JP2008103134A - Air battery - Google Patents

Air battery Download PDF

Info

Publication number
JP2008103134A
JP2008103134A JP2006283423A JP2006283423A JP2008103134A JP 2008103134 A JP2008103134 A JP 2008103134A JP 2006283423 A JP2006283423 A JP 2006283423A JP 2006283423 A JP2006283423 A JP 2006283423A JP 2008103134 A JP2008103134 A JP 2008103134A
Authority
JP
Japan
Prior art keywords
positive electrode
catalyst layer
binder
negative electrode
air battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006283423A
Other languages
Japanese (ja)
Inventor
Hideyuki Ogata
秀之 小方
Masaki Shikoda
将貴 志子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2006283423A priority Critical patent/JP2008103134A/en
Publication of JP2008103134A publication Critical patent/JP2008103134A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/128

Landscapes

  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air battery having high output and high capacity by homogenizing a catalyst layer without deteriorating easiness of manufacturing the catalyst layer. <P>SOLUTION: This air battery includes: a positive electrode case which has an air hole on its bottom face and is opened at its one end; a positive electrode assembly comprising a diffusion paper, a water repellent film, and a gas diffusion electrode which is formed in a body by bonding a separator to a positive electrode catalyst layer composed of mangnese oxide, binder, a conductive material and activated carbon press-bonded and molded by using a positive electrode collector as a base member, where the diffusion paper, the water repellent film and the gas diffusion electrode are laminated in this on the bottom face of the positive electrode case; a gel-like negative electrode active material disposed so as to face and make contact with the separator of the positive electrode assembly while containing an electrolyte and zinc powder; a negative electrode case brought into electrical contact with the negative electrode active material; and an insulating gasket interposed and inserted in the space to be sealed between the negative electrode case and the positive electrode case. The air battery having high output and high capacity can be materialized by using polytetrafluoroethylene to which acrylic modification is applied as the binder of the positive electrode catalyst layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気電池に係り、さらに詳しくは、高出力かつ長寿命化を図った空気電池に関する。   The present invention relates to an air battery, and more particularly to an air battery with high output and long life.

亜鉛を負極とし、空気中の酸素を正極とする空気電池は、正極作用物質を電池内に詰め込む必要がないために、同じ大きさの電池であれば負極作用物質である亜鉛をより多く詰め込むことが可能である。したがって、空気電池はアルカリマンガン電池や酸化銀電池に比較して大容量が得られるという利点があり、需要が拡大してきている。   Air batteries that use zinc as the negative electrode and oxygen in the air as the positive electrode do not need to pack the positive electrode active substance in the battery, so if the battery is the same size, pack more zinc as the negative electrode active substance. Is possible. Therefore, the air battery has an advantage that a large capacity can be obtained as compared with the alkaline manganese battery and the silver oxide battery, and the demand is increasing.

空気電池は主に補聴器等の機器に用いられるが、近年、補聴器等の機器のデジタル化が進み、電池の一層の高出力化が望まれるようになり、空気電池の更なる高出力化、高容量化へのニーズが高まってきている。そのため、空気電池の高出力化及び高容量化を実現させるために電池の内部抵抗を低減させる等、様々な取り組みがなされている。   Air batteries are mainly used in devices such as hearing aids, but in recent years, digitalization of devices such as hearing aids has progressed, and higher output of batteries has been desired. There is a growing need for capacity. Therefore, various efforts have been made such as reducing the internal resistance of the battery in order to achieve higher output and higher capacity of the air battery.

例えば、特許文献1に示すように、正極触媒層の活物質である触媒材料に黒鉛等の導電性材料を混合し、正極触媒層の粉体間の接触抵抗を低減し電池の内部抵抗の低減化を図り、放電作動電圧を高くすることにより、高出力化及び高容量化を実現させる工夫がなされてきた。しかしながら、特許文献1に開示の方法においても次のような問題がある。   For example, as shown in Patent Document 1, a conductive material such as graphite is mixed with a catalyst material that is an active material of the positive electrode catalyst layer, thereby reducing contact resistance between powders of the positive electrode catalyst layer and reducing internal resistance of the battery. In order to achieve higher output and higher capacity by increasing the discharge operating voltage, a device has been devised. However, the method disclosed in Patent Document 1 also has the following problems.

