JP2008106700A - Wind power generating device - Google Patents

Wind power generating device Download PDF

Info

Publication number
JP2008106700A
JP2008106700A JP2006291312A JP2006291312A JP2008106700A JP 2008106700 A JP2008106700 A JP 2008106700A JP 2006291312 A JP2006291312 A JP 2006291312A JP 2006291312 A JP2006291312 A JP 2006291312A JP 2008106700 A JP2008106700 A JP 2008106700A
Authority
JP
Japan
Prior art keywords
wind
windmill
speed
wind turbine
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006291312A
Other languages
Japanese (ja)
Other versions
JP5066648B2 (en
Inventor
Mamoru Idei
守 出井
Hiromitsu Shibanuma
弘允 芝沼
Ichiro Kosako
一郎 小迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUEROO KK
Original Assignee
FUEROO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUEROO KK filed Critical FUEROO KK
Priority to JP2006291312A priority Critical patent/JP5066648B2/en
Publication of JP2008106700A publication Critical patent/JP2008106700A/en
Application granted granted Critical
Publication of JP5066648B2 publication Critical patent/JP5066648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gyro-mill type wind power generating device equipped with a self-starting mechanism capable of enhancing power generating capacity by harnessing omnidirectionality to wind, which is an advantage of a gyro-mill type, and by controlling revolution of a windmill to make the most of windmill efficiency. <P>SOLUTION: The wind power generating device using a gyro-mill type windmill is provided with the self-starting mechanism composed of a wind velocity sensor, a controller to send a starting signal to a driver when set wind velocity is detected, a geared motor rotating/starting a windmill shaft through a driving gear with the starting signal from the driver, and a control means for stopping the driving gear when the number of revolution of the windmill is increased up to a set value and idling the windmill shaft through an idle clutch. A load is controlled so that a peripheral speed ratio of a windmill blade can become 2-3 to generate power. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、風車を低風速域から起動させる自己起動機構を備えたジャイロミル型風力発電装置に関する。   The present invention relates to a gyromill type wind power generator provided with a self-starting mechanism for starting a windmill from a low wind speed range.

近年の風力発電装置は、化石燃料の枯渇、CO排出抑制、地球環境保全を背景にして、一基当たり1500〜2000kW級の大型発電装置が主流になりつつある。しかし、大型発電装置は、立地場所の制約や送電設備などの問題があり、風力発電を更に普及させるためには、都市部のビルの屋上や市街地、住宅地に設置可能な高効率で静かな(500〜3000W級の)小型発電装置が必要不可欠である。 In recent years, large-scale power generators of 1500 to 2000 kW class are becoming mainstream with the background of fossil fuel depletion, CO 2 emission suppression, and global environment conservation. However, large power generators have problems such as location restrictions and power transmission facilities, and in order to further spread wind power generation, it is highly efficient and quiet that can be installed on the rooftops, urban areas, and residential areas of urban buildings. A small power generator (500 to 3000 W class) is indispensable.

一方、風力発電装置用の風車の形式としては、プロペラ型に代表される水平軸風車と、ジャイロミル型に代表される垂直軸風車とに大別される。一般的に、プロペラ型風車は、風力エネルギー変換効率が良く、風向きがあまり変化しない西欧諸国で発達して、大型風車では2〜3枚の翼が採用されている。プロペラ型風車は、風力エネルギー変換効率が良いという利点があるが、風向きに対して回転面を正対させなければならないので方向制御が必要になり、風向き変化が行ったときに追従性能が劣るという欠点がある。また、電力、信号系の取り出しのためにスリップリング等が必要になり、消耗部品が多くなるという問題もある。   On the other hand, the types of wind turbines for wind power generators are roughly classified into horizontal axis wind turbines typified by a propeller type and vertical axis wind turbines typified by a gyromill type. In general, propeller type windmills are developed in Western countries where wind energy conversion efficiency is good and the wind direction does not change so much. In large windmills, two or three wings are adopted. Propeller type windmills have the advantage of good wind energy conversion efficiency, but because the rotating surface must face the wind direction, direction control is necessary, and the tracking performance is inferior when the wind direction changes There are drawbacks. Further, a slip ring or the like is required for taking out the power and signal system, and there is a problem that the number of consumable parts increases.

