JP2008104461A - Multicolor fluorescent protein including fluorescent color of ultra-long wavelength - Google Patents

Multicolor fluorescent protein including fluorescent color of ultra-long wavelength Download PDF

Info

Publication number
JP2008104461A
JP2008104461A JP2007258158A JP2007258158A JP2008104461A JP 2008104461 A JP2008104461 A JP 2008104461A JP 2007258158 A JP2007258158 A JP 2007258158A JP 2007258158 A JP2007258158 A JP 2007258158A JP 2008104461 A JP2008104461 A JP 2008104461A
Authority
JP
Japan
Prior art keywords
fluorescence
fluorescent protein
wavelength
fluorescent
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007258158A
Other languages
Japanese (ja)
Other versions
JP5334007B2 (en
JP2008104461A5 (en
Inventor
Yuko Kato
祐子 加藤
Mitsuru Jinbo
充 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitasato Gakuen Foundation
Original Assignee
Kitasato Gakuen Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitasato Gakuen Foundation filed Critical Kitasato Gakuen Foundation
Priority to JP2007258158A priority Critical patent/JP5334007B2/en
Publication of JP2008104461A publication Critical patent/JP2008104461A/en
Publication of JP2008104461A5 publication Critical patent/JP2008104461A5/ja
Application granted granted Critical
Publication of JP5334007B2 publication Critical patent/JP5334007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a fluorescent protein emitting a plurality of fluorescences including fluorescence of ultra-long wavelength (red fluorescence), having a big difference between an exciting wavelength and a fluorescent wavelength and is excited even by a light of relatively long wavelength. <P>SOLUTION: The multicolor fluorescent protein is a fluorescent protein being a natural type fluorescent protein derived from Scleronephthya gracillima (Kuekenthal) or obtained by application of gene recombination and exhibits a plurality of fluorescent colors identifiable in a visible region according to an exciting wavelength. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蛍光タンパク質に関し、特に、超長波長の蛍光を含む複数の蛍光を発することのできる新規な蛍光タンパク質に関する。   The present invention relates to a fluorescent protein, and more particularly to a novel fluorescent protein capable of emitting a plurality of fluorescence including ultra-long wavelength fluorescence.

蛍光タンパク質は、細胞や他のタンパク質などを標識するマーカーとして、生化学、生物学、医学などの研究分野において重要な役割を果たしている。
現在、広く使われているGFP(Green Fluorescent Protein)をはじめとする蛍光タンパク質の多くは、励起光の波長と近い波長の蛍光を発する。励起波長と蛍光波長の差(ストークスシフト)が大きければ、励起波長によるバックグランドの影響の少ない鮮明な画像を得ることができる。赤色蛍光は長波長の蛍光であり、励起波長との差を大きくするので好ましいが、赤色蛍光を発することのできる蛍光タンパク質は少ない。また、励起波長については、短波長の光による励起は、生細胞などを損傷する可能性がある。さらに、単一の蛍光タンパク質が色の異なる複数の蛍光を発することができれば、同時に複数の反応を多蛍光色で解析できるなどの利点があるが、この目的に適う蛍光タンパク質も少ない。
Fluorescent proteins play an important role in research fields such as biochemistry, biology, and medicine as markers for labeling cells and other proteins.
Many of the fluorescent proteins such as GFP (Green Fluorescent Protein) that are currently widely used emit fluorescence having a wavelength close to the wavelength of excitation light. If the difference between the excitation wavelength and the fluorescence wavelength (Stokes shift) is large, a clear image with little influence of the background due to the excitation wavelength can be obtained. Red fluorescence is long-wavelength fluorescence, which is preferable because it increases the difference from the excitation wavelength, but there are few fluorescent proteins that can emit red fluorescence. As for the excitation wavelength, excitation with short wavelength light may damage live cells and the like. Furthermore, if a single fluorescent protein can emit a plurality of fluorescences having different colors, there is an advantage that a plurality of reactions can be simultaneously analyzed with multiple fluorescent colors, but there are few fluorescent proteins suitable for this purpose.

本発明の目的は超長波長の蛍光、すなわち、赤色蛍光を含む複数の蛍光を発することができ、励起波長と蛍光波長の差が大きく、さらに、比較的長波長の光によっても励起されることのできる新しい蛍光タンパク質を提供することにある。   The object of the present invention is to generate ultra-long wavelength fluorescence, that is, multiple fluorescence including red fluorescence, and there is a large difference between excitation wavelength and fluorescence wavelength, and it is also excited by relatively long wavelength light. It is to provide a new fluorescent protein capable of

本発明者は、鋭意研究を重ねた結果、海洋生物である軟サンゴ(Scleronephthya gracillima (Kuekenthal))に蛍光タンパク質が存在することを見出し、その分離精製を行ない、電気泳動法およびLC/MS/MS法により部分アミノ酸配列を決定した。その情報を基に遺伝子組換えにより新規な蛍光タンパク質の発現に成功し、本発明を導き出したものである。   As a result of extensive research, the present inventor has found that fluorescent proteins are present in marine organisms, such as soft corals (Scleronephthya gracillima (Kuekenthal)), and performed separation, purification, electrophoresis and LC / MS / MS. The partial amino acid sequence was determined by the method. Based on this information, the inventors succeeded in expressing a novel fluorescent protein by gene recombination and derived the present invention.

従って、本発明に従えば、以下の蛍光タンパク質及びDNA等が提供される。
1.励起波長に応じて可視域において識別可能な複数の蛍光色を発することを特徴とするマルチカラー蛍光タンパク質。
2.赤色蛍光に加えて、橙色蛍光、緑色蛍光、青色蛍光および/または紫色蛍光を発する前記1に記載の蛍光タンパク質。
3.前記蛍光タンパク質が軟サンゴ(Scleronephthya gracillima (Kuekenthal))に由来する天然型蛍光タンパク質または遺伝子組換えを施して得られる蛍光タンパク質である前記1または2に記載の蛍光タンパク質。
4.励起波長と蛍光波長の差をあらわす、ストークスシフトが少なくとも45nmである前記1〜3のいずれかに記載の蛍光タンパク質。
5.励起波長298nmで励起したときに400〜680nmの範囲内の最大蛍光波長の蛍光を発する前記1〜4のいずれかに記載の蛍光タンパク質。
6.励起波長436nmで励起したときに400〜680nmの範囲内の最大蛍光波長の蛍光を発する前記1〜4のいずれかに記載の蛍光タンパク質。
7.励起波長564nmで励起したときに400〜680nmの範囲内の最大蛍光波長の蛍光を発する前記1〜4のいずれかに記載の蛍光タンパク質。
8.(a)配列番号1,2,3、4、5、6または7で表されるアミノ酸配列、または(b)配列番号4で表されるアミノ酸配列において1個〜25個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、からなり少なくとも赤色蛍光を発することを特徴とする蛍光タンパク質。
9.(a)配列番号1,2,3、4、5、6または7で表されるアミノ酸配列、または(b)配列番号4で表されるアミノ酸配列において1個〜25個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、からなり少なくとも赤色蛍光を発する蛍光タンパク質をコードすることを特徴とするDNA。
10.配列番号1,2,3, 4,5,6または7のいずれかを含むアミノ酸配列からなる分子量が17〜28kDaのタンパク質であって、励起波長298nmで励起すると、少なくとも400〜680nmの範囲内の複数の蛍光色を発することを特徴とするマルチカラー蛍光性タンパク質。
Therefore, according to the present invention, the following fluorescent proteins and DNA are provided.
1. A multi-color fluorescent protein that emits a plurality of fluorescent colors that can be identified in the visible range according to an excitation wavelength.
2. 2. The fluorescent protein according to 1 above, which emits orange fluorescence, green fluorescence, blue fluorescence and / or purple fluorescence in addition to red fluorescence.
3. 3. The fluorescent protein according to 1 or 2 above, wherein the fluorescent protein is a natural fluorescent protein derived from soft coral (Scleronephthya gracillima (Kuekenthal)) or a fluorescent protein obtained by genetic recombination.
4). 4. The fluorescent protein according to any one of the above 1 to 3, which represents a difference between an excitation wavelength and a fluorescence wavelength and has a Stokes shift of at least 45 nm.
5. 5. The fluorescent protein according to any one of 1 to 4, which emits fluorescence having a maximum fluorescence wavelength within a range of 400 to 680 nm when excited at an excitation wavelength of 298 nm.
6). 5. The fluorescent protein according to any one of 1 to 4, which emits fluorescence having a maximum fluorescence wavelength in a range of 400 to 680 nm when excited at an excitation wavelength of 436 nm.
7). 5. The fluorescent protein according to any one of 1 to 4, which emits fluorescence having a maximum fluorescence wavelength within a range of 400 to 680 nm when excited at an excitation wavelength of 564 nm.
8). (A) the amino acid sequence represented by SEQ ID NO: 1, 2, 3, 4, 5, 6 or 7, or (b) 1 to 25 amino acids deleted in the amino acid sequence represented by SEQ ID NO: 4, A fluorescent protein comprising a substituted or added amino acid sequence and emitting at least red fluorescence.
9. (A) the amino acid sequence represented by SEQ ID NO: 1, 2, 3, 4, 5, 6 or 7, or (b) 1 to 25 amino acids deleted in the amino acid sequence represented by SEQ ID NO: 4, A DNA comprising a substituted or added amino acid sequence and encoding a fluorescent protein emitting at least red fluorescence.
10. A protein having a molecular weight of 17 to 28 kDa comprising an amino acid sequence comprising any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6 or 7 and having a wavelength of at least 400 to 680 nm when excited at an excitation wavelength of 298 nm A multicolor fluorescent protein characterized by emitting a plurality of fluorescent colors.

