JP2008104319A - Noncontact power transmission device - Google Patents

Noncontact power transmission device Download PDF

Info

Publication number
JP2008104319A
JP2008104319A JP2006286056A JP2006286056A JP2008104319A JP 2008104319 A JP2008104319 A JP 2008104319A JP 2006286056 A JP2006286056 A JP 2006286056A JP 2006286056 A JP2006286056 A JP 2006286056A JP 2008104319 A JP2008104319 A JP 2008104319A
Authority
JP
Japan
Prior art keywords
power transmission
coil
circuit
voltage
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006286056A
Other languages
Japanese (ja)
Inventor
Hideki Kojima
秀樹 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2006286056A priority Critical patent/JP2008104319A/en
Publication of JP2008104319A publication Critical patent/JP2008104319A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact power transmission device which suppresses currents flowing through a power transmission coil and a receiving coil, downsizes the power transmission/receiving coils, and uses inexpensive electronic components without using special electronic components. <P>SOLUTION: The noncontact power transmission device supplies electric power through electromagnetic induction to the receiving coil L2 of a receiving unit from the power transmission coil L1 of the power transmission device, wherein the receiving unit is arranged in a housing of electronic equipment using a low voltage. In the power transmission device, a voltage step-up circuit 12 is provided to change a DC low-voltage input into a high voltage, and the current flowing through the power transmission coil L1 is suppressed to a predetermined current, then a voltage generated in the receiving coil L2 is changed by a voltage step-down circuit 22 to obtain a predetermined low voltage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、携帯用電子機器の非接触電力伝送装置に関するものである。   The present invention relates to a non-contact power transmission device for portable electronic equipment.

近年、携帯電話、デジタタルカメラ、液晶テレビ等の各種携帯用デジタル機器が日常的に多用されている。このような携帯機器は、通常、低電圧の充電式電池を内蔵しており、適宜充電する必要がある。この充電には、各種の方法が採用されているが、携帯機器に充電用アダプターやコードなどを接続することなく、充電台の上に置くだけで簡単に充電できる電磁誘導を利用した非接触電力伝送装置が提案されている。   In recent years, various portable digital devices such as mobile phones, digital cameras, and liquid crystal televisions are frequently used on a daily basis. Such portable devices usually have a built-in low voltage rechargeable battery and need to be charged appropriately. Various methods are used for this charging, but non-contact power using electromagnetic induction that can be easily charged just by placing it on a charging stand without connecting a charging adapter or cord to a portable device. Transmission devices have been proposed.

図1に一般的な非接触電力伝送回路を示す。図において、送電装置10は送電コイルL1と並列に共振コンデンサC1が接続され、送電コイルL1と直列に制御用スイッチング素子Q1が接続されている。さらに、スイッチング素子Q1には発振回路11とドライブコイルL3が接続されている。   FIG. 1 shows a general contactless power transmission circuit. In the figure, the power transmission device 10 has a resonance capacitor C1 connected in parallel with the power transmission coil L1, and a control switching element Q1 connected in series with the power transmission coil L1. Further, an oscillation circuit 11 and a drive coil L3 are connected to the switching element Q1.

受電装置20は受電コイルL2と並列に接続された共振コンデンサC2を備え、その両端に整流平滑回路21を設けた構成である。そして、送電コイルL1と異なる筐体に実装された受電コイルL2とを対向させ、送電コイルL1から受電コイルL2に電力を伝達する非接触電力伝送装置である。
例えば、特許文献1における従来の回路図。
The power receiving device 20 includes a resonant capacitor C2 connected in parallel with the power receiving coil L2, and has a rectifying and smoothing circuit 21 at both ends thereof. And it is the non-contact electric power transmission apparatus which makes the power receiving coil L2 mounted in the housing | casing different from the power transmission coil L1 oppose, and transmits electric power from the power transmission coil L1 to the power receiving coil L2.
For example, a conventional circuit diagram in Patent Document 1.

