JP2008103109A - Nonaqueous electrolyte cell - Google Patents

Nonaqueous electrolyte cell Download PDF

Info

Publication number
JP2008103109A
JP2008103109A JP2006282738A JP2006282738A JP2008103109A JP 2008103109 A JP2008103109 A JP 2008103109A JP 2006282738 A JP2006282738 A JP 2006282738A JP 2006282738 A JP2006282738 A JP 2006282738A JP 2008103109 A JP2008103109 A JP 2008103109A
Authority
JP
Japan
Prior art keywords
positive electrode
pellet
negative electrode
nonaqueous electrolyte
electrode pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006282738A
Other languages
Japanese (ja)
Inventor
Yoshinori Atsumi
吉則 厚美
Masatsugu Shioda
昌嗣 塩田
Atsushi Yagisawa
淳 八木沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006282738A priority Critical patent/JP2008103109A/en
Publication of JP2008103109A publication Critical patent/JP2008103109A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte cell and a method of manufacturing the nonaqueous electrolyte cell capable of suppressing increase of an internal resistance even under a low temperature environment to improve heavy load characteristics, by enhancing the current collection effect. <P>SOLUTION: In this nonaqueous electrolyte cell 10 and the method of the nonaqueous electrolyte cell, the nonaqueous electrolyte cell is provided with a negative electrode can 11, a negative electrode pellet 12 made of lithium or lithium aluminum alloy, an aluminum foil 13 disposed on a positive electrode side-negative surface of the negative electrode pellet 12, a positive electrode pellet 15 mainly made of β manganese dioxide, a positive electrode can 17, and a separator 14 disposed between the negative electrode pellet 12 and the positive electrode pellet 15. The negative electrode pellet 12 and the positive electrode pellet 15 are encapsulated, together with nonaqueous electrolyte, in a cell case comprising the negative electrode can 11 and the positive electrode can 17. A positive electrode ring 16, which is L-shaped in half section, closely contacting an inner surface of the positive electrode pellet 15 is weld-bonded to an inside of the positive electrode can 17 by resistant welding or laser welding. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解液電池に関し、更に詳しくは携帯用の各種電気機器の電源に最適なコイン型の非水電解液電池及び非水電解液電池の製造方法に関する。   The present invention relates to a non-aqueous electrolyte battery, and more particularly to a coin-type non-aqueous electrolyte battery and a method for manufacturing a non-aqueous electrolyte battery that are optimal for power sources of various portable electric devices.

非水電解液電池の一例として、図3に示すように、ステンレススチールにニッケルメッキを施した正極端子を兼ねた正極缶51と、二酸化マンガンを主成分とする合剤を加圧成型した正極ペレット52と、ポリプロピレン製不織布からなるセパレータ53と、リチウムを負極活物質とした負極ペレット54と、ステンレススチールにニッケルメッキを施した負極端子を兼ねた負極缶55と、ボリプロピレン製のガスケット56と、所定厚のステンレススチールよりなる筒状の正極リング57と、を備え、正極リング57の内径が正極ペレット52の外径の102%ないし110%にした非水電解液電池50が知られている(例えば、特許文献1参照)。   As an example of a non-aqueous electrolyte battery, as shown in FIG. 3, a positive electrode can 51 also serving as a positive electrode terminal made of nickel-plated stainless steel, and a positive electrode pellet obtained by pressure-molding a mixture mainly composed of manganese dioxide 52, a separator 53 made of polypropylene nonwoven fabric, a negative electrode pellet 54 using lithium as a negative electrode active material, a negative electrode can 55 also serving as a negative electrode terminal made of nickel-plated stainless steel, a polypropylene 56 gasket, There is known a nonaqueous electrolyte battery 50 including a cylindrical positive electrode ring 57 made of stainless steel having a predetermined thickness, in which the inner diameter of the positive electrode ring 57 is 102% to 110% of the outer diameter of the positive electrode pellet 52 ( For example, see Patent Document 1).

特開平9−204920号公報JP-A-9-204920

しかしながら、特許文献1に開示された従来の非水電解液電池50では、注入される電解液の液量に差異が生じないようにするとともに電解液の漏出を防止して放電容量のばらつきを抑えることはできるものの、高温下で膨れた際に導通抵抗が増えて、集電効果が不十分になる虞がある。   However, in the conventional non-aqueous electrolyte battery 50 disclosed in Patent Document 1, a difference in the amount of electrolyte injected is prevented, and leakage of the electrolyte is prevented to suppress variation in discharge capacity. Although it is possible, when it swells at a high temperature, the conduction resistance increases and the current collecting effect may be insufficient.