すなわち、正極触媒層の活物質である触媒材料に導電性材料を混合することで、正極触媒層自体の抵抗は低減され重負荷放電特性は向上する。しかしながら、導電材を添加しすぎると、内部抵抗は大幅に低減することができるものの、触媒層の成形ができないほか、触媒層密度が低下するために触媒層の成形が困難となったり、粉体間に空隙が生じるため電解液が触媒層に溜まることで触媒層が窒息を起こし、その結果、短寿命化及び貯蔵特性の低下等の問題があった。
特開平10−189006号公報
That is, by mixing a conductive material with the catalyst material that is the active material of the positive electrode catalyst layer, the resistance of the positive electrode catalyst layer itself is reduced and the heavy load discharge characteristics are improved. However, if too much conductive material is added, the internal resistance can be greatly reduced, but the catalyst layer cannot be molded, and the catalyst layer density is reduced, which makes it difficult to mold the catalyst layer. Since voids are formed between the electrolyte layers, the catalyst layer suffocates due to accumulation of the electrolyte in the catalyst layer. As a result, there are problems such as shortening of life and deterioration of storage characteristics.
JP-A-10-189006

本発明は、上記事情に鑑みてなされたもので、その目的は触媒層に用いられるバインダーの分散性を高め、フィブリル化効率を促進することにより、触媒層の製造性を低下させることなく触媒層の均質化を図り、高出力かつ高容量の空気電池を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to increase the dispersibility of the binder used in the catalyst layer and promote the fibrillation efficiency, thereby reducing the productivity of the catalyst layer. Is to provide a high-power and high-capacity air battery.

上記課題を解決するために、本発明は、上記底面に空気孔を有する一端が開口型の正極ケースと、前記正極ケースの底面上に順次積層配置された拡散紙、撥水膜、正極集電体を支持体として圧着成形された活性炭、マンガン酸化物、バインダー、導電材から構成される正極触媒層とセパレータを接着し、その反対面に撥水層を圧着し一体化させたガス拡散電極からなる正極組立体と、前記正極組立体のセパレータに対接配置された電解液および亜鉛粉を含有したゲル状の負極活物質と、前記負極活物質に電気的に接触する負極ケースと、前記負極ケースおよび正極ケースの被封止部間に介挿入された絶縁ガスケットを有する空気電池であって、前記正極触媒層のバインダーとしてアクリル変性を施したポリテトラフルオロエチレンを用いたことを特徴とする。   In order to solve the above-described problems, the present invention provides a positive electrode case having one end with an air hole on the bottom surface, a diffusion paper, a water repellent film, and a positive electrode current collector that are sequentially stacked on the bottom surface of the positive electrode case. From a gas diffusion electrode in which a positive electrode catalyst layer composed of activated carbon, manganese oxide, binder, and conductive material, bonded to a separator, and a separator are bonded to each other, and a water repellent layer is bonded to the opposite surface. A positive electrode assembly, a gelled negative electrode active material containing an electrolyte and zinc powder disposed in contact with a separator of the positive electrode assembly, a negative electrode case in electrical contact with the negative electrode active material, and the negative electrode An air battery having an insulating gasket inserted between a sealed portion of a case and a positive electrode case, wherein polytetrafluoroethylene subjected to acrylic modification is used as a binder for the positive electrode catalyst layer. The features.

