JP2006002725A - Windmill with rotary cylindrical body - Google Patents

Windmill with rotary cylindrical body Download PDF

Info

Publication number
JP2006002725A
JP2006002725A JP2004182316A JP2004182316A JP2006002725A JP 2006002725 A JP2006002725 A JP 2006002725A JP 2004182316 A JP2004182316 A JP 2004182316A JP 2004182316 A JP2004182316 A JP 2004182316A JP 2006002725 A JP2006002725 A JP 2006002725A
Authority
JP
Japan
Prior art keywords
cylindrical body
blade
wind turbine
rotating
windmill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004182316A
Other languages
Japanese (ja)
Inventor
Shogo Miyajima
省吾 宮島
Hiroyuki Nakagawa
寛之 中川
Hidetsugu Iwashita
英嗣 岩下
Kazuhiro Mori
一紘 茂里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akishima Laboratories Mitsui Zosen Inc
Original Assignee
Akishima Laboratories Mitsui Zosen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akishima Laboratories Mitsui Zosen Inc filed Critical Akishima Laboratories Mitsui Zosen Inc
Priority to JP2004182316A priority Critical patent/JP2006002725A/en
Publication of JP2006002725A publication Critical patent/JP2006002725A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a windmill with a rotary cylindrical body rotating efficiently at mild wind. <P>SOLUTION: The windmill 10 with the rotary cylindrical body is provided with a cylindrical body 14 rotatably installed on a support shaft 12 and blades 16 attached on the cylindrical body 14 separately in a radial direction and rotating as one unit with the cylindrical body 14. In this case, distance between the cylindrical body 14 and the blade 16 is kept in a range of 0.4r or more and 0.6r or less when radius of the cylindrical body 14 is determined as (r). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は回転円筒体付き風車に係り、特に低風速時に効率良く回転する回転円筒体付き風車に関する。   The present invention relates to a wind turbine with a rotating cylindrical body, and more particularly to a wind turbine with a rotating cylindrical body that efficiently rotates at a low wind speed.

近年、石炭,石油等の化石燃料に代わる代替エネルギーとして太陽光,波力,風力等によるクリーンエネルギーの技術開発が行われている。なかでも風力による発電に利用されている風車は水平軸型と垂直軸型とに大別され実用化されている。水平軸型には水平軸プロペラ風車,多翼型風車等があり、特にプロペラ風車は最も多く発電に利用されている。水平軸型は回転軸中心が風向に向くように方向制御が必要となる。   In recent years, clean energy technology development using sunlight, wave power, wind power, etc. has been carried out as alternative energy to replace fossil fuels such as coal and oil. In particular, wind turbines used for wind power generation are roughly divided into horizontal axis types and vertical axis types and are put into practical use. The horizontal axis type includes a horizontal axis propeller wind turbine, a multi-blade type wind turbine, and the like. Particularly, the propeller wind turbine is most frequently used for power generation. The horizontal axis type requires direction control so that the center of the rotation axis faces the wind direction.

一方、垂直型は3枚〜5枚のブレード(回転翼)を垂直な細い回転軸周りに動径方向へ等距離に配置し、ブレードに作用する空力の接線方向成分の力によって発生するトルクによって、ブレードを回転軸回りに回転させるものがある。したがって、垂直型は、水平軸プロペラ風車のように風向に依存しないため、あらゆる方向の風向に対して回転可能である。このような垂直型風車として特許文献1には、回転体2に複数枚のブレード3を取り付けた風車が開示されている。この風車は、図5に示したように、細い支持軸1の回りを回転体2とともに翼形状のブレード3が回転するようになっている。ブレード3の方向制御を行うことにより回転体2の回転数を規定の範囲に制御して一定に保持することができる。
特開2003−278637号公報
On the other hand, in the vertical type, three to five blades (rotary blades) are arranged at equal distances in the radial direction around a vertical thin rotating shaft, and the torque generated by the force of the tangential component of the aerodynamic force acting on the blades There are some which rotate the blade around the rotation axis. Therefore, since the vertical type does not depend on the wind direction like the horizontal axis propeller wind turbine, it can rotate with respect to the wind direction in any direction. As such a vertical windmill, Patent Document 1 discloses a windmill in which a plurality of blades 3 are attached to a rotating body 2. In this windmill, as shown in FIG. 5, a blade-like blade 3 rotates with a rotating body 2 around a thin support shaft 1. By controlling the direction of the blade 3, the number of rotations of the rotating body 2 can be controlled within a specified range and kept constant.
JP 2003-278737 A