国内の都市部や市街地に吹く風は、山間部、海岸線に吹く風に比べて弱く、風速、風向きが頻繁に変化するため、どこからでも風力エネルギーを取り入れられる垂直軸風車(ジャイロミル型風車)が適している。   The wind blown to urban areas and urban areas in Japan is weaker than the wind blown to mountainous areas and coastlines, and the wind speed and direction change frequently. Therefore, vertical axis windmills (gyromill type windmills) that can take in wind energy from anywhere are used. Is suitable.

しかし、ジャイロミル型風車は、起動性が悪く、発電効率も低速では悪いという欠点がある。   However, the gyromill type windmill has the disadvantages of poor startability and poor power generation efficiency at low speeds.

従来、小型風力発電装置においては、水平軸風車、垂直軸風車を問わず、起動性を改善し、風力発電の稼動率が向上させるため、種々の提案がなされている。   Conventionally, in a small wind power generator, various proposals have been made in order to improve the startability and improve the operating rate of wind power generation regardless of a horizontal axis wind turbine or a vertical axis wind turbine.

例えば、プロペラ型風車では、発電機のコギングトルクを打消す方法とか、風車軸に起動用電動機を接続して積極的に回転力を与えて起動させ、起動後の所定回転に至った場合に起動用電動機を風車から切離す技術等が提案されている(例えば特許文献1、2参照)。   For example, in the case of a propeller type windmill, it is started by canceling the cogging torque of the generator, or by connecting a starter motor to the windmill shaft and actively giving a rotational force to start, and when it reaches a predetermined rotation after the start Techniques for separating a motor for a motor from a windmill have been proposed (see, for example, Patent Documents 1 and 2).

しかし、特許文献1、2の技術では、比較的大電流の供給が必要である。例えば、無風状態が長時間続くような情況下においては、電動機駆動電流の供給が長時間必要となり、多大な電力エネルギが消費されることになる。したがって、上述した従来技術においては、小容量風力発電装置の実際利用に対して適合困難となる問題が生じる。   However, the techniques of Patent Documents 1 and 2 require a relatively large current supply. For example, in a situation where the windless state continues for a long time, it is necessary to supply the motor driving current for a long time, and a large amount of power energy is consumed. Therefore, in the above-described conventional technology, there arises a problem that it is difficult to adapt to actual use of the small-capacity wind power generator.

特許文献1、2の技術を改良するものとして、特許文献3では、風車の回転状態により起動アシスト用電流供給系統をオンオフすることにより消費電力を節減するシステムが提案されている。
実開平6−9400号公報 特開平8−322298号公報 特開2004−285991号公報
As a technique for improving the techniques of Patent Documents 1 and 2, Patent Document 3 proposes a system that saves power by turning on and off the current supply system for startup assist depending on the rotation state of the windmill.
Japanese Utility Model Publication No. 6-9400 JP-A-8-322298 JP 2004-285991 A

上述した従来技術は、風車の起動時の消費電力を節減することを主眼とするものであり、総合的に風車の稼動効率を上げるという点では、実用上、到底十分なものとは言えなかった。   The above-described prior art is mainly intended to reduce the power consumption at the time of starting the windmill, and is not practically sufficient in terms of improving the operating efficiency of the windmill comprehensively. .

本発明は、ジャイロミル型の利点である風に対する無指向性を生かすと共に、風車回転を制御することで風車効率を最大限利用して発電能力を高めることが可能な自己起動機構を備えたジャイロミル型風力発電装置の提供を目的とする。   The present invention makes use of the omnidirectionality with respect to the wind, which is an advantage of the gyromill type, and also includes a self-starting mechanism capable of increasing the power generation capacity by utilizing the windmill efficiency to the maximum by controlling the windmill rotation. The purpose is to provide a mill-type wind turbine generator.