送電装置10において、直流入力電圧DCが低い場合、送電コイルL1に流れる電流は大きくなる。
また、受電装置20において、受電コイルL2と共振コンデンサC2で共振回路を用いているため、低電圧出力を得ようとすると出力電流が増加、受電コイルL2に流れる電流が出力電流の2倍以上の実効電流が流れる。
In the power transmission device 10, when the DC input voltage DC is low, the current flowing through the power transmission coil L1 increases.
Further, since the power receiving device 20 uses a resonant circuit with the power receiving coil L2 and the resonant capacitor C2, the output current increases when a low voltage output is obtained, and the current flowing through the power receiving coil L2 is more than twice the output current. Effective current flows.

以上のように、低電圧入力または低電圧出力の場合、送電コイルまたは受電コイルに大きな電流が流れるため発熱を伴う。この発熱を軽減するために一般的には、リッツ線、編組線等の多芯線を用いたコイルが必要となる。
しかし、多芯線を用いるとコイルの小型化が難しい。また、送電コイルと受電コイルの結合も悪くなり特性を悪化させる。
As described above, in the case of a low voltage input or a low voltage output, heat is generated because a large current flows through the power transmission coil or the power reception coil. In order to reduce this heat generation, a coil using a multi-core wire such as a litz wire or a braided wire is generally required.
However, when a multi-core wire is used, it is difficult to reduce the size of the coil. In addition, the coupling between the power transmission coil and the power reception coil is also deteriorated and the characteristics are deteriorated.

また、ACワイド入力仕様の場合、低電圧入力では送電コイルに流れる電流が大きくなり、高電圧入力では、送電コイルに流れる電流は小さいが送電側の共振コンデンサや制御用スイッチング素子に高電圧が加わるため、高耐圧の特殊電子部品が必要となる。
特開2005−278400号公報
In the case of the AC wide input specification, the current flowing through the power transmission coil becomes large at low voltage input, and the current flowing through the power transmission coil is small at high voltage input, but a high voltage is applied to the resonance capacitor and control switching element on the power transmission side. Therefore, a special electronic component with a high withstand voltage is required.
JP-A-2005-278400

本発明は、上記問題点に鑑み、送電コイル、受電コイルに流れる電流を抑制し、送受電コイルの小型化を図るとともに特殊電子部品を用いることなく安価な電子部品を用いる非接触電力伝送装置を提供するものである。   In view of the above-described problems, the present invention provides a non-contact power transmission device that suppresses current flowing in a power transmission coil and a power reception coil, reduces the size of the power transmission / reception coil, and uses inexpensive electronic components without using special electronic components. It is to provide.

本発明は、上記課題を解決するために、低電圧を用いる電子機器の筐体内に配置された受電装置の受電コイルに送電装置の送電コイルから電磁誘導により電力を供給する非接触電力伝送装置において、直流低電圧入力を高電圧にする昇圧回路を設け、送電コイルに流れる電流を所定の電流に抑制し、受電コイルに発生した電圧を降圧回路により所定の低電圧を得ることを特徴とする。
さらに、交流ワイド入力に対し昇降圧回路を設け、送電コイルに流れる電流を所定の電流に抑制し、受電コイルに発生した電圧を降圧回路により所定の低電圧を得ることを特徴とする。前記昇圧回路または昇降圧回路に非絶縁型ON/OFF式フライバックコンバータを用いたことを特徴とする。
In order to solve the above-described problem, the present invention provides a non-contact power transmission device that supplies power to a power receiving coil of a power receiving device disposed in a casing of an electronic device using a low voltage by electromagnetic induction from a power transmitting coil of the power transmitting device. A step-up circuit is provided for raising the DC low voltage input to a high voltage, the current flowing through the power transmission coil is suppressed to a predetermined current, and the voltage generated in the power receiving coil is obtained by the step-down circuit.
Furthermore, a step-up / step-down circuit is provided for the AC wide input, a current flowing in the power transmission coil is suppressed to a predetermined current, and a voltage generated in the power receiving coil is obtained by a step-down circuit to obtain a predetermined low voltage. A non-insulated ON / OFF type flyback converter is used for the booster circuit or the step-up / step-down circuit.

