JP2008106610A - Evaporated fuel treatment device - Google Patents

Evaporated fuel treatment device Download PDF

Info

Publication number
JP2008106610A
JP2008106610A JP2006287107A JP2006287107A JP2008106610A JP 2008106610 A JP2008106610 A JP 2008106610A JP 2006287107 A JP2006287107 A JP 2006287107A JP 2006287107 A JP2006287107 A JP 2006287107A JP 2008106610 A JP2008106610 A JP 2008106610A
Authority
JP
Japan
Prior art keywords
activated carbon
fuel
honeycomb activated
port
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006287107A
Other languages
Japanese (ja)
Other versions
JP4897429B2 (en
Inventor
Takeshi Nakamura
中村  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Filter Systems Japan Corp
Original Assignee
Mahle Filter Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Filter Systems Japan Corp filed Critical Mahle Filter Systems Japan Corp
Priority to JP2006287107A priority Critical patent/JP4897429B2/en
Publication of JP2008106610A publication Critical patent/JP2008106610A/en
Application granted granted Critical
Publication of JP4897429B2 publication Critical patent/JP4897429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the deterioration of emission due to purge failure in the vicinity of the center of an adsorption layer. <P>SOLUTION: The evaporated fuel treatment device 1 has a first fuel adsorption part 2 which includes a plurality of adsorption layers and a second fuel adsorption part 3 which accommodates and holds a honeycomb activated carbon 11. The first fuel adsorption part 2 includes a charge port 7 and a purge port 8. The second fuel adsorption part 3 includes an atmospheric port 14 communicating to the atmosphere, and is equipped with a honeycomb activated carbon accommodation part 18 and an atmosphere introduction side end 13 having the atmospheric port 14. A baffle plate 38 (agitation means) for agitating air introduced in a honeycomb activated carbon accommodation part 18 is arranged in the atmosphere introduction side end 13. Thus, a flow velocity distribution in a cross-section direction of the honeycomb activated carbon 11 is substantially uniform at purge so that the honeycomb activated carbon 11 can be effectively purged even though a purge air amount is small. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車の燃料タンクから蒸発した燃料を吸着して、その燃料をエンジン稼働時に燃焼させる蒸発燃料処理装置に関する。   The present invention relates to an evaporated fuel processing apparatus that adsorbs fuel evaporated from a fuel tank of an automobile and burns the fuel when the engine is operating.

ガソリンを燃料とする自動車では、燃料タンク内の蒸発燃料が大気に放出されるのを抑制するために、蒸発燃料処理装置としてキャニスタが一般的に用いられている。   In an automobile using gasoline as fuel, a canister is generally used as an evaporative fuel processing device in order to suppress the evaporative fuel in the fuel tank from being released to the atmosphere.

キャニスタは、停車時等に燃料タンク内から発生する蒸発燃料を活性炭からなる吸着材に吸着させ、エンジン稼働時にキャニスタを通して吸気を行うことにより、キャニスタの大気ポートから導入した大気によってキャニスタ内をパージし、吸着した蒸発燃料を脱離させてエンジン内で燃焼させる仕組みとなっている。そして、このパージにより吸着材の吸着性能を復活させ、蒸発燃料を繰り返し良好に吸着することが可能となる。   The canister purges the interior of the canister with the air introduced from the canister air port by adsorbing the evaporated fuel generated from the fuel tank when the vehicle is stopped to the adsorbent made of activated carbon and sucking air through the canister when the engine is running. The adsorbed fuel vapor is desorbed and burned in the engine. Then, by this purging, the adsorption performance of the adsorbent can be restored, and the evaporated fuel can be adsorbed favorably repeatedly.

ところで、近年、環境規制が厳しくなってきており、キャニスタには性能向上が求められている。キャニスタの性能向上には、パージによる蒸発燃料の脱離効率を向上させることが有効である。脱離効率を向上させる手段としては、活性炭層の長さLと活性炭層の有効断面直径Dの比L/Dを大きくすることが知られている。   By the way, in recent years, environmental regulations have become stricter, and canisters are required to improve performance. In order to improve the performance of the canister, it is effective to improve the desorption efficiency of the evaporated fuel by purging. As means for improving the desorption efficiency, it is known to increase the ratio L / D between the length L of the activated carbon layer and the effective sectional diameter D of the activated carbon layer.

特に大気ポート側の活性炭層においては、上記L/Dの値を大きくすると共に、活性炭層の体積を小さくして単位体積当たりのパージ空気量(キャニスタのパージを行う空気の量)を多くすることで、この部分の脱離効率を向上させると共に、上流側(パージポート側及びチャージポート側)の活性炭層で補足しきれなかった蒸発燃料を効率良く補足することができることが知られている(特許文献1を参照)。   Especially in the activated carbon layer on the atmosphere port side, the value of L / D is increased and the volume of the activated carbon layer is decreased to increase the purge air amount per unit volume (the amount of air for purging the canister). Thus, it is known that the desorption efficiency of this portion can be improved and the evaporated fuel that cannot be captured by the activated carbon layer on the upstream side (purge port side and charge port side) can be efficiently captured (patent) Reference 1).

また、一方でキャニスタをパージするパージ空気の確保が困難になってきている。例えば、ハイブリッドエンジンの搭載車両においては、モータ駆動のときにはエンジンは駆動せず吸気が行われないため、この間にキャニスタのパージを行うのは非常に困難である。   On the other hand, it has become difficult to secure purge air for purging the canister. For example, in a vehicle equipped with a hybrid engine, when the motor is driven, the engine is not driven and intake is not performed. Therefore, it is very difficult to purge the canister during this time.

このように、パージ空気量が不足する場合には、大気ポート側の活性炭層において、上述のL/Dの値を大きくしてキャニスタ性能を向上させることで、パージ空気量の不足に対応することができるが、L/Dの値が大きくなることで通気抵抗が大きくなってしまうという問題がある。   Thus, when the purge air amount is insufficient, the above-mentioned L / D value is increased in the activated carbon layer on the atmosphere port side to improve the canister performance, thereby responding to the shortage of the purge air amount. However, there is a problem that the ventilation resistance increases as the value of L / D increases.