本発明は、ジャイロミル型風車を用いた風力発電装置において、風速センサーと、設定の風速を検知した時に始動信号をドライバに送る制御器と、ドライバからの始動信号により駆動ギヤを介して風車シャフトを回転始動させる減速機付電動機と、風車回転数が設定値まで上昇した時に駆動ギヤを停止させ、風車シャフトを空転クラッチを介して空転させる制御手段とからなる自己起動機構を備え、風車ブレードの周速比が2〜3になるように負荷を制御して発電を行うジャイロミル型風力発電装置である。   The present invention relates to a wind power generator using a gyromill type windmill, a wind speed sensor, a controller for sending a start signal to a driver when a set wind speed is detected, and a windmill shaft via a drive gear by a start signal from the driver. A self-starting mechanism comprising a motor with a speed reducer for starting rotation of the wind turbine and a control means for stopping the drive gear when the wind turbine rotation speed rises to a set value and causing the wind turbine shaft to idle via the idle clutch. This is a gyromill type wind power generator that generates electric power by controlling a load so that a peripheral speed ratio is 2 to 3.

以下、本発明を詳細に説明する。一般的なジャイロミル型風車は、起動風速2〜5m/sで風車が回り始めるが、起動風速以下に風が弱くなったり変動すると、発電に至らず、風車回転もストップしてしまうことがある。前述の通り、風車の起動性を良くするため、発電機のコギングトルクを打消す方法が提案されているが、単に起動させただけでは発電はできず、風車の稼動率が上がらないことは明白である。   Hereinafter, the present invention will be described in detail. In general gyromill type windmills, the windmill begins to rotate at a startup wind speed of 2 to 5 m / s. However, if the wind becomes weaker or fluctuates below the startup wind speed, power generation may not occur and the windmill rotation may also stop. . As mentioned above, in order to improve the startability of the windmill, a method of canceling the cogging torque of the generator has been proposed, but it is obvious that power generation is not possible simply by starting up, and the operating rate of the windmill does not increase It is.

本発明者らは、ジャイロミル型風車の風速回転特性について綿密な実験を行った。図1は、実機スケールでの風洞実験による風速と風車回転数の関係を示すグラフである。   The present inventors conducted a thorough experiment on the wind speed rotation characteristics of the gyromill type windmill. FIG. 1 is a graph showing the relationship between wind speed and wind turbine rotation speed in a wind tunnel experiment on an actual machine scale.

無風から風速を上げていくと、起動風速は4m/s程度であり、風速が8m/sを超えると急速に回転数が上がることが分かる。一方、図1を一見して分かるように、風車の加速方向と減速方向に大きなヒステリシスが存在し、無風からの起動風速は4m/s程度であるのに対して、同風速での減速方向の回転数は80rpm程度ある。更に風速3.5m/sでも60rpmの回転を維持し、最高回転の360rpmまでほぼ完璧なリニヤ特性を示している。   It can be seen that when the wind speed is increased from no wind, the startup wind speed is about 4 m / s, and when the wind speed exceeds 8 m / s, the rotational speed increases rapidly. On the other hand, as can be seen at a glance in FIG. 1, there is a large hysteresis in the acceleration direction and deceleration direction of the windmill, and the startup wind speed from no wind is about 4 m / s, whereas in the deceleration direction at the same wind speed. The rotation speed is about 80 rpm. Furthermore, the rotation of 60 rpm is maintained even at a wind speed of 3.5 m / s, and almost perfect linear characteristics are shown up to the maximum rotation of 360 rpm.

このことは、一旦風車がある回転まで達してしまうと直線的に風速に反応し、逆に中位の風(5〜8m/s)が吹いても、停止状態の風車では回りにくく、回転がなかなか上昇しないことを意味する。   This means that once the windmill reaches a certain rotation, it reacts linearly to the wind speed. Conversely, even if a middle wind (5-8 m / s) blows, it is difficult to rotate in a stopped windmill, It means that it will not rise easily.

本発明は、かかる知見に基づきなされたものであり、ジャイロミル型風車の回転を制御することで風車効率を最大限利用して発電能力を高めるものである。   The present invention has been made on the basis of such knowledge, and increases the power generation capacity by utilizing the wind turbine efficiency to the maximum by controlling the rotation of the gyromill type wind turbine.