(1)本発明の蛍光タンパク質は、波長600〜700nmの範囲の赤色蛍光を発し、ストークスシフト(最大蛍光波長と最大励起波長の差)は、一般に、少なくとも約50nmであり、ストークスシフトが約370nmに達するものもある。かくして、本発明の蛍光タンパク質は蛍光マーカーとして使用されたとき、蛍光スペクトルと励起スペクトルの重なりのない鮮明なイメージング画像を得ることができる。   (1) The fluorescent protein of the present invention emits red fluorescence in the wavelength range of 600 to 700 nm, and the Stokes shift (difference between the maximum fluorescence wavelength and the maximum excitation wavelength) is generally at least about 50 nm, and the Stokes shift is about 370 nm. Some will reach Thus, when the fluorescent protein of the present invention is used as a fluorescent marker, a clear imaging image in which the fluorescence spectrum and the excitation spectrum do not overlap can be obtained.

(2)本発明の蛍光タンパク質は、従来の蛍光タンパク質において用いられていた紫外域またはその近傍域よりも長波長、例えば、最大励起波長436nmおよび564nmで励起することもできる。このように長波長の励起光を使用することができるため、生細胞などの被標識試料への影響が少ないという利点がある。   (2) The fluorescent protein of the present invention can be excited at a wavelength longer than the ultraviolet region or the vicinity thereof used in conventional fluorescent proteins, for example, at the maximum excitation wavelengths of 436 nm and 564 nm. Since excitation light having a long wavelength can be used in this way, there is an advantage that there is little influence on a labeled sample such as a living cell.

(3)本発明の蛍光タンパク質は、赤色蛍光に加えて橙色蛍光、緑色蛍光、青色蛍光、や紫色蛍光など、複数の色の蛍光を発することができる。したがって、本発明の蛍光タンパク質をマーカーとして用いれば、1励起波長を与えることで、同時に複数の反応をマルチカラー蛍光色でセンシングするマルチカラー解析や、マルチカラーイメージング画像などが可能となる。   (3) The fluorescent protein of the present invention can emit fluorescence of a plurality of colors such as orange fluorescence, green fluorescence, blue fluorescence and purple fluorescence in addition to red fluorescence. Therefore, when the fluorescent protein of the present invention is used as a marker, it is possible to perform a multicolor analysis, a multicolor imaging image, or the like by simultaneously sensing a plurality of reactions with a multicolor fluorescent color by giving one excitation wavelength.

(4)本発明に係わる蛍光タンパク質は、1種の励起波長で励起することで、マルチカラーの蛍光波長を発することができるので、マルチカラー蛍光生物素子としての応用が可能である。   (4) Since the fluorescent protein according to the present invention can emit a multi-color fluorescence wavelength by being excited at one excitation wavelength, it can be applied as a multi-color fluorescent biological element.

(5)本発明にかかわる遺伝子akane, akane1, akane2, akane3 (配列番号4、5、6及び7)などをもちいて、目的タンパク質との融合タンパク質を作製することにより、FRET(Fluorescence resonance energy transfer:蛍光共鳴エネルギー移動法)に用いることができる。   (5) Using the genes akane, akane1, akane2, akane3 (SEQ ID NOs: 4, 5, 6 and 7) according to the present invention to produce a fusion protein with the target protein, FRET (Fluorescence resonance energy transfer: (Fluorescence resonance energy transfer method).

本発明の蛍光タンパク質は、軟サンゴ(Scleronephthya gracillima (Kuekenthal))から天然型の蛍光タンパク質及びこれを分離精製して部分アミノ酸配列を求め、その情報に基づき遺伝子組換えにより組換えタンパク質として得られるものである。なお、以下の説明において、本発明の蛍光タンパク質の総称として、また、その天然型及び遺伝子組換え体の特定の配列についてakane(茜)という名称を用い、特に区別する必要がある場合(例えば、変異体)にはakane1、akane2、akane3等の数字を付加する。   The fluorescent protein of the present invention is a natural fluorescent protein from soft coral (Scleronephthya gracillima (Kuekenthal)) and its partial amino acid sequence obtained by separating and purifying it, and obtained as a recombinant protein by genetic recombination based on that information It is. In the following description, as a general term for the fluorescent protein of the present invention, and for the specific sequence of the natural type and the gene recombinant, the name akane (茜) is used, and it is particularly necessary to distinguish (for example, Add numbers such as akane1, akane2, and akane3 to the mutant.

このような蛍光タンパク質には、励起波長に応じて可視域において識別可能な複数の蛍光色を示す蛍光タンパク質が含まれるが、より具体的には、例えば、298nmで励起したときに400〜680nmの範囲内、より特定すれば620〜680nmの範囲内(例えば、664nm)にピークを有する蛍光、436nmまたは564nmで励起したときに400〜680nmの範囲内(例えば、励起波長436nmで励起すると475nm 、及び506nmに蛍光を発することが認められた。また、564nmで励起すると612nmまたは628nm)に1または複数の蛍光波長を有する蛍光を示す蛍光タンパク質が含まれる。   Such fluorescent proteins include fluorescent proteins that exhibit multiple fluorescent colors that can be distinguished in the visible range depending on the excitation wavelength, more specifically, for example, 400-680 nm when excited at 298 nm. Fluorescence having a peak in the range, more particularly in the range of 620 to 680 nm (eg 664 nm), in the range of 400 to 680 nm when excited at 436 nm or 564 nm (eg 475 nm when excited at an excitation wavelength of 436 nm, and Fluorescent proteins were found to fluoresce at 506 nm and include fluorescent proteins that exhibit fluorescence having one or more fluorescence wavelengths at 612 nm or 628 nm when excited at 564 nm.