本発明によれば、バインダーの分散性およびフィブリル化効率が促進されることにより、触媒層の製造性を低下させることなく触媒層の均質化を図り、高出力かつ高容量の空気電池を提供することができる。   According to the present invention, the dispersibility of the binder and the fibrillation efficiency are promoted, so that the catalyst layer is homogenized without deteriorating the productivity of the catalyst layer, and a high output and high capacity air battery is provided. be able to.

以下に、本発明の最良の実施の形態を具体的な実施例により詳細に説明する。
(実施例1)
図1は、本実施例に係るPR44形空気電池を示している。図1において、1は正極ケース、2は正極ケース1の底面に設けられた空気孔、3は拡散紙、4は撥水膜、5は正極集電体、6は正極触媒層、7はセパレータ、8は前記触媒層6に圧着された撥水層、9は正極組立体、10は負極活物質、11は負極ケース、12は絶縁性ガスケット、13は正極ケースに設けられた空気孔を封止するためのシールテープである。
Hereinafter, the best mode of the present invention will be described in detail with reference to specific examples.
(Example 1)
FIG. 1 shows a PR44 type air battery according to this example. In FIG. 1, 1 is a positive electrode case, 2 is an air hole provided in the bottom surface of the positive electrode case 1, 3 is a diffusion paper, 4 is a water repellent film, 5 is a positive electrode current collector, 6 is a positive electrode catalyst layer, and 7 is a separator. , 8 is a water-repellent layer pressure-bonded to the catalyst layer 6, 9 is a positive electrode assembly, 10 is a negative electrode active material, 11 is a negative electrode case, 12 is an insulating gasket, and 13 is an air hole provided in the positive electrode case. It is a sealing tape for stopping.

正極ケース2は、鉄又はステンレスにニッケルメッキを施したものが用いられる。拡散紙3は、厚さ50〜100μmクラフト紙からなり、撥水膜4は、ポリテトラフルオロロエチレン(PTFE)フィルムからなる。正極触媒層6は、活性炭、マンガン酸化物、導電性材料として膨張化黒鉛、バインダーで構成されており、その触媒層構成物質を130℃にて加熱混合し、熱ローラーにてシート状に形成したものである。   The positive electrode case 2 is made of nickel or nickel plated on iron or stainless steel. The diffusion paper 3 is made of kraft paper having a thickness of 50 to 100 μm, and the water repellent film 4 is made of a polytetrafluoroethylene (PTFE) film. The positive electrode catalyst layer 6 is composed of activated carbon, manganese oxide, expanded graphite as a conductive material, and a binder, and the catalyst layer constituent materials are heated and mixed at 130 ° C. and formed into a sheet shape with a heat roller. Is.

また、バインダーとして、アクリル変性を施したポリテトラフルオロエチレン粉末(三菱レイヨン社製 メタブレンA−3000)を用い、バインダー配合量は触媒構成物質の重量比で25%とした。セパレータ7は、ポリプロピレン微多孔質膜と不織布を貼り合わせたものである。   Moreover, polytetrafluoroethylene powder (Mittabrene A-3000 manufactured by Mitsubishi Rayon Co., Ltd.) subjected to acrylic modification was used as a binder, and the amount of the binder was 25% in terms of the weight ratio of the catalyst constituent material. The separator 7 is a laminate of a polypropylene microporous membrane and a nonwoven fabric.

また、負極活物質10は、亜鉛粉および電解液を含有したゲル状のものである。このゲル状の負極活物質10は、30〜45重量%の水酸化カリウム水溶液の電解液に、ポリアクリル酸(ゲル化剤)と亜鉛合金粉末とを配合して調製したゲル状の混合体である。前記亜鉛合金粉は、100〜300μm程度の粒度でアルミニウム、ビスマス、インジウム、鉛等を添加した汞化あるいは無汞化のものである。   The negative electrode active material 10 is a gel containing zinc powder and an electrolytic solution. This gel-like negative electrode active material 10 is a gel-like mixture prepared by blending polyacrylic acid (gelling agent) and zinc alloy powder in an electrolyte of 30 to 45% by weight potassium hydroxide aqueous solution. is there. The zinc alloy powder has a particle size of about 100 to 300 μm and is hatched or non-hatched with the addition of aluminum, bismuth, indium, lead or the like.