上記特許文献1に記載の風車は、風によってブレード3に生じる揚力によって回転する。そして、本発明者は垂直型風車の鋭意研究を重ねた結果、風車の回転が円筒体とブレードとの間の距離に影響するという重要な関係があることを見出した。しかしながら、特許文献1による風力発電用風車は風車を細い支持軸1に取り付け、回転体2に形成したブレード3とともに回転させているが、回転体2とブレード3との間の距離について何ら規定されておらず、十分な回転効率が得られない。また、ブレード3の方向制御に複雑な機構とパワーが必要である。
本発明は上記従来技術の問題点に着目し、回転効率が高く、低風速時にも回転する回転円筒体付き風車を提供することを目的としている。
The windmill described in Patent Document 1 is rotated by lift generated in the blade 3 by the wind. As a result of extensive research on the vertical wind turbine, the present inventor has found that there is an important relationship that the rotation of the wind turbine affects the distance between the cylindrical body and the blade. However, although the wind turbine for wind power generation according to Patent Document 1 is attached to the thin support shaft 1 and rotated together with the blade 3 formed on the rotating body 2, the distance between the rotating body 2 and the blade 3 is not specified at all. Therefore, sufficient rotation efficiency cannot be obtained. Moreover, a complicated mechanism and power are required for the direction control of the blade 3.
The present invention pays attention to the problems of the prior art described above, and an object of the present invention is to provide a wind turbine with a rotating cylindrical body that has high rotational efficiency and rotates even at low wind speeds.

本発明に係る回転円筒体付き風車によれば、支持軸に回転自在に装着した円筒体と、この円筒体に、半径方向に離間して取り付けられ、前記円筒体と一体に回転するブレードとを有し、前記円筒体の半径をrとしたときに、前記円筒体と前記ブレードとの距離を0.4r以上0.6r以下としたことを特徴としている。   According to the wind turbine with a rotating cylindrical body according to the present invention, a cylindrical body that is rotatably mounted on a support shaft, and a blade that is attached to the cylindrical body so as to be spaced apart in the radial direction and rotates integrally with the cylindrical body. And the distance between the cylindrical body and the blade is 0.4r or more and 0.6r or less, where r is the radius of the cylindrical body.

回転円筒体付き風車は上記に示すように円筒体とブレードとの距離を規定した構成にしている。ブレードに風が当たることによってブレードに揚力および推力が発生する。さらに本発明は、円筒体とブレードとの間の距離を0.4r〜0.6r(rは円筒体の半径)としたことにより、ブレードと円筒体との間を流れる気流によって地面効果が生じる。このため、ブレードの誘導抗力が減少して相対的に揚力および推力が大きくなる。したがって、ブレードの回転効率が向上し、ひいてはエネルギー変換効率が上昇する。この地面効果による揚抗比の向上により推力が増加し、例えば3m/s〜5m/sのような低風速であっても風車を回転させることができる。   The wind turbine with a rotating cylinder has a configuration in which the distance between the cylinder and the blade is defined as described above. When the blade hits the wind, lift and thrust are generated on the blade. Further, according to the present invention, the distance between the cylindrical body and the blade is set to 0.4r to 0.6r (r is the radius of the cylindrical body), so that the ground effect is generated by the airflow flowing between the blade and the cylindrical body. . For this reason, the induced drag of the blade is reduced and the lift and thrust are relatively increased. Therefore, the rotation efficiency of the blade is improved, and consequently the energy conversion efficiency is increased. The thrust increases due to the improvement of the lift-drag ratio due to the ground effect, and the windmill can be rotated even at a low wind speed such as 3 m / s to 5 m / s.