そこで、特許文献2には、大気ポート側に活性炭層を設ける代わりに、ハニカム活性炭を使用する技術が開示されている。このように、ハニカム活性炭を使用すれば、大気ポート側においてL/Dの値を大きくすることができると共に、通気抵抗の上昇を小さく納めることができる。
特開2004−100691号公報 特開平10−37812号公報
Therefore, Patent Document 2 discloses a technique that uses honeycomb activated carbon instead of providing an activated carbon layer on the atmosphere port side. As described above, when the honeycomb activated carbon is used, the L / D value can be increased on the atmosphere port side, and the increase in the ventilation resistance can be reduced.
JP 2004-1000069 A Japanese Patent Laid-Open No. 10-37812

ところで、ハニカム活性炭を用いたとしても通気抵抗はゼロではなく、所望のL/Dの値を確保した上で通気抵抗を下げるためには、ハニカム活性炭の有効断面直径Dを大きくする必要がある。しかしながら、ハニカム活性炭の有効断面直径Dが大きくなると、断面の中心付近は流れがよいが、断面の外周側ほど空気が流れにくくなる。つまり、この空気の流れの悪い部分でパージが不十分となり、蒸発燃料が残留してエミッションを悪化させてしまう虞がある。   By the way, even if honeycomb activated carbon is used, the ventilation resistance is not zero. In order to reduce the ventilation resistance while ensuring a desired L / D value, it is necessary to increase the effective cross-sectional diameter D of the honeycomb activated carbon. However, when the effective sectional diameter D of the honeycomb activated carbon is increased, the flow near the center of the cross section is good, but the air is less likely to flow toward the outer peripheral side of the cross section. That is, there is a possibility that the purge is insufficient at the portion where the air flow is bad, and the evaporated fuel remains and worsens the emission.

そこで、本発明の請求項1に記載の蒸発燃料処理装置は、内部に形成された第1流路に蒸発燃料の吸着・脱離を行う吸着材からなる吸着層が配置された第1燃料吸着部と、内部に形成された第2流路に蒸発燃料の吸着・脱離を行う吸着材からなる吸着層が配置された第2燃料吸着部と、を備え、上記第1燃料吸着部は、上記第1流路の一端側となる位置に、燃料タンクに接続されるチャージポートとエンジンの吸気系に接続されるパージポートとを有し、上記第2燃料吸着部は、上記第2流路の他端側となる位置に、大気に連通する大気ポートを有し、上記第1流路の他端側が上記第2流路の一端側に連続するように、上記第1燃料吸着部と上記第2燃料吸着部とが連結された蒸発燃料処理装置において、上記第2燃料吸着部は、吸着材としてのハニカム活性炭が収容保持されたハニカム活性炭収容部と、大気ポートを有する大気導入側端部と、を備え、上記大気導入側端部には、上記大気ポートを介して上記ハニカム活性炭収容部に導入される空気を攪拌する攪拌手段が配置されていることを特徴としている。これによって、パージの際に第2燃料吸着部に流入した空気は、攪拌手段により攪拌されてからハニカム活性炭に流れ込むため、ハニカム活性炭の断面の中心付近だけでなく、断面の外周側部分にも流れる。従って、大気ポートより流入した空気は、ハニカム活性炭の断面全体に流れる。   Accordingly, in the evaporated fuel processing apparatus according to claim 1 of the present invention, the first fuel adsorption in which the adsorption layer made of the adsorbent for adsorbing and desorbing the evaporated fuel is arranged in the first flow path formed inside. And a second fuel adsorbing portion in which an adsorbing layer made of an adsorbent that adsorbs and desorbs the evaporated fuel is disposed in a second flow path formed inside, the first fuel adsorbing portion, A charge port connected to the fuel tank and a purge port connected to the intake system of the engine are provided at a position on one end side of the first flow path, and the second fuel adsorbing portion is connected to the second flow path. The first fuel adsorbing portion and the first fuel adsorbing portion are arranged so that the other end side of the first flow path is continuous with one end side of the second flow path. In the evaporative fuel processing apparatus connected to the second fuel adsorbing unit, the second fuel adsorbing unit is an adsorbent. A honeycomb activated carbon housing portion in which the honeycomb activated carbon is housed and held, and an air introduction side end portion having an air port, and the air introduction side end portion is introduced into the honeycomb activated carbon housing portion via the air port. Stirring means for stirring the air is disposed. As a result, the air that has flowed into the second fuel adsorbing portion at the time of purging flows into the honeycomb activated carbon after being stirred by the stirring means, and therefore flows not only near the center of the cross section of the honeycomb activated carbon but also on the outer peripheral portion of the cross section . Therefore, the air flowing in from the atmospheric port flows through the entire cross section of the honeycomb activated carbon.

請求項2に記載の発明は、請求項1に記載の蒸発燃料処理装置において、上記攪拌手段は、上記大気ポートの大気導入口に対向するよう配置されたバッフルプレートであることを特徴としている。   According to a second aspect of the present invention, in the evaporative fuel processing apparatus according to the first aspect, the stirring means is a baffle plate disposed so as to face the air inlet of the air port.

これによって、大気導入口から流入した空気はバッフルプレートに衝突した後、大気導入側端部の外周側に向かって略90°向きを変える。つまりバッフルプレートにより、大気導入口から流入し直進しようとする空気の流れが攪拌される。   As a result, the air flowing in from the atmosphere introduction port collides with the baffle plate, and then changes the direction by approximately 90 ° toward the outer peripheral side of the atmosphere introduction side end. That is, the baffle plate stirs the air flow that flows from the air inlet and tries to go straight.

請求項3に記載の発明は、請求項1または2に記載の蒸発燃料処理装置において、上記第2燃料吸着部は、上記大気導入側端部の通路断面積が上記ハニカム活性炭収容部の通路断面積よりも大きくなるよう形成され、上記第2燃料吸着部の内側には、大気導入側端部とハニカム活性炭収容部との境界部分に段差が形成されていることを特徴としている。これにより、パージの際に導入されてバッフルプレートに衝突した空気は、流れの向きを大気導入側端部の外周側に変え、大気導入側端部の内周面に衝突し、下流側となる第2流路の一端側に向かって流れ、大気導入側端部とハニカム活性炭収容部との境界部分の段差にて、攪拌された空気中に含まれるダストが捕捉される。   According to a third aspect of the present invention, there is provided the evaporative fuel processing apparatus according to the first or second aspect, wherein the second fuel adsorbing portion has a passage cross-sectional area at the end portion on the atmosphere introduction side where the passage of the honeycomb activated carbon housing portion is cut off. It is formed so as to be larger than the area, and a step is formed inside the second fuel adsorbing portion at a boundary portion between the air introduction side end portion and the honeycomb activated carbon housing portion. Thereby, the air introduced at the time of purging and colliding with the baffle plate changes the flow direction to the outer peripheral side of the atmospheric introduction side end and collides with the inner peripheral surface of the atmospheric introduction side end to become the downstream side. Dust contained in the agitated air is captured at the step at the boundary between the air introduction side end and the honeycomb activated carbon housing part.