上記構成によって、低電圧を用いる電子機器における電力損失を低減し、大型で高価な電子部品を用いることなく、受電装置に安定した出力が得られる非接触電力伝送装置を実現できる。   With the above configuration, it is possible to realize a non-contact power transmission device that can reduce power loss in an electronic device using a low voltage and can obtain a stable output in a power receiving device without using a large and expensive electronic component.

図2は、本発明の非接触電力伝送装置の第1の形態を示す回路ブロック図である。
図2において、図1との違いは低電圧の直流入力電源DCと送電装置10の間に昇圧回路11を設けたことおよび受電装置20と出力Voutの間に降圧回路22を設けたことが特徴である。図1と同一回路には同じ符号を付した。回路図中の点(・)はコイルの極性を示す。
FIG. 2 is a circuit block diagram showing a first embodiment of the non-contact power transmission apparatus of the present invention.
2 is different from FIG. 1 in that a booster circuit 11 is provided between the low-voltage DC input power source DC and the power transmission device 10, and a step-down circuit 22 is provided between the power reception device 20 and the output Vout. It is. The same circuits as those in FIG. The dot (•) in the circuit diagram indicates the polarity of the coil.

図2において、低電圧の直流入力電源DCは昇圧回路12により必要とする所定の昇圧電圧に昇圧し、送電装置10に安定した高電圧を印加し、送電装置10の送電コイルL1に流れる電流を小さくし受電装置20に電力伝送する。そして、受電装置20の受電コイルL2には高い受電電圧を得ることから、整流平滑回路の出力も高電圧となる。携帯機器等が必要とする所定の低い安定した直流電圧(大電流)Voutを得るため降圧回路22を設ける。   In FIG. 2, a low-voltage DC input power source DC is boosted to a predetermined boosted voltage required by the booster circuit 12, a stable high voltage is applied to the power transmission device 10, and a current flowing through the power transmission coil L <b> 1 of the power transmission device 10 is increased. The power is transmitted to the power receiving apparatus 20 by reducing the power. And since the high receiving voltage is obtained in the receiving coil L2 of the receiving device 20, the output of a rectification smoothing circuit also becomes a high voltage. A step-down circuit 22 is provided to obtain a predetermined low stable DC voltage (large current) Vout required by a portable device or the like.

図3は、本発明の非接触電力伝送装置の第2の形態を示す回路ブロック図である。
図3において、図1との違いは交流ワイド入力の場合であって、入力ACと送電装置10の間に交流を直流に変換するための整流平滑回路15とワイド入力を所定の高電圧にするための昇降圧回路14を設けたことおよび受電装置20と出力Voutの間に降圧回路22を設けたことが特徴である。図1と同一回路には同じ符号を付した。回路図中の点(・)はコイルの極性を示す。
FIG. 3 is a circuit block diagram showing a second embodiment of the non-contact power transmission apparatus of the present invention.
In FIG. 3, the difference from FIG. 1 is the case of AC wide input, and the rectifying and smoothing circuit 15 for converting AC to DC between the input AC and the power transmission device 10 and the wide input are set to a predetermined high voltage. The step-up / step-down circuit 14 is provided, and the step-down circuit 22 is provided between the power receiving device 20 and the output Vout. The same circuits as those in FIG. The dot (•) in the circuit diagram indicates the polarity of the coil.