このことを、図1のグラフを模式化した図2のグラフにより更に詳しく説明する。図2において、Aは起動風速を示す点、Bは効率維持最小回転数を示す点である。自己起動がない場合、風車はA点から起動しても、かなりの風速の増加がなければ、A’を経てB−C曲線(効率維持曲線)へ移行できず、低効率のまま風車が回っている程度になってしまう。この原因はブレードの形状、枚数、慣性力、その他機械的摺動抵抗によるものと考えられるが、多かれ少なかれ、このヒステリシスは、ジャイロミル型風車形式の特性となっている。   This will be described in more detail with reference to the graph of FIG. 2 which is a schematic representation of the graph of FIG. In FIG. 2, A is a point indicating the startup wind speed, and B is a point indicating the efficiency maintaining minimum rotational speed. If there is no self-start, the windmill starts from point A, but if there is no significant increase in wind speed, it cannot move to the BC curve (efficiency maintenance curve) via A ', and the windmill rotates with low efficiency. It will be to the extent that it is. The cause of this is thought to be due to the shape, number of blades, inertial force, and other mechanical sliding resistance. More or less, this hysteresis is a characteristic of a gyromill type windmill.

B−C曲線は最大風車効率を維持する回転状態で、CからB(下降)、BからC(上昇)共に可逆的であり、下降に際してA’からAへ移行することはない。   The B-C curve is a rotational state that maintains the maximum wind turbine efficiency, and both C to B (down) and B to C (up) are reversible, and does not shift from A 'to A when descending.

本発明のジャイロミル型風力発電装置の特徴は、A−A’曲線(起動性、低速風車効率劣悪状態)を省略して、風車が発電できる最小の風速を検知した時にB点(効率維持最小回転数)まで回転数を上昇させることが可能な機構(自己起動機構)を有することにある。   A feature of the gyromill type wind power generator of the present invention is that point A (minimum efficiency maintenance) is detected when the minimum wind speed at which the wind turbine can generate power is detected by omitting the AA ′ curve (startability, low-speed wind turbine efficiency poor state). It is to have a mechanism (self-starting mechanism) that can increase the number of revolutions up to (number of revolutions).

このB点は、風車ブレードの周速比2〜3で決定される。例えば、風車径2m、カットイン風速(発電可能な最小風速)3m/s、周速比2の時、B点は57rpmとなり、起動時から57rpmまでの駆動力が電力として消費されるが、加速時間が10数秒の短時間であることと、風車設定回転数が低いため、小型の減速機付電動機が使用でき消費電力が少ない。   This point B is determined by the peripheral speed ratio 2-3 of the windmill blade. For example, when the windmill diameter is 2 m, the cut-in wind speed (minimum wind speed capable of generating power) is 3 m / s, and the peripheral speed ratio is 2, the point B is 57 rpm, and the driving force from the start up to 57 rpm is consumed as electric power, but acceleration Since the time is a short time of several tens of seconds and the set speed of the windmill is low, a small motor with a reduction gear can be used and power consumption is low.

本発明のジャイロミル型風力発電装置は、風速センサーと、設定の風速を検知した時に始動信号をドライバに送る制御器と、ドライバからの始動信号により駆動ギヤを介して風車シャフトを回転始動させる減速機付電動機と、風車回転数が設定値まで上昇した時に駆動ギヤを停止させ、風車シャフトを空転クラッチを介して空転させる制御手段とからなる自己起動機構を備えることを必須の構成要素とするものであり、その装置の一例全体図を図3に、ギヤボックスの詳細を図4に、システム構成図を図5に示す。   The gyromill type wind power generator according to the present invention includes a wind speed sensor, a controller that sends a start signal to a driver when a set wind speed is detected, and a deceleration that rotates the windmill shaft via a drive gear by the start signal from the driver. It is an essential component to have a self-starting mechanism comprising a motor with a motor and a control means for stopping the drive gear when the wind turbine rotation speed rises to a set value and causing the wind turbine shaft to idle via the idle clutch. FIG. 3 shows an overall view of an example of the apparatus, FIG. 4 shows details of the gear box, and FIG. 5 shows a system configuration diagram.