本発明によれば、パージの際に第2燃料吸着部に流入した空気が攪拌手段により攪拌され、ハニカム活性炭の断面方向の流速分布が略均一となるので、少ないパージ空気量であってもハニカム活性炭を効率的にパージすることができる。つまり、吸着層のなかで最も大気側に位置するハニカム活性炭は、少ないパージ空気量であっても、良好な吸着性能を得ることができる。そのため、ハニカム活性炭への蒸発燃料の残留によるエミッションの悪化を防止することができる。   According to the present invention, the air flowing into the second fuel adsorbing portion at the time of purging is stirred by the stirring means, and the flow velocity distribution in the cross-sectional direction of the honeycomb activated carbon becomes substantially uniform. Activated carbon can be efficiently purged. In other words, the honeycomb activated carbon located closest to the atmosphere in the adsorption layer can obtain good adsorption performance even with a small purge air amount. For this reason, it is possible to prevent the emission from deteriorating due to the residue of the evaporated fuel on the honeycomb activated carbon.

また、請求項2のように構成すれば、大気ポートから流入した空気がバッフルプレートで確実に略90°向きを変えられ、大気導入側端部の外周側に向けて流れ、流入空気が攪拌される。   According to the second aspect of the present invention, the air flowing in from the atmospheric port is surely changed in direction by about 90 ° by the baffle plate, flows toward the outer peripheral side of the atmospheric introduction side end, and the incoming air is stirred. The

そして、請求項3のように構成すれば、攪拌された空気がハニカム活性炭収容部内に流入する際に、大気導入側端部とハニカム活性炭収容部との境界部分の段差にて、攪拌された空気内のダストを捕捉することができる。   According to the third aspect of the present invention, when the agitated air flows into the honeycomb activated carbon accommodating portion, the agitated air is stepped at the boundary portion between the air introduction side end and the honeycomb activated carbon accommodating portion. Inside dust can be captured.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は蒸発燃料処理装置1の全体構成を示す説明図であり、図2は蒸発燃料処理装置1における第2燃料吸着部の説明図である。また、図3及び図4は後述する大気導入側端部13の説明図である。   FIG. 1 is an explanatory diagram showing the overall configuration of the evaporative fuel processing apparatus 1, and FIG. 2 is an explanatory diagram of a second fuel adsorption unit in the evaporative fuel processing apparatus 1. 3 and 4 are explanatory views of the air introduction side end 13 which will be described later.

図1に示すように、蒸発燃料処理装置1は、第1燃料吸着部2と、第1燃料吸着部2にホース4を介して接続された第2燃料吸着部3と、から大略構成されている。   As shown in FIG. 1, the evaporative fuel processing apparatus 1 is roughly configured by a first fuel adsorption unit 2 and a second fuel adsorption unit 3 connected to the first fuel adsorption unit 2 via a hose 4. Yes.

本実施形態においては、第1燃料吸着部2の第1ケーシング5と、第2燃料吸着部3の第2ケーシング6とが別体となっており、相対的に大きい第1燃料吸着部2の第1ケーシング5に対して第2燃料吸着部3の第2ケーシング6が外付けされている。   In the present embodiment, the first casing 5 of the first fuel adsorbing unit 2 and the second casing 6 of the second fuel adsorbing unit 3 are separated, and the relatively large first fuel adsorbing unit 2 A second casing 6 of the second fuel adsorbing portion 3 is externally attached to the first casing 5.

第1燃料吸着部2は、その内部に一本の流路である第1流路(図示せず)が形成され、この第1流路に蒸発燃料の吸着・脱離を行う複数の吸着層(図示せず)が配置されている。これらの吸着層は、活性炭等からなる吸着材によって構成されている。   The first fuel adsorbing portion 2 has a first flow path (not shown) that is a single flow path formed therein, and a plurality of adsorbed layers that adsorb and desorb evaporated fuel in the first flow path. (Not shown) is arranged. These adsorption layers are made of an adsorbent made of activated carbon or the like.

第1燃料吸着部2は、上記第1流路の一端側となる位置に、燃料タンク(図示せず)に接続されるチャージポート7とエンジンの吸気系に接続されるパージポート8とを有し、上記第1流路の他端側となる位置に、第2燃料吸着部3にホース4を介して接続される第1中間ポート9を有している。また、本実施形態においては、上記第1流路が第1ケーシング5内で折り返されており、第1燃料吸着部2のチャージポート7、パージポート8及び第1中間ポート9が、第1ケーシング5の一端側(図1における上方側)に設けられている。   The first fuel adsorbing section 2 has a charge port 7 connected to a fuel tank (not shown) and a purge port 8 connected to the intake system of the engine at a position on one end side of the first flow path. In addition, the first intermediate port 9 connected to the second fuel adsorbing portion 3 via the hose 4 is provided at a position on the other end side of the first flow path. In the present embodiment, the first flow path is folded back in the first casing 5, and the charge port 7, purge port 8, and first intermediate port 9 of the first fuel adsorbing unit 2 are connected to the first casing. 5 is provided on one end side (upper side in FIG. 1).

図2に示すように、第2燃料吸着部3は、その内部に一本の流路である第2流路10が形成され、この第2流路10に蒸発燃料の吸着・脱離を行う円柱形状のハニカム活性炭11が配置されている。また、第2燃料吸着部3は、第2流路10の一端側となる位置に、ホース4を介して第1燃料吸着部2の第1中間ポート9に接続される第2中間ポート12を有し、第2流路10の他端側となる大気導入側端部13に、大気に連通する大気ポート14を有している。   As shown in FIG. 2, the second fuel adsorbing unit 3 has a second flow path 10 that is a single flow path formed therein, and adsorbs and desorbs evaporated fuel in the second flow path 10. A columnar honeycomb activated carbon 11 is disposed. The second fuel adsorbing unit 3 has a second intermediate port 12 connected to the first intermediate port 9 of the first fuel adsorbing unit 2 through the hose 4 at a position on one end side of the second flow path 10. And an atmosphere port 14 communicating with the atmosphere at the atmosphere introduction side end 13 which is the other end side of the second flow path 10.

第2燃料吸着部3の第2ケーシング6は、肉厚が略一定で略段付き円筒形状に形成された主ケース部材15と、この主ケース部材15の他端側、すなわち第2ケーシング6の他端側(図1及び図2における上方側)の開口に組み付けられる略有底円筒状のカバー部材16と、から構成され、このカバー部材16に大気ポート14が形成されている。   The second casing 6 of the second fuel adsorbing portion 3 includes a main case member 15 having a substantially constant thickness and a substantially stepped cylindrical shape, and the other end side of the main case member 15, that is, the second casing 6. A substantially bottomed cylindrical cover member 16 assembled to the opening on the other end side (upper side in FIGS. 1 and 2), and an atmospheric port 14 is formed in the cover member 16.