図3において、交流ワイド入力ACは交流を直流に変換するための整流平滑回路15の直流出力電圧をワイド入力を所定の高電圧にするための昇降圧回路14により必要とする所定の電圧に昇高圧し、送電装置10に安定した高電圧を印加し、送電装置10の送電コイルL1に流れる電流を小さくし受電装置20に電力伝送する。そして、受電装置20の受電コイルL2には高い受電電圧を得ることから、整流平滑回路の出力も高電圧となる。携帯機器等が必要とする所定の低い安定した直流電圧(大電流)Voutを得るため降圧回路22を設ける。   In FIG. 3, the AC wide input AC increases the DC output voltage of the rectifying and smoothing circuit 15 for converting AC to DC to a predetermined voltage required by the step-up / down circuit 14 for setting the wide input to a predetermined high voltage. High voltage is applied, a stable high voltage is applied to the power transmission device 10, the current flowing through the power transmission coil L <b> 1 of the power transmission device 10 is reduced, and power is transmitted to the power reception device 20. And since the high receiving voltage is obtained in the receiving coil L2 of the receiving device 20, the output of a rectification smoothing circuit also becomes a high voltage. A step-down circuit 22 is provided to obtain a predetermined low stable DC voltage (large current) Vout required by a portable device or the like.

このように、送電装置においては、昇圧回路または昇降圧回路により高電圧が印可されることから送電コイルに流れる電流を小さくでき自己発熱を抑制できる。また、受電装置においても高電圧を受電させ受電コイルに流れる電流を小さくできることから受電コイルにおける自己発熱を抑制できる。さらに、受電装置の高電圧出力を高圧回路により必要とする携帯機器の低電圧にすることにより低電圧かつ大電流の出力を得ることができる。   Thus, in the power transmission device, since a high voltage is applied by the booster circuit or the step-up / step-down circuit, the current flowing through the power transmission coil can be reduced and self-heating can be suppressed. Further, since the power receiving device can also receive a high voltage and reduce the current flowing through the power receiving coil, self-heating in the power receiving coil can be suppressed. Furthermore, a low voltage and large current output can be obtained by reducing the high voltage output of the power receiving device to a low voltage of a portable device that requires a high voltage circuit.

つぎに、各回路の実施例を図に示す。
図4は、第1の形態で用いた送電装置の前段に設けた低い直流出力Vinを所定の高い直流電圧Voutを得る昇圧回路例を示す。
図4の昇圧回路は基本的な昇圧チョッパー回路であり、入力端子Vinから出力端子Voutに電流が流れるようにインダクタLとダイオードDの直列回路が接続されており、インダクタLとダイオードDの接続点とGND間にスイッチング素子Qが接続され、さらに出力端子VoutとGND間にコンデンサCが接続されている構成である。
Next, examples of each circuit are shown in the drawings.
FIG. 4 shows an example of a booster circuit that obtains a predetermined high DC voltage Vout from a low DC output Vin provided in the previous stage of the power transmission device used in the first embodiment.
The booster circuit in FIG. 4 is a basic booster chopper circuit, and a series circuit of an inductor L and a diode D is connected so that a current flows from the input terminal Vin to the output terminal Vout. And GND, a switching element Q is connected, and a capacitor C is connected between the output terminal Vout and GND.

図5は昇圧チョッパ回路の代わりに用いられる非絶縁型ON/OFF式フライバックコンバータ回路例を示す。入力端子VinとGND間にトランスTの一次コイルLpとスイッチング素子Qの直列回路が接続されており、トランスTの二次コイルLsとダイオードDの直列回路が出力端子VoutとGND間に接続され、さらに出力端子VoutとGND間にコンデンサCが接続されている構成である。   FIG. 5 shows an example of a non-insulated ON / OFF type flyback converter circuit used in place of the step-up chopper circuit. A series circuit of the primary coil Lp of the transformer T and the switching element Q is connected between the input terminal Vin and GND, and a series circuit of the secondary coil Ls of the transformer T and the diode D is connected between the output terminal Vout and GND. Further, a capacitor C is connected between the output terminal Vout and GND.