図3において、1は主ブレード、2は支持アーム、3はローターシャフト、4はギヤボックス、5は風速センサー、6は所望により取り付けられる太陽光発電パネル、7は制御システムが内蔵された制御箱、8は支柱であり、基本的構成は従来のジャイロミル型風車と同等でよい。   In FIG. 3, 1 is a main blade, 2 is a support arm, 3 is a rotor shaft, 4 is a gear box, 5 is a wind speed sensor, 6 is a solar panel to be installed if desired, and 7 is a control box with a built-in control system. , 8 are struts, and the basic configuration may be the same as that of a conventional gyromill type wind turbine.

図4において、9は駆動ギヤ、10は空転クラッチ、11はシャフトである。   In FIG. 4, 9 is a drive gear, 10 is an idle clutch, and 11 is a shaft.

無風時においては、当然風車回転は0である。風速2〜3m/sの微風を風速センサーが検知した時、制御器は始動信号をドライバに送り、減速機付電動機により駆動ギヤを介して風車シャフトを回転始動させる。   When there is no wind, naturally the windmill rotation is zero. When the wind speed sensor detects a slight wind with a wind speed of 2 to 3 m / s, the controller sends a start signal to the driver and starts rotating the windmill shaft via the drive gear by the motor with a speed reducer.

ドライバは、風車が停止した状態から、ある設定した回転数になるまで十数秒間、減速機付電動機を作動させ、風車回転数が設定値まで上昇した時、制御手段からのストップ信号で減速機付電動機を停止させる。減速機付電動機は、ドライバからスタート時、0Hz〜設定回転数、数十Hzまでを周波数変換して作動させるため、風車慣性力による衝撃がなく、突入電流による電力消費がない。例えば、1000Wクラスの風車で、作動時間20秒、電動減速機電流0.5A程度で消費電力は少なく、風速5.5m/s、同20秒程度の風車発電で回収可能である。   The driver operates the motor with a speed reducer for a few dozen seconds from the state where the windmill is stopped until reaching a certain set speed, and when the speed of the windmill rises to the set value, the speed reducer receives a stop signal from the control means. Stop the attached motor. Since the motor with a reduction gear is operated by converting the frequency from 0 Hz to a set number of rotations and several tens of Hz when starting from the driver, there is no impact due to the wind turbine inertia force, and there is no power consumption due to the inrush current. For example, in a 1000 W class windmill, the operation time is 20 seconds, the electric speed reducer current is about 0.5 A, and the power consumption is small.

減速機付電動機を停止させると駆動ギヤは停止するが、風車シャフトは空転クラッチを介して空転する構造を採用している。この時の空転抵抗はベアリング抵抗と同等で極めて小さいため、風車エネルギーは100%近く有効に発電機を駆動する。   When the motor with a reduction gear is stopped, the drive gear is stopped, but the wind turbine shaft is idled via an idle clutch. Since the idling resistance at this time is as small as the bearing resistance, the wind turbine energy effectively drives the generator nearly 100%.

風車設定回転数は、最適な風車効率維持の最低回転数まで上昇させ、その後、駆動力を切り離す。風車は、この初期に与えられた回転エネルギーによって、機械系の摩擦ロス分のみを風から流体エネルギーとして取り出せば、2m/s程度の風が変動風として来ても回転は維持できる。更に風速が上がれば風車回転数は直線的に上昇し、その風速の最高回転数まで上がる。この状態で発電負荷を入れれば、風車回転は下がり始め、負荷が大きすぎれば最大風車効率点を過ぎて下降するが、適時に負荷をON−OFF制御することによって、風車の最大効率回転数を維持することができる。さらに、風車の無負荷最高回転数から発電維持回転数まで、風車の回転エネルギー(慣性力)を有効に発電に利用することができるので、風車効率が向上する。   The wind turbine set rotational speed is increased to the minimum rotational speed for maintaining the optimum wind turbine efficiency, and then the driving force is disconnected. The wind turbine can maintain its rotation even if a wind of about 2 m / s comes as a fluctuating wind, if only the friction loss of the mechanical system is extracted from the wind as fluid energy by the rotational energy given in the initial stage. Furthermore, if the wind speed increases, the wind turbine rotation speed increases linearly and increases to the maximum rotation speed of the wind speed. If a power generation load is applied in this state, the wind turbine rotation starts to decrease, and if the load is too large, it decreases past the maximum wind turbine efficiency point, but by controlling the load on and off in a timely manner, the maximum efficiency rotation speed of the wind turbine can be reduced. Can be maintained. Furthermore, since the rotational energy (inertial force) of the windmill can be effectively used for power generation from the maximum no-load rotational speed of the windmill to the power generation maintaining rotational speed, the windmill efficiency is improved.

