JP2008104265A - Control system for permanent-magnet-type-motor-driven rolling stock - Google Patents

Control system for permanent-magnet-type-motor-driven rolling stock Download PDF

Info

Publication number
JP2008104265A
JP2008104265A JP2006283339A JP2006283339A JP2008104265A JP 2008104265 A JP2008104265 A JP 2008104265A JP 2006283339 A JP2006283339 A JP 2006283339A JP 2006283339 A JP2006283339 A JP 2006283339A JP 2008104265 A JP2008104265 A JP 2008104265A
Authority
JP
Japan
Prior art keywords
voltage
inverter
permanent magnet
command value
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006283339A
Other languages
Japanese (ja)
Inventor
Yasushi Matsumoto
康 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006283339A priority Critical patent/JP2008104265A/en
Publication of JP2008104265A publication Critical patent/JP2008104265A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control system which can continue the control of a permanent magnet type motor by suppressing the rise and drop of DC voltage even when passing through a dead section zone. <P>SOLUTION: When passing through a section, this system detects a signal from an aerial line power failure detection signal 40, and selects a torque command τ2 output from a DC voltage adjusting means 20, and outputs it to a torque adjusting means 22. In this way, it calculates a torque command value for maintaining DC voltage at a command value, and performs the control of maintaining the DC voltage at the command value. Consequently, the DC voltage can be maintained and controlled as commanded even when passing through the section since the kinetic energy of a vehicle is larger than the switching loss of an inverter, so that normal operation can be quickly resumed at power recovery. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、交流架線を走行する永久磁石形電動機駆動鉄道車両の制御方式(以下、PM駆動鉄道車両の制御方式という)、特に交流架線停電時やデッドセクション区間通過時の制御方式に関する。   The present invention relates to a control system for a permanent magnet type motor-driven railway vehicle traveling on an AC overhead line (hereinafter referred to as a control system for a PM-driven railway vehicle), and more particularly to a control system at the time of an AC overhead power failure or passing through a dead section section.

この種のPM駆動鉄道車両制御方式の従来技術として、例えば特許文献1がある。
この制御方式は、永久磁石電動機から回生される電力を抑えて直流電圧が上昇しないようにして、負荷接触器の開放回数を減らして寿命を延ばすためのものである。
図3に、特許文献1に示された一般的な交流架線を走行するPM駆動鉄道車両の構成例を示す。パンタグラフ1と接地車輪4の間に高圧遮断器2と変圧器3の一次巻線が、変圧器3の二次巻線に架線側接触器5を介して整流器(コンバータとも言う)6の交流入力が、整流器6の直流出力PN間に平滑コンデンサ7、直流電圧検出器8、放電抵抗9と半導体スイッチ10の直列回路、及びインバータ11の直流入力が、インバータ11の出力に負荷接触器12を介して永久磁石形電動機13が、それぞれ接続されている。また、直流電圧検出器8の出力は第1の過電圧検知手段30と第2の過電圧検知手段31の入力に、第1の過電圧検知手段30の出力はインバータ11および負荷接触器12に、第2の過電圧検知手段31の出力は論理積手段43の入力に、架線停電検知手段40の出力は論理積手段43の入力とトルク零制御手段42の入力に、回生検知手段41の出力は論理積手段43の入力とトルク零制御手段42の入力に、論理積手段43の出力は半導体スイッチ10に、トルク零制御手段42の出力はインバータ11に、それぞれ接続されている。
As a prior art of this type of PM drive railway vehicle control system, for example, there is Patent Document 1.
This control method is intended to extend the life of the load contactor by reducing the number of times the load contactor is opened, by suppressing the power regenerated from the permanent magnet motor so that the DC voltage does not rise.
FIG. 3 shows a configuration example of a PM-driven railway vehicle that travels on a general AC overhead line shown in Patent Document 1. The primary winding of the high voltage circuit breaker 2 and the transformer 3 is connected between the pantograph 1 and the ground wheel 4, and the AC input of the rectifier (also referred to as a converter) 6 is connected to the secondary winding of the transformer 3 via the overhead wire side contactor 5. However, between the DC output PN of the rectifier 6, the smoothing capacitor 7, the DC voltage detector 8, the series circuit of the discharge resistor 9 and the semiconductor switch 10, and the DC input of the inverter 11 are connected to the output of the inverter 11 via the load contactor 12. The permanent magnet motors 13 are connected to each other. The output of the DC voltage detector 8 is input to the first overvoltage detection means 30 and the second overvoltage detection means 31, the output of the first overvoltage detection means 30 is output to the inverter 11 and the load contactor 12, and the second. The output of the overvoltage detection means 31 is the input of the logical product means 43, the output of the overhead wire power failure detection means 40 is the input of the logical product means 43 and the input of the torque zero control means 42, and the output of the regeneration detection means 41 is the logical product means. The output of the logical product means 43 is connected to the semiconductor switch 10, and the output of the torque zero control means 42 is connected to the inverter 11.