具体的には、(a)配列番号4で表されるアミノ酸配列、又は(b)配列番号4で表されるアミノ酸配列において1個〜25個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、からなり少なくとも赤色蛍光を発することを特徴とする蛍光タンパク質が挙げられる。配列番号4で表されるアミノ酸配列に類似の配列としては例えば、配列番号5、6及び7が含まれ、より限定すれば、配列番号4、5、6及び7で表される配列またはこれらの配列において1個〜数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列が含まれる。ここで、数個とは10個以下、より特定すれば6個以下、さらに特定すれば4個以下を言う。
また、本発明によれば、ストークスシフトが45nm以上の蛍光タンパク質が提供される。ストークスシフト上限は特に限定されないが、典型的には50nm〜450nmの範囲であり、100〜400nmの範囲のストークスシフトが実現できる。
Specifically, (a) the amino acid sequence represented by SEQ ID NO: 4 or (b) the amino acid sequence represented by SEQ ID NO: 4 in which 1 to 25 amino acids are deleted, substituted or added And a fluorescent protein characterized by emitting at least red fluorescence. Sequences similar to the amino acid sequence represented by SEQ ID NO: 4 include, for example, SEQ ID NOs: 5, 6, and 7, and more specifically, the sequences represented by SEQ ID NOs: 4, 5, 6 and 7, or these Amino acid sequences in which one to several amino acids are deleted, substituted or added in the sequence are included. Here, the term “several” means 10 or less, more specifically 6 or less, and more specifically 4 or less.
Moreover, according to the present invention, a fluorescent protein having a Stokes shift of 45 nm or more is provided. The upper limit of the Stokes shift is not particularly limited, but is typically in the range of 50 nm to 450 nm, and a Stokes shift in the range of 100 to 400 nm can be realized.

さらに、本発明の蛍光タンパク質は、配列番号1,2,3, 4,5,6または7のいずれかを含むアミノ酸配列からなる分子量が17〜28kDaのタンパク質であって、励起波長298nmで励起すると、少なくとも400〜680nmの範囲内の複数の蛍光色を発することを特徴とするマルチカラー蛍光性タンパク質を含む。   Furthermore, the fluorescent protein of the present invention is a protein having a molecular weight of 17 to 28 kDa consisting of an amino acid sequence containing any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6 or 7, and when excited at an excitation wavelength of 298 nm. A multi-color fluorescent protein characterized by emitting a plurality of fluorescent colors in the range of at least 400 to 680 nm.

また、本発明は、配列番号1,2,3, 4,5,6または7のいずれかを含むアミノ酸配列からなる分子量が17〜28kDaのタンパク質であって、軟サンゴ(Scleronephthya gracillima (Kuekenthal))に由来し、主としてヒトにおける喘息性アレルギーのアレルゲンとして作用することを特徴とするタンパク質を含む。   The present invention also relates to a protein having a molecular weight of 17 to 28 kDa consisting of an amino acid sequence comprising any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6 or 7, and a soft coral (Scleronephthya gracillima (Kuekenthal)). And a protein characterized by acting primarily as an allergen of asthmatic allergy in humans.

天然型タンパク質の解析
(第1の形態)
軟サンゴ(Scleronephthya gracillima (Kuekenthal))由来の天然型蛍光タンパク質を特定する解析を行った過程及び結果について説明する。
まず、ホモジナイズ処理から粗抗原への試料の抽出精製として、軟サンゴを10mM-PBS溶液中でホモジナイズし、抽出液を遠心分離したものについて80%飽和硫安沈殿を行い、その沈殿タンパク質を透析膜により透析したのち、溶液を凍結乾燥したものを粗抽出試料とした。
Analysis of natural protein (first form)
The process and results of an analysis for identifying a natural fluorescent protein derived from soft coral (Scleronephthya gracillima (Kuekenthal)) will be described.
First, as extraction and purification of a sample from homogenization treatment to a crude antigen, soft coral was homogenized in a 10 mM PBS solution, and the extract was centrifuged, and 80% saturated ammonium sulfate precipitation was performed. After dialysis, a solution obtained by freeze-drying the solution was used as a crude sample.

この段階での試料を15%ポリアクリルアミドゲルでSDS-PAGEで電気泳動後に、CBB染色した分子量約21kDaのタンパク質バンドの切り出しを行い、この試料について、ゲルの脱色、システイン残基の還元アルキル化、ゲルの洗浄、トリプシン消化、ペプチド断片の抽出、減圧乾燥、サンプル溶解液への溶解、LC/MS/MSにより質量分析をおこなったところ、Gln-Ser-Phe-Pro-Glu-Gly-Phe-Ser-Trp-Glu-Arg(配列番号1)というアミノ酸配列が得られた。   The sample at this stage was electrophoresed on a 15% polyacrylamide gel by SDS-PAGE, and then a CBB-stained protein band with a molecular weight of about 21 kDa was excised, and this sample was subjected to gel decolorization, reductive alkylation of cysteine residues, Gln-Ser-Phe-Pro-Glu-Gly-Phe-Ser was analyzed by gel washing, trypsin digestion, peptide fragment extraction, vacuum drying, dissolution in sample solution, and LC / MS / MS. An amino acid sequence of -Trp-Glu-Arg (SEQ ID NO: 1) was obtained.

(第2の形態)
前記第1の形態同様、軟サンゴ(Scleronephthya gracillima (Kuekenthal))由来の天然型蛍光タンパク質を特定する解析を行った過程及び結果について説明する。
まず、ホモジナイズ処理から粗抗原への試料の抽出精製として、軟サンゴを10mM-PBS溶液中でホモジナイズし、抽出液を遠心分離したものについて80%飽和硫安沈殿を行い、その沈殿タンパク質を透析膜により透析したのち、溶液を凍結乾燥したものを粗抽出試料とした。
(Second form)
As in the first embodiment, the process and results of an analysis for identifying a natural fluorescent protein derived from soft coral (Scleronephthya gracillima (Kuekenthal)) will be described.
First, as extraction and purification of a sample from homogenization treatment to a crude antigen, soft coral was homogenized in a 10 mM PBS solution, and the extract was centrifuged, and 80% saturated ammonium sulfate precipitation was performed. After dialysis, a solution obtained by freeze-drying the solution was used as a crude sample.

この粗抽出試料を蒸留水に溶かした溶液をゲル濾過カラム(Sephadex-75)にかけ、その中のタンパク質量の多い数本の試料を濃縮し、さらに陰イオンカラム(Q-Sepharose High Performance)にかけ、10mM−Tris HCl buffer (pH8.5)の(0.1〜0.5N)−NaClで溶出させて、分画した試料を、SDS-PAGEで電気泳動後に、CBB染色した分子量約27kDaのタンパク質バンドの切り出しを行い、この試料について、ゲルの脱色、システイン残基の還元アルキル化、ゲルの洗浄、トリプシン消化、ペプチド断片の抽出、減圧乾燥、サンプル溶解液への溶解、LC/MS/MS により質量分析をおこなったところ、Tyr-Pro-Ala-Asp-Ile-Pro-Asp-Tyr-Phe-Lys(配列番号2)というアミノ酸配列が得られた。   A solution obtained by dissolving the crude extract sample in distilled water is applied to a gel filtration column (Sephadex-75), several samples having a large amount of protein therein are concentrated, and further applied to an anion column (Q-Sepharose High Performance). After eluting with (0.1-0.5N) -NaCl in 10 mM Tris HCl buffer (pH 8.5), the fractionated sample was electrophoresed by SDS-PAGE, and then a CBB-stained protein band having a molecular weight of about 27 kDa was excised. This sample was subjected to gel decolorization, reductive alkylation of cysteine residues, gel washing, trypsin digestion, peptide fragment extraction, drying under reduced pressure, dissolution in sample solution, and mass spectrometry by LC / MS / MS. As a result, an amino acid sequence of Tyr-Pro-Ala-Asp-Ile-Pro-Asp-Tyr-Phe-Lys (SEQ ID NO: 2) was obtained.