以下、本発明に係る回転円筒体付き風車の実施形態を添付の図面を参照しながら詳細に説明する。図1は実施形態に係る回転円筒体付き風車の構成概略を示す図である。(1)は回転円筒体付き風車の側面を示す図である。(2)は回転円筒体付き風車の側面の断面図を示す。図2は図1の回転円筒体付き風車のA−A断面を示す図である。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a wind turbine with a rotating cylindrical body according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of a wind turbine with a rotating cylindrical body according to the embodiment. (1) is a figure which shows the side of a windmill with a rotating cylindrical body. (2) shows a sectional view of the side surface of the wind turbine with a rotating cylindrical body. FIG. 2 is a view showing an AA cross section of the wind turbine with a rotating cylindrical body of FIG.

図1に示すように、回転円筒体付き風車10は、支持軸12の回りを回転する円筒体14と、円筒体14の外側に形成し円筒体14と一体に回転可能なブレード16とを基本構成としている。支持軸12は垂直方向に直立した軸である。また、支持軸12は直径が従来に比較して太く、例えば電柱や煙突等の既存の構造物を用いることができる。円筒体14は支持軸12の外側を取り巻く円筒状であって、材質に例えばアルミ等の金属あるいはプラスチック樹脂等を用いて軽量化を図るようにするとよい。支持軸12と円筒体14との間にはベアリング部22が設けてある。ベアリング部22は円筒部14の両端部に支持軸12の外側を覆うリング状に形成してある。これにより、円筒体14が支持軸12周りを回転する際に発生する摩擦抵抗を低減することができる。   As shown in FIG. 1, a wind turbine 10 with a rotating cylindrical body basically includes a cylindrical body 14 that rotates around a support shaft 12 and a blade 16 that is formed outside the cylindrical body 14 and that can rotate integrally with the cylindrical body 14. It is configured. The support shaft 12 is a shaft upright in the vertical direction. Further, the support shaft 12 is thicker than the conventional one, and an existing structure such as a utility pole or a chimney can be used. The cylindrical body 14 has a cylindrical shape surrounding the outside of the support shaft 12 and may be made lighter by using, for example, a metal such as aluminum or a plastic resin as a material. A bearing portion 22 is provided between the support shaft 12 and the cylindrical body 14. The bearing portion 22 is formed in a ring shape covering the outside of the support shaft 12 at both ends of the cylindrical portion 14. Thereby, the frictional resistance generated when the cylindrical body 14 rotates around the support shaft 12 can be reduced.

円筒体14の上下開口両端部にはフランジ部18が形成してある。フランジ部18はドーナツ状の平板であって、円筒体14と直交して形成してある。フランジ部18は前述同様に軽量化を図るため円筒体14と同質材料を用いるとよい。フランジ部18は後述するブレード16の両端部を支持軸12中心から規定した間隔をおいて支持軸12の軸心と平行に固定保持する。   Flange portions 18 are formed at both ends of the upper and lower openings of the cylindrical body 14. The flange portion 18 is a donut-shaped flat plate and is formed orthogonal to the cylindrical body 14. The flange portion 18 may be made of the same material as the cylindrical body 14 in order to reduce the weight as described above. The flange portion 18 fixes and holds both end portions of a blade 16 to be described later in parallel with the axis of the support shaft 12 at a predetermined interval from the center of the support shaft 12.