主ケース部材15には、一端側(図1、図2における下方側)から順に、円筒状の第2中間ポート12、円筒状の第2中間ポート基部17、ハニカム活性炭11が収容保持される円筒状のハニカム活性炭収容部18、カバー部材16と共に大気導入側端部13を構成する円筒状の主ケース部材他端部19が形成されている。また、主ケース部材15は、第2中間ポート12、第2中間ポート基部17、ハニカム活性炭収容部18及び主ケース部材他端部19のそれぞれの軸心が互いに一致するよう形成されている。また、第2中間ポート基部17は第2中間ポート12よりも大径に形成され、ハニカム活性炭収容部18は第2中間ポート基部17よりも大径に形成され、主ケース部材他端部19はハニカム活性炭収容部18よりも大径に形成されている。   The main case member 15 has a cylindrical second intermediate port 12, a cylindrical second intermediate port base 17, and a cylinder in which the honeycomb activated carbon 11 is accommodated and held in order from one end side (the lower side in FIGS. 1 and 2). A cylindrical main case member other end portion 19 that forms the atmosphere introduction side end portion 13 together with the honeycomb activated carbon housing portion 18 and the cover member 16 is formed. The main case member 15 is formed so that the respective axes of the second intermediate port 12, the second intermediate port base portion 17, the honeycomb activated carbon housing portion 18, and the main case member other end portion 19 coincide with each other. The second intermediate port base portion 17 is formed to have a larger diameter than the second intermediate port 12, the honeycomb activated carbon housing portion 18 is formed to have a larger diameter than the second intermediate port base portion 17, and the main case member other end portion 19 is The diameter is larger than that of the honeycomb activated carbon accommodating portion 18.

主ケース部材他端部19には、図1〜図4に示すように、溝20が形成されていると共に、この溝20よりも主ケース部材15の一端側、すなわち第2ケーシング6の一端側(図1及び図2における下方側)の内周面にはビード21が突出形成されている。   As shown in FIGS. 1 to 4, a groove 20 is formed in the other end portion 19 of the main case member, and one end side of the main case member 15 from the groove 20, that is, one end side of the second casing 6. A bead 21 protrudes from the inner peripheral surface (the lower side in FIGS. 1 and 2).

ハニカム活性炭収容部18は、その内径がハニカム活性炭11の外径よりも大径となっている。一方、ハニカム活性炭11には、矩形板状の不織布からなる第1スクリーン部材22が巻き付けられていると共に、ハニカム活性炭11の一端部11a(図1及び図2における下方側の端部)には、筒状のシール部材23が取り付けられている。このシール部材23は、その内周面がハニカム活性炭11の一端部11aの端面と係合するよう階段状に形成され、ハニカム活性炭収容部18の内周面に密接するその外周面がヒダ状に形成されている。   The inner diameter of the honeycomb activated carbon accommodating portion 18 is larger than the outer diameter of the honeycomb activated carbon 11. On the other hand, the honeycomb activated carbon 11 is wound with a first screen member 22 made of a rectangular plate-shaped nonwoven fabric, and at one end 11a of the honeycomb activated carbon 11 (the lower end in FIGS. 1 and 2), A cylindrical seal member 23 is attached. The seal member 23 is formed in a stepped shape so that the inner peripheral surface thereof engages with the end surface of the one end portion 11a of the honeycomb activated carbon 11, and the outer peripheral surface that is in close contact with the inner peripheral surface of the honeycomb activated carbon accommodating portion 18 has a pleated shape. Is formed.

第1スクリーン部材22は、ハニカム活性炭収容部18の内周面に密着して、ハニカム活性炭11のハニカム活性炭収容部18内での半径方向の動きを規制すると共に、ハニカム活性炭11に対する外部からの衝撃の緩衝材として機能している。   The first screen member 22 is in close contact with the inner peripheral surface of the honeycomb activated carbon housing portion 18 to regulate the radial movement of the honeycomb activated carbon 11 within the honeycomb activated carbon housing portion 18 and to impact the honeycomb activated carbon 11 from the outside. It functions as a cushioning material.

シール部材23は、ハニカム活性炭11の外周面とハニカム活性炭収容部18の内周面との間をシールし、ハニカム活性炭11を位置決め固定すると共に、その一端部23a(図1及び図2における下方側の端部)がハニカム活性炭収容部18と第2中間ポート基部17との境界部分に形成された段差24に当接している。また、このシール部材23は、後述する第2スクリーン部材25と伴にハニカム活性炭11のハニカム活性炭収容部18軸方向(図1及び図2における上下方向)の動きを規制している。   The seal member 23 seals between the outer peripheral surface of the honeycomb activated carbon 11 and the inner peripheral surface of the honeycomb activated carbon accommodating portion 18 to position and fix the honeycomb activated carbon 11, and one end portion 23 a (the lower side in FIGS. 1 and 2). Is in contact with a step 24 formed at a boundary portion between the honeycomb activated carbon accommodating portion 18 and the second intermediate port base portion 17. The seal member 23 regulates the movement of the honeycomb activated carbon 11 in the axial direction (vertical direction in FIGS. 1 and 2) of the honeycomb activated carbon 11 together with the second screen member 25 described later.

ウレタンからなる第2スクリーン部材25は、円板状を呈し、ハニカム活性炭収容部18の他端側(図1及び図2における上方側)の開口に、主ケース部材15軸方向に若干圧縮された状態で組み付けられている。また、この第2スクリーン部材25の外周縁はハニカム活性炭収容部18の内周面に密着している。   The second screen member 25 made of urethane has a disk shape, and is slightly compressed in the axial direction of the main case member 15 into the opening on the other end side (the upper side in FIGS. 1 and 2) of the honeycomb activated carbon housing portion 18. It is assembled in a state. The outer peripheral edge of the second screen member 25 is in close contact with the inner peripheral surface of the honeycomb activated carbon housing portion 18.

ハニカム活性炭収容部18と主ケース部材他端部19との境界部分には、主ケース部材他端部19(ハニカム活性炭収容部18)の周方向の全周に亙って段差26が形成されている。   At the boundary portion between the honeycomb activated carbon housing portion 18 and the main case member other end portion 19, a step 26 is formed over the entire circumference in the circumferential direction of the main case member other end portion 19 (honeycomb activated carbon housing portion 18). Yes.

また、大気導入側端部13の内側には、段差26の主ケース部材15の他端側(図1及び図2における上方側)に、主ケース部材他端部19の周方向の全周に亙って段差部42が形成されている。この段差部42については後述する。   Further, on the inner side of the air introduction side end portion 13, on the other end side (upper side in FIGS. 1 and 2) of the main case member 15 of the step 26, on the entire circumference in the circumferential direction of the main case member other end portion 19. As a result, a step 42 is formed. The step 42 will be described later.