(第3の形態)
前記第2の形態同様、軟サンゴ(Scleronephthya gracillima (Kuekenthal))由来の天然型蛍光タンパク質について、これを特定する解析を行った過程及び結果について説明する。
軟サンゴを10mM-PBS 溶液中でホモジナイズし、抽出液を遠心分離したものについて80%飽和硫安沈殿を行い、その沈殿タンパク質を透析膜により透析したのち、溶液を凍結乾燥したものを粗抽出試料とした。
(Third form)
As in the second embodiment, the process and results of an analysis for identifying a natural fluorescent protein derived from soft coral (Scleronephthya gracillima (Kuekenthal)) will be described.
Soft coral is homogenized in a 10 mM PBS solution, and the extract is centrifuged, 80% saturated ammonium sulfate is precipitated, the precipitated protein is dialyzed through a dialysis membrane, and then the solution is freeze-dried as a crude sample. did.

この粗抽出試料を蒸留水に溶かした溶液を、ゲルろ過カラム(Sephadex-75)にかけて、10mM-PBS(pH-7.5)で流し、すべてのフラクションのタンパク質量を、分光光度計の波長280nmで測定した。その吸光度が高いフラクションを集めて、濃縮し次に陰イオンカラム(Q Sepharose High Performance)にかけて、10mM-Tris HCl buffer(pH-8.5)の(0.1N−0.5N)−NaClで溶出させ、分離精製したのちの溶出画分を濃縮した。その分画試料を、15%ポリアクリルアミドゲルで電気泳動後に、CBB染色したタンパク質バンドの中で、約18kDaタンパク質について、LC/MS/MS法で分析を行った。
約18kDaタンパク質においては、アミノ酸配列として、Thr−Met−Thr−Tyr−Glu−Asp−Lys−Gly−Ile−Cys−Thr−Ile−Arg(配列番号3)が得られた。
次に、以上のデータに基づいて行った組換えタンパク質の生成について説明する。
A solution obtained by dissolving the crude extracted sample in distilled water is applied to a gel filtration column (Sephadex-75), and it is run with 10 mM PBS (pH-7.5). The amount of protein in all fractions is measured with a spectrophotometer wavelength of 280 nm. did. The fraction with high absorbance is collected, concentrated, then applied to an anion column (Q Sepharose High Performance) and eluted with (0.1N-0.5N) -NaCl in 10 mM Tris HCl buffer (pH-8.5) for separation and purification. Thereafter, the eluted fraction was concentrated. The fractionated sample was analyzed by LC / MS / MS method for an approximately 18 kDa protein in a protein band stained with CBB after electrophoresis on a 15% polyacrylamide gel.
For the approximately 18 kDa protein, Thr-Met-Thr-Tyr-Glu-Asp-Lys-Gly-Ile-Cys-Thr-Ile-Arg (SEQ ID NO: 3) was obtained as the amino acid sequence.
Next, the production of the recombinant protein performed based on the above data will be described.

遺伝子組換え体タンパク質の生成
(1)RNAの調製は RNA isolation kit (Gentra)を用いて行った。100mgの軟サンゴ(Scleronephthya gracillima (Kuekenthal))を1.2mlのcell lysis solutionに入れ、ホモジナイズした。これに、400ulのProtein-DNA precipitation solutionを加え10回、転倒混和した。15000 rpm、5分間遠心して得られた上清に、1.2mlのイソプロパノールを加え、50回混和した。これを15000rpmで5分間遠心して、RNAを沈殿させた。その後、70%エタノールにより沈殿を洗浄した後、乾燥させた。得られたtotal RNA 100ugより、mRNA purification kitを用いて70ngのpoly(A)+ RNAを得た。cDNAはSMART RACE cDNA amplification kitを用いて行った。
Production of recombinant protein (1) RNA was prepared using RNA isolation kit (Gentra). 100 mg of soft coral (Scleronephthya gracillima (Kuekenthal)) was placed in 1.2 ml of cell lysis solution and homogenized. To this, 400ul of Protein-DNA precipitation solution was added and mixed by inversion 10 times. To the supernatant obtained by centrifugation at 15000 rpm for 5 minutes, 1.2 ml of isopropanol was added and mixed 50 times. This was centrifuged at 15000 rpm for 5 minutes to precipitate RNA. Thereafter, the precipitate was washed with 70% ethanol and then dried. From 100 ug of the obtained total RNA, 70 ng of poly (A) + RNA was obtained using an mRNA purification kit. cDNA was performed using SMART RACE cDNA amplification kit.

(2)質量分析により決定されたアミノ酸配列のうち、ADLPDYFKを元にして、遺伝子特異的プライマーDnippoFP5(GCNGAYYTNCCNGAYTAYTTYAA)を作成した。このプライマーおよびキットに付属のUniversal primer mixをプライマーとし、Advantage 2 polymerasse(クロンテック)を酵素として用い、3’RACEを行った。PCRサイクルは94℃、1'−57℃、30''−72℃、2'を35回行った。増幅された700bpのバンドは、QIAEX II DNA
extraction kit(キアゲン)を用いて精製した後、pCR4-topoベクターに連結後、コンピテントセルTOP10に形質転換した。これをDYEnamic ET sequencing kit(アマシャムバイオサイエンス)を用いてシークエンシングを行った。
(2) Among the amino acid sequences determined by mass spectrometry, gene-specific primer DnippoFP5 (GCCNGAYYTNCCCNGAYTAYTTYAA) was created based on ADLPDYFK. 3'RACE was performed using Universal primer mix attached to this primer and kit as a primer and Advantage 2 polymerasse (Clontech) as an enzyme. The PCR cycle was 94 ° C., 1′-57 ° C., 30 ″ -72 ° C., 2 ′ 35 times. The amplified 700 bp band is the QIAEX II DNA
After purification using extraction kit (Qiagen), ligation into pCR4-topo vector and transformation into competent cell TOP10. This was sequenced using DYEnamic ET sequencing kit (Amersham Bioscience).

(3)決定された塩基配列よりプライマーFP5−RACE(GCTTTTCCCTTGAGCCTCTACCT)を作成したのち、5'RACEを、3'RACEと同様の条件で行った。両方のRACEにより得られた塩基配列を連結して蛍光タンパク質のcDNAとした。 (3) After preparing primer FP5-RACE (GCTTTTCCCTTGAGCCCTCACTCT) from the determined base sequence, 5′RACE was performed under the same conditions as 3′RACE. The nucleotide sequences obtained by both RACEs were linked to form a fluorescent protein cDNA.

(4)決定された塩基配列をもとにプライマーAgFP5Ex(CACCATGAATCCGATTAAAGAAGA)、AgFP3Ex(CTACCTGGCCTGACTGGGCACCAA)を作成した。プラスミドに連結した5'RACE産物を鋳型として、Advantage 2 polymeraseを用いて翻訳配列を増幅した。PCRサイクルは94℃、1'-60℃、30''-72℃、2'を20回で行った。得られた配列をpET100/D-TOPOベクターに挿入した。組み換えタンパク質は、N末端にヒスチジンタグが付加されて発現される。これを大腸菌BL21(DE3)に形質転換した。タンパク質の発現は、100&micro;g/mlアンピシリンTB培地を用いて25℃で培養し、1mMイソプロピルチオガラクトシド存在下でタンパク質発現を誘導して行った。 (4) Primers AgFP5Ex (CACCCATGAATCCGATTAAAGAAGA) and AgFP3Ex (CTACCTGGCCTGACTGGGCACCAA) were prepared based on the determined base sequence. Using the 5′RACE product linked to the plasmid as a template, the translation sequence was amplified using Advantage 2 polymerase. PCR cycles were 94 ° C, 1'-60 ° C, 30 ''-72 ° C, 2 '20 times. The obtained sequence was inserted into the pET100 / D-TOPO vector. The recombinant protein is expressed with a histidine tag added to the N-terminus. This was transformed into E. coli BL21 (DE3). Protein expression was performed using 100 &micro; g / ml ampicillin TB medium at 25 ° C. and inducing protein expression in the presence of 1 mM isopropylthiogalactoside.