上下のフランジ部18の間にはブレード16を設置してある。図2に示すように、ブレード16は断面形状が空気抵抗を低減しかつ、推力を発生しやすくした翼形状であって、ブレード16の翼幅上下方向の長さは円筒体14と同じ長さに形成してある。ブレード16は翼弦長の方向が円筒体14の接線方向と一致している。ブレード16は円筒体14の外表面に2〜5枚の複数枚設置することができ、本実施形態では2枚のブレードを円筒体14の直径方向に設置してある。ここで、円筒体14に設置するブレード16と円筒体14との関係は円筒体半径に依存している。本実施形態では図2に示すように、円筒体14の半径をrとした場合、ブレード16に地面効果が生ずるように、円筒体14とブレード16外表面との距離aを0.4r〜0.6rに設定してある。   A blade 16 is installed between the upper and lower flange portions 18. As shown in FIG. 2, the blade 16 has a blade shape whose cross-sectional shape reduces air resistance and easily generates thrust, and the blade 16 has a blade width in the vertical direction that is the same as that of the cylindrical body 14. Is formed. In the blade 16, the chord length direction coincides with the tangential direction of the cylindrical body 14. A plurality of 2 to 5 blades 16 can be installed on the outer surface of the cylindrical body 14. In this embodiment, two blades are installed in the diameter direction of the cylindrical body 14. Here, the relationship between the blade 16 installed on the cylindrical body 14 and the cylindrical body 14 depends on the radius of the cylindrical body. In this embodiment, as shown in FIG. 2, when the radius of the cylindrical body 14 is r, the distance a between the cylindrical body 14 and the outer surface of the blade 16 is set to 0.4r to 0 so that a ground effect is generated on the blade 16. .6r is set.

また、回転円筒体付き風車10は支持軸12に取り付けた止具20で支持してある。止具20aは支持軸12の直径とほぼ同径の内径を有するリング状に形成してある。止具20aはボルト等の固着手段によって支持軸12に固定してある。風車10は支持軸12の上方から円筒体14の内部を貫通させて装入し止具20aの上に配置し、支持軸12に装着する。また、回転円筒体付き風車10の上端部に風車の位置ずれを防止するため止具20bを配置する。したがって、回転円筒体付き風車10は止具20の取付位置を調節することにより、支持軸12の上下方向の任意の位置に設置できる。また、回転円筒体付き風車10の上端部に止具20bを配置した後、さらに支持軸12上部から回転円筒体付き風車10を挿入する。風車の上端部に止具20を配置することにより、回転円筒体付き風車10を支持軸12の垂直方向に容易に多段に装着することができる。   Further, the wind turbine 10 with the rotating cylindrical body is supported by a stopper 20 attached to the support shaft 12. The stopper 20a is formed in a ring shape having an inner diameter substantially the same as the diameter of the support shaft 12. The stopper 20a is fixed to the support shaft 12 by fixing means such as a bolt. The windmill 10 is inserted from above the support shaft 12 through the inside of the cylindrical body 14, placed on the stopper 20 a, and mounted on the support shaft 12. Further, a stopper 20b is disposed at the upper end of the wind turbine 10 with the rotating cylindrical body to prevent the wind turbine from being displaced. Therefore, the wind turbine 10 with the rotating cylindrical body can be installed at any position in the vertical direction of the support shaft 12 by adjusting the mounting position of the stopper 20. Moreover, after arrange | positioning the fastener 20b in the upper end part of the windmill 10 with a rotation cylinder, the windmill 10 with a rotation cylinder is further inserted from the support shaft 12 upper part. By disposing the stopper 20 at the upper end of the windmill, the windmill 10 with the rotating cylindrical body can be easily mounted in multiple stages in the direction perpendicular to the support shaft 12.