適正風車設定回転数は、風車ブレードの周速比から決定することができる。周速比λ、風速v、風車回転直径D、風車回転数Nとしたとき、λ=πDN/vで表せる。本発明における風車回転制御は、微風速から高風速まで風速と風車回転数を常時感知して、最大風車効率となる周速比λ=2〜3となるように負荷を制御して最大発電量を確保するものである。強風時、最高回転数が周速比λ=3〜4を超える時、安全のため機械ブレーキで停止させる。   The appropriate windmill setting rotational speed can be determined from the peripheral speed ratio of the windmill blade. When the peripheral speed ratio λ, the wind speed v, the windmill rotational diameter D, and the windmill rotational speed N are represented, λ = πDN / v. In the wind turbine rotation control according to the present invention, the wind speed and the wind turbine rotation speed are always sensed from a slight wind speed to a high wind speed, and the load is controlled so that the peripheral speed ratio λ = 2 to 3 that is the maximum wind turbine efficiency is obtained. Is to secure. When the wind speed is strong and the maximum speed exceeds the peripheral speed ratio λ = 3-4, the machine brake is stopped for safety.

本発明に用いる風速センサーは、受発信タイプの超音波センサーを採用するのが好ましい。これは小型、軽量で温度に影響されず、回転部分がないため、長寿命で安定した風速、風向きの風車計測に適している。   The wind speed sensor used in the present invention preferably employs a transmission / reception type ultrasonic sensor. It is small and lightweight, is not affected by temperature, and has no rotating parts. Therefore, it is suitable for wind turbine measurement with a long life and stable wind speed and direction.

一般のジャイロミル型風車は起動性を良くするため、風車ブレードを軽量化する必要があり、FRP、カーボンファイバー等の素材が選ばれるが、製作に手間がかかり、接着強度や価格的に問題があった。本発明の自己起動式風車ブレードは強制起動のため、極端な軽量化は不要で、高強度のアルミニウム、鉄系、チタン等の金属弾性材料が使用でき、ブレードの重量は慣性力を利用する本発明の風車制御にとって有利に働き、風車大型化の対応が容易になる。また、製作方法も押出成形、プレス成形等の一般成形加工が可能になり、製作コストを安価に、短納期で大量に供給することができる。   In general gyromill type windmills, it is necessary to reduce the weight of windmill blades in order to improve startability, and materials such as FRP and carbon fiber are selected. However, it takes time to manufacture, and there are problems in terms of adhesive strength and price. there were. Since the self-starting wind turbine blade of the present invention is forcibly started, it is not necessary to reduce the weight significantly, and high-strength aluminum, iron-based, titanium, or other metal elastic material can be used, and the weight of the blade uses inertial force. This is advantageous for the wind turbine control of the invention, and it is easy to cope with the increase in the size of the wind turbine. In addition, the manufacturing method can be general molding processing such as extrusion molding and press molding, and the manufacturing cost can be reduced and a large amount can be supplied with a short delivery time.

実施例として独立電源用バッテリー負荷を風車に連結した場合を図5に示す。切替器は通常バッテリー電源使用時と商用外部電源停電時における非常電源用として切り替える目的で設置する。   FIG. 5 shows a case where an independent power source battery load is connected to a wind turbine as an embodiment. The switch is usually installed for the purpose of switching to an emergency power source when using battery power and during a commercial external power failure.

図1は、実機スケールでの風洞実験による風速と風車回転数の関係を示すグラフである。FIG. 1 is a graph showing the relationship between wind speed and wind turbine rotation speed in a wind tunnel experiment on an actual machine scale. 図2は、図1のグラフを模式化したグラフである。FIG. 2 is a graph schematically showing the graph of FIG. 図3は、本発明のジャイロミル型風力発電装置の一例全体図である。FIG. 3 is an overall view of an example of the gyromill type wind power generator of the present invention. 図4は、ギヤボックスの詳細を示す図である。FIG. 4 is a diagram showing details of the gear box. 図5は、本発明の装置に用いられるシステム構成の一例を図である。FIG. 5 is a diagram showing an example of a system configuration used in the apparatus of the present invention.