さらに、負極ケース11は、たとえばニッケル、ステンレス鋼および銅の三層クラッド製であり、また絶縁ガスケット12はポリアミド樹脂系のものである。   Further, the negative electrode case 11 is made of, for example, a three-layer clad of nickel, stainless steel and copper, and the insulating gasket 12 is of a polyamide resin type.

(実施例2乃至4)
触媒層のバインダーにアクリル変性を施したテトラフルオロエチレン粉末を用い、配合比率をそれぞれ20%、15%、10%とした以外は、実施例1と同様な構成のPR44空気電池を作成した。
(Examples 2 to 4)
A PR44 air battery having the same configuration as in Example 1 was prepared except that tetrafluoroethylene powder subjected to acrylic modification was used as the binder of the catalyst layer, and the blending ratios were set to 20%, 15%, and 10%, respectively.

(比較例1乃至4)
触媒層のバインダーにアクリル変性を施していないテトラフルオロエチレン粉末を用い、配合比率をそれぞれ25%、20%、15%、10%とした以外は、実施例1と同様な構成のPR44空気電池を作成した。
(Comparative Examples 1 to 4)
A PR44 air battery having the same configuration as in Example 1 except that tetrafluoroethylene powder not subjected to acrylic modification was used as the binder of the catalyst layer, and the blending ratios were set to 25%, 20%, 15%, and 10%, respectively. Created.

(比較例5及び6)
触媒層にバインダーにアクリル変性を施したテトラフルオロエチレン粉末を用い、配合比率をそれぞれ30%、5%とした以外は、実施例1と同様な構成のPR44空気電池を作成した。
(Comparative Examples 5 and 6)
A PR44 air battery having the same configuration as in Example 1 was prepared, except that tetrafluoroethylene powder obtained by subjecting the binder to acrylic modification to the catalyst layer was used and the blending ratio was set to 30% and 5%, respectively.

上記実施例及び比較例に記載の構成に基づき、JIS規格PR44型の空気電池を各50個ずつ組み立て、触媒層の成形性比較を行った。また、上記構成の空気電池について15mAの強負荷放電を実施し、その放電結果を、比較例1の放電容量(0.9Vカット)を100として指数で表し、放電中の作動電圧を測定した。   Based on the configurations described in the above examples and comparative examples, 50 JIS standard PR44 type air cells were assembled, and the moldability of the catalyst layers was compared. Moreover, 15 mA heavy load discharge was implemented about the air battery of the said structure, the discharge result was expressed with the discharge capacity (0.9V cut) of the comparative example 1 as 100, and the operating voltage during discharge was measured.

表1は、各評価結果を比較表示したものである。

Figure 2008103134
Table 1 compares and displays each evaluation result.
Figure 2008103134

実施例1乃至4と比較例1乃至6とを比較すると、実施例1乃至4は、触媒層の成形性及び放電試験においても良好な結果を得られていることがわかる。これは、触媒層のバインダーにアクリル変性を施したテトラフルオロエチレンを用いたことで、バインダーが効率よくフィブリル化し分散性が良好になったことにより、空気極の撥水性が向上し電解液の浸透による触媒層の耐久性が高くなったためである。   Comparing Examples 1 to 4 with Comparative Examples 1 to 6, it can be seen that Examples 1 to 4 have good results in the moldability of the catalyst layer and the discharge test. This is because tetrafluoroethylene with acrylic modification is used for the binder of the catalyst layer, and the binder is efficiently fibrillated and the dispersibility is improved, thereby improving the water repellency of the air electrode and penetrating the electrolyte. This is because the durability of the catalyst layer is increased.