押さえ部材27は、図2〜図4に示すように、段差26に接する円環状の基部28と、基部28の中央から放射状に延びて基部28の内周面に接続されたリブ29と、基部28の外周縁から立ち上がった円筒状の外周壁部30と、を有している。   As shown in FIGS. 2 to 4, the holding member 27 includes an annular base 28 that contacts the step 26, a rib 29 that extends radially from the center of the base 28 and is connected to the inner peripheral surface of the base 28, and a base And a cylindrical outer peripheral wall portion 30 rising from the outer peripheral edge of 28.

そして、外周壁部30の先端は、主ケース部材他端部19の内周面の全周に形成されたビード21に突き当てられ位置が固定されている。ここで、第2スクリーン部材25は、若干圧縮された状態でハニカム活性炭収容部18の他端側(図1及び図2における上方側)の開口に組み付けられているため、押さえ部材27が主ケース部材15の他端側(図1及び図2における上方側)に付勢されることにより、主ケース部材15に固定されることになる。   And the front-end | tip of the outer peripheral wall part 30 is abutted by the bead 21 formed in the perimeter of the inner peripheral surface of the main case member other end part 19, and the position is being fixed. Here, since the second screen member 25 is assembled in the opening on the other end side (the upper side in FIGS. 1 and 2) of the honeycomb activated carbon accommodating portion 18 in a slightly compressed state, the pressing member 27 is the main case. The member 15 is fixed to the main case member 15 by being biased toward the other end side (the upper side in FIGS. 1 and 2).

カバー部材16は、図2〜図4に示すように、第2燃料吸着部3の他端面となる底壁31と、基端側がこの底壁31に接続された円筒状の周壁32と、周壁32の先端からカバー部材16軸方向に沿って突出する4本の突出片33と、を有している。   As shown in FIGS. 2 to 4, the cover member 16 includes a bottom wall 31 serving as the other end surface of the second fuel adsorbing portion 3, a cylindrical peripheral wall 32 having a base end connected to the bottom wall 31, and a peripheral wall And four projecting pieces 33 projecting along the axial direction of the cover member 16 from the tip of 32.

底壁31の中央には、ハニカム活性炭11の他端部11bの通路断面積よりも小さい円形の大気導入口34が形成されている。この大気導入口34には、図2における下方側に向かって延びる円筒状の大気導入口周壁35が接続されている。そして、この大気導入口周壁35と大気導入口34とによって大気ポート14が構成されている。   In the center of the bottom wall 31, a circular atmospheric inlet 34 smaller than the passage cross-sectional area of the other end portion 11 b of the honeycomb activated carbon 11 is formed. A cylindrical air inlet peripheral wall 35 extending toward the lower side in FIG. 2 is connected to the air inlet 34. The atmosphere port 14 is constituted by the atmosphere introduction port peripheral wall 35 and the atmosphere introduction port 34.

大気導入口周壁35の先端35aには、図2における下方側に向かって延びる細長い4本の延長壁36が形成されている。これら4本の延長壁36は、大気導入口周壁35の円周方向に沿って、それぞれが所定間隔を空けて離間しており、隣接する延長壁36,36間には隙間37が形成されている。そして、これら4本の延長壁36の先端には、大気導入口34と略同等の直径の円板状のバッフルプレート38が底壁31と略平行に接続されている。このバッフルプレート38は、攪拌手段に相当するものであって、大気導入口34に対向して大気導入口34から導入された空気の流れを遮るように配置されている。大気導入口34から導入された空気は、バッフルプレート38に衝突することで流れの向きが略90°変えられ、隙間37を通ってカバー部材16の内側、すなわち大気導入側端部13の内側に導入される。   At the front end 35a of the atmosphere introduction port peripheral wall 35, four elongated extension walls 36 extending downward in FIG. 2 are formed. These four extension walls 36 are spaced apart from each other by a predetermined interval along the circumferential direction of the atmosphere introduction peripheral wall 35, and a gap 37 is formed between the adjacent extension walls 36 and 36. Yes. A disc-shaped baffle plate 38 having a diameter substantially the same as that of the air introduction port 34 is connected to the tips of these four extension walls 36 in substantially parallel to the bottom wall 31. The baffle plate 38 corresponds to a stirring means, and is arranged so as to oppose the air inlet 34 and block the flow of air introduced from the air inlet 34. The air introduced from the atmosphere introduction port 34 changes the flow direction by approximately 90 ° by colliding with the baffle plate 38, passes through the gap 37 and enters the inside of the cover member 16, that is, the inside of the atmosphere introduction side end portion 13. be introduced.

周壁32には、その外周面の円周上の4箇所に、外側に向かって突出する爪39と、円周状の全周に溝40とが形成されている。爪39は、主ケース部材他端部19の外周面に形成された4箇所の溝部20にスナップフィットで嵌合するものであって、これによりカバー部材16が主ケース部材他端部19に固定されている。また、溝40には、Oリング41が配置され、カバー部材16と主ケース部材他端部19との間がシールされている。   The peripheral wall 32 is formed with claws 39 projecting outward at four locations on the circumference of the outer peripheral surface and grooves 40 on the entire circumference. The claw 39 is fitted into the four groove portions 20 formed on the outer peripheral surface of the other end portion 19 of the main case member by snap fitting, and thereby the cover member 16 is fixed to the other end portion 19 of the main case member. Has been. Further, an O-ring 41 is disposed in the groove 40, and the space between the cover member 16 and the main case member other end portion 19 is sealed.

そして、突出片33は、その先端が押さえ部材27の基部28の近傍に位置するように設定されており、基部28との間には若干の隙間が設定されている。そのため、押さえ部材27は、外周壁部30の先端がビード21から外れた場合でも、これら突出片33により移動が規制されるため、大きく傾くことがないようになっている。   The protruding piece 33 is set so that the tip thereof is positioned in the vicinity of the base portion 28 of the pressing member 27, and a slight gap is set between the protruding piece 33 and the base portion 28. Therefore, even when the front end of the outer peripheral wall portion 30 is disengaged from the bead 21, the pressing member 27 is not inclined greatly because the movement is restricted by the protruding pieces 33.