近年、駆動用電源としてリチウム電池等が使用されるようになり、低温での重負荷特性の需要が増えている。リチウム電池は、通常の動作温度範囲が、−20℃〜60℃が一般的な仕様であるが、特に、車両のタイヤ空気圧をセンシングするためのシステムに用いる場合には、−40℃〜120℃といった低温から高温までの広い温度範囲の重負荷特性が要求されつつある。   In recent years, lithium batteries and the like have been used as driving power sources, and demand for heavy load characteristics at low temperatures has increased. Lithium batteries generally have a normal operating temperature range of −20 ° C. to 60 ° C., but in particular, when used in a system for sensing vehicle tire pressure, −40 ° C. to 120 ° C. Thus, heavy load characteristics in a wide temperature range from low temperature to high temperature are being demanded.

リチウムマンガン電池の低温における重負荷パルス試験においては、−40℃の低温下では電解液が凝固点に近いところまで達するため、イオンの電導度が著しく低下するとともに電池の集電を掌る正極缶と正極リング及び正極ペレットのコンタクトの低下により、低温時の重負荷パルス特性が著しく悪化する問題があった。   In a heavy load pulse test at a low temperature of a lithium manganese battery, since the electrolyte reaches a point near the freezing point at a low temperature of −40 ° C., the conductivity of ions is significantly reduced, and the positive electrode can which collects the current of the battery There has been a problem that the heavy load pulse characteristics at a low temperature are remarkably deteriorated due to a decrease in the contact of the positive electrode ring and the positive electrode pellet.

さらに、高温保存に電池が膨れたりする事により、集電が低下する弊害を改善するための部品として、正極ペレットと正極リングとを一体成型した仕様とし、さらにこの正極缶に弾性を有する板材を正極缶に抵抗溶接もしくはレーザー等で溶接する方法や、正極缶にカーボンを主原料とする導電性塗料を塗布して集電性を向上させる方法等がある。これらの手法によって、低温及び高温時の電池寸法変化が起きても集電部の接触が保たれる事で内部抵抗上昇を抑制できるが、いずれも部品点数が増え、集電効果が不十分である等の問題があった。   Furthermore, as a part to improve the adverse effect of reducing current collection due to battery swelling during high-temperature storage, the positive electrode pellet and the positive electrode ring are integrally molded, and the positive electrode can has an elastic plate material. There are a method of welding the positive electrode can by resistance welding or laser, and a method of improving the current collecting property by applying a conductive paint mainly made of carbon to the positive electrode can. These methods can suppress the increase in internal resistance by maintaining the contact of the current collector even if the battery size changes at low and high temperatures, but both increase the number of parts and the current collection effect is insufficient. There were some problems.

本発明は、上述した課題に鑑みてなされたものであり、その目的は、集電効果を飛躍的に高めることで、低温環境下でも内部抵抗の上昇を抑制し、重負荷特性を著しく改善することができる非水電解液電池及び非水電解液電池の製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and its object is to dramatically increase the current collecting effect, thereby suppressing an increase in internal resistance even in a low temperature environment and significantly improving heavy load characteristics. An object of the present invention is to provide a non-aqueous electrolyte battery and a method for manufacturing the non-aqueous electrolyte battery.

上記の目的を達成するため、本発明に係る非水電解液電池は、負極缶と、リチウムもしくはリチウムアルミ合金を用いた負極ペレットと、該負極ペレットの正極側負極表面に配置されたアルミニウム箔と、焼成したβ二酸化マンガンを主体として用いた正極の集電材である正極ペレットと、正極缶と、該負極ペレットと該正極ペレットとの間に配置されたセパレータを介して対向配置し、前記負極ペレットおよび前記正極ペレットが非水電解液と共に前記負極缶および前記正極缶よりなる電池ケースに封入、組み立てた非水電解液電池であって、
前記正極缶並びに前記正極ペレットと一体成型された半断面視L字状の正極リングが該正極ペレットの内側面に密接されて固定されており、且つ該正極缶と該正極リングとは抵抗溶接もしくはレーザー溶接により前記正極缶の内側から溶着されたことを特徴としている。
In order to achieve the above object, a nonaqueous electrolyte battery according to the present invention includes a negative electrode can, a negative electrode pellet using lithium or a lithium aluminum alloy, and an aluminum foil disposed on the positive electrode side negative electrode surface of the negative electrode pellet, The positive electrode pellet, which is a positive electrode current collector mainly composed of baked β-manganese dioxide, the positive electrode can, and the separator disposed between the negative electrode pellet and the positive electrode pellet are arranged to face each other, and the negative electrode pellet And the positive electrode pellet is a non-aqueous electrolyte battery enclosed and assembled in a battery case made of the negative electrode can and the positive electrode can together with a non-aqueous electrolyte,
An L-shaped positive electrode ring, which is integrally formed with the positive electrode can and the positive electrode pellet, is fixed in close contact with the inner surface of the positive electrode pellet, and the positive electrode can and the positive electrode ring are bonded by resistance welding or It is characterized by being welded from the inside of the positive electrode can by laser welding.