(5)遠心して大腸菌を集菌した後、50mM Tris-HCl, pH 8.0、0.5M-NaClに懸濁し、超音波破砕後、遠心することにより粗抽出液を得た。その後、HiTrap Desalting(アマシャムバイオサイエンス)により、50mM Tris-HCl、pH8.5にバッファー交換を行った。得られたタンパク質画分を、Resource Q(アマシャムバイオサイエンス)を用いて、NaClの濃度勾配により溶出した。 (5) After collecting E. coli by centrifugation, the suspension was suspended in 50 mM Tris-HCl, pH 8.0, 0.5 M-NaCl, ultrasonically disrupted, and centrifuged to obtain a crude extract. Thereafter, the buffer was changed to 50 mM Tris-HCl, pH 8.5 by HiTrap Desalting (Amersham Bioscience). The obtained protein fraction was eluted with a NaCl concentration gradient using Resource Q (Amersham Bioscience).

(6)以上のようにして決定された本発明の遺伝子組換え体蛍光タンパク質〔Akane(茜)と名づける〕の全アミノ酸配列(配列番号4)を図1に示す。プロテオーム解析から得られた3種類のアミノ酸配列(配列番号1〜3)の存在が認められる。また、クロモフォアを形成する配列の存在も確認された。 (6) FIG. 1 shows the entire amino acid sequence (SEQ ID NO: 4) of the recombinant fluorescent protein of the present invention [named Akane (茜)] determined as described above. The presence of three types of amino acid sequences (SEQ ID NOs: 1 to 3) obtained from proteome analysis is observed. In addition, the presence of a sequence forming a chromophore was also confirmed.

以下に、本発明の蛍光タンパク質の特徴をさらに具体的に明らかにするため、軟サンゴ(Scleronephthya gracillima (Kuekenthal))由来の天然型蛍光タンパク質と組換え蛍光タンパク質とを比較して行った蛍光測定の結果を実施例として示す。用いた装置は、蛍光分光光度計(RF-5300島津製作所製)である。
なお、よく知られているように蛍光測定における励起波長および蛍光波長の大きさは、実験条件や用いる機器の違いによる相違が認められている。したがって、本願の特許請求の範囲、明細書および図面に表示されている励起波長および蛍光波長の大きさは、一般的には±5nm程度の誤差を含み得るものとして理解すべきである。なお、本測定においては、バンド幅の設定値をEX:5.0nm、EM:5.0nmに設定している。
In order to clarify the characteristics of the fluorescent protein of the present invention more specifically, a fluorescence measurement performed by comparing a natural fluorescent protein derived from a soft coral (Scleronephthya gracillima (Kuekenthal)) with a recombinant fluorescent protein. The results are shown as examples. The apparatus used is a fluorescence spectrophotometer (RF-5300 manufactured by Shimadzu Corporation).
As is well known, differences in the excitation wavelength and fluorescence wavelength in fluorescence measurements due to differences in experimental conditions and equipment used are recognized. Therefore, it should be understood that the excitation wavelength and the fluorescence wavelength shown in the claims, the specification, and the drawings of the present application may generally include an error of about ± 5 nm. In this measurement, the bandwidth settings are set to EX: 5.0 nm and EM: 5.0 nm.

<天然型の蛍光タンパク質>
天然型の蛍光タンパク質の試料は、既述の場合と同様、次のようにして調製した:
軟サンゴを試料量の3倍量の10mM-PBS溶液中でホモジナイズし、抽出液を4℃、10000rpm、30分間遠心分離したものについて80%飽和硫安沈殿を行い、その沈殿タンパク質を透析膜(10,000
cut off)により透析した。透析した溶液を2晩凍結乾燥したものを粗抽出試料とした。この粗抽出試料を、ゲルろ過カラム(Sephadex-75)、次に陰イオンカラム(Q Sepharose High Performance)にかけて、10mM Tris-HCl buffer (pH8.5)で流し、次に塩濃度を順次変えて溶出し、(0.1M〜0.5M-NaCl)、分光光度計の波長280nmでタンパク質量を測定した。タンパク質の吸光度の高い画分を、さらに分離精製したのちの溶出画分をウルトラフィルターで濃縮した。15%ポリアクリルアミドゲルでSDS-PAGE電気泳動後に染色を行うと、本天然型の試料(2-10)及びrecombnant-type試料において、いずれも27kDaおよび21kDaの分子量のタンパク質バンドが得られた。
<Natural fluorescent protein>
Samples of native fluorescent protein were prepared as follows, as before:
Soft coral was homogenized in 10 mM PBS solution, 3 times the amount of the sample, and the extract was centrifuged at 4 ° C, 10,000 rpm for 30 minutes, and 80% saturated ammonium sulfate precipitation was performed.
Dialyzed by cut off). The dialyzed solution was freeze-dried overnight and used as a crude sample. This crude extract sample was applied to a gel filtration column (Sephadex-75), then an anion column (Q Sepharose High Performance), and it was run in 10 mM Tris-HCl buffer (pH 8.5). Then, the amount of protein was measured at a wavelength of 280 nm of a spectrophotometer (0.1 M to 0.5 M NaCl). The fraction with high absorbance of the protein was further separated and purified, and the eluted fraction was concentrated with an ultrafilter. When staining was performed after SDS-PAGE electrophoresis on a 15% polyacrylamide gel, protein bands with molecular weights of 27 kDa and 21 kDa were obtained in the natural sample (2-10) and the recombinant-type sample.

<遺伝子組換え体蛍光タンパク質>
遺伝子組換え体蛍光タンパク質の試料は、既述のように精製した遺伝子組換え体タンパク質について、HiPrep Desalting 26/10 (Amersham Bioscience), 50mM Tris-HCl, pH8.5に置換して、バッファー交換を行い、次に陰イオン交換カラム、Resource Q(アマシャムバイオサイエンス)を用いて、50mM Tris-HCl, pH8.5にて、0−1M
NaClの濃度勾配により溶出することにより調製した。流速は、1ml/minで溶出させ、各分画はAbs. 280nmでモニターした。
<Gene recombinant fluorescent protein>
For the recombinant fluorescent protein sample, replace the purified recombinant protein with HiPrep Desalting 26/10 (Amersham Bioscience), 50 mM Tris-HCl, pH 8.5 for buffer exchange. And then using an anion exchange column, Resource Q (Amersham Biosciences), 50 mM Tris-HCl, pH 8.5, 0-1M
Prepared by elution with a NaCl gradient. The flow rate was eluted at 1 ml / min and each fraction was monitored at Abs. 280 nm.