段差部42は、大気導入側端部13の内側のうち、ハニカム活性炭収容部18の内周面よりも外周側に位置する略ドーナツ状の空間から形成されている。換言すれば、段差部42は、カバー部材16の突出片33の外周面33aと主ケース部材他端部19の内周面19aとに挟まれたドーナツ状の空間から形成されている。大気ポート14から流入した空気は、バッフルプレート38により略90°向きを変えられ、大気導入側端部13の内周側に攪拌されながら流入すると、隣接する突出片33,33間に形成された隙間43を通って段差部42に至り、段差部42及び段差26にて空気中に含まれるダストが捕捉される。   The step portion 42 is formed from a substantially donut-shaped space located on the outer peripheral side of the inner peripheral surface of the honeycomb activated carbon housing portion 18 in the inside of the atmosphere introduction side end portion 13. In other words, the step portion 42 is formed from a donut-shaped space sandwiched between the outer peripheral surface 33 a of the protruding piece 33 of the cover member 16 and the inner peripheral surface 19 a of the other end portion 19 of the main case member. When the air flowing in from the atmospheric port 14 is changed in direction by approximately 90 ° by the baffle plate 38 and flows into the inner peripheral side of the atmospheric introduction side end portion 13 while being stirred, it is formed between the adjacent protruding pieces 33 and 33. Through the gap 43, the stepped portion 42 is reached, and the dust contained in the air is captured by the stepped portion 42 and the stepped portion 26.

段差部42においては、主に、突出片33の外周面33aと主ケース部材他端部19の内周面19aとに挟まれた部分で空気中に含まれるダストが捕捉される。また、特に、第2燃料吸着部3の軸心が水平に設置される場合には、ドーナツ状の空間である段差部42のうち、底面となる領域でダストを捕捉することができる。この場合には、ダストの捕捉を長期に亘り行うことができる。   In the step portion 42, dust contained in the air is captured mainly at a portion sandwiched between the outer peripheral surface 33 a of the protruding piece 33 and the inner peripheral surface 19 a of the main case member other end portion 19. In particular, when the axis of the second fuel adsorbing portion 3 is installed horizontally, dust can be captured in a region serving as a bottom surface of the stepped portion 42 that is a donut-shaped space. In this case, dust can be captured for a long time.

尚、本実施形態においては、大気導入口35及びバッフルプレート38の直径が、ハニカム活性炭11の他端部11bの断面直径の略半分程度に設定されている。また、カバー部材16の軸方向に沿った大気導入口34からバッフルプレート38までの距離は約20mm、カバー部材16の軸方向に沿ったバッフルプレート38から押さえ部材27までの距離が約40mmに設定されている。   In the present embodiment, the diameters of the air introduction port 35 and the baffle plate 38 are set to about half of the cross-sectional diameter of the other end portion 11 b of the honeycomb activated carbon 11. The distance from the air inlet 34 to the baffle plate 38 along the axial direction of the cover member 16 is set to about 20 mm, and the distance from the baffle plate 38 to the holding member 27 along the axial direction of the cover member 16 is set to about 40 mm. Has been.

以上のように構成された蒸発燃料処理装置1においては、停車時等に、燃料タンクから発生する蒸発燃料がチャージポート7を介して第1燃料吸着部2へ導入され、第1燃料吸着部2内の複数の活性炭層と、第2燃料吸着部3内のハニカム活性炭11に吸着される。蒸発燃料は、主に炭化水素化物(以下、HCと記す)ガスと、空気の混合気からなり、HCは、第1燃料吸着部2内の複数の活性炭層と、第2燃料吸着部3のハニカム活性炭11に吸着され、空気は、第1燃料吸着部2内の複数の活性炭層と、第2燃料吸着部3のハニカム活性炭11とを通過して大気中に放出される。   In the evaporative fuel processing apparatus 1 configured as described above, evaporative fuel generated from the fuel tank is introduced into the first fuel adsorbing unit 2 via the charge port 7 when the vehicle is stopped, and the first fuel adsorbing unit 2 The plurality of activated carbon layers and the honeycomb activated carbon 11 in the second fuel adsorption unit 3 are adsorbed. The evaporative fuel is mainly composed of a mixture of a hydrocarbon (hereinafter referred to as HC) gas and air. The HC is composed of a plurality of activated carbon layers in the first fuel adsorbing unit 2 and the second fuel adsorbing unit 3. Adsorbed by the honeycomb activated carbon 11, the air passes through the plurality of activated carbon layers in the first fuel adsorption unit 2 and the honeycomb activated carbon 11 in the second fuel adsorption unit 3 and is released into the atmosphere.

一方、エンジン稼働時には、パージポート8にエンジンの吸入負圧が作用することになり、大気が大気ポート14から第2燃料吸着部3内に流入し、ハニカム活性炭11、第1燃料吸着部2内の複数の活性炭層を順次通過してエンジン内に吸入される。この際、ハニカム活性炭11及び第1燃料吸着部2内の複数の活性炭層に吸着されているHCはパージされる。HCの脱離は、ハニカム活性炭11から第1燃料吸着部2内の活性炭層へと移動し、こうして脱離したHCはパージポート8を通過してエンジンの吸気系に導入され、エンジン内において燃焼に利用される。第1燃料吸着部2内の複数の活性炭層及び、第2燃料吸着部3内のハニカム活性炭11の吸着能力はこのようなパージによって再生される。   On the other hand, when the engine is in operation, the negative suction pressure of the engine acts on the purge port 8, and the atmosphere flows into the second fuel adsorbing unit 3 from the atmospheric port 14, and enters the honeycomb activated carbon 11 and the first fuel adsorbing unit 2. A plurality of activated carbon layers are sequentially passed through and sucked into the engine. At this time, the HC adsorbed by the activated carbon 11 in the honeycomb activated carbon 11 and the first fuel adsorbing portion 2 is purged. The desorption of HC moves from the honeycomb activated carbon 11 to the activated carbon layer in the first fuel adsorbing portion 2, and the desorbed HC passes through the purge port 8 and is introduced into the intake system of the engine and burns in the engine. Used for The adsorption capability of the activated carbon layers in the first fuel adsorption unit 2 and the honeycomb activated carbon 11 in the second fuel adsorption unit 3 is regenerated by such purging.