上記構成の非水電解液電池によれば、正極缶並びに正極ペレットと一体成型された正極リングが正極ペレットの内側面に密接されて固定され、正極缶と正極リングとが抵抗溶接もしくはレーザー溶接により正極缶の内側から溶着されているために、正極ペレットと正極リングとの側面が縮径されて密接に固定される。これにより、高温時に膨れたとしても、負極から正極にリチウムがイオンとなって挿印される際における正極の集電効果を飛躍的に向上させることができるので、−40℃〜120℃のヒートサイクル後でも電池内部抵抗が上昇しないことで、重負荷パルス特性において良好な結果を得ることができる。   According to the non-aqueous electrolyte battery having the above configuration, the positive electrode can and the positive electrode ring integrally formed with the positive electrode pellet are fixed in close contact with the inner surface of the positive electrode pellet, and the positive electrode can and the positive electrode ring are bonded by resistance welding or laser welding. Since it is welded from the inside of the positive electrode can, the side surfaces of the positive electrode pellet and the positive electrode ring are reduced in diameter and fixed closely. Thereby, even if it swells at high temperature, the current collection effect of the positive electrode when lithium is ion-implanted from the negative electrode to the positive electrode can be dramatically improved. Since the battery internal resistance does not increase even after the cycle, good results can be obtained in the heavy load pulse characteristics.

また、上記記載の前記正極リングに密接する前記正極ペレットの外径/該正極リングの内径の比が、1.0〜1.10であることを特徴としている。   In addition, the ratio of the outer diameter of the positive electrode pellet in close contact with the positive electrode ring described above / the inner diameter of the positive electrode ring is 1.0 to 1.10.

上記構成の非水電解液電池によれば、正極ペレットの外径/正極リングの内径の比が、1.0〜1.10であることで、正極の集電効果を飛躍的に向上させることができるので、−40℃〜120℃のヒートサイクル後でも電池内部抵抗が上昇せずに、重負荷パルス特性において良好な結果を得ることができる。   According to the non-aqueous electrolyte battery having the above configuration, the ratio of the outer diameter of the positive electrode pellet to the inner diameter of the positive electrode ring is 1.0 to 1.10. Therefore, even after a heat cycle of −40 ° C. to 120 ° C., the battery internal resistance does not increase, and good results can be obtained in the heavy load pulse characteristics.

また、上記記載の前記負極ペレットの外径が、前記正極ペレットの外径よりも小さいことを特徴としている。   Moreover, the outer diameter of the negative electrode pellet described above is smaller than the outer diameter of the positive electrode pellet.

上記構成の非水電解液電池によれば、正極ペレットを収容している正極缶と、負極ペレットを収容している負極缶とを組み立てるに際し、負極ペレットの外径が正極ペレットの外径よりも小さいために、正極缶に対して負極缶を位置決めし易いので、組立て作業性の向上を図ることができる。   According to the non-aqueous electrolyte battery having the above configuration, when the positive electrode can containing the positive electrode pellet and the negative electrode can containing the negative electrode pellet are assembled, the outer diameter of the negative electrode pellet is larger than the outer diameter of the positive electrode pellet. Since it is small, it is easy to position the negative electrode can with respect to the positive electrode can, so that the assembly workability can be improved.

また、本発明に係る非水電解液電池の製造方法は、負極缶と、リチウムもしくはリチウムアルミ合金を用いた負極ペレットと、該負極ペレットの正極側負極表面に配置されたアルミニウム箔と、焼成したβ二酸化マンガンを主体として用いた正極の集電材である正極ペレットと、正極缶と、該負極ペレットと該正極ペレットとの間に配置されたセパレータを介して対向配置し、前記負極ペレットおよび前記正極ペレットが非水電解液と共に前記負極缶および前記正極缶よりなる電池ケースに封入、組み立てられる非水電解液電池の製造方法であって、
前記正極缶並びに前記正極ペレットと一体成型される半断面視L字状の正極リングを該正極ペレットの内側面に密接して固定し、且つ該正極缶と該正極リングとを抵抗溶接もしくはレーザー溶接により前記正極缶の内側から溶着したことを特徴としている。
In addition, the method for producing a nonaqueous electrolyte battery according to the present invention includes a negative electrode can, a negative electrode pellet using lithium or a lithium aluminum alloy, and an aluminum foil disposed on a negative electrode surface of the negative electrode pellet. A positive electrode pellet that is a positive electrode current collector mainly composed of β-manganese dioxide, a positive electrode can, and a separator disposed between the negative electrode pellet and the positive electrode pellet, the negative electrode pellet and the positive electrode A method for producing a non-aqueous electrolyte battery in which a pellet is enclosed in a battery case composed of the negative electrode can and the positive electrode can together with a non-aqueous electrolyte,
An L-shaped positive electrode ring integrally formed with the positive electrode can and the positive electrode pellet is fixed in close contact with the inner surface of the positive electrode pellet, and the positive electrode can and the positive electrode ring are resistance welded or laser welded. It was characterized by welding from the inside of the positive electrode can.