<蛍光測定>
蛍光測定の結果を図2に示す。遺伝子組換え体蛍光タンパク質(図2中では、recombinant-typeと記載している)では、図2に示すように(最大)励起波長298nmで励起すると、(最大)蛍光波長664nmの超長波長の蛍光スペクトルが得られている。
天然の軟サンゴから分離、精製して得られた試料(図2ではnative-typeと記載している)として、Fr(2-10)、Fr(2-12)は陰イオンカラムで、バッファーは、10mM-Tris 0.1N-NaCl溶出で得られた画分であるが、同様に、励起波長298nmで励起すると、蛍光波長668〜669nmが得られた。
このように、軟サンゴから得られた本発明の蛍光タンパク質は、超長波長の蛍光スペクトルを発するとともに、(最大)励起波長と(最大)蛍光波長の差が370nm近くもあり、蛍光マーカーとしてきわめて優れていることが理解される。
なお、全ての蛍光スペクトルに、励起波長である298nmと、この励起波長の2倍の波長(596nm:2次励起波長)に強いピークが現れているが、通常、1次励起波長と2次励起波長において発生するものであり、これらは測定対象とする蛍光スペクトルのピークではない。
<Fluorescence measurement>
The result of the fluorescence measurement is shown in FIG. In a recombinant fluorescent protein (indicated as “recombinant-type” in FIG. 2), when excited at a (maximum) excitation wavelength of 298 nm as shown in FIG. A fluorescence spectrum is obtained.
Fr (2-10) and Fr (2-12) are anion columns and the buffer is a sample obtained by separating and purifying from natural soft coral (shown as native-type in Fig. 2). , A fraction obtained by elution with 10 mM Tris 0.1N-NaCl. Similarly, when excited at an excitation wavelength of 298 nm, fluorescence wavelengths of 668 to 669 nm were obtained.
Thus, the fluorescent protein of the present invention obtained from soft coral emits an ultra-long wavelength fluorescence spectrum, and the difference between the (maximum) excitation wavelength and the (maximum) fluorescence wavelength is close to 370 nm. It is understood that it is excellent.
In all fluorescence spectra, a strong peak appears at the excitation wavelength of 298 nm and twice the excitation wavelength (596 nm: secondary excitation wavelength), but usually the primary excitation wavelength and the secondary excitation wavelength. These occur at wavelengths and are not peaks in the fluorescence spectrum to be measured.

実施例1で用いた天然型(native-type)の試料(Fr.2-10)について励起波長564nmで励起した。蛍光測定の結果を図3に示す。図3に示すように、628nmに最大蛍光波長をもつ蛍光スペクトルが得られた。
次に、628nmを蛍光波長として、励起スペクトルを測定すると、571nmに最大励起波長をもつ、励起スペクトルを得た。最大蛍光スペクトルと、励起スペクトルとが非常に対称性の良いスペクトルが観測できた。蛍光波長が628nmと長波長のRed Fluoresent Protein(RFP)が得られた。さらに、このRFPを含む、天然型蛍光タンパク質を(Akane(茜))と名づけるが、このAkane(茜)のストークスシフト(最大蛍光波長と、最大励起波長の差)が57nmと従来のRFP蛍光タンパク質にはない、大きなストークスシフトを示しており、このことは、遺伝子へこの(Akane(茜))を組み込んで細胞の発現をおこなうときに、励起波長による、バックグラウンドの影響が少なく、非常に見やすい蛍光画像を提供できることがメリットである。さらに、励起波長を564nmとすることにより、生細胞に本蛍光タンパク質を組み込んだ時に、生細胞への影響が少なくなる。
The native-type sample (Fr. 2-10) used in Example 1 was excited at an excitation wavelength of 564 nm. The result of the fluorescence measurement is shown in FIG. As shown in FIG. 3, a fluorescence spectrum having a maximum fluorescence wavelength at 628 nm was obtained.
Next, when the excitation spectrum was measured using 628 nm as the fluorescence wavelength, an excitation spectrum having a maximum excitation wavelength at 571 nm was obtained. A spectrum with very good symmetry between the maximum fluorescence spectrum and the excitation spectrum was observed. Red Fluoresent Protein (RFP) having a long fluorescence wavelength of 628 nm was obtained. Furthermore, the natural fluorescent protein containing this RFP is named (Akane (茜)), but the Stokes shift (difference between the maximum fluorescence wavelength and the maximum excitation wavelength) of this Akane (と) is 57 nm, which is the conventional RFP fluorescent protein. This shows a large Stokes shift, which is very easy to see when the cell is expressed by incorporating this (Akane (茜)) into the gene, with little influence of the background due to the excitation wavelength. The advantage is that a fluorescent image can be provided. Furthermore, by setting the excitation wavelength to 564 nm, when the present fluorescent protein is incorporated into a living cell, the influence on the living cell is reduced.

Recombinant-type(遺伝子組換え体蛍光タンパク質)〔同様にAkane(茜)と名づける〕試料についても、脱塩を行い、さらに、陰イオン交換カラムにかけ、励起波長564nmで励起すると612nmに最大蛍光波長をもつ蛍光スペクトルが得られ(図4)、ストークスシフトの大きい(48nm)蛍光特性が確認された。なお、図4には示されていないが、564nmで励起した場合には、576nmの橙色の蛍光も発していることが認められている。
Recombinant試料において、精製後、すぐに得られた溶液を純水で120倍希釈後、蛍光スペクトルを測定した。励起波長は564nmで最大蛍光波長612nmをもつ蛍光スペクトルが得られた(図4実線)。更に18日間経過後に同上の条件で蛍光スペクトルを測定した(図4点線)ところ、最大蛍光波長は612nmで、蛍光強度は47/52と約93%であり、蛍光スペクトルパターンも変化がなく、このRecombinant試料は安定して継続的な赤色蛍光タンパク質を供することを示している。
Recombinant-type (genetically modified fluorescent protein) (also named Akane (茜)) sample is also desalted, applied to an anion exchange column, and excited at an excitation wavelength of 564 nm. (FIG. 4), and a fluorescence characteristic with a large Stokes shift (48 nm) was confirmed. Although not shown in FIG. 4, when excited at 564 nm, it is recognized that orange fluorescence at 576 nm is also emitted.
In the Recombinant sample, after purification, the solution obtained immediately was diluted 120 times with pure water, and then the fluorescence spectrum was measured. A fluorescence spectrum having an excitation wavelength of 564 nm and a maximum fluorescence wavelength of 612 nm was obtained (solid line in FIG. 4). Further, after 18 days, the fluorescence spectrum was measured under the same conditions as above (dotted line in FIG. 4). The maximum fluorescence wavelength was 612 nm, the fluorescence intensity was 47/52, about 93%, and the fluorescence spectrum pattern did not change. Recombinant samples have been shown to provide a stable and continuous red fluorescent protein.

天然型タイプの試料(Fr 2-10)について励起波長436nmで励起した場合、475nm(cyan)および506nm(green)に蛍光を発することが認められた。ここでもストークスシフトが(39nm)および(70nm)と大きい値が得られた。   When the natural type sample (Fr 2-10) was excited at an excitation wavelength of 436 nm, fluorescence was observed at 475 nm (cyan) and 506 nm (green). Again, large Stokes shifts (39 nm) and (70 nm) were obtained.

天然型タイプの試料(Fr 2-10)について、472nmで励起したところ、508nm、558nmおよび624nmの波長に同時に3波長の強い蛍光を発することが認められた。   When a natural type sample (Fr 2-10) was excited at 472 nm, it was observed that strong fluorescence of three wavelengths was emitted simultaneously at wavelengths of 508 nm, 558 nm and 624 nm.

別の個体の軟サンゴ(Scleronephthya gracillima (Kuekenthal))から実施例1と同様の操作により天然型の蛍光タンパク質を得た。天然型の蛍光タンパク質は ゲルろ過カラムで精製したあと、陰イオンカラムで分離したフラクション3−6、3−5、3−7、3−8、3−9(図中、それぞれa、b、c、d、eで示す。)について、それぞれを励起波長298nmで励起した。結果を図5に示す。蛍光波長として、同時に 660nm(赤色蛍光)、628nm(赤色蛍光)、570nm(橙色蛍光)、505nm(緑色蛍光)、480nm(青色蛍光)、さらに430nm(紫色蛍光)もショルダーとして見出すことができる。   A natural fluorescent protein was obtained from another individual's soft coral (Scleronephthya gracillima (Kuekenthal)) in the same manner as in Example 1. The natural fluorescent protein was purified with a gel filtration column and then separated with anion column fractions 3-6, 3-5, 3-7, 3-8, 3-9 (in the figure, a, b, c respectively) , D, and e), each was excited at an excitation wavelength of 298 nm. The results are shown in FIG. At the same time, 660 nm (red fluorescence), 628 nm (red fluorescence), 570 nm (orange fluorescence), 505 nm (green fluorescence), 480 nm (blue fluorescence), and further 430 nm (purple fluorescence) can also be found as fluorescence wavelengths.