そして、このようなパージの際に、大気導入口34から導入された空気は、バッフルプレート38に衝突して流れの向きを大気導入側端部13の外周側に略90°向きを変え、大気導入側端部13の内周面に衝突してからハニカム活性炭収容部18へ向かって流れていく。すなわち、大気導入口34から第2燃料吸着部3内に流れ込む空気は、バッフルプレート38に衝突することにより攪拌される。そのため、大気導入口34から第2燃料吸着部3に導入された空気は、ハニカム活性炭38の断面の中心付近だけでなく、断面の外周側部分にも流れる。従って、パージの際に第2燃料吸着部3に流入した空気のハニカム活性炭11の断面方向の流速分布が略均一となるので、少ないパージ空気量であっても、ハニカム活性炭11を効率的にパージすることが可能となる。つまり、大気側に位置するハニカム活性炭11は、少ないパージ空気量であっても、良好な吸着性能を得ることができる。そのため、ハニカム活性炭11へのHCの残留によるエミッションの悪化を防止することができる。   During such a purge, the air introduced from the atmosphere introduction port 34 collides with the baffle plate 38 and changes the direction of the flow to the outer peripheral side of the atmosphere introduction side end portion 13 to change the direction to approximately 90 °. After colliding with the inner peripheral surface of the introduction side end portion 13, it flows toward the honeycomb activated carbon accommodating portion 18. That is, the air flowing into the second fuel adsorbing unit 3 from the atmosphere introduction port 34 is agitated by colliding with the baffle plate 38. Therefore, the air introduced into the second fuel adsorbing portion 3 from the atmosphere introduction port 34 flows not only near the center of the cross section of the honeycomb activated carbon 38 but also on the outer peripheral side portion of the cross section. Accordingly, since the flow velocity distribution in the cross-sectional direction of the honeycomb activated carbon 11 of the air flowing into the second fuel adsorbing portion 3 at the time of purging becomes substantially uniform, the honeycomb activated carbon 11 is efficiently purged even with a small purge air amount. It becomes possible to do. That is, the honeycomb activated carbon 11 located on the atmosphere side can obtain good adsorption performance even with a small purge air amount. For this reason, it is possible to prevent the emission from deteriorating due to HC remaining in the honeycomb activated carbon 11.

また、パージの際に、バッフルプレート38に衝突して大気導入側端部13の内周側に流入した空気は大気導入側端部13の外周側を指向しているので、隣接する突出片33,33間に形成された隙間43を通って段差部42に到達し、主ケース部材他端部19の内周面19aに衝突する。そのため、ドーナツ状の空間である段差部42においては、主として突出片33の外周面33aと主ケース部材他端部19の内周面19aとに挟まれた部分で空気中に含まれるダストが捕捉することができる。   Further, when purging, the air that collides with the baffle plate 38 and flows into the inner peripheral side of the atmospheric introduction side end 13 is directed to the outer peripheral side of the atmospheric introduction side end 13. , 33 reaches the stepped portion 42 through the gap 43 formed between them and collides with the inner peripheral surface 19a of the other end portion 19 of the main case member. Therefore, in the step portion 42 that is a donut-shaped space, dust contained in the air is captured mainly at a portion sandwiched between the outer peripheral surface 33a of the protruding piece 33 and the inner peripheral surface 19a of the other end portion 19 of the main case member. can do.

そして、段差26においても空気中に含まれるダストを捕捉することができる。   The dust contained in the air can also be captured at the step 26.

尚、上述した実施形態においては、バッフルプレート38を攪拌手段としているが、攪拌手段はバッフルプレート38に限定されるものではなく、例えば、主ケース部材他端部19の内径と略同じ内径の円形板部材に多数の貫通孔を開けた円形多孔板を攪拌手段として用いることも可能である。上述した実施形態の蒸発燃料処理装置1に上記円形多孔板を適用する場合には、該円形多孔板から押さえ部材27までのカバー部材16の軸方向に沿った距離を約20mm程度に設定することで、攪拌手段として上述のバッフルプレート38を用いる場合と同等の作用効果を得ることができる。   In the above-described embodiment, the baffle plate 38 is used as the stirring means. However, the stirring means is not limited to the baffle plate 38 and, for example, a circular shape having an inner diameter substantially the same as the inner diameter of the other end portion 19 of the main case member. It is also possible to use a circular perforated plate having many through holes in the plate member as the stirring means. When the circular perforated plate is applied to the fuel vapor processing apparatus 1 of the above-described embodiment, the distance along the axial direction of the cover member 16 from the circular perforated plate to the pressing member 27 is set to about 20 mm. Thus, it is possible to obtain the same operational effects as when the above-described baffle plate 38 is used as the stirring means.

本発明に係る蒸発燃料処理装置の全体構成を示す説明図。Explanatory drawing which shows the whole structure of the evaporative fuel processing apparatus which concerns on this invention. 本発明に係る蒸発燃料処理装置の第2燃料吸着部の説明図。Explanatory drawing of the 2nd fuel adsorption | suction part of the evaporative fuel processing apparatus which concerns on this invention. 本発明に係る蒸発燃料処理装置の第2燃料吸着部の説明図。Explanatory drawing of the 2nd fuel adsorption | suction part of the evaporative fuel processing apparatus which concerns on this invention. 本発明に係る蒸発燃料処理装置の第2燃料吸着部の説明図。Explanatory drawing of the 2nd fuel adsorption | suction part of the evaporative fuel processing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1…蒸発燃料処理装置
2…第1燃料吸着部
3…第2燃料吸着部
11…ハニカム活性炭
13…大気導入側端部
14…大気ポート
18…ハニカム活性炭収容部
38…バッフルプレート(攪拌手段)
DESCRIPTION OF SYMBOLS 1 ... Evaporative fuel processing apparatus 2 ... 1st fuel adsorption | suction part 3 ... 2nd fuel adsorption | suction part 11 ... Honeycomb activated carbon 13 ... Atmosphere introduction side edge part 14 ... Atmospheric port 18 ... Honeycomb activated carbon accommodating part 38 ... Baffle plate (stirring means)

Claims (3)