符号の説明Explanation of symbols

1 主ブレード
2 支持アーム
3 ローターシャフト
4 ギヤボックス
5 風速センサー
6 太陽光発電パネル
7 制御箱
8 支柱
9 駆動ギヤ
10 空転クラッチ
11 シャフト
DESCRIPTION OF SYMBOLS 1 Main blade 2 Support arm 3 Rotor shaft 4 Gear box 5 Wind speed sensor 6 Photovoltaic panel 7 Control box 8 Strut 9 Drive gear 10 Idling clutch 11 Shaft

Claims (1)

ジャイロミル型風車を用いた風力発電装置において、風速センサーと、設定の風速を検知した時に始動信号をドライバに送る制御器と、ドライバからの始動信号により駆動ギヤを介して風車シャフトを回転始動させる減速機付電動機と、風車回転数が設定値まで上昇した時に駆動ギヤを停止させ、風車シャフトを空転クラッチを介して空転させる制御手段とからなる自己起動機構を備え、風車ブレードの周速比が2〜3になるように負荷を制御して発電を行うジャイロミル型風力発電装置。 In a wind turbine generator using a gyromill type windmill, a wind speed sensor, a controller that sends a start signal to a driver when a set wind speed is detected, and a windmill shaft that starts rotation via a drive gear by the start signal from the driver It has a self-starting mechanism that consists of a motor with a speed reducer and a control means that stops the drive gear when the wind turbine rotation speed rises to the set value and idles the wind turbine shaft via the idle clutch, and the peripheral speed ratio of the wind turbine blade is A gyromill type wind power generator that generates power by controlling a load so that it becomes 2-3.
JP2006291312A 2006-10-26 2006-10-26 Wind power generator Expired - Fee Related JP5066648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006291312A JP5066648B2 (en) 2006-10-26 2006-10-26 Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006291312A JP5066648B2 (en) 2006-10-26 2006-10-26 Wind power generator

Publications (2)

Publication Number Publication Date
JP2008106700A true JP2008106700A (en) 2008-05-08
JP5066648B2 JP5066648B2 (en) 2012-11-07

Family

ID=39440274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006291312A Expired - Fee Related JP5066648B2 (en) 2006-10-26 2006-10-26 Wind power generator

Country Status (1)