上記構成による回転円筒体付き風車10は以下に示すように作用する。支持軸12の任意に設定した箇所に止具20aを固定する。そして、支持軸12の上方から回転円筒体付き風車10の円筒体14開口部を挿入して、止具20a上に配置し、支持軸12に装着する。風車を装着した後、回転円筒体付き風車10の上端部に止具20bを配置する。これにより、回転円筒体付き風車10は、支持軸12に着脱自在に装着され、円筒体14両端部のベアリング部22を介して摩擦抵抗が低減されて、支持軸12の軸回りを回転自在となる。なお、回転円筒体付き風車10を支持軸12の垂直方向に多段に設置する場合には、前述のように回転円筒体付き風車10上端部に止具20bを配置した後、さらに支持軸12上部から回転円筒体付き風車10を挿入して上端部に止具20を配置するとよい。   The wind turbine 10 with a rotating cylindrical body configured as described above operates as described below. The stopper 20a is fixed to an arbitrarily set position of the support shaft 12. Then, the opening of the cylindrical body 14 of the wind turbine 10 with the rotating cylindrical body is inserted from above the support shaft 12, arranged on the stopper 20 a, and attached to the support shaft 12. After mounting the windmill, the stopper 20b is arranged at the upper end of the windmill 10 with the rotating cylindrical body. As a result, the wind turbine 10 with the rotating cylindrical body is detachably attached to the support shaft 12, and the frictional resistance is reduced via the bearing portions 22 at both ends of the cylindrical body 14, so that it can rotate around the axis of the support shaft 12. Become. When the wind turbine 10 with the rotating cylinder is installed in multiple stages in the vertical direction of the support shaft 12, the stopper 20 b is disposed at the upper end of the wind turbine 10 with the rotating cylinder as described above, and then the upper portion of the support shaft 12. It is good to insert the windmill 10 with a rotating cylinder from the top, and arrange | position the stopper 20 in an upper end part.

回転円筒体付き風車10は、ブレード16に風が当たると揚力および推力を生じ、ブレード16が円筒体14と一体に回転する。そして、回転円筒体付き風車10は円筒体14の半径をrとしたときに、円筒体14とブレード16との間隔aを0.4r〜0.6rにしてあるため、円筒体14とブレード16との間を流れる空気(気流)によって地面効果が生じ、ブレード16の誘導抗力が減少する。このため、ブレード16に作用する揚力および推力が抗力に対して相対的に大きくなり、回転効率が向上して風速3m/s程度であっても容易に回転し、エネルギー変換効率を高めることができる。   The wind turbine 10 with a rotating cylinder generates lift and thrust when wind strikes the blade 16, and the blade 16 rotates integrally with the cylinder 14. In the wind turbine 10 with the rotating cylindrical body, when the radius of the cylindrical body 14 is r, the interval a between the cylindrical body 14 and the blade 16 is set to 0.4r to 0.6r. The ground effect is generated by the air (airflow) flowing between the blades 16 and the induced drag of the blade 16 is reduced. For this reason, the lift force and thrust acting on the blade 16 become relatively large with respect to the drag force, and the rotation efficiency is improved, so that even if the wind speed is about 3 m / s, it can be easily rotated and the energy conversion efficiency can be increased. .

図3は実施形態に係る回転円筒体付き風車のパワー係数の比較を示す図である。図中の曲線(1)は本実施形態に係る回転円筒体付き風車であり、円筒体14の半径をrとしたときに、円筒体14とブレード16との間隔を0.4rにしてある。曲線(2)は円筒体を固定しその回りをブレードだけが回転する例であって、固定された円筒体とブレードとの間の距離が(1)と同じになるように設置してある。曲線(3)は円筒体とブレードとの距離を0.3rとした回転円筒体付き風車である。また、図3の横軸は翼端周速と風速との比となる周速比λ、縦軸はパワー係数(Cp)である。なお、いずれも翼弦長は円筒体14の半径をrとしたときに、0.4rにしてある。   FIG. 3 is a diagram showing a comparison of power coefficients of the wind turbine with a rotating cylindrical body according to the embodiment. Curve (1) in the figure is a wind turbine with a rotating cylinder according to the present embodiment. When the radius of the cylinder 14 is r, the distance between the cylinder 14 and the blade 16 is 0.4r. Curve (2) is an example in which the cylindrical body is fixed and only the blade rotates around it, and the distance between the fixed cylindrical body and the blade is set to be the same as (1). Curve (3) is a wind turbine with a rotating cylindrical body in which the distance between the cylindrical body and the blade is 0.3r. Also, the horizontal axis in FIG. 3 is the peripheral speed ratio λ, which is the ratio between the tip peripheral speed and the wind speed, and the vertical axis is the power coefficient (Cp). In both cases, the chord length is set to 0.4r, where r is the radius of the cylindrical body 14.