また、実施例4と比較例4において、バインダー配合比が同じでも実施例4は触媒層の成形性が良いが比較例4では触媒層の成形性が悪く触媒層を成形することができない。これは、実施例4では、触媒層のバインダーにアクリル変性を施したテトラフルオロエチレンを用いたことにより、バインダーが効率よくフィブリル化し分散性が良好になったため、少ないバインダー量でも触媒層の成形が可能になったものである。   Moreover, in Example 4 and Comparative Example 4, even if the binder compounding ratio is the same, Example 4 has good moldability of the catalyst layer, but Comparative Example 4 has poor moldability of the catalyst layer and cannot form the catalyst layer. In Example 4, since the binder was efficiently fibrillated and dispersibility was improved by using tetrafluoroethylene subjected to acrylic modification as the binder of the catalyst layer, the catalyst layer could be molded even with a small amount of binder. It has become possible.

さらに、実施例1乃至4と比較例5、6において、触媒層のバインダーにアクリル変性を施したテトラフルオロエチレンを用いても、比較例5のようにバインダー配合比率が高すぎると、触媒層の撥水性が高くなりすぎるため作動電圧の低下、放電容量の低下を引き起こしてしまう。また、比較例6のようにバインダーの配合比率が低すぎると、効率よくフィブリル化し分散性が良好でも触媒層の成形性が悪化し、触媒層の成形ができなくなる。これは、触媒層を成形するためのバインダー量が極端に少なすぎることが原因と考えられる。したがって、触媒層のバインダーにアクリル変性を施したテトラフルオロエチレンをもちいる場合は、配合比率を10%〜25%にすることが望ましい。   Further, in Examples 1 to 4 and Comparative Examples 5 and 6, even when tetrafluoroethylene subjected to acrylic modification is used for the binder of the catalyst layer, if the binder blending ratio is too high as in Comparative Example 5, the catalyst layer Since the water repellency becomes too high, the operating voltage is lowered and the discharge capacity is lowered. In addition, when the blending ratio of the binder is too low as in Comparative Example 6, the catalyst layer can be molded efficiently and the moldability of the catalyst layer is deteriorated even if the dispersibility is good. This is considered to be because the amount of the binder for forming the catalyst layer is extremely too small. Therefore, when tetrafluoroethylene subjected to acrylic modification is used for the binder of the catalyst layer, the blending ratio is desirably 10% to 25%.

なお、本発明は上記実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲で種々の形態をとることができる。たとえばボタン形空気電池以外の円筒型空気電池、角型空気電池であっても適用可能である。   In addition, this invention is not limited to the said Example, A various form can be taken in the range which does not deviate from the meaning of invention. For example, a cylindrical air battery other than a button-type air battery or a square air battery can be applied.

以上のように、本発明によれば触媒層の製造性を低下させることなく、高出力且つ長寿命の空気電池を提供することが可能となる。   As described above, according to the present invention, it is possible to provide a high-power and long-life air battery without reducing the productivity of the catalyst layer.

空気電池の要部構成例を示す断面図。Sectional drawing which shows the principal part structural example of an air battery.

符号の説明Explanation of symbols

1…正極ケース、2…空気孔、3…拡散紙、4…撥水膜、5…正極集電体、6…正極触媒層、7…セパレータ、8…撥水層、9…正極組立体、10…負極活物質、11…負極ケース、12…絶縁性ガスケット、13…シールテープ。   DESCRIPTION OF SYMBOLS 1 ... Positive electrode case, 2 ... Air hole, 3 ... Diffusion paper, 4 ... Water-repellent film, 5 ... Positive electrode collector, 6 ... Positive electrode catalyst layer, 7 ... Separator, 8 ... Water-repellent layer, 9 ... Positive electrode assembly, DESCRIPTION OF SYMBOLS 10 ... Negative electrode active material, 11 ... Negative electrode case, 12 ... Insulating gasket, 13 ... Seal tape.

Claims (2)

底面に空気孔を有する一端が開口型の正極ケースと、前記正極ケースの底面上に順次積層配置された拡散紙、撥水膜、正極集電体を支持体として圧着成形された活性炭、マンガン酸化物、バインダー、導電材から構成される正極触媒層にセパレータを接着し、その反対面に撥水層を圧着し一体化させたガス拡散電極からなる正極組立体と、前記正極組立体のセパレータに対接配置された電解液および亜鉛粉を含有したゲル状の負極活物質と、前記負極活物質に電気的に接触する負極ケースと、前記負極ケースおよび正極ケースの被封止部間に介挿入された絶縁ガスケットを有する空気電池であって、前記正極触媒層のバインダーとしてアクリル変性を施したポリテトラフルオロエチレンを用いたことを特徴とする空気電池。   One end of the positive electrode case with an air hole at the bottom, activated carbon formed by pressure bonding with diffusion paper, water-repellent film, and positive electrode current collector stacked sequentially on the bottom of the positive electrode case, manganese oxide A positive electrode assembly composed of a gas diffusion electrode in which a separator is adhered to a positive electrode catalyst layer composed of a material, a binder, and a conductive material, and a water-repellent layer is pressure-bonded to the opposite surface, and the separator of the positive electrode assembly Gelled negative electrode active material containing electrolyte solution and zinc powder arranged in contact with each other, a negative electrode case in electrical contact with the negative electrode active material, and interposed between sealed portions of the negative electrode case and the positive electrode case An air battery having an insulating gasket, wherein polytetrafluoroethylene subjected to acrylic modification is used as a binder for the positive electrode catalyst layer. 前記正極触媒層のバインダー配合比率を10%〜25%としたことを特徴とする請求項1記載の空気電池。   2. The air battery according to claim 1, wherein a binder compounding ratio of the positive electrode catalyst layer is 10% to 25%.
JP2006283423A 2006-10-18 2006-10-18 Air battery Pending JP2008103134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283423A JP2008103134A (en) 2006-10-18 2006-10-18 Air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283423A JP2008103134A (en) 2006-10-18 2006-10-18 Air battery

Publications (1)

Publication Number Publication Date
JP2008103134A true JP2008103134A (en) 2008-05-01

Family

ID=39437321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283423A Pending JP2008103134A (en) 2006-10-18 2006-10-18 Air battery

Country Status (1)

Country Link
JP (1) JP2008103134A (en)

Similar Documents

Publication Publication Date Title
JP5867044B2 (en) Insulating adhesive layer and power storage device using the same
US20160104926A1 (en) Air battery
JP2010536122A (en) Bipolar battery plate and bipolar battery
WO2015029547A1 (en) Air battery and battery pack
JP2012015025A (en) Aluminum air battery
JPWO2009119094A1 (en) Sealed battery
JP5361859B2 (en) Multilayer cathode structure with silver-containing layer for small cells
JP2018028961A (en) Coin cell
US20020132158A1 (en) Air electrode providing high current density for metal-air batteries
JP6947565B2 (en) Manufacturing method of air electrode, metal-air battery and air electrode
JP2008192383A (en) Cylindrical non-aqueous electrolytic liquid primary cell
JPH06267594A (en) Air battery
JP6033208B2 (en) ELECTROLYTE MEMBRANE FOR SECONDARY BATTERY, JOINT, METAL-AIR ALL-SOLID SECONDARY BATTERY, AND MANUFACTURING METHOD
JP2008103134A (en) Air battery
JP2005019145A (en) Air battery
JP2021064584A (en) Solid electrolyte battery
JPH10189006A (en) Air cell
US11695176B2 (en) Zinc-air battery compositions and methods
JP2005019146A (en) Air battery
US11322786B2 (en) Air electrode, metal-air battery, and air electrode production method
JPH11191440A (en) Air electrode and air battery using the same
JP4395899B2 (en) Air battery
JP2011154788A (en) Battery
JP2008103135A (en) Air zinc battery
JP2000195568A (en) Air battery