図6は、第2の形態で用いた送電装置の前段に設けた交流ワイド電圧入力Vinを所定の直流電圧Voutを得る昇降圧回路例を示す。
図6の昇降圧回路は基本的な昇降圧チョッパー回路であり、入力端子Vinと出力側GND間にスイッチング素子QとインダクタLの直列回路を接続し、スイッチング素子QとインダクタLとの接続点と出力端子Vout間にダイオードDが接続されており、さらに出力端子Voutと入力側GND間にコンデンサCが接続されている構成である。
なお、昇降圧回路は、図5で示した非絶縁型ON/OFF式フライバックコンバータ回路を用いてもよい。
FIG. 6 shows an example of a step-up / step-down circuit that obtains a predetermined DC voltage Vout from the AC wide voltage input Vin provided in the previous stage of the power transmission device used in the second embodiment.
The step-up / step-down circuit in FIG. 6 is a basic step-up / step-down chopper circuit. A series circuit of a switching element Q and an inductor L is connected between the input terminal Vin and the output side GND, and a connection point between the switching element Q and the inductor L is A diode D is connected between the output terminals Vout, and a capacitor C is connected between the output terminal Vout and the input side GND.
As the step-up / down circuit, the non-insulated ON / OFF type flyback converter circuit shown in FIG. 5 may be used.

図7は第1の形態、第2の形態で用いた受電装置の高い直流出力Vinを所定の低い直流電圧Voutにするための降圧回路例を示す。図7の降圧回路は基本的な降圧チョッパ回路であり、入力端子VinとVout間にスイッチング素子QとインダクタLの直列回路を接続し、スイッチング素子QとインダクタLとの接続点とGND間にダイオードDが接続されており、さらに出力端子VoutとGND間にコンデンサCが接続されている構成である。   FIG. 7 shows an example of a step-down circuit for setting the high DC output Vin of the power receiving device used in the first and second embodiments to a predetermined low DC voltage Vout. The step-down circuit in FIG. 7 is a basic step-down chopper circuit, in which a series circuit of a switching element Q and an inductor L is connected between input terminals Vin and Vout, and a diode is connected between a connection point of the switching element Q and the inductor L and GND. D is connected, and a capacitor C is connected between the output terminal Vout and GND.

なお、上記に記した、昇圧回路、非絶縁型ON/OFF式フライバックコンバータ回路、昇降圧回路、降圧回路における出力安定化のためのフィードバック回路はスイッチング素子Qの制御端子に制御信号を印加し駆動することで得られるため、ここでは特に記載せず。   The feedback circuit for stabilizing the output in the booster circuit, non-isolated ON / OFF type flyback converter circuit, step-up / step-down circuit, and step-down circuit described above applies a control signal to the control terminal of the switching element Q. Since it is obtained by driving, it is not described here.

以上、本発明の非接触電力伝送装置の一形態を述べてきたがこれに限られるものではない。形態例ではRCC共振コンバータで示したが他の自励発振および他励発振回路を用いてもよい。また、送電側の共振コンデンサは送電コイルと並列に接続した並列共振を用いたが直列接続における直列共振を用いてもよい。さらに、受電側の降圧回路は同期整流方式を用いてもよい。   As mentioned above, although one form of the non-contact electric power transmission apparatus of this invention has been described, it is not restricted to this. In the embodiment, the RCC resonant converter is shown, but other self-excited oscillation and separately-excited oscillation circuits may be used. The resonance capacitor on the power transmission side uses parallel resonance connected in parallel with the power transmission coil, but may use series resonance in series connection. Further, a synchronous rectification method may be used for the step-down circuit on the power receiving side.

従来の非接触電力伝送装置を示すブロック回路図Block circuit diagram showing a conventional non-contact power transmission device 本発明の非接触電力伝送装置の第1の形態を示すブロック回路図The block circuit diagram which shows the 1st form of the non-contact electric power transmission apparatus of this invention 本発明の非接触電力伝送装置の第2の形態を示すブロック回路図The block circuit diagram which shows the 2nd form of the non-contact electric power transmission apparatus of this invention 本発明の非接触電力伝送装置に用いる昇圧回路例Example of a booster circuit used in the non-contact power transmission device of the present invention 本発明の非接触電力伝送装置に用いる非絶縁型ON/OFF式フライバックコンバータ回路例Non-isolated ON / OFF flyback converter circuit example used in the non-contact power transmission apparatus of the present invention 本発明の非接触電力伝送装置に用いる昇降圧回路例Example of a step-up / down circuit used in the non-contact power transmission apparatus of the present invention 本発明の非接触電力伝送装置に用いる降圧回路例Example of step-down circuit used in the non-contact power transmission apparatus of the present invention