図示のように曲線(1)の円筒体とブレードとの距離を0.4rとした風車の場合には、周速比λが2.5程度においてパワー係数が最大となる約0.3を示した。パワー係数が大きいほど、風車の回転効率が大きく、出力が増大する。曲線(1)のパワー係数(Cp)が大きいのは、回転円筒体付き風車に風が当たるとブレード自身に発生する揚力に加えて、さらに円筒体の影響によりブレードと円筒体との間の気流が変化する地面効果によってブレードの揚抗比が向上し、揚力および推力が抗力に対して相対的に大きくなることによる。   As shown in the figure, in the case of a wind turbine in which the distance between the cylindrical body of the curve (1) and the blade is 0.4 r, the power coefficient is about 0.3 when the peripheral speed ratio λ is about 2.5. It was. The larger the power coefficient, the greater the rotational efficiency of the windmill and the higher the output. The power coefficient (Cp) of the curve (1) is large because, in addition to the lift generated in the blade itself when the wind hits the wind turbine with the rotating cylinder, the air current between the blade and the cylinder is further influenced by the cylinder. This is because the lift-drag ratio of the blade is improved by the ground effect that changes, and the lift and thrust become relatively large with respect to the drag.

一方、曲線(2)の場合には、周速比λが1.8くらいでパワー係数(Cp)が最大の0.07程度となるがパワー係数は低下している。これは円筒体が固定されているためであり、円筒体がブレードと一体となって回転しないと円筒体とブレードの間の距離が最適でも効率向上は見込めない。また、円筒体とブレードの間の距離が0.7r以上に離れた場合にも、曲線(2)と同様な性能を示した。曲線(3)の場合には、曲線(2)よりもさらにパワー係数は低い値を示した。これは、ブレードと円筒体との間の距離が短いためにブレードに当たる気流が円筒体の影響を受けて十分な推力を発生できず、ブレードを支持する円筒体を回転させることによるエネルギーロスが生じることによるものと考えられる。   On the other hand, in the case of the curve (2), the peripheral speed ratio λ is about 1.8 and the power coefficient (Cp) is about 0.07 which is the maximum, but the power coefficient is lowered. This is because the cylindrical body is fixed. If the cylindrical body does not rotate integrally with the blade, the efficiency cannot be expected even if the distance between the cylindrical body and the blade is optimal. In addition, when the distance between the cylindrical body and the blade was 0.7 r or more, the same performance as the curve (2) was exhibited. In the case of the curve (3), the power coefficient was lower than that of the curve (2). This is because the distance between the blade and the cylindrical body is short, and the airflow hitting the blade is not affected by the cylindrical body to generate sufficient thrust, resulting in energy loss due to rotation of the cylindrical body supporting the blade. This is probably due to this.