このような構成において、PM駆動鉄道車両がブレーキをかけながらデッドセクション区間を通過する際の動作を説明する。駆動車両がブレーキをかけながらデッドセクション区間を通過する際は、架線停電検知手段40が停電を検知し、また回生検知手段41が回生を検知する。トルク零制御手段42は、停電かつ回生の時に、永久磁石電動機13のトルクが零となるように調節動作を行う。回生トルクが零となるように制御しているので、平滑コンデンサ7に流れ込む回生エネルギーは零となり、電圧は上昇しない。したがって各部が正常に動作する時には、過電圧検知によってインバータ11をゲートオフする必要はなく、また負荷接触器12を開放する必要がなくなる。
論理積手段43は、停電かつ回生時に、第2の過電圧検出手段31が直流電圧の過電圧V2を検知した際に、半導体スイッチ10をオンさせて平滑コンデンサ7を放電させる。第1の過電圧検知手段30は停電かつ回生時に、直流電圧の過電圧V1(V1>V2)を検知した際に、インバータ11をオフさせると共に負荷接触器12を開放する。
In such a configuration, the operation when the PM drive railway vehicle passes through the dead section section while applying a brake will be described. When the driving vehicle passes through the dead section while applying a brake, the overhead line power failure detection means 40 detects a power failure, and the regeneration detection means 41 detects regeneration. The torque zero control means 42 performs an adjustment operation so that the torque of the permanent magnet motor 13 becomes zero during a power failure and regeneration. Since the regenerative torque is controlled to be zero, the regenerative energy flowing into the smoothing capacitor 7 is zero and the voltage does not increase. Therefore, when each part operates normally, it is not necessary to gate off the inverter 11 due to overvoltage detection, and it is not necessary to open the load contactor 12.
The logical product means 43 turns on the semiconductor switch 10 and discharges the smoothing capacitor 7 when the second overvoltage detection means 31 detects the overvoltage V2 of the DC voltage during a power failure and regeneration. The first overvoltage detection means 30 turns off the inverter 11 and opens the load contactor 12 when detecting an overvoltage V1 (V1> V2) of a DC voltage during a power failure and regeneration.

以上のように動作することで、永久磁石電動機13から回生される電力を抑えて直流電圧が上昇しないようにして、負荷接触器12の開放回数を減らして寿命を延ばすようにしている。
特開2000−50410号公報
By operating as described above, the power regenerated from the permanent magnet motor 13 is suppressed so that the DC voltage does not increase, and the number of times the load contactor 12 is opened is reduced to extend the life.
JP 2000-50410 A

上述のように、特許文献1に記載の方式では、直流電圧の上昇を抑制することは可能となるが、逆にインバータのスイッチングロスにより直流電圧が低下して、永久磁石形電動機の制御ができなくなり、復電しても通常の運転状態に速やかに復帰できないおそれがあるという問題があった。
したがって、この発明で解決しようとする課題は、デッドセクション区間通過時においても、直流電圧の上昇・下降を抑えて、永久磁石形電動機の制御を継続できる制御方式を提供することにある。
As described above, in the method described in Patent Document 1, it is possible to suppress an increase in DC voltage, but conversely, the DC voltage decreases due to switching loss of the inverter, and the permanent magnet motor can be controlled. There is a problem that even if power is restored, there is a possibility that the normal operation state cannot be promptly restored.
Therefore, the problem to be solved by the present invention is to provide a control system capable of continuing the control of the permanent magnet motor while suppressing the rise and fall of the DC voltage even when passing through the dead section section.