天然型タイプの試料(Fr 2-10)について、472nmで励起したところ、508nm、558nmおよび624nmの波長に同時に3波長の強い蛍光を発することが認められた。 When a natural type sample (Fr 2-10) was excited at 472 nm, it was observed that strong fluorescence of three wavelengths was emitted simultaneously at wavelengths of 508 nm, 558 nm and 624 nm.

akaneの遺伝子組換え体を、励起波長564 nm で励起したときの蛍光スペクトルを図6に示す。577nm、612nm、673nmに複数のカラーの蛍光波長の蛍光を発している。さらに、419nmにショルダーのわずかな強度ではあるが蛍光が見られる。   FIG. 6 shows the fluorescence spectrum when the akane gene recombinant was excited at an excitation wavelength of 564 nm. A plurality of colors of fluorescence wavelengths are emitted at 577 nm, 612 nm, and 673 nm. Further, fluorescence is seen at 419 nm although the shoulder has a slight intensity.

PCR プライマーは、先に決定したakaneのcDNA 配列から塩基配列を元に、プライマー1(CCTTCTGGAGAGAAGACGTGAATACAGC)およびプライマー2(TGAGCCTCTACCTGGCCTGACTGG)を作製した。
蛍光タンパク質遺伝子の増幅は、作製したcDNA を元にして、Advantage 2 polymerase (BD)を用いて行った。増幅されたPCR 産物はプラスミド pCR4 に連結した後、コンピテントセルDH5αに形質転換した。コロニーよりプラスミドを調製した後、 BigDye terminater DNA sequencing kit (アプライドバイオシステムズ)を用いて塩基配列を決定した。
PCR
により増幅されたPCR 産物は850 bpの単一バンドであった。これをプラスミドに連結後形質転換して得られた 75 クローンについて塩基配列の決定を行ったところ、約半分のクローンが akane であったが、残りのクローンより別の配列が見出された。それら(配列番号5〜7)を、akane 1、akane2、 akane 3 と名付けた。これらの配列はakaneの配列と非常に類似しており、クロモフォアがひとつ含まれていた。これらの配列を図7図8に対比して示す。
As PCR primers, Primer 1 (CCTTCTGGAGAGAAGACGTGAATACAGC) and Primer 2 (TGAGCCTCTACCTGGCCTGACTGG) were prepared from the previously determined akane cDNA sequence.
Amplification of the fluorescent protein gene was performed using Advantage 2 polymerase (BD) based on the prepared cDNA. The amplified PCR product was ligated to plasmid pCR4 and then transformed into competent cell DH5α. After preparing a plasmid from the colony, the base sequence was determined using BigDye terminater DNA sequencing kit (Applied Biosystems).
PCR
The PCR product amplified by was a single band of 850 bp. When the nucleotide sequence of 75 clones obtained by transforming this plasmid after ligation was determined, about half of the clones were akane, but another sequence was found from the remaining clones. These (SEQ ID NOS: 5 to 7) were named akane 1, akane 2, and akane 3. These sequences were very similar to the akane sequence and contained one chromophore. These sequences are shown in comparison with FIG. 7 and FIG.

本発明の蛍光タンパク質(akane)の全アミノ酸配列(配列番号4)を示す。2 shows the entire amino acid sequence (SEQ ID NO: 4) of the fluorescent protein (akane) of the present invention. 本発明の遺伝子組換え体の蛍光タンパク質および天然型(軟サンゴ(Scleronephthya gracillima (Kuekenthal))体色薄茶色)の蛍光タンパク質をそれぞれ、励起波長298nmで励起した場合の蛍光スペクトル特性図である。It is a fluorescence spectrum characteristic view when the fluorescent protein of the genetic recombinant of the present invention and the fluorescent protein of the natural type (Scleronephthya gracillima (Kuekenthal) body color light brown) are respectively excited at an excitation wavelength of 298 nm. 本発明に従う軟サンゴ由来の天然型蛍光タンパク質を564nmで励起した場合の蛍光スペクトル特性図である。It is a fluorescence spectrum characteristic view at the time of exciting the natural fluorescent protein derived from the soft coral according to the present invention at 564 nm. 本発明の遺伝子組換え体蛍光タンパク質を564nmで励起した場合の蛍光スペクトル特性図、および同じ遺伝子組換え体蛍光タンパク質を18日間経過後に564nmで励起した蛍光スペクトル特性図である。FIG. 5 is a fluorescence spectrum characteristic diagram when the gene recombinant fluorescent protein of the present invention is excited at 564 nm, and a fluorescence spectrum characteristic diagram in which the same gene recombinant fluorescent protein is excited at 564 nm after 18 days. 本発明の天然型(akane)の蛍光タンパク質を励起波長298nmで励起した場合の蛍光スペクトル特性図である。(軟サンゴ(Scleronephthya gracillima (Kuekenthal))体色紫色)It is a fluorescence spectrum characteristic view when the natural type (akane) fluorescent protein of the present invention is excited at an excitation wavelength of 298 nm. (Soft coral (Scleronephthya gracillima (Kuekenthal)) body color purple) 本発明の遺伝子組換え体 (akane)の蛍光タンパク質を励起波長564nmで励起した場合の蛍光スペクトル特性図である。It is a fluorescence spectrum characteristic figure at the time of exciting the fluorescent protein of the gene recombinant (akane) of this invention by excitation wavelength 564nm. 実施例8におけるakane、akane1、akane2及びakane3のアミノ酸配列を対比して示した図(各ブロックとも上からakane、akane1、akane2及びakane3の順であり、akaneの配列と異なるアミノ酸は四角で囲った)。The figure which contrasted and showed the amino acid sequence of akane, akane1, akane2, and akane3 in Example 8 (each block is the order of akane, akane1, akane2, and akane3 from the top, and the amino acid different from the sequence of akane is enclosed in a square. ).

Claims (10)