Country Link
JP (1) JP5066648B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006658A1 (en) * 2015-07-08 2017-01-12 株式会社グローバルエナジー Rotation speed control method of wind turbine, and wind power generator
JP2017020374A (en) * 2015-07-08 2017-01-26 株式会社グローバルエナジー Wind power generation device
JP2017020373A (en) * 2015-07-08 2017-01-26 株式会社グローバルエナジー Rotational speed control method for wind mill
JP2017053304A (en) * 2015-09-11 2017-03-16 株式会社グローバルエナジー Wind power generator
JP2017053303A (en) * 2015-09-11 2017-03-16 株式会社グローバルエナジー Wind turbine rotation speed control method
KR101762588B1 (en) 2016-09-01 2017-07-28 (주)정광기업 Smart pole using new renewable energy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016444A1 (en) * 2013-08-02 2015-02-05 (주)미가람 Wind power generation tower provided with gyromill type wind turbine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417440A (en) * 1977-07-07 1979-02-08 Univ Tokai Starting device of vertical shaft type wind power turbine
JPS5862382A (en) * 1981-10-07 1983-04-13 Nippon Telegr & Teleph Corp <Ntt> Braking control for windmill power generator
JPS58183874A (en) * 1982-04-20 1983-10-27 Shin Meiwa Ind Co Ltd Starting device for wind energy converting device
US4464579A (en) * 1982-06-17 1984-08-07 Control Data Corporation Derrieus wind turbine electric generating system
JP2003153595A (en) * 2001-11-08 2003-05-23 Tokai Univ Fluid power generating unit
JP2003314429A (en) * 2002-04-17 2003-11-06 Energy Products Co Ltd Wind power generator
JP2005171868A (en) * 2003-12-10 2005-06-30 Dmw Japan:Kk Compound windmill
JP2006002725A (en) * 2004-06-21 2006-01-05 Mitsui Zosen Akishima Kenkyusho:Kk Windmill with rotary cylindrical body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417440A (en) * 1977-07-07 1979-02-08 Univ Tokai Starting device of vertical shaft type wind power turbine
JPS5862382A (en) * 1981-10-07 1983-04-13 Nippon Telegr & Teleph Corp <Ntt> Braking control for windmill power generator
JPS58183874A (en) * 1982-04-20 1983-10-27 Shin Meiwa Ind Co Ltd Starting device for wind energy converting device
US4464579A (en) * 1982-06-17 1984-08-07 Control Data Corporation Derrieus wind turbine electric generating system
JP2003153595A (en) * 2001-11-08 2003-05-23 Tokai Univ Fluid power generating unit
JP2003314429A (en) * 2002-04-17 2003-11-06 Energy Products Co Ltd Wind power generator
JP2005171868A (en) * 2003-12-10 2005-06-30 Dmw Japan:Kk Compound windmill
JP2006002725A (en) * 2004-06-21 2006-01-05 Mitsui Zosen Akishima Kenkyusho:Kk Windmill with rotary cylindrical body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006658A1 (en) * 2015-07-08 2017-01-12 株式会社グローバルエナジー Rotation speed control method of wind turbine, and wind power generator
JP2017020374A (en) * 2015-07-08 2017-01-26 株式会社グローバルエナジー Wind power generation device
JP2017020373A (en) * 2015-07-08 2017-01-26 株式会社グローバルエナジー Rotational speed control method for wind mill
CN107850052A (en) * 2015-07-08 2018-03-27 全球能量有限公司 The revolution speed control method and wind generator system of wind turbine
TWI726895B (en) * 2015-07-08 2021-05-11 日商Ntn股份有限公司 Rotation speed control method of windmill and wind power generation device
JP2017053304A (en) * 2015-09-11 2017-03-16 株式会社グローバルエナジー Wind power generator
JP2017053303A (en) * 2015-09-11 2017-03-16 株式会社グローバルエナジー Wind turbine rotation speed control method
KR101762588B1 (en) 2016-09-01 2017-07-28 (주)정광기업 Smart pole using new renewable energy
WO2018044115A1 (en) * 2016-09-01 2018-03-08 (주)정광기업 Smart pole using new renewable energy

Also Published As

Publication number Publication date
JP5066648B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5066648B2 (en) Wind power generator
DK1865198T3 (en) Emergency power supply device for pitch drive for a wind turbine
WO2011092810A1 (en) Wind power generation device and yaw turning control method for wind power generation device
TWI246561B (en) Fluid power generator system
JP5619278B2 (en) Wind power generation system, apparatus using wind power generation system, and operation method thereof
KR100754790B1 (en) Wind powered generator
EP2917570B1 (en) Wind turbine yaw control systems
EP2287464B1 (en) Passive deicing for wind turbine blades
CA2644019A1 (en) Wind power generator system and control method of the same
US8030792B2 (en) Vertical axis wind turbine system
JP2011038406A5 (en)
JP2006336505A (en) Horizontal shaft windmill
EP2607694B1 (en) Method for operating a wind turbine
JP2006046306A (en) Windmill for wind power generation, and power generator driving method
JP2010523880A (en) Improvements in or related to wind turbines
JP4808049B2 (en) Wind power generator
WO2012032547A2 (en) Mechanism for blade pitch control for wind turbine
WO2003016712A1 (en) Wind power generator
CN101004167A (en) High efficiency wind driven generator with vertical axis of petal type fan blades
KR100970302B1 (en) Horizontal Axis Wind Turbine Generator Using Dual Blade and Operating method thereof
WO2018149369A1 (en) Wind generating set
JP2007089399A5 (en)
KR20020045601A (en) Wind turbine
KR101448540B1 (en) Start-up and braking control of a wind turbine
CN201116513Y (en) Windmill generator for ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5066648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees