoor unit and the outdoor unit is supplied from a commercial power source, and a shortage is supplied from the power storage unit, and a commercial power source from the power storage unit An air conditioner comprising: a power assist device having a reverse power flow prevention unit that prevents current from flowing backward. 前記パワーアシスト装置は、前記室内機及び前記室外機の運転状態を通信線を介して入力し、前記蓄電部の蓄電及び放電の制御を行うことを特徴とする請求項1に記載の空気調和機。 2. The air conditioner according to claim 1, wherein the power assist device inputs operation states of the indoor unit and the outdoor unit via a communication line and controls storage and discharge of the power storage unit. . 前記パワーアシスト装置は、前記室内機と前記室外機との間の室外に設けられたことを特徴とする請求項1または2に記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein the power assist device is provided outside the indoor unit and the outdoor unit.
JP2006287231A 2006-10-23 2006-10-23 Air conditioner Pending JP2008106950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287231A JP2008106950A (en) 2006-10-23 2006-10-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287231A JP2008106950A (en) 2006-10-23 2006-10-23 Air conditioner

Publications (1)

Publication Number Publication Date
JP2008106950A true JP2008106950A (en) 2008-05-08

Family

ID=39440443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287231A Pending JP2008106950A (en) 2006-10-23 2006-10-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP2008106950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217620A (en) * 2012-04-12 2013-10-24 Toyota Home Kk Air conditioning system of multiple dwelling house
CN110107999A (en) * 2019-05-29 2019-08-09 华翔翔能电气股份有限公司 A kind of workshop building air conditioner control method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217620A (en) * 2012-04-12 2013-10-24 Toyota Home Kk Air conditioning system of multiple dwelling house
CN110107999A (en) * 2019-05-29 2019-08-09 华翔翔能电气股份有限公司 A kind of workshop building air conditioner control method and system
CN110107999B (en) * 2019-05-29 2021-01-08 华翔翔能科技股份有限公司 Factory building air conditioner control method and system

Similar Documents

Publication Publication Date Title
US11502513B2 (en) Variable frequency facility
US20170358927A1 (en) Solar synchronized loads for photovoltaic systems
JP3148817U (en) Solar power generator
CN113783241A (en) Power supply charging system
JP5382105B2 (en) Air conditioner
JP5016894B2 (en) Air conditioning / power generation apparatus and control method thereof
US20140214213A1 (en) Utility control of hvac with integral electrical storage unit
CN210399400U (en) Circuit system of air conditioner and air conditioner
JP2017169349A (en) Power supply system
JP2011217590A (en) Air conditioning system
CN102388273B (en) Air conditioner
JP2011200097A (en) Air conditioning system
JP2008106950A (en) Air conditioner
CN114256879A (en) Photovoltaic air conditioner, control method thereof and photovoltaic air conditioning system
WO2011095850A1 (en) Dc power distribution system
KR102214659B1 (en) Air conditioner
CN116557990A (en) Photovoltaic air conditioner, control method thereof and photovoltaic air conditioning system
JP2014196885A (en) Air conditioning system
JP2000320866A (en) Air conditioner
JP2014128102A (en) Power supply system
CN219414969U (en) Air conditioner and photovoltaic air conditioner
US20240006882A1 (en) Meter adapter and systems
JPH11325545A (en) Storage battery type air conditioning system
JP2012083063A (en) Dc drive air conditioner
JP2005236126A (en) Solar power generating system and air conditioner