なお、実施形態の回転円筒体付き風車10は、円筒体とブレードとの距離を0.5rとし、翼弦長lを0.8rとした場合、パワー係数は前述の曲線(1)と同様のパワー係数を示し、翼弦長lを長くしてもパワー係数に大きな変化は見られなかった。よって、前述の地面効果は円筒体とブレードの間の距離に影響して、翼弦長lには影響していないものと考えられる。   In the wind turbine 10 with the rotating cylindrical body of the embodiment, when the distance between the cylindrical body and the blade is 0.5r and the chord length l is 0.8r, the power coefficient is the same as that of the curve (1) described above. The power coefficient is shown, and even when the chord length l is increased, no significant change is seen in the power coefficient. Therefore, it is considered that the ground effect described above affects the distance between the cylindrical body and the blade and does not affect the chord length l.

このように本発明に係る円筒付き垂直軸風車は、円筒体の影響によりブレードと円筒体との間の気流が変化する地面効果によってブレードの揚抗比が向上し、例えば3m/s〜5m/sのような低風速であっても風車を高効率で回転させることが可能となる。   As described above, the vertical axis wind turbine with a cylinder according to the present invention improves the lift-drag ratio of the blade by the ground effect in which the airflow between the blade and the cylinder changes due to the influence of the cylinder, for example, 3 m / s to 5 m / Even at a low wind speed such as s, the windmill can be rotated with high efficiency.

図4は実施形態に係る回転円筒体付き風車の設置状態を示す図である。図示のように回転円筒体付き風車10は支持軸12の垂直方向に多段に設置している。これにより大電力を発電することができる。また、回転円筒体付き風車10の下方の支持軸12に駆動力を電力に変換する発電ユニット30を設置している。発電ユニット30は回転円筒体付き風車10の回転によって得られる動力を内部に設置した発電機の駆動に伝達されて発電可能に形成してある。また、円筒体14の内径を任意に設計変更することによって、電柱、煙突等の既存の構造物に設置することができる。よって、設置場所の確保や支持軸の新設にともなうコストの低減を図ることができる。さらに、ブレード16が回転する際発生する音はプロペラに比べ風切音が小さいため、市街地等に設置し発電することができる。   FIG. 4 is a diagram illustrating an installation state of the wind turbine with a rotating cylindrical body according to the embodiment. As shown in the figure, the wind turbine 10 with a rotating cylindrical body is installed in multiple stages in the direction perpendicular to the support shaft 12. Thereby, large electric power can be generated. In addition, a power generation unit 30 that converts driving force into electric power is installed on the support shaft 12 below the wind turbine 10 with a rotating cylindrical body. The power generation unit 30 is configured so that power obtained by the rotation of the wind turbine 10 with a rotating cylindrical body is transmitted to the drive of a generator installed therein to generate power. Moreover, it can install in the existing structures, such as a utility pole and a chimney, by changing the design of the internal diameter of the cylindrical body 14 arbitrarily. Therefore, it is possible to reduce the cost associated with securing the installation location and newly installing the support shaft. Furthermore, since the noise generated when the blade 16 rotates is smaller than that of the propeller, it can be installed in a city area or the like to generate electric power.

実施形態に係る回転円筒体付き風車の構成概略を示す図である。It is a figure which shows the structure outline of the windmill with a rotating cylindrical body which concerns on embodiment. 図1のA−A線図の断面を示す図である。It is a figure which shows the cross section of the AA diagram of FIG. 実施形態係る回転円筒体付き風車のパワー係数の比較を示す図である。It is a figure which shows the comparison of the power coefficient of the windmill with a rotating cylinder which concerns on embodiment. 実施形態に係る回転円筒体付き風車の設置状態を示す図である。It is a figure which shows the installation state of the windmill with a rotating cylindrical body which concerns on embodiment. 従来の垂直軸風車の構成概略を示す図である。It is a figure which shows the structure outline of the conventional vertical axis windmill.

符号の説明Explanation of symbols

1………支持軸、2………回転体、3………ブレード、10………回転円筒体付き風車、12………支持軸、14………円筒体、16………ブレード、18………フランジ部、20………止具、22………ベアリング部、30………発電ユニット。

DESCRIPTION OF SYMBOLS 1 ......... Supporting shaft, 2 ......... Rotating body, 3 ......... Blade, 10 ......... Windmill with rotating cylindrical body, 12 ...... Supporting shaft, 14 ......... Cylinder, 16 ......... Blade, 18 ......... Flange part, 20 ......... Stopper, 22 ......... Bearing part, 30 ......... Power generation unit.