上述の課題を解決するために、第1の発明においては、交流架線からの交流電圧を直流電圧に変換するコンバータと、前記直流電圧を平滑する平滑コンデンサと、前記直流電圧を交流電圧に変換するインバータと、前記インバータ出力に負荷接触器を介して接続された永久磁石形電動機と、前記直流電圧の電極間に接続された放電抵抗と半導体スイッチとの直列回路と、を備えた鉄道車両の制御方式において、架線電圧検知手段と直流電圧調節手段とを備え、架線電圧が停電した際に、永久磁石電動機のトルクを前記インバータで調節して、前記直流電圧を指令値に追従させるようにする。
第2の発明においては、交流架線からの交流電圧を直流電圧に変換するコンバータと、前記直流電圧を平滑する平滑コンデンサと、前記直流電圧を交流電圧に変換するインバータと、インバータ出力に負荷接触器を介して接続された永久磁石形電動機と、前記直流電圧の電極間に接続された放電抵抗と半導体スイッチとの直列回路と、を備えた鉄道車両の制御方式において、デッドセクション検知手段と直流電圧調節手段とを備え、デッドセクション通過時に、永久磁石電動機のトルクを前記インバータで調節して、前記直流電圧を指令値に追従させるようにする。
In order to solve the above-described problem, in the first invention, a converter that converts an AC voltage from an AC overhead wire into a DC voltage, a smoothing capacitor that smoothes the DC voltage, and a converter that converts the DC voltage into an AC voltage. Control of a railway vehicle comprising an inverter, a permanent magnet motor connected to the inverter output via a load contactor, and a series circuit of a discharge resistor and a semiconductor switch connected between the electrodes of the DC voltage The system includes an overhead wire voltage detecting means and a direct current voltage adjusting means, and when the overhead wire voltage fails, the torque of the permanent magnet motor is adjusted by the inverter so that the direct current voltage follows the command value.
In the second invention, a converter for converting an AC voltage from an AC overhead wire to a DC voltage, a smoothing capacitor for smoothing the DC voltage, an inverter for converting the DC voltage to an AC voltage, and a load contactor at an inverter output In a railway vehicle control system comprising a permanent magnet motor connected via a DC voltage and a series circuit of a discharge resistor and a semiconductor switch connected between the electrodes of the DC voltage, a dead section detection means and a DC voltage are provided. And adjusting means for adjusting the torque of the permanent magnet motor with the inverter when passing through the dead section so that the DC voltage follows the command value.

第3の発明においては、第1および第2の発明における直流電圧が指令値を超えた場合、前記直流電圧の電極間に接続された放電抵抗と半導体スイッチとの直列回路の半導体スイッチをオンさせるようにする。
第4の発明においては、第1および第2の発明における直流電圧が指令値を超えた場合、前記インバータをオフさせると共に負荷遮断器を開放させるようにする。
In the third invention, when the DC voltage in the first and second inventions exceeds the command value, the semiconductor switch of the series circuit of the discharge resistor and the semiconductor switch connected between the electrodes of the DC voltage is turned on. Like that.
In the fourth invention, when the DC voltage in the first and second inventions exceeds the command value, the inverter is turned off and the load breaker is opened.

本発明では、デッドセクション通過の際に、永久磁石形電動機のトルクを調節して直流電圧を指令値どおりに維持して制御を継続できるようにした。この結果、直流電圧の変動はなくなり、復電時に速やかに通常運転に復帰することが可能となる。   In the present invention, when passing through the dead section, the torque of the permanent magnet type motor is adjusted to maintain the DC voltage in accordance with the command value so that the control can be continued. As a result, the DC voltage does not fluctuate and it is possible to quickly return to normal operation when power is restored.

本発明の要点は、電車がデッドセクションを通過する時には、直流電圧が指令値になるように永久磁石形電動機のトルクを調整することである。   The gist of the present invention is to adjust the torque of the permanent magnet motor so that the DC voltage becomes a command value when the train passes through the dead section.

図1に、本発明の第1の実施例を示す。パンタグラフ1と接地車輪4の間に高圧遮断器2と変圧器3の一次巻線が、変圧器3の二次巻線に架線側接触器5を介して整流器(コンバータとも言う)6の交流入力が、整流器6の直流出力PN間に平滑コンデンサ7、直流電圧検出器8、放電抵抗9と半導体スイッチ10の直列回路、及びインバータ11の直流入力が、インバータ11の出力に負荷接触器12を介して永久磁石形電動機13が、それぞれ接続されている。また、直流電圧検出器8の出力は第1の過電圧検知手段30の入力、第2の過電圧検知手段31の入力および直流電圧調節手段20の入力に、第1の過電圧検知手段30の出力はインバータ11および負荷接触器12に、第2の過電圧検知手段31の出力は半導体スイッチ10に、直流電圧調節手段20の出力(τ2)は切替手段21の一方の入力に、架線停電検知手段40の出力は切替手段21の制御入力に、切替手段21の出力はトルク調節手段22の入力に、トルク調節御手段22の出力はインバータ11に、それぞれ接続されている。また、切替手段21の他方の入力にはトルク指令τ1が入力される。   FIG. 1 shows a first embodiment of the present invention. The primary winding of the high voltage circuit breaker 2 and the transformer 3 is connected between the pantograph 1 and the ground wheel 4, and the AC input of the rectifier (also referred to as a converter) 6 is connected to the secondary winding of the transformer 3 via the overhead wire side contactor 5. However, between the DC output PN of the rectifier 6, the smoothing capacitor 7, the DC voltage detector 8, the series circuit of the discharge resistor 9 and the semiconductor switch 10, and the DC input of the inverter 11 are connected to the output of the inverter 11 via the load contactor 12. The permanent magnet motors 13 are connected to each other. The output of the DC voltage detector 8 is the input of the first overvoltage detection means 30, the input of the second overvoltage detection means 31, and the input of the DC voltage adjustment means 20, and the output of the first overvoltage detection means 30 is the inverter. 11 and the load contactor 12, the output of the second overvoltage detection means 31 is output to the semiconductor switch 10, the output (τ 2) of the DC voltage adjustment means 20 is input to one input of the switching means 21, and the output of the overhead line power failure detection means 40. Are connected to the control input of the switching means 21, the output of the switching means 21 is connected to the input of the torque adjusting means 22, and the output of the torque adjusting control means 22 is connected to the inverter 11, respectively. A torque command τ1 is input to the other input of the switching means 21.

このような構成における動作は下記のようになる。
直流電圧調節手段20は、直流電圧検出器8により検出された平滑コンデンサ7の電圧値と直流電圧指令値とを入力とし、平滑コンデンサ7の電圧が指令値に一致するための永久磁石形電動機13のトルク指令値τ2を算出する。
切替手段21は、通常の運転時は運転操作によって決まるトルク指令τ1側を選択し、停電時には架線停電検知手段40からの信号により、直流電圧調節手段20の出力であるトルク指令τ2を選択し、トルク調節手段22に出力する。
上述のようにPM駆動車両装置を制御することで、車両の運動エネルギーの方がインバータのスイッチングロスよりも十分に大きいことから、デッドセクション区間通過時も直流電圧を指令値どおりに維持して制御を継続することができ、復電時に速やかに通常運転に復帰することが可能となる。
The operation in such a configuration is as follows.
The DC voltage adjusting means 20 receives the voltage value of the smoothing capacitor 7 detected by the DC voltage detector 8 and the DC voltage command value as input, and the permanent magnet motor 13 for matching the voltage of the smoothing capacitor 7 with the command value. Torque command value τ2 is calculated.
The switching means 21 selects the torque command τ1 side determined by the driving operation during normal operation, and selects the torque command τ2 that is the output of the DC voltage adjusting means 20 based on a signal from the overhead line power failure detection means 40 during a power failure. Output to torque adjusting means 22.
By controlling the PM drive vehicle device as described above, the kinetic energy of the vehicle is sufficiently larger than the switching loss of the inverter, so the DC voltage is maintained as commanded even when passing through the dead section section. Can be continued, and it is possible to quickly return to normal operation when power is restored.

第1の過電圧検知手段30は、異常時に直流電圧が指令値を超えた場合にインバータ11をゲートオフにし、かつ負荷接触器12を開放させる動作をする。また第2の過電圧検知手段31は、異常時に直流電圧が指令値を超えた場合に半導体スイッチ10をオンさせコンデンサ7を放電させる動作をする。これらの動作は従来技術と同様である。   The first overvoltage detection means 30 operates to turn off the inverter 11 and open the load contactor 12 when the DC voltage exceeds the command value at the time of abnormality. The second overvoltage detection means 31 operates to turn on the semiconductor switch 10 and discharge the capacitor 7 when the DC voltage exceeds the command value at the time of abnormality. These operations are the same as in the prior art.

図2に、本発明の第2の実施例を示す。第1の実施例との違いは、第1の実施例では、切替手段21の切替は架線が停電になったことを検知する架線停電検知手段40で行っているが、第2の実施例では、電車がセクションを通過する直前に信号を出すデッドセクション検知手段23で行っている点である。その他は第1の実施例と同じ動作であり、同様に車両の運動エネルギーの方がインバータのスイッチングロスよりも十分に大きいことから、デッドセクション区間通過時も直流電圧を指令値どおりに維持して制御を継続することができ、復電時に速やかに通常運転に復帰することが可能となる。     FIG. 2 shows a second embodiment of the present invention. The difference from the first embodiment is that, in the first embodiment, the switching means 21 is switched by the overhead line power failure detection means 40 that detects that the overhead line has failed, but in the second embodiment, This is performed by the dead section detection means 23 that outputs a signal immediately before the train passes through the section. The rest of the operation is the same as in the first example. Similarly, the kinetic energy of the vehicle is sufficiently larger than the switching loss of the inverter, so the DC voltage is maintained as commanded even when passing through the dead section section. Control can be continued, and normal operation can be quickly restored upon power recovery.

本発明は、交流入力の停電時に永久磁石形電動機のトルクを調整することにより、直流電圧を指令値に維持する技術であり、鉄道車両の制御に限らず、産業用可変速システムなどへの適用が可能である。   The present invention is a technique for maintaining a DC voltage at a command value by adjusting the torque of a permanent magnet type motor at the time of an AC input power failure, and is applied not only to control of a railway vehicle but also to an industrial variable speed system or the like. Is possible.

本発明の第1の実施形態を説明する永久磁石電動機駆動鉄道車両の装置の構成例Configuration Example of Permanent Magnet Motor Driven Railway Vehicle Device for explaining the First Embodiment of the Present Invention 本発明の第2の実施形態を説明する永久磁石電動機駆動鉄道車両の装置の構成例Configuration Example of Permanent Magnet Motor Driven Railway Vehicle Device for explaining Second Embodiment of the Present Invention 背景技術を説明する従来の永久磁石電動機駆動鉄道車両の装置の構成例Configuration Example of Conventional Permanent Magnet Motor Driven Railway Vehicle Explaining Background Art

符号の説明Explanation of symbols

1・・・パンタグラフ 2・・・高圧遮断機 3・・・変圧器
4・・・接地車輪 5・・・架線側接触器 6・・・整流器
7・・・平滑コンデンサ 8・・・直流電圧検出器
9・・・放電抵抗 10・・・半導体スイッチ 11・・・インバータ
12・・・負荷接触器 13・・・永久磁石形電動機
20・・・直流電圧調整手段 21・・・切替手段
22・・・トルク調節手段 23・・・デッドセクション検知手段
30・・・第1の過電圧検知手段 31・・・第2の過電圧検知手段
40・・・架線停電検知手段 41・・・回生検知手段
42・・・トルク零制御手段 43・・・論理積手段
DESCRIPTION OF SYMBOLS 1 ... Pantograph 2 ... High voltage circuit breaker 3 ... Transformer 4 ... Ground wheel 5 ... Overhead side contactor 6 ... Rectifier 7 ... Smoothing capacitor 8 ... DC voltage detection vessel
DESCRIPTION OF SYMBOLS 9 ... Discharge resistance 10 ... Semiconductor switch 11 ... Inverter 12 ... Load contactor 13 ... Permanent magnet type motor 20 ... DC voltage adjustment means 21 ... Switching means
DESCRIPTION OF SYMBOLS 22 ... Torque adjustment means 23 ... Dead section detection means 30 ... 1st overvoltage detection means 31 ... 2nd overvoltage detection means 40 ... Overhead power failure detection means 41 ... Regeneration detection means 42 ... Zero torque control means 43 ... Logical product means

Claims (4)

交流架線からの交流電圧を直流電圧に変換するコンバータと、前記直流電圧を平滑する平滑コンデンサと、前記直流電圧を交流電圧に変換するインバータと、前記インバータ出力に負荷接触器を介して接続された永久磁石形電動機と、前記直流電圧の電極間に接続された放電抵抗と半導体スイッチとの直列回路と、を備えた鉄道車両の制御方式において、
架線電圧検知手段と直流電圧調節手段とを備え、架線電圧が停電した際に、永久磁石電動機のトルクを前記インバータで調節して、前記直流電圧を指令値に追従させることを特徴とした永久磁石形電動機駆動鉄道車両の制御方式。
A converter that converts an AC voltage from an AC overhead wire to a DC voltage, a smoothing capacitor that smoothes the DC voltage, an inverter that converts the DC voltage to an AC voltage, and a load contactor connected to the inverter output In a railway vehicle control system comprising a permanent magnet motor and a series circuit of a discharge resistor and a semiconductor switch connected between the electrodes of the DC voltage,
A permanent magnet comprising an overhead wire voltage detecting means and a direct current voltage adjusting means, wherein when the overhead wire voltage fails, the torque of the permanent magnet motor is adjusted by the inverter to cause the direct current voltage to follow a command value. Control method for electric motor driven railway vehicles.
交流架線からの交流電圧を直流電圧に変換するコンバータと、前記直流電圧を平滑する平滑コンデンサと、前記直流電圧を交流電圧に変換するインバータと、インバータ出力に負荷接触器を介して接続された永久磁石形電動機と、前記直流電圧の電極間に接続された放電抵抗と半導体スイッチとの直列回路と、を備えた鉄道車両の制御方式において、
デッドセクション検知手段と直流電圧調節手段とを備え、デッドセクション通過時に、永久磁石電動機のトルクを前記インバータで調節して、前記直流電圧を指令値に追従させることを特徴とした永久磁石形電動機駆動鉄道車両の制御方式。
A converter for converting an AC voltage from an AC overhead wire into a DC voltage, a smoothing capacitor for smoothing the DC voltage, an inverter for converting the DC voltage to an AC voltage, and a permanent connected to the inverter output via a load contactor In a railway vehicle control system comprising a magnet motor, and a series circuit of a discharge resistor and a semiconductor switch connected between electrodes of the DC voltage,
A permanent magnet type motor drive comprising a dead section detecting means and a DC voltage adjusting means, and adjusting the torque of the permanent magnet motor with the inverter when passing through the dead section so that the DC voltage follows a command value. Railway vehicle control system.
前記直流電圧が指令値を超えた場合、前記直流電圧の電極間に接続された放電抵抗と半導体スイッチとの直列回路の半導体スイッチをオンさせることを特徴とした請求項1または2に記載の永久磁石形電動機駆動鉄道車両の制御方式。   3. The permanent switch according to claim 1, wherein when the DC voltage exceeds a command value, a semiconductor switch of a series circuit of a discharge resistor and a semiconductor switch connected between the electrodes of the DC voltage is turned on. A control system for a magnet-type electric motor-driven railway vehicle. 前記直流電圧が指令値を超えた場合、前記インバータをオフさせると共に負荷遮断器を開放させることを特徴とした請求項1または2に記載の永久磁石形電動機駆動鉄道車両の制御方式。   The control system for a permanent magnet type electric motor driven railway vehicle according to claim 1 or 2, wherein when the DC voltage exceeds a command value, the inverter is turned off and the load circuit breaker is opened.
JP2006283339A 2006-10-18 2006-10-18 Control system for permanent-magnet-type-motor-driven rolling stock Withdrawn JP2008104265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283339A JP2008104265A (en) 2006-10-18 2006-10-18 Control system for permanent-magnet-type-motor-driven rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283339A JP2008104265A (en) 2006-10-18 2006-10-18 Control system for permanent-magnet-type-motor-driven rolling stock

Publications (1)

Publication Number Publication Date
JP2008104265A true JP2008104265A (en) 2008-05-01

Family

ID=39438159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283339A Withdrawn JP2008104265A (en) 2006-10-18 2006-10-18 Control system for permanent-magnet-type-motor-driven rolling stock

Country Status (1)

Country Link
JP (1) JP2008104265A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102498023A (en) * 2009-08-11 2012-06-13 艾德万斯得瑞尔能量储备有限公司 Utility scale electric energy storage system
CN104525576A (en) * 2014-12-12 2015-04-22 西南铝业(集团)有限责任公司 Roller way control system
US10914820B2 (en) 2018-01-31 2021-02-09 Uatc, Llc Sensor assembly for vehicles
CN113085554A (en) * 2021-03-11 2021-07-09 刘健钊 Automatic control technology for power supply of direct-current trolley type rail electric locomotive
CN114056105A (en) * 2021-10-29 2022-02-18 中车工业研究院有限公司 Rail vehicle traction transmission system and rail vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043084A (en) * 1983-08-15 1985-03-07 Hitachi Ltd Controlling method of induction motor
JP2000050410A (en) * 1998-07-30 2000-02-18 Toshiba Corp Drive circuit of permanent magnet synchronous motor train
JP2002095299A (en) * 2000-09-08 2002-03-29 Toshiba Corp Drive controller for electric car
JP2006087155A (en) * 2004-09-14 2006-03-30 Toshiba Corp Inverter driven blower controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043084A (en) * 1983-08-15 1985-03-07 Hitachi Ltd Controlling method of induction motor
JP2000050410A (en) * 1998-07-30 2000-02-18 Toshiba Corp Drive circuit of permanent magnet synchronous motor train
JP2002095299A (en) * 2000-09-08 2002-03-29 Toshiba Corp Drive controller for electric car
JP2006087155A (en) * 2004-09-14 2006-03-30 Toshiba Corp Inverter driven blower controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102498023A (en) * 2009-08-11 2012-06-13 艾德万斯得瑞尔能量储备有限公司 Utility scale electric energy storage system
JP2013501682A (en) * 2009-08-11 2013-01-17 アドバンスド レイル エナジー ストーリッジ,エルエルシー Public-scale electrical energy storage system
CN104525576A (en) * 2014-12-12 2015-04-22 西南铝业(集团)有限责任公司 Roller way control system
US10914820B2 (en) 2018-01-31 2021-02-09 Uatc, Llc Sensor assembly for vehicles
CN113085554A (en) * 2021-03-11 2021-07-09 刘健钊 Automatic control technology for power supply of direct-current trolley type rail electric locomotive
CN114056105A (en) * 2021-10-29 2022-02-18 中车工业研究院有限公司 Rail vehicle traction transmission system and rail vehicle

Similar Documents

Publication Publication Date Title
JP6390535B2 (en) Power conversion control device
US8688301B2 (en) Power converter
US9515581B2 (en) Motor control device
US10320183B2 (en) Control strategy of a dual lane fault tolerant permanent magnet motor to reduce drag torque under fault condition
JP4297971B2 (en) Electric motor control device
EP1843459B1 (en) Electric car controller
AU2003204992B2 (en) Control apparatus for electric railcar
US9837950B2 (en) Vehicle control device and railroad vehicle
JP2010017055A (en) Motor drive
US8860383B2 (en) Control device and method for controlling a separately excited rotor winding of a synchronous machine
JPWO2008152761A1 (en) Motor drive device, motor device, and integrated circuit device
JP5578972B2 (en) AC train converter controller
JP2008104265A (en) Control system for permanent-magnet-type-motor-driven rolling stock
JP2018033212A (en) Electric vehicle
JP5787584B2 (en) Motor drive device
JP6078442B2 (en) Railway vehicle drive system
JP5049251B2 (en) Motor control device
JP2007028752A (en) Elevator motor controller
JP2010035338A (en) Controller for electric rolling stock
JP6250090B2 (en) AC rotating machine control device and control method
JP2005117777A (en) Power conversion apparatus for elevator
JPWO2017056588A1 (en) Railway vehicle power converter
JP4153879B2 (en) Vehicle drive control device
JP2008306780A (en) Railway vehicle drive controller
JP2006280132A (en) Electric vehicle control unit

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110411