符号の説明Explanation of symbols

10 送電装置
11 発振回路
12 昇圧回路
14 昇降圧回路
15、21 整流平滑回路
20 受電装置
22 降圧回路
L1 送電コイル
L2 受電コイル
L3 ドライブコイル
C1、C2 共振コンデンサ
Q1 スイッチング素子
DESCRIPTION OF SYMBOLS 10 Power transmission apparatus 11 Oscillation circuit 12 Boosting circuit 14 Buck-boost circuit 15, 21 Rectification smoothing circuit 20 Power receiving apparatus 22 Buck circuit L1 Power transmission coil L2 Power reception coil L3 Drive coil C1, C2 Resonance capacitor Q1 Switching element

Claims (3)

低電圧を用いる電子機器の筐体内に配置された受電装置の受電コイルに送電装置の送電コイルから電磁誘導により電力を供給する非接触電力伝送装置において、直流低電圧入力を高電圧にする昇圧回路を設け、該送電コイルに流れる電流を所定の電流に抑制し、該受電コイルに発生した電圧を降圧回路により所定の低電圧を得ることを特徴とする非接触電力伝送装置。 In a non-contact power transmission device that supplies power from a power transmission coil of a power transmission device to a power reception coil of a power reception device disposed in a casing of an electronic device that uses low voltage by using electromagnetic induction, a booster circuit that makes a DC low voltage input a high voltage A non-contact power transmission apparatus characterized in that a current flowing through the power transmission coil is suppressed to a predetermined current, and a predetermined low voltage is obtained from the voltage generated in the power receiving coil by a step-down circuit. 低電圧を用いる電子機器の筐体内に配置された受電装置の受電コイルに送電装置の送電コイルから電磁誘導により電力を供給する非接触電力伝送装置において、交流ワイド入力に対し昇降圧回路を設け、該送電コイルに流れる電流を所定の電流に抑制し、該受電コイルに発生した電圧を降圧回路により所定の低電圧を得ることを特徴とする非接触電力伝送装置。 In a non-contact power transmission device that supplies power by electromagnetic induction from a power transmission coil of a power transmission device to a power reception coil disposed in a casing of an electronic device that uses low voltage, a step-up / step-down circuit is provided for an AC wide input, A non-contact power transmission device characterized in that a current flowing through the power transmission coil is suppressed to a predetermined current, and a voltage generated in the power receiving coil is obtained by a step-down circuit. 前記昇圧回路または昇降圧回路に非絶縁型ON/OFF式フライバックコンバータを用いたことを特徴とする請求項1または請求項2記載の非接触電力伝送装置。 3. The non-contact power transmission device according to claim 1, wherein a non-insulated ON / OFF flyback converter is used for the booster circuit or the step-up / step-down circuit.
JP2006286056A 2006-10-20 2006-10-20 Noncontact power transmission device Pending JP2008104319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286056A JP2008104319A (en) 2006-10-20 2006-10-20 Noncontact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286056A JP2008104319A (en) 2006-10-20 2006-10-20 Noncontact power transmission device

Publications (1)

Publication Number Publication Date
JP2008104319A true JP2008104319A (en) 2008-05-01

Family

ID=39438209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286056A Pending JP2008104319A (en) 2006-10-20 2006-10-20 Noncontact power transmission device

Country Status (1)