上記構成の非水電解液電池の製造方法によれば、正極缶並びに正極ペレットと一体成型された正極リングが正極ペレットの内側面に密接されて固定され、正極缶と正極リングとが抵抗溶接もしくはレーザー溶接により正極缶の内側から溶着されているために、正極ペレットと正極リングとの側面が縮径されて密接に固定される。これにより、高温時に膨れたとしても、負極から正極にリチウムがイオンとなって挿印される際における正極の集電効果を飛躍的に向上させることができるので、−40℃〜120℃のヒートサイクル後でも電池内部抵抗が上昇しないことで、重負荷パルス特性において良好な結果を得ることができる。   According to the method for manufacturing a non-aqueous electrolyte battery having the above-described configuration, the positive electrode can and the positive electrode ring integrally molded with the positive electrode pellet are fixed in close contact with the inner surface of the positive electrode pellet, and the positive electrode can and the positive electrode ring are resistance-welded or Since it is welded from the inside of the positive electrode can by laser welding, the side surfaces of the positive electrode pellet and the positive electrode ring are reduced in diameter and are fixed closely. Thereby, even if it swells at high temperature, the current collection effect of the positive electrode when lithium is ion-implanted from the negative electrode to the positive electrode can be dramatically improved. Since the battery internal resistance does not increase even after the cycle, good results can be obtained in the heavy load pulse characteristics.

本発明の非水電解液電池によれば、集電効果を飛躍的に高めることで、低温環境下でも内部抵抗の上昇を抑制し、重負荷特性を著しく改善することができる非水電解液電池及び非水電解液電池の製造方法を提供することができる。   According to the non-aqueous electrolyte battery of the present invention, the current collecting effect is remarkably enhanced, so that the increase in internal resistance can be suppressed even in a low temperature environment, and the heavy load characteristics can be remarkably improved. And the manufacturing method of a nonaqueous electrolyte battery can be provided.

以下、図1,2および表1,2を参照して本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to FIGS.

図1は本発明の一実施形態の非水電解液電池の断面図、図2は図1に示す非水電解液電池の正極ペレットの単体断面図、表1は本発明の実施例であって低温から高温までのヒートサイクルパルス条件試験の結果表、表2は本発明の実施例であってヒートサイクル50サイクル後の電池内部抵抗を測定結果表である。   FIG. 1 is a cross-sectional view of a nonaqueous electrolyte battery according to an embodiment of the present invention, FIG. 2 is a single cross-sectional view of a positive electrode pellet of the nonaqueous electrolyte battery shown in FIG. 1, and Table 1 is an example of the present invention. The result table of the heat cycle pulse condition test from low temperature to high temperature, Table 2 is an example of the present invention, and is a measurement result table of the battery internal resistance after 50 heat cycles.

図1に示すように、本発明の一実施形態である非水電解液電池10は、負極缶11と、負極ペレット12と、アルミニウム箔13と、セパレータ14と、正極ペレット15と、正極リング16と、正極缶17と、封口ガスケット18と、からなるコイン型リチウム電池である。   As shown in FIG. 1, a nonaqueous electrolyte battery 10 according to an embodiment of the present invention includes a negative electrode can 11, a negative electrode pellet 12, an aluminum foil 13, a separator 14, a positive electrode pellet 15, and a positive electrode ring 16. And a coin-type lithium battery comprising a positive electrode can 17 and a sealing gasket 18.

負極缶11は、ニッケルメッキしたステンレス鋼を用いて有天の円筒形状に形成されている。   The negative electrode can 11 is formed in a lenticular cylindrical shape using nickel-plated stainless steel.

負極ペレット12は、リチウム(Li)やリチウムアルミ合金を用いて円板形状に成型されており、負極缶11に圧着される。負極ペレット12は、その外径D1が、正極ペレット15の外径D2よりも小さい。より具体的には、D1/D2=95〜85%が望ましい。これは、放電反応において、負極電極からイオン化したリチウムが正極電極に挿印される際に効率よく移動されるからである。   The negative electrode pellet 12 is formed into a disk shape using lithium (Li) or a lithium aluminum alloy, and is pressure-bonded to the negative electrode can 11. The outer diameter D1 of the negative electrode pellet 12 is smaller than the outer diameter D2 of the positive electrode pellet 15. More specifically, D1 / D