励起波長に応じて可視域において識別可能な複数の蛍光色を発することを特徴とするマルチカラー蛍光タンパク質。   A multi-color fluorescent protein that emits a plurality of fluorescent colors that can be identified in the visible range according to an excitation wavelength. 赤色蛍光に加えて、橙色蛍光、緑色蛍光、青色蛍光および/または紫色蛍光を発する請求項1に記載の蛍光タンパク質。   The fluorescent protein according to claim 1, which emits orange fluorescence, green fluorescence, blue fluorescence and / or purple fluorescence in addition to red fluorescence. 前記蛍光タンパク質が軟サンゴ(Scleronephthya gracillima (Kuekenthal))に由来する天然型蛍光タンパク質または遺伝子組換えを施して得られる蛍光タンパク質である請求項1または2に記載の蛍光タンパク質。   The fluorescent protein according to claim 1 or 2, wherein the fluorescent protein is a natural fluorescent protein derived from soft coral (Scleronephthya gracillima (Kuekenthal)) or a fluorescent protein obtained by genetic recombination. 励起波長と蛍光波長の差をあらわす、ストークスシフトが少なくとも45nmである請求項1〜3のいずれかに記載の蛍光タンパク質。   The fluorescent protein according to any one of claims 1 to 3, wherein a Stokes shift representing a difference between an excitation wavelength and a fluorescence wavelength is at least 45 nm. 励起波長298nmで励起したときに400〜680nmの範囲内の最大蛍光波長の蛍光を発する請求項1〜4のいずれかに記載の蛍光タンパク質。   The fluorescent protein according to any one of claims 1 to 4, which emits fluorescence having a maximum fluorescence wavelength within a range of 400 to 680 nm when excited at an excitation wavelength of 298 nm. 励起波長436nmで励起したときに400〜680nmの範囲内の最大蛍光波長の蛍光を発する請求項1〜4のいずれかに記載の蛍光タンパク質。   The fluorescent protein according to any one of claims 1 to 4, which emits fluorescence having a maximum fluorescence wavelength within a range of 400 to 680 nm when excited at an excitation wavelength of 436 nm. 励起波長564nmで励起したときに400〜680nmの範囲内の最大蛍光波長の蛍光を発する請求項1〜4のいずれかに記載の蛍光タンパク質。   The fluorescent protein according to any one of claims 1 to 4, which emits fluorescence having a maximum fluorescence wavelength within a range of 400 to 680 nm when excited at an excitation wavelength of 564 nm. (a)配列番号1,2,3、4、5、6または7で表されるアミノ酸配列、または(b)配列番号4で表されるアミノ酸配列において1個〜25個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、からなり少なくとも赤色蛍光を発することを特徴とする蛍光タンパク質。 (A) the amino acid sequence represented by SEQ ID NO: 1, 2, 3, 4, 5, 6 or 7, or (b) 1 to 25 amino acids deleted in the amino acid sequence represented by SEQ ID NO: 4, A fluorescent protein comprising a substituted or added amino acid sequence and emitting at least red fluorescence. (a)配列番号1,2,3、4、5、6または7で表されるアミノ酸配列、または(b)配列番号4で表されるアミノ酸配列において1個〜25個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、からなり少なくとも赤色蛍光を発する蛍光タンパク質をコードすることを特徴とするDNA。 (A) the amino acid sequence represented by SEQ ID NO: 1, 2, 3, 4, 5, 6 or 7, or (b) 1 to 25 amino acids deleted in the amino acid sequence represented by SEQ ID NO: 4, A DNA comprising a substituted or added amino acid sequence and encoding a fluorescent protein emitting at least red fluorescence. 配列番号1,2,3, 4,5,6または7のいずれかを含むアミノ酸配列からなる分子量が17〜28kDaのタンパク質であって、励起波長298nmで励起すると、少なくとも400〜680nmの範囲内の複数の蛍光色を発することを特徴とするマルチカラー蛍光性タンパク質。   A protein having a molecular weight of 17 to 28 kDa comprising an amino acid sequence comprising any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6 or 7 and having a wavelength of at least 400 to 680 nm when excited at an excitation wavelength of 298 nm A multicolor fluorescent protein characterized by emitting a plurality of fluorescent colors.
JP2007258158A 2006-09-29 2007-10-01 Multi-color fluorescent protein containing ultra-long wavelength fluorescent color Expired - Fee Related JP5334007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007258158A JP5334007B2 (en) 2006-09-29 2007-10-01 Multi-color fluorescent protein containing ultra-long wavelength fluorescent color

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006266824 2006-09-29
JP2006266824 2006-09-29
JP2007258158A JP5334007B2 (en) 2006-09-29 2007-10-01 Multi-color fluorescent protein containing ultra-long wavelength fluorescent color

Publications (3)

Publication Number Publication Date
JP2008104461A true JP2008104461A (en) 2008-05-08
JP2008104461A5 JP2008104461A5 (en) 2010-11-18
JP5334007B2 JP5334007B2 (en) 2013-11-06

Family

ID=39438334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007258158A Expired - Fee Related JP5334007B2 (en) 2006-09-29 2007-10-01 Multi-color fluorescent protein containing ultra-long wavelength fluorescent color

Country Status (1)

Country Link
JP (1) JP5334007B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048794A (en) * 2017-09-12 2019-03-28 国立大学法人横浜国立大学 Detection probe for screening of antibody producing cells, and use thereof
JP2021162549A (en) * 2020-04-03 2021-10-11 学校法人福岡大学 Metal detection reagent containing multicolor fluorescent protein, metal detection method of test liquid, recombinant vector, and evaluation method of metal behavior

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509420A (en) * 2001-11-13 2005-04-14 クローンテック ラボラトリーズ インク. Novel chromophores / fluorescent chromophores and their use
JP2006306858A (en) * 2005-03-30 2006-11-09 Fukuda Gakuen Allergen of asthmatic allergy and fluorescent protein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509420A (en) * 2001-11-13 2005-04-14 クローンテック ラボラトリーズ インク. Novel chromophores / fluorescent chromophores and their use
JP2006306858A (en) * 2005-03-30 2006-11-09 Fukuda Gakuen Allergen of asthmatic allergy and fluorescent protein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012057573; PNAS,Vol.99,No.7(2002)p.4256-4261 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048794A (en) * 2017-09-12 2019-03-28 国立大学法人横浜国立大学 Detection probe for screening of antibody producing cells, and use thereof
JP2021162549A (en) * 2020-04-03 2021-10-11 学校法人福岡大学 Metal detection reagent containing multicolor fluorescent protein, metal detection method of test liquid, recombinant vector, and evaluation method of metal behavior
JP7460129B2 (en) 2020-04-03 2024-04-02 学校法人福岡大学 Metal detection reagents containing multicolor fluorescent proteins, methods for detecting metals in test solutions, recombinant vectors, and methods for evaluating metal behavior

Also Published As

Publication number Publication date
JP5334007B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
CN114258399A (en) Protein container, polynucleotide, vector, expression cassette, cell, method for producing container, method for identifying pathogen or diagnosing disease, use of container, and diagnostic kit
Davies et al. Recombinant baculovirus vectors expressing glutathione–S–transferase fusion proteins
WO2003042401A3 (en) Novel chromophores/fluorophores and methods for using the same
JP5334007B2 (en) Multi-color fluorescent protein containing ultra-long wavelength fluorescent color
CA2474108A1 (en) Novel fluorescent proteins from aequorea coerulscens and methods for using same
WO2015120548A1 (en) Genetically encoded photocleavable proteins
ES2254043T1 (en) FLUORESCENT PROTEINS AND CHROMOPROTEINS FROM HYDROZO SPECIES THAT ARE NOT AEQUOREA AND METHODS TO USE THEM.
ES2254044T1 (en) FLUORESCENT PROTEINS OF THE COPEPODA SPECIES AND METHODS FOR USE.
CN103923902B (en) A kind of pulmonary cancer diagnosis biological reagent, preparation method and application
CA2606876C (en) Fluorescent proteins and uses thereof
CA2434737A1 (en) Non aggregating fluorescent proteins and methods for using the same
WO2017155101A1 (en) Fluorescent protein
KR101101986B1 (en) Fast maturating red fluorescent protein, FmRed, as a novel reporter and molecular probe
WO2008085502A2 (en) A green fluorescent protein optimized for expression with self-cleaving polypeptides
KR101523834B1 (en) Red Fluorescence Protein Variants
CN102181465B (en) Fluorescent clone screening vector and preparation and application thereof
JP2007254371A (en) Eel fluorescent protein
KR20200075975A (en) Red Fluorescence Protein Variants for Enhancing Fluorescent Intensity
JP2008141988A (en) Anguilla fluorescent protein
Delgado-Galván et al. Red fluorescent protein (DsRFP) optimization for Entamoeba histolytica expression
KR101973275B1 (en) Generation of fluorescent bacteria with lumazine protein and riboflavin biosynthetic genes
JP2006087435A (en) New polypeptide and dna encoding the same
CA2467383A1 (en) Rapidly maturing fluorescent proteins and methods for using the same
EP1674478A1 (en) Fusion proteins and method for determining protein-protein-interactions in living cells and cell lysates, nucleic acids encoding these fusion proteins, as well as vectors and kits containing these
Cheng et al. Fluorescence-based characterization of genetically encoded peptides that fold in live cells: progress toward a generic hairpin scaffold

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees