JP2008103635A - Radiation image detector - Google Patents

Radiation image detector Download PDF

Info

Publication number
JP2008103635A
JP2008103635A JP2006286705A JP2006286705A JP2008103635A JP 2008103635 A JP2008103635 A JP 2008103635A JP 2006286705 A JP2006286705 A JP 2006286705A JP 2006286705 A JP2006286705 A JP 2006286705A JP 2008103635 A JP2008103635 A JP 2008103635A
Authority
JP
Japan
Prior art keywords
electric field
electrode
divided
photoconductive layer
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006286705A
Other languages
Japanese (ja)
Inventor
Masaharu Ogawa
正春 小川
Yuichi Hosoi
雄一 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006286705A priority Critical patent/JP2008103635A/en
Publication of JP2008103635A publication Critical patent/JP2008103635A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To raise image quality by enlarging an electric field formed in a photoconductive layer, while suppressing the occurrence of a dark current in a radiation image detector. <P>SOLUTION: An electric field at an edge B of a division electrode 6 is constituted so as not to exceed three times of an electric field at a center section A of the division electrode, more preferably not to exceed 1.5 times thereof, by covering the edge B of the division electrode with an insulation protective film 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放射線の照射を受けて電荷を発生する光導電層、光導電層の一方の側に設けられた所定の電圧が印加される共通電極、および光導電層の他方の側に設けられた該光導電層で発生した電荷に応じた信号を出力する複数の分割電極を備えてなる放射線画像検出器に関するものである。   The present invention provides a photoconductive layer that generates a charge upon irradiation with radiation, a common electrode provided on one side of the photoconductive layer to which a predetermined voltage is applied, and a photoconductive layer provided on the other side. The present invention also relates to a radiation image detector comprising a plurality of divided electrodes that output signals corresponding to the charges generated in the photoconductive layer.

今日、医療分野などにおいて、被写体を透過した放射線の照射を受けて発生した電荷を蓄電部に一旦蓄積し、該蓄積した電荷を電気信号に変換して出力する放射線画像検出器が各種提案されている。この放射線画像検出器としては、種々のタイプのものが提案されているが、蓄積された電荷を外部に読み出す電荷読出プロセスの面から、検出器に読取光を照射して読み出す光読取方式と、薄膜トランジスタ(thin film transistor:TFT)などの電気的スイッチを1画素ずつON・OFFすることにより読み取る方式(以下、TFT読取方式という)のものがある。   Today, in the medical field and the like, various radiological image detectors have been proposed in which charges generated by irradiation of radiation transmitted through a subject are temporarily stored in a power storage unit, and the stored charges are converted into electrical signals and output. Yes. Various types of radiation image detectors have been proposed. From the aspect of a charge reading process for reading out accumulated charges to the outside, an optical reading method for reading the detector by irradiating it with reading light, and There is a method of reading by turning on and off an electrical switch such as a thin film transistor (TFT) one pixel at a time (hereinafter referred to as a TFT reading method).

上記のような放射線画像検出器は、放射線の照射を受けることにより電荷を発生する光導電層、光導電層の放射線が照射される側に形成された共通電極、および光導電層の共通電極側とは反対の側に形成された分割電極を有し、共通電極に負の高電圧、分割電極に正の高電圧を印加することにより光導電層に電界を形成し、被写体を透過した放射線の照射に伴って光導電層で発生した電荷をその電界の作用を受けて分割電極まで移動させ、分割電極で収集した電荷を放射線検出信号として取り出すことにより放射線の検出を行うようになっている。   The radiation image detector as described above includes a photoconductive layer that generates charges when irradiated with radiation, a common electrode formed on the side of the photoconductive layer irradiated with radiation, and a common electrode side of the photoconductive layer. A split electrode formed on the opposite side of the electrode, and by applying a negative high voltage to the common electrode and a positive high voltage to the split electrode, an electric field is formed in the photoconductive layer, and the radiation transmitted through the subject The charges generated in the photoconductive layer as a result of irradiation are moved to the divided electrodes under the action of the electric field, and the radiation collected by the divided electrodes is taken out as a radiation detection signal to detect the radiation.

ここで、光導電層で発生した電荷は、光導電層に形成される電界が高いほど分割電極へ移動して画像信号として検出される検出電荷量が多くなるため、より高画質の放射線画像が得られるが、一方、この電界がある閾値を超えると急激に暗電流が増加し、発生した暗電流は画像信号とともに検出され、画質の劣化を招くことになる。この閾値は光導電層に使用される材料により異なり、たとえば、アモルファス−Se(a−Se)である場合には、電界が25V/μm〜30V/μmを超えると急激に暗電流が増加する。   Here, the charge generated in the photoconductive layer moves to the divided electrodes as the electric field formed in the photoconductive layer increases, and the detected charge amount detected as an image signal increases. On the other hand, when this electric field exceeds a certain threshold value, the dark current increases rapidly, and the generated dark current is detected together with the image signal, leading to degradation of image quality. This threshold varies depending on the material used for the photoconductive layer. For example, in the case of amorphous-Se (a-Se), when the electric field exceeds 25 V / μm to 30 V / μm, the dark current increases rapidly.

さらに、分割電極に正の高電圧を印加するとき、分割電極の端部に分極電極の中央部より正の電荷が集中し、分割電極の端部に形成される電界が分割電極の中央部に形成される電界より高くなるため、上記暗電流が急激に増加する現象は分割電極の端部から発生する。   Furthermore, when a positive high voltage is applied to the split electrode, positive charges are concentrated from the central part of the polarization electrode at the end of the split electrode, and the electric field formed at the end of the split electrode is at the central part of the split electrode. Since the electric field is higher than the formed electric field, the phenomenon in which the dark current rapidly increases occurs from the end of the divided electrode.

したがって、この分割電極の端部における電界が上記閾値以下となるようにする必要がある。また、特許文献1においては、分割電極の端部に発生する暗電流を防止するため、分割電極の端部に絶縁膜を設けることが提案されている。
特開2005−183670号公報
Therefore, it is necessary to make the electric field at the end of this divided electrode not more than the above threshold value. In Patent Document 1, it is proposed to provide an insulating film at the end of the split electrode in order to prevent dark current generated at the end of the split electrode.
JP 2005-183670 A

しかしながら、放射線画像の画質を向上させるために光導電層に形成される電界を大きくする場合には、上記特許文献1のように単に保護膜を設けるだけでは、暗電流の抑制効果が充分ではなく、画質の低下を招く可能性がある。   However, in the case where the electric field formed in the photoconductive layer is increased in order to improve the image quality of the radiographic image, it is not sufficient to suppress the dark current simply by providing a protective film as in Patent Document 1. , There is a possibility that image quality will be degraded.

そこで、本発明は、暗電流の発生を抑制するとともに、光導電層に形成される電界を大きくすることにより画質を向上させることができる放射線画像検出器を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a radiation image detector that can suppress the generation of dark current and improve the image quality by increasing the electric field formed in the photoconductive layer. .

本発明の放射線画像検出器は、放射線の照射を受けて電荷を発生する光導電層と、光導電層の一方の側に設けられた所定の電圧が印加される共通電極と、光導電層の他方の側に設けられた該光導電層で発生した電荷に応じた信号を出力する複数個の分割電極とを備えた放射線画像検出器において、分割電極の端部の電界が、分割電極の中央部の電界の3倍を越えないように構成したものであることを特徴とするものである。   The radiation image detector of the present invention includes a photoconductive layer that generates charges upon irradiation of radiation, a common electrode provided on one side of the photoconductive layer to which a predetermined voltage is applied, and a photoconductive layer A radiation image detector including a plurality of divided electrodes that output signals corresponding to charges generated in the photoconductive layer provided on the other side, wherein an electric field at an end of the divided electrode is The electric field is configured so as not to exceed three times the electric field of the part.

上記装置においては、分割電極の端部の電界が、分割電極の中央部の電界の1.5倍を越えないように構成したものであることがより好ましい。   In the above apparatus, it is more preferable that the electric field at the end of the divided electrode is configured not to exceed 1.5 times the electric field at the center of the divided electrode.

また、分割電極の端部を絶縁性の保護膜で覆うことにより、分割電極の端部の電界が、分割電極の中央部の電界の3倍を越えないように構成したものであってもよい
また、本発明の放射線画像検出器は、上記共通電極と光導電層と分割電極とをこの順に有するものであれば、それらの層の間あるいはそれらの層の上下にさらに他の層や微小導電部材を備えているものであってもよい。
Further, the electric field at the end of the divided electrode may be configured not to exceed three times the electric field at the center of the divided electrode by covering the end of the divided electrode with an insulating protective film. Moreover, if the radiographic image detector of this invention has the said common electrode, a photoconductive layer, and a division | segmentation electrode in this order, another layer and micro electroconductivity are further between those layers or on the upper and lower sides of those layers. A member may be provided.

本発明の放射線画像検出器によれば、放射線の照射を受けて電荷を発生する光導電層と、光導電層の一方の側に設けられた所定の電圧が印加される共通電極と、光導電層の他方の側に設けられた該光導電層で発生した電荷に応じた信号を出力する複数個の分割電極とを備えた放射線画像検出器において、分割電極の端部の電界が分割電極の中央部の電界の3倍を越えないように構成することにより、分割電極の端部における電界を暗電流の発生閾値以下にしながら、光導電層に形成される電界を大きくすることが可能であり、画質を向上させることができる。   According to the radiation image detector of the present invention, a photoconductive layer that generates charges upon irradiation of radiation, a common electrode provided on one side of the photoconductive layer to which a predetermined voltage is applied, and a photoconductive layer In a radiation image detector comprising a plurality of divided electrodes that output signals corresponding to the charges generated in the photoconductive layer provided on the other side of the layer, the electric field at the ends of the divided electrodes is By configuring so as not to exceed three times the electric field at the center, it is possible to increase the electric field formed in the photoconductive layer while keeping the electric field at the end of the divided electrode below the dark current generation threshold. , Image quality can be improved.

上記装置において、分割電極の端部の電界が、分割電極の中央部の電界の1.5倍を越えないように構成する場合、分割電極の端部における電界を暗電流の発生閾値以下にしながら、光導電層に形成される電界をより大きくすることが可能であり、一層優れた画質の放射線画像を取得することができる。   In the above apparatus, when the electric field at the end of the split electrode is configured not to exceed 1.5 times the electric field at the center of the split electrode, the electric field at the end of the split electrode is kept below the dark current generation threshold. Further, the electric field formed in the photoconductive layer can be further increased, and a radiographic image with better image quality can be obtained.

また、分割電極の端部を絶縁性の保護膜で覆うことにより、分割電極の端部の電界が、分割電極の中央部の電界の3倍を越えないように構成する場合、絶縁性の保護膜により分割電極の端部における電界を低下させ、暗電流の発生を抑制することにより、光導電層に形成される電界を大きくすることができる。   Further, by covering the end portion of the divided electrode with an insulating protective film so that the electric field at the end portion of the divided electrode does not exceed three times the electric field at the central portion of the divided electrode, insulating protection The electric field formed in the photoconductive layer can be increased by reducing the electric field at the end of the divided electrode by the film and suppressing the generation of dark current.

以下、図面を参照して本発明の放射線画像検出器の一実施形態について説明する。図1は本発明の放射線画像検出器の一実施形態の概略構成を示す斜視図である。図2は図1に示す放射線画像検出器のII−II線断面図である。   Hereinafter, an embodiment of the radiation image detector of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration of an embodiment of a radiation image detector of the present invention. 2 is a cross-sectional view of the radiation image detector shown in FIG. 1 taken along the line II-II.

この放射線画像検出器1は、放射線に対して透過性を有する共通電極2、共通電極2を透過した放射線の照射を受けることにより電荷対を発生して導電性を呈する記録用光導電層3、記録用光導電層3において発生した潜像電荷に対しては絶縁体として作用し、且つその潜像電荷と逆極性の輸送電荷に対しては導電体として作用する電荷輸送層4、読取光の照射を受けることにより電荷対を発生して導電性を呈する読取用光導電層5、読取光を透過する複数個の分割電極6、および各分割電極6の端部を覆うように形成された絶縁性の保護膜7を備えている。また、記録用光導電層3と電荷輸送層4との間には、記録用光導電層3内で発生した電荷を蓄積する蓄電部8が形成されている。なお、上記放射線画像検出器1は図示しない光透過性を有する基板(たとえばガラス基板)上に形成されるものである。   The radiation image detector 1 includes a common electrode 2 that is transparent to radiation, a recording photoconductive layer 3 that is electrically conductive by generating charge pairs upon irradiation with radiation transmitted through the common electrode 2, A charge transport layer 4 that acts as an insulator for the latent image charges generated in the recording photoconductive layer 3 and acts as a conductor for transport charges having a polarity opposite to that of the latent image charges. A photoconductive layer 5 for reading that generates electric charge pairs by receiving irradiation and exhibits conductivity, a plurality of divided electrodes 6 that transmit the read light, and an insulation formed so as to cover the ends of the divided electrodes 6 Protective film 7 is provided. In addition, between the recording photoconductive layer 3 and the charge transport layer 4, a power storage unit 8 that accumulates charges generated in the recording photoconductive layer 3 is formed. The radiation image detector 1 is formed on a light-transmitting substrate (not shown) (for example, a glass substrate).

共通電極2は、放射線画像情報を記録する際に負の電荷が帯電されるものであって、平板状に形成されている。共通電極2は放射線を透過する材料からなっており、たとえばネサ皮膜(SnO2)、ITO(Indium Tin Oxide)、アモルファス状光透過性酸化膜であるIDIXO(Idemitsu Indium X-metal Oxide ;出光興産(株))等の材料を用いて50〜200nmに成膜し、あるいはAlやAuなどを100nmに成膜することにより形成されている。 The common electrode 2 is charged with negative charges when recording radiographic image information, and is formed in a flat plate shape. The common electrode 2 is made of a material that transmits radiation, such as Nesa film (SnO 2 ), ITO (Indium Tin Oxide), IDIXO (Idemitsu Indium X-metal Oxide) which is an amorphous light-transmitting oxide film; The film is formed to a thickness of 50 to 200 nm using a material such as Co., Ltd.), or is formed to a thickness of 100 nm.

記録用光導電層3は、放射線の照射を受けることにより電荷対を発生するものであって、たとえば放射線に対して比較的量子効率が高く、また暗抵抗が高いなどの点で優れているa−Seを主成分とするものを500μm程度に成膜することにより形成されている。   The recording photoconductive layer 3 generates charge pairs when irradiated with radiation, and is excellent in that, for example, the quantum efficiency is relatively high with respect to radiation and the dark resistance is high. It is formed by depositing a film containing Se as a main component to a thickness of about 500 μm.

電荷輸送層4は、記録用光導電層3において発生した電荷のうち一方の極性の電荷に対しては絶縁体として作用し、且つ他方の極性の電荷に対しては導電体として作用するようになっている。電荷輸送層4は、たとえば放射線画像の記録の際に共通電極2に帯電する電荷の移動度とその逆極性となる電荷の移動度との差が大きい(例えば10以上、望ましくは10以上)からなっており、たとえばポリN−ビニルカルバゾール(PVK)、N,N'−ジフェニル−N,N'−ビス(3−メチルフェニル)−〔1,1'−ビフェニル〕−4,4'−ジアミン(TPD)やディスコティック液晶等の有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PVK)分散物,Clを10〜200ppmドープしたa−Se等の半導体物質により形成されている。 The charge transport layer 4 acts as an insulator for charges of one polarity among the charges generated in the recording photoconductive layer 3 and acts as a conductor for charges of the other polarity. It has become. The charge transport layer 4, for example the difference in charge mobility between the mobility of the charge to be the opposite polarity to the charge on the common electrode 2 at the time of recording a radiation image is large (e.g., 10 2 or more, preferably 10 3 or more For example, poly N-vinylcarbazole (PVK), N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′- It is formed of an organic compound such as diamine (TPD) or a discotic liquid crystal, a TPD polymer (polycarbonate, polystyrene, PVK) dispersion, or a semiconductor material such as a-Se doped with 10 to 200 ppm of Cl.

読取用光導電層5は読取光または消去光の照射を受けることにより電荷対を発生するものであって、たとえばa−Se、Se−Te、Se−As−Te、無金属フタロシアニン、金属フタロシアニン、MgPc(Magnesium phtalocyanine),VoPc(phaseII of Vanadyl phthalocyanine)、CuPc(Cupper phtalocyanine)などのうち少なくとも1つを主成分とする光導電性物質を用いて0.1〜1μm程度に成膜することにより形成されている。   The reading photoconductive layer 5 generates charge pairs upon irradiation with reading light or erasing light. For example, a-Se, Se-Te, Se-As-Te, metal-free phthalocyanine, metal phthalocyanine, It is formed by forming a film to a thickness of about 0.1 to 1 μm using a photoconductive substance mainly composed of at least one of MgPc (Magnesium phtalocyanine), VoPc (phase II of Vanadyl phthalocyanine), CuPc (Cupper phtalocyanine) and the like. Has been.

分割電極6は放射線画像検出器1に読取光が照射されたとき、放射線画像検出器1に記録されている画像情報を信号電荷として読み取る線状の電極であって、ストライプ状に配列されている。分割電極6は読取光L1を透過する材料からなっており、たとえばAl、Au、Cr、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)などにより0.5μm〜1μm厚に形成されている。   The divided electrodes 6 are linear electrodes that read image information recorded in the radiographic image detector 1 as signal charges when the radiographic image detector 1 is irradiated with reading light, and are arranged in stripes. . The divided electrode 6 is made of a material that transmits the reading light L1, and is formed to have a thickness of 0.5 μm to 1 μm using, for example, Al, Au, Cr, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), or the like.

保護膜7は、図2に示すように、各分割電極6の長手方向に直交する方向における端部Bの電界(Eb)を低下させることにより分割電極6の端部から発生する暗電流を抑制するものであって、分割電極6の長手方向に沿ってその分割電極の両端部を覆うように形成されている。具体的には、各分割電極6は正の高電圧が印加されることにより正の電荷で帯電されるが、図2に示す分割電極6の端部Bに分割電極6の中央部Aより正の電荷が集中するため、分割電極の端部Bの電界(Eb)が分割電極の中央部Aの電界(Ea)より高く、暗電流が生じやすい。ここで、絶縁性の保護膜を分割電極6の端部Bを覆うように設けることにより、分割電極6の長手方向に直交する方向における端部Bの電界(Eb)が分割電極6の長手方向に直交する方向における中央部Aの電界(Ea)の3倍未満になるように、より好ましくは1.5倍未満となるようにしている。保護膜7は、絶縁性の材料であれば種々のものが使用可能であり、たとえば、アクリル樹脂、SiO2、ポリイミド、PVA(polyvinylalcohol)、PVP(polyvinyl pyrrolidone)、PAA(Polyacrylic Acid)、ノボラック樹脂、Ta2、ZrO2、Al2等が挙げられる。 As shown in FIG. 2, the protective film 7 suppresses the dark current generated from the end of the divided electrode 6 by reducing the electric field (Eb) at the end B in the direction orthogonal to the longitudinal direction of each divided electrode 6. Therefore, it is formed so as to cover both ends of the divided electrode along the longitudinal direction of the divided electrode 6. Specifically, each divided electrode 6 is charged with a positive charge when a positive high voltage is applied, but is more positive than the central portion A of the divided electrode 6 at the end B of the divided electrode 6 shown in FIG. Therefore, the electric field (Eb) at the end B of the split electrode is higher than the electric field (Ea) at the center A of the split electrode, and dark current is likely to occur. Here, by providing an insulating protective film so as to cover the end B of the divided electrode 6, the electric field (Eb) at the end B in the direction orthogonal to the longitudinal direction of the divided electrode 6 is increased in the longitudinal direction of the divided electrode 6. The electric field (Ea) of the central portion A in the direction perpendicular to the center is less than 3 times, more preferably less than 1.5 times. Various protective materials can be used as long as they are insulating materials. For example, acrylic resin, SiO 2 , polyimide, PVA (polyvinylalcohol), PVP (polyvinyl pyrrolidone), PAA (Polyacrylic Acid), and novolac resin. , Ta 2 O 5 , ZrO 2 , Al 2 O 3 and the like.

ただし、単に保護膜7を設けるだけでは、分割電極6の端部Bの電界(Eb)が分割電極の中央部Aの電界(Ea)の3倍未満にすることはできない。たとえば保護膜の厚さD、保護膜の幅W、保護膜の電気的特性(比誘電率)等を適切に選択して設けることにより、分割電極6の端部Bの電界(Eb)が分割電極6の中央部Aの電界(Ea)の3倍未満、より好ましくは1.5未満にすることができる。   However, the electric field (Eb) at the end B of the split electrode 6 cannot be made less than three times the electric field (Ea) at the center A of the split electrode simply by providing the protective film 7. For example, by appropriately selecting and providing the protective film thickness D, protective film width W, protective film electrical characteristics (dielectric constant), etc., the electric field (Eb) at the end B of the divided electrode 6 is divided. The electric field (Ea) of the central portion A of the electrode 6 can be less than 3 times, more preferably less than 1.5.

以下の表1に、上記放射線画像検出器1における分割電極6間の距離R、保護膜7の厚さD、保護膜7の幅W、保護膜7の誘電率を変化させ、それぞれに場合において、分割電極6の中央部Aの電界(Ea)に対する分割電極6の端部Bの電界(Eb)の比(電界比=Eb/Ea)を調べた結果を表1に示す。   In Table 1 below, the distance R between the divided electrodes 6 in the radiation image detector 1, the thickness D of the protective film 7, the width W of the protective film 7, and the dielectric constant of the protective film 7 are changed. Table 1 shows the results of examining the ratio of the electric field (Eb) at the end B of the divided electrode 6 to the electric field (Ea) at the center A of the divided electrode 6 (electric field ratio = Eb / Ea).

なお、保護膜7の構成材料としては、比誘電率が3の場合にはアクリル樹脂膜を使用し、比誘電率が10の場合にはTa2複合膜を使用している。分割電極6間の距離Rは5μm〜20μm、保護膜7の幅Wは0.5μm〜2μm、保護膜7の厚さDは0.05μm〜0.2μm範囲で変化させ、電界比(Eb/Ea)を算出し、その値が1.5未満は◎、1.5〜3は○、3以上は×として電界比を評価した。

Figure 2008103635
As a constituent material of the protective film 7, an acrylic resin film is used when the relative dielectric constant is 3, and a Ta 2 O 5 composite film is used when the relative dielectric constant is 10. The distance R between the divided electrodes 6 is 5 μm to 20 μm, the width W of the protective film 7 is 0.5 μm to 2 μm, and the thickness D of the protective film 7 is changed in the range of 0.05 μm to 0.2 μm. Ea) was calculated, and the electric field ratio was evaluated with a value of less than 1.5 being ◎, 1.5 to 3 being ○, and 3 or more being ×.
Figure 2008103635

上記表1では、たとえば保護膜7の比誘電率が3または10、分割電極6間の距離Rが5μm〜20μm、保護膜7の幅Wが0.5μm〜2μmのとき、保護膜7の厚さDが0.2μm以上である場合、分割電極6の端部Bの電界(Eb)が分割電極6の中央部Aの電界(Ea)の3倍未満になった。また、保護膜7の比誘電率が10、分割電極6間の距離Rが5μm〜10μm、保護膜7の幅Wが0.5μm〜2μmのとき、保護膜7の厚さDが0.2μm以上である場合、分割電極6の端部Bの電界(Eb)が分割電極6の中央部Aの電界(Ea)の1.5倍未満になった。   In Table 1 above, when the relative dielectric constant of the protective film 7 is 3 or 10, the distance R between the divided electrodes 6 is 5 μm to 20 μm, and the width W of the protective film 7 is 0.5 μm to 2 μm, for example, the thickness of the protective film 7 When the thickness D was 0.2 μm or more, the electric field (Eb) at the end B of the divided electrode 6 was less than three times the electric field (Ea) at the center A of the divided electrode 6. When the relative dielectric constant of the protective film 7 is 10, the distance R between the divided electrodes 6 is 5 μm to 10 μm, and the width W of the protective film 7 is 0.5 μm to 2 μm, the thickness D of the protective film 7 is 0.2 μm. In the case above, the electric field (Eb) at the end B of the divided electrode 6 was less than 1.5 times the electric field (Ea) at the center A of the divided electrode 6.

上記構成により、この本実施形態の放射線画像検出器1では、共通電極2にバイアス電圧が印加され、共通電極2と分割電極6との間に電界が形成されているときに、記録用光導電層3に画像情報を担持する放射線が照射されると、記録用光導電層3内に正と負の電荷が発生し、そのうちの負の電荷が上記電圧の印加により形成された電界分布に沿って分割電極6に集中せしめられ、記録用光導電層3と電荷輸送層4との界面である蓄電部8に潜像電荷として蓄積される。潜像電荷の量は照射放射線量に略比例し、この潜像電荷の量が放射線画像を示すことになる。一方、記録用光導電層3内で発生する正電荷は共通電極2に引き寄せられて、電圧源から注入された負の電荷と結合して消滅する。   With the above configuration, in the radiation image detector 1 of this embodiment, when a bias voltage is applied to the common electrode 2 and an electric field is formed between the common electrode 2 and the divided electrode 6, the recording photoconductivity is recorded. When the layer 3 is irradiated with radiation carrying image information, positive and negative charges are generated in the recording photoconductive layer 3, and the negative charges follow the electric field distribution formed by the application of the voltage. Then, it is concentrated on the divided electrode 6 and accumulated as a latent image charge in the power storage unit 8 which is an interface between the recording photoconductive layer 3 and the charge transport layer 4. The amount of latent image charge is substantially proportional to the amount of irradiation radiation, and this amount of latent image charge indicates a radiation image. On the other hand, positive charges generated in the recording photoconductive layer 3 are attracted to the common electrode 2 and are combined with the negative charges injected from the voltage source and disappear.

次に、上記のようにして放射線画像検出器1に記録された放射線画像を読み取る際には、分割電極6の長手方向に直交する方向に延びる線状の読取光を分割電極6の長手方向に移動させて放射線画像検出器1の全面を走査することにより、読取光の走査位置に対応する読取用光導電層5内に正負の電荷対が発生し、読取用光導電層5に生じた正電荷は蓄積部8の潜像電荷に引きつけられ、蓄電部8で潜像電荷と電荷再結合し消滅する一方、読取用光導電層5に生じた負電荷は分割電極6の正電荷と電荷再結合し消滅する。この読取りの際に各画素に対応して発生した潜像電荷に基づく画像信号を分割電極6に接続された図外の電流検出アンプにおいて検出し、放射線画像として読み取ることができる。   Next, when reading the radiation image recorded in the radiation image detector 1 as described above, linear reading light extending in the direction orthogonal to the longitudinal direction of the divided electrode 6 is applied in the longitudinal direction of the divided electrode 6. When the entire surface of the radiation image detector 1 is moved and scanned, positive and negative charge pairs are generated in the reading photoconductive layer 5 corresponding to the scanning position of the reading light, and the positive and negative charges generated in the reading photoconductive layer 5 are generated. The charge is attracted to the latent image charge of the storage unit 8 and is recombined with the latent image charge in the power storage unit 8 and disappears. On the other hand, the negative charge generated in the reading photoconductive layer 5 Combine and disappear. An image signal based on the latent image charge generated corresponding to each pixel at the time of reading can be detected by a current detection amplifier (not shown) connected to the divided electrode 6 and read as a radiation image.

次に、放射線画像検出器1において、分割電極6の端部Bの電界(Eb)を25V/μmと固定し、分割電極6の端部Bと中央部Aの電界の比(Eb/Ea)を変えながら分割電極6の中央部Aの電界(Ea)を算出し、それぞれの場合において画質評価をした結果を表1に示す。   Next, in the radiation image detector 1, the electric field (Eb) at the end B of the divided electrode 6 is fixed at 25 V / μm, and the ratio of the electric field between the end B and the center A of the divided electrode 6 (Eb / Ea). Table 1 shows the results of calculating the electric field (Ea) of the central portion A of the divided electrode 6 while changing the image quality and evaluating the image quality in each case.

ここでは、表1のそれぞれの場合において、共通電極2と分割電極6に所定のバイアス電圧を印加して、共通電極2と分割電極6との間に電界が形成されているときに、放射線が照射された状態で検出された電気信号(明電流)と、放射線の照射のない状態で検出された電気信号(暗電流)との比(以下、明/暗電流比という)を求め、求められた各場合における明/暗電流比を、以下に説明する比較例の明/暗電流比と比較することにより画質の評価を行う。   Here, in each case of Table 1, when a predetermined bias voltage is applied to the common electrode 2 and the divided electrode 6 and an electric field is formed between the common electrode 2 and the divided electrode 6, radiation is generated. The ratio of the electrical signal (bright current) detected in the irradiated state to the electrical signal (dark current) detected in the absence of radiation (hereinafter referred to as the bright / dark current ratio) The image quality is evaluated by comparing the light / dark current ratio in each case with the light / dark current ratio of the comparative example described below.

比較例としては、放射線画像検出器1において分割電極6の代わりに第2の共通電極を備えた放射線画像検出器を用いる。この比較例の共通電極2と第2の共通電極に、表1の他の場合と同一のバイアス電圧を印加して、共通電極2と第2の共通電極との間に電界が形成されているときに、放射線が照射された状態で検出された電気信号(明電流)と、放射線の照射のない状態で検出された電気信号(暗電流)との比(明/暗電流比)を求める。   As a comparative example, a radiation image detector provided with a second common electrode instead of the divided electrode 6 in the radiation image detector 1 is used. The same bias voltage as in the other cases of Table 1 is applied to the common electrode 2 and the second common electrode of this comparative example, and an electric field is formed between the common electrode 2 and the second common electrode. Sometimes, the ratio (bright / dark current ratio) between the electrical signal (bright current) detected in the state of radiation irradiation and the electrical signal (dark current) detected in the state of no radiation irradiation is obtained.

そして、表1のそれぞれの場合において、明/暗電流比が比較例の明/暗電流比の90〜100%であれば◎、明/暗電流比が比較例の明/暗電流比の50〜90%未満であれば○、明/暗電流比が比較例の明/暗電流比の50%未満であれば、許容範囲外と判断し、×として画質を評価した。

Figure 2008103635
In each case of Table 1, when the light / dark current ratio is 90 to 100% of the light / dark current ratio of the comparative example, the light / dark current ratio is 50 of the light / dark current ratio of the comparative example. If less than 90%, the bright / dark current ratio was less than 50% of the comparative example bright / dark current ratio.
Figure 2008103635

表2に示すように、分割電極6の中央部Aの電界(Ea)に対する分割電極6の端部Bの電界(Eb)の比(電界比=Eb/Ea)が3を超えるものと比較して、分割電極6の中央部Aの電界(Ea)に対する分割電極6の端部Bの電界(Eb)の比(電界比=Eb/Ea)が3を超えないようにした場合、検出電荷量を支配する分割電極6の中央部Aの電界(Ea)を10V/μmより大きくすることができるとともに、光導電層に形成される全体の電界を大きくすることが可能であり、高画質の放射線画像が得られる。さらに電界比が1.5を超えないようにした場合には、一層優れた画質の放射線画像を取得できることが明らかである。   As shown in Table 2, the ratio of the electric field (Eb) at the end B of the split electrode 6 to the electric field (Ea) at the center A of the split electrode 6 (electric field ratio = Eb / Ea) is higher than 3. When the ratio of the electric field (Eb) at the end B of the divided electrode 6 to the electric field (Ea) at the center A of the divided electrode 6 (electric field ratio = Eb / Ea) does not exceed 3, the detected charge amount The electric field (Ea) at the central portion A of the divided electrode 6 that controls the above can be made larger than 10 V / μm, and the entire electric field formed in the photoconductive layer can be made larger, resulting in high-quality radiation. An image is obtained. Furthermore, it is clear that if the electric field ratio does not exceed 1.5, it is possible to obtain a radiographic image with better image quality.

以上のように、本発明の放射線画像検出器は、分割電極6の端部Bの電界(Eb)が、分割電極6の中央部Aの電界(Ea)の3倍を越えないように、より好ましくは1.5倍を超えないように構成することにより、分割電極の端部における電界を暗電流の発生閾値以下にしながら、光導電層に形成される電界を大きくすることが可能であり、画質を向上させることができる。   As described above, the radiographic image detector according to the present invention is configured so that the electric field (Eb) at the end B of the divided electrode 6 does not exceed three times the electric field (Ea) at the center A of the divided electrode 6. It is possible to increase the electric field formed in the photoconductive layer while setting the electric field at the end of the divided electrode to be equal to or lower than the dark current generation threshold by preferably configuring not to exceed 1.5 times, Image quality can be improved.

また、分割電極6の端部Bを絶縁性の保護膜7で覆うことにより、分割電極6の端部Bの電界(Eb)が、分割電極6の中央部Aの電界(Ea)の3倍、より好ましくは1.5倍を越えないように構成する上記実施の形態によれば、分割電極6の端部Bにおける暗電流の発生を抑制することにより、光導電層に形成される電界を大きくすることが可能となり、画質を向上させることができる。   Further, by covering the end B of the divided electrode 6 with the insulating protective film 7, the electric field (Eb) at the end B of the divided electrode 6 is three times the electric field (Ea) at the center A of the divided electrode 6. More preferably, according to the above embodiment configured not to exceed 1.5 times, the electric field formed in the photoconductive layer can be reduced by suppressing the generation of dark current at the end B of the divided electrode 6. It is possible to increase the image quality and improve the image quality.

なお、上記実施の形態では、本発明の放射線画像検出器1は分割電極6の端部Bの電界(Eb)が、分割電極の中央部Aの電界(Ea)の3倍、より好ましくは1.5倍を越えないようにする一方法として、分割電極6の端部Aに保護膜7を設ける方法について説明しているが、例えば、電極端部の端部形状を円弧状にする等電極端部の端部形状に丸みを持たせる方法、分割電極間の間隙を狭くする方法、それらを組み合わせた方法等いかなる方法を用いて、分割電極6の端部Bの電界(Eb)が、分割電極6の中央部Aの電界(Ea)の3倍、より好ましくは1.5倍を越えないように構成してもよい。  In the above embodiment, the radiographic image detector 1 of the present invention has an electric field (Eb) at the end B of the divided electrode 6 that is three times the electric field (Ea) at the center A of the divided electrode, more preferably 1 As a method of preventing the ratio from exceeding 5 times, a method of providing the protective film 7 at the end A of the divided electrode 6 has been described. The electric field (Eb) at the end B of the divided electrode 6 can be divided by any method such as rounding the extreme end shape, narrowing the gap between the divided electrodes, or combining them. You may comprise so that it may not exceed 3 times of the electric field (Ea) of the center part A of the electrode 6, more preferably 1.5 times.

なお、全ての分割電極6においてその分割電極6の端部Bの電界(Eb)が、分割電極6の中央部Aの電界(Ea)の3倍、より好ましくは1.5倍を越えないようにすることが望ましいが、それに限らず、少なくとも画像形成範囲内の分割電極6において、分割電極6の端部Bの電界(Eb)が、分割電極6の中央部Aの電界(Ea)の3倍、より好ましくは1.5倍を越えないようにするものであればよい。  In all the divided electrodes 6, the electric field (Eb) at the end B of the divided electrode 6 does not exceed three times, more preferably 1.5 times, the electric field (Ea) at the center A of the divided electrode 6. Although not limited to this, the electric field (Eb) at the end B of the divided electrode 6 is 3 of the electric field (Ea) at the center A of the divided electrode 6 at least in the divided electrode 6 within the image forming range. It is sufficient that it is not to exceed 1.5 times, more preferably 1.5 times.

また、本発明は、上記実施の形態に示したいわゆる光読取方式の放射線画像検出器に限らず、TFT読取方式等いかなるタイプの放射線画像検出器にも適用可能である。   Further, the present invention is not limited to the so-called optical reading type radiographic image detector shown in the above embodiment, but can be applied to any type of radiographic image detector such as a TFT reading type.

たとえば、図3に示すTFT読取方式の放射線画像検出器11は、共通電極12にバイアス電圧が印加され、共通電極12と分割電極16との間に電界が形成されているときに、光導電層13に画像情報を担持する放射線が照射されると、光導電層13内に正と負の電荷が発生し、そのうちの負の電荷が上記電圧の印加により形成された電界分布に沿って分割電極16に集められ、分割電極16に電気的に接続された蓄積容量34に蓄積される。その後、走査線31を介してスイッチ素子18をON状態にする信号を順次加え、データ線35を介して各蓄積容量34に蓄積された電荷を取り出し、アンプ33において検出し、放射線画像として読み取ることができる。図4に示すこの放射線画像検出器の各画素部15において、破線で示す四角形の分割電極16の端部(周縁)の電界が中央部(対角線の交点)の電界の3倍を越えないように、分割電極16の端部(周縁)全体を覆う保護膜17を設けることができる。  For example, the radiographic image detector 11 of the TFT reading system shown in FIG. 3 has a photoconductive layer when a bias voltage is applied to the common electrode 12 and an electric field is formed between the common electrode 12 and the divided electrode 16. When the radiation carrying image information is irradiated to 13, positive and negative charges are generated in the photoconductive layer 13, and the negative charges are divided electrodes along the electric field distribution formed by the application of the voltage. 16 and accumulated in a storage capacitor 34 electrically connected to the divided electrode 16. Thereafter, a signal for turning ON the switching element 18 is sequentially applied via the scanning line 31, the electric charge accumulated in each storage capacitor 34 is taken out via the data line 35, detected by the amplifier 33, and read as a radiation image. Can do. In each pixel portion 15 of this radiographic image detector shown in FIG. 4, the electric field at the end (periphery) of the quadrangular divided electrode 16 indicated by a broken line does not exceed three times the electric field at the center (intersection of diagonal lines). A protective film 17 covering the entire end (periphery) of the divided electrode 16 can be provided.

また、上記実施の形態は、放射線の照射を受けてその放射線を直接電荷に変換することにより放射線画像の記録を行う、いわゆる直接変換方式の放射斜線画像検出器に本発明を適用したものであるが、これに限らず、たとえば、放射線を一旦可視光に変換し、その可視光を電荷に変換することにより放射線画像の記録を行う、いわゆる間接変換方式の放射線画像検出器にも本発明を適用可能である。   In the above-described embodiment, the present invention is applied to a so-called direct conversion radiation oblique line image detector that records radiation images by receiving radiation and converting the radiation directly into electric charges. However, the present invention is not limited to this. For example, the present invention is also applied to a so-called indirect conversion radiation image detector that records radiation images by once converting radiation into visible light and converting the visible light into electric charges. Is possible.

本発明の放射線画像検出器の一実施形態を示す概略構成図1 is a schematic configuration diagram showing an embodiment of a radiation image detector of the present invention. 図1に示す放射線画像検出器のII−II線断面図II-II sectional view of the radiation image detector shown in FIG. 本発明の放射線画像検出器の一実施形態の概略構成を示す断面図Sectional drawing which shows schematic structure of one Embodiment of the radiographic image detector of this invention 図3に示す放射線画像検出器の画素部のレイアウトLayout of the pixel portion of the radiation image detector shown in FIG.

符号の説明Explanation of symbols

1 放射線画像検出器
2 共通電極
3 記録用光導電層(光導電層)
4 電荷輸送層
5 読取用光導電層
6 分割電極
7 保護膜
8 蓄電部
A 分割電極の中央部
B 分割電極の端部
R 分割電極間の距離
D 保護膜の厚さ
W 保護膜の幅
DESCRIPTION OF SYMBOLS 1 Radiation image detector 2 Common electrode 3 Photoconductive layer for recording (photoconductive layer)
4 Charge Transport Layer 5 Reading Photoconductive Layer 6 Divided Electrode 7 Protective Film 8 Power Storage Unit A Center Part of Divided Electrode B Edge of Divided Electrode R Distance Between Divided Electrodes D Protective Film Thickness W Protective Film Width

Claims (3)

放射線の照射を受けて電荷を発生する光導電層と、
前記光導電層の一方の側に設けられた所定の電圧が印加される共通電極と、
前記光導電層の他方の側に設けられた該光導電層で発生した電荷に応じた信号を出力する複数個の分割電極と
を備えた放射線画像検出器において、
前記分割電極の端部の電界が、前記分割電極の中央部の電界の3倍を越えないように構成したことを特徴とする放射線画像検出器。
A photoconductive layer that generates a charge upon irradiation with radiation;
A common electrode provided on one side of the photoconductive layer to which a predetermined voltage is applied;
A radiation image detector comprising: a plurality of divided electrodes that output signals corresponding to charges generated in the photoconductive layer provided on the other side of the photoconductive layer;
A radiographic image detector, wherein an electric field at an end portion of the divided electrode is configured not to exceed three times an electric field at a central portion of the divided electrode.
前記分割電極の端部の電界が、前記分割電極の中央部の電界の1.5倍を越えないように構成したことを特徴とする請求項1記載の放射線画像検出器。   2. The radiation image detector according to claim 1, wherein the electric field at the end of the divided electrode is configured not to exceed 1.5 times the electric field at the center of the divided electrode. 前記分割電極の端部を絶縁性の保護膜で覆うことにより、前記分割電極の端部の電界が、前記分割電極の中央部の電界の3倍を越えないように構成したことを特徴とする請求項1記載の放射線画像検出器。   By covering the ends of the divided electrodes with an insulating protective film, the electric field at the ends of the divided electrodes is configured not to exceed three times the electric field at the center of the divided electrodes. The radiation image detector according to claim 1.
JP2006286705A 2006-10-20 2006-10-20 Radiation image detector Withdrawn JP2008103635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286705A JP2008103635A (en) 2006-10-20 2006-10-20 Radiation image detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286705A JP2008103635A (en) 2006-10-20 2006-10-20 Radiation image detector

Publications (1)

Publication Number Publication Date
JP2008103635A true JP2008103635A (en) 2008-05-01

Family

ID=39437719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286705A Withdrawn JP2008103635A (en) 2006-10-20 2006-10-20 Radiation image detector

Country Status (1)

Country Link
JP (1) JP2008103635A (en)

Similar Documents

Publication Publication Date Title
JP4908289B2 (en) Image processing apparatus, method, and program
JP2008210906A (en) Radiation image detector
JP5052181B2 (en) Radiation detector
US7560700B2 (en) Radiation image detector
TW200413744A (en) Active-matrix substrate and electromagnetic wave detector
US6566676B1 (en) Image detector
US7294847B2 (en) Radiographic image detector
US7728300B2 (en) Radiation image detector
EP1262797B1 (en) Method and apparatus for image recording and image recording medium
JP2008089491A (en) Radiographic image detection device
JP2008103635A (en) Radiation image detector
JP2008198910A (en) Radiation image detection device and its manufacturing method
JP5235119B2 (en) Radiation image detector
JP2006005057A (en) Radiation image recording medium and image display medium
JP5509228B2 (en) Radiation image recording / reading apparatus
JP5137331B2 (en) Radiation image recording / reading apparatus
JP2007095721A (en) Radiation picture detector
JP2006261206A (en) Radiological image detector and radiological image detection system
JP2010071930A (en) Radiation detector
JP2005183670A (en) Radiation image detector
JP2007053304A (en) Radiation image detection system
JP2003028964A (en) Image-recording method and apparatus, and image- recording medium
JP2008177394A (en) Image pickup apparatus
JP2004134543A (en) Image detector
JP2008177216A (en) Radiation image detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105