Claims (1)

支持軸に回転自在に装着した円筒体と、この円筒体に、半径方向に離間して取り付けられ、前記円筒体と一体に回転するブレードとを有し、前記円筒体の半径をrとしたときに、前記円筒体と前記ブレードとの距離を0.4r以上0.6r以下としたことを特徴とする回転円筒体付き風車。

A cylindrical body rotatably mounted on a support shaft, and a blade that is attached to the cylindrical body and spaced apart in the radial direction and rotates integrally with the cylindrical body, where r is the radius of the cylindrical body And a distance between the cylindrical body and the blade is 0.4 r or more and 0.6 r or less.

JP2004182316A 2004-06-21 2004-06-21 Windmill with rotary cylindrical body Pending JP2006002725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182316A JP2006002725A (en) 2004-06-21 2004-06-21 Windmill with rotary cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182316A JP2006002725A (en) 2004-06-21 2004-06-21 Windmill with rotary cylindrical body

Publications (1)

Publication Number Publication Date
JP2006002725A true JP2006002725A (en) 2006-01-05

Family

ID=35771318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182316A Pending JP2006002725A (en) 2004-06-21 2004-06-21 Windmill with rotary cylindrical body

Country Status (1)

Country Link
JP (1) JP2006002725A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106700A (en) * 2006-10-26 2008-05-08 Fueroo:Kk Wind power generating device
JP2010520414A (en) * 2007-03-06 2010-06-10 セント ルイス ユニバーシティ Hubless windmill
JP2013221494A (en) * 2012-04-14 2013-10-28 Kenichi Suzuki Straight blade vertical axis wind turbine generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106700A (en) * 2006-10-26 2008-05-08 Fueroo:Kk Wind power generating device
JP2010520414A (en) * 2007-03-06 2010-06-10 セント ルイス ユニバーシティ Hubless windmill
JP2013221494A (en) * 2012-04-14 2013-10-28 Kenichi Suzuki Straight blade vertical axis wind turbine generator

Similar Documents

Publication Publication Date Title
JP4041838B2 (en) Wind turbine and wind power generator for wind power generation
US7344353B2 (en) Helical wind turbine
US7218011B2 (en) Diffuser-augmented wind turbine
US7074011B1 (en) Wind power installation with two rotors in tandem
US4256435A (en) Mounting support blocks for pivotal rotor of wind turbine
WO2007021992A3 (en) Low cost wind turbine
US8137052B1 (en) Wind turbine generator
JP2006258083A (en) Startability improvement and countermeasure against strong wind for linear blade vertical shaft windmill
US8002526B2 (en) Rotor drum for multiple rotor wind turbine
WO2006123951A1 (en) A wind turbine
JP2010121518A (en) Vertical shaft magnus type wind turbine generator
JP4015175B1 (en) Wind power generator that electromagnetically uses the peripheral speed of the blade tip
JP2006152922A (en) Windmill
JP2004197643A (en) Vertical shaft type wind mill device
JP2006300030A (en) Windmill device and wind power generation device using the same
JP2003049761A (en) Support shaft and wind power generator
JP2008057350A (en) Wind power generator
JP2005090332A (en) Darrieus wind turbine
KR100935713B1 (en) Wind power generator
JP4387726B2 (en) Wind generator for all wind direction
JP2006002725A (en) Windmill with rotary cylindrical body
US20100295314A1 (en) Floating wind turbine
JP2008069691A (en) Windmill device for power generation and wind power generating device
KR100755737B1 (en) The wind power generator with multiple spiral blades
KR101337622B1 (en) Wind power generator