Country Link
JP (1) JP2008104319A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074949A (en) * 2008-09-18 2010-04-02 Seiko Epson Corp Commutation controller, full-wave rectifier, electric power receiver, contactless power transmission system, and electronic apparatus
CN101860086A (en) * 2010-04-26 2010-10-13 重庆大学 Overhead line energy acquisition method and device for supply energy to on-line electric power monitoring equipment
KR20110067615A (en) * 2009-12-14 2011-06-22 삼성전자주식회사 Wireless power transmitter and wireless power receiver
WO2011125328A1 (en) 2010-04-07 2011-10-13 パナソニック株式会社 Wireless power transmission system
WO2015008506A1 (en) * 2013-07-19 2015-01-22 株式会社Ihi Power supply device and contactless power supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096854A (en) * 2002-08-30 2004-03-25 Aichi Electric Co Ltd Noncontact power unit
JP2006115592A (en) * 2004-10-14 2006-04-27 Silex Technology Inc Non-contact type charging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096854A (en) * 2002-08-30 2004-03-25 Aichi Electric Co Ltd Noncontact power unit
JP2006115592A (en) * 2004-10-14 2006-04-27 Silex Technology Inc Non-contact type charging apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074949A (en) * 2008-09-18 2010-04-02 Seiko Epson Corp Commutation controller, full-wave rectifier, electric power receiver, contactless power transmission system, and electronic apparatus
KR20110067615A (en) * 2009-12-14 2011-06-22 삼성전자주식회사 Wireless power transmitter and wireless power receiver
KR101718312B1 (en) * 2009-12-14 2017-03-21 삼성전자주식회사 Wireless Power Transmitter and Wireless Power Receiver
WO2011125328A1 (en) 2010-04-07 2011-10-13 パナソニック株式会社 Wireless power transmission system
US8742626B2 (en) 2010-04-07 2014-06-03 Panasonic Corporation Wireless power transmission system
CN101860086A (en) * 2010-04-26 2010-10-13 重庆大学 Overhead line energy acquisition method and device for supply energy to on-line electric power monitoring equipment
WO2015008506A1 (en) * 2013-07-19 2015-01-22 株式会社Ihi Power supply device and contactless power supply system
CN105379065A (en) * 2013-07-19 2016-03-02 株式会社Ihi Power supply device and contactless power supply system
JPWO2015008506A1 (en) * 2013-07-19 2017-03-02 株式会社Ihi Power feeding device and non-contact power feeding system
CN105379065B (en) * 2013-07-19 2018-09-28 株式会社 Ihi For electric installation and contactless power supply system
US10097012B2 (en) 2013-07-19 2018-10-09 Ihi Corporation Power supplying device and wireless power-supplying system

Similar Documents

Publication Publication Date Title
US8314513B2 (en) Power transmission control device, power transmission device, power reception control device, power reception device, electronic apparatus, and contactless power transmission system
JP5550785B2 (en) Circuit of contactless inductive power transmission system
US7542316B2 (en) Switching power supply unit
JP5867592B2 (en) Power transmission system and power transmission device used therefor
KR101818773B1 (en) Power conversion device for resonance wireless power transfer system
JP6103061B2 (en) Power feeding device and non-contact power feeding system
KR101438910B1 (en) The Wired-Wireless Combined Power Transmission Apparatus and The Method using the same
US8351230B2 (en) Switching power supply with plural resonant converters and variable frequency
US20110025289A1 (en) Two-stage switching power supply
JP2013078171A (en) Power receiving device and non-contact power supply system
US10938244B2 (en) Bidirectional wireless power transmission system
US20180041073A1 (en) Power Converter with Output Voltage Control
US20130334893A1 (en) Power transmission system and power transmitting apparatus
US20140239889A1 (en) Wireless charging system
CN101064475B (en) Multi-output DC-DC converter having improved cross modulated performance
JP2008104319A (en) Noncontact power transmission device
CN107565705B (en) Control method of electric energy transmitting terminal, electric energy transmitting terminal and non-contact electric energy transmission device
JP2012005185A (en) Non-contact power transmission and communication system
JP5412515B2 (en) Power supply
TW576011B (en) Power supply device
JP2013183548A (en) Wireless power transmission device
TWI295877B (en)
KR100997545B1 (en) Power supplying device
WO2015019908A1 (en) Wireless power transmission system
Miura et al. Bi-directional wireless charging between portable devices

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601