内部に形成された第1流路に蒸発燃料の吸着・脱離を行う吸着材からなる吸着層が配置された第1燃料吸着部と、
内部に形成された第2流路に蒸発燃料の吸着・脱離を行う吸着材からなる吸着層が配置された第2燃料吸着部と、を備え、
上記第1燃料吸着部は、上記第1流路の一端側となる位置に、燃料タンクに接続されるチャージポートとエンジンの吸気系に接続されるパージポートとを有し、 上記第2燃料吸着部は、上記第2流路の他端側となる位置に、大気に連通する大気ポートを有し、
上記第1流路の他端側が上記第2流路の一端側に連続するように、上記第1燃料吸着部と上記第2燃料吸着部とが連結された蒸発燃料処理装置において、
上記第2燃料吸着部は、吸着材としてのハニカム活性炭が収容保持されたハニカム活性炭収容部と、大気ポートを有する大気導入側端部と、を備え、
上記大気導入側端部には、上記大気ポートを介して上記ハニカム活性炭収容部に導入される空気を攪拌する攪拌手段が配置されていることを特徴とする蒸発燃料処理装置。
A first fuel adsorbing portion in which an adsorbing layer made of an adsorbent that adsorbs and desorbs evaporated fuel is disposed in a first flow path formed inside;
A second fuel adsorbing portion in which an adsorbing layer made of an adsorbent that adsorbs and desorbs evaporated fuel is disposed in a second flow path formed inside,
The first fuel adsorbing portion has a charge port connected to a fuel tank and a purge port connected to an intake system of the engine at a position on one end side of the first flow path. The part has an atmospheric port communicating with the atmosphere at a position on the other end side of the second flow path,
In the evaporated fuel processing apparatus in which the first fuel adsorbing unit and the second fuel adsorbing unit are connected such that the other end side of the first channel is continuous with one end side of the second channel.
The second fuel adsorbing portion includes a honeycomb activated carbon accommodating portion in which honeycomb activated carbon as an adsorbent is accommodated and an atmosphere introduction side end portion having an atmosphere port,
An evaporative fuel processing apparatus, wherein an agitation means for agitating air introduced into the honeycomb activated carbon housing part via the atmosphere port is disposed at the atmosphere introduction side end.
上記攪拌手段は、上記大気ポートの大気導入口に対向するよう配置されたバッフルプレートであることを特徴とする請求項1に記載の蒸発燃料処理装置。   2. The evaporative fuel processing apparatus according to claim 1, wherein the stirring means is a baffle plate disposed so as to face the atmosphere inlet of the atmosphere port. 上記第2燃料吸着部は、上記大気導入側端部の通路断面積が上記ハニカム活性炭収容部の通路断面積よりも大きくなるよう形成され、上記第2燃料吸着部の内側には、大気導入側端部とハニカム活性炭収容部との境界部分に段差が形成されていることを特徴とする請求項2に記載の蒸発燃料処理装置。   The second fuel adsorbing portion is formed so that a passage cross-sectional area of the end portion on the air introduction side is larger than a passage cross-sectional area of the honeycomb activated carbon housing portion, and the air introduction side is disposed inside the second fuel adsorbing portion. The evaporative fuel processing device according to claim 2, wherein a step is formed at a boundary portion between the end portion and the honeycomb activated carbon housing portion.
JP2006287107A 2006-10-23 2006-10-23 Evaporative fuel processing equipment Active JP4897429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287107A JP4897429B2 (en) 2006-10-23 2006-10-23 Evaporative fuel processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287107A JP4897429B2 (en) 2006-10-23 2006-10-23 Evaporative fuel processing equipment

Publications (2)

Publication Number Publication Date
JP2008106610A true JP2008106610A (en) 2008-05-08
JP4897429B2 JP4897429B2 (en) 2012-03-14

Family

ID=39440197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287107A Active JP4897429B2 (en) 2006-10-23 2006-10-23 Evaporative fuel processing equipment

Country Status (1)

Country Link
JP (1) JP4897429B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157056A (en) * 2006-12-21 2008-07-10 Nissan Motor Co Ltd Canister structure
JP2010144549A (en) * 2008-12-17 2010-07-01 Mahle Filter Systems Japan Corp Evaporated fuel treatment device
US9097218B2 (en) 2012-08-08 2015-08-04 Mahle Filter Systems Japan Corporation Canister
CN106948973A (en) * 2015-12-17 2017-07-14 株式会社马勒滤清系统 Filtering tank
CN113738543A (en) * 2021-08-27 2021-12-03 廊坊华安汽车装备有限公司 Air filter
US11326562B2 (en) 2019-09-25 2022-05-10 Mahle Filter Systems Japan Corporation Fuel adsorption apparatus and evaporated fuel processing apparatus using fuel adsorption apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146855A (en) * 1982-01-05 1983-09-01 インタナシヨナル・インステイテユ−ト・オヴ・セリユラ・アンド・モレキユラ・パスオロジ Method for testing immune
JPH1037812A (en) * 1996-07-23 1998-02-13 Kuraray Chem Corp Fuel evaporation preventive device
JP2004060584A (en) * 2002-07-31 2004-02-26 Mahle Tennex Corp Evaporated fuel treating device
JP2004100691A (en) * 2002-07-16 2004-04-02 Mahle Tennex Corp Evaporation fuel processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146855A (en) * 1982-01-05 1983-09-01 インタナシヨナル・インステイテユ−ト・オヴ・セリユラ・アンド・モレキユラ・パスオロジ Method for testing immune
JPH1037812A (en) * 1996-07-23 1998-02-13 Kuraray Chem Corp Fuel evaporation preventive device
JP2004100691A (en) * 2002-07-16 2004-04-02 Mahle Tennex Corp Evaporation fuel processing device
JP2004060584A (en) * 2002-07-31 2004-02-26 Mahle Tennex Corp Evaporated fuel treating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157056A (en) * 2006-12-21 2008-07-10 Nissan Motor Co Ltd Canister structure
JP4737069B2 (en) * 2006-12-21 2011-07-27 日産自動車株式会社 Canister structure
JP2010144549A (en) * 2008-12-17 2010-07-01 Mahle Filter Systems Japan Corp Evaporated fuel treatment device
US9097218B2 (en) 2012-08-08 2015-08-04 Mahle Filter Systems Japan Corporation Canister
CN106948973A (en) * 2015-12-17 2017-07-14 株式会社马勒滤清系统 Filtering tank
US11326562B2 (en) 2019-09-25 2022-05-10 Mahle Filter Systems Japan Corporation Fuel adsorption apparatus and evaporated fuel processing apparatus using fuel adsorption apparatus
CN113738543A (en) * 2021-08-27 2021-12-03 廊坊华安汽车装备有限公司 Air filter
CN113738543B (en) * 2021-08-27 2022-07-12 廊坊华安汽车装备有限公司 Air filter

Also Published As

Publication number Publication date
JP4897429B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
US7320314B2 (en) General-purpose engine fuel tank fuel vapor treatment system
US7097697B2 (en) Fuel vapor treatment device
JP4897429B2 (en) Evaporative fuel processing equipment
JP5220631B2 (en) Evaporative fuel processing equipment
JP5940932B2 (en) Canister
JP2009250059A (en) Canister
JP2007023786A (en) Canister
US7455054B2 (en) Canister with fuel gas reducing device
JPH10325369A (en) Canistor
CA2781227C (en) Fuel vapor processing apparatus
JP5816564B2 (en) Evaporative fuel processing equipment
US20140352541A1 (en) Canister
WO2005023573A2 (en) Evaporative emissions canister with incorporated liquid trap
JP7027271B2 (en) Evaporative fuel processing equipment
JP2008202604A (en) Evaporative fuel handling device
US20210025354A1 (en) Evaporated Fuel Processing Device
JP2010144549A (en) Evaporated fuel treatment device
JP7257301B2 (en) Fuel adsorption device and evaporated fuel processing device using the same
JP7328305B2 (en) canister
JP2009203838A (en) Evaporated fuel treatment device
WO2017212580A1 (en) Canister
JP7473874B2 (en) Vehicle canister device
JP2006348847A (en) Evaporated fuel treatment device
JP2018127951A (en) Canister and evaporative fuel processing device
JP2017089499A (en) Canister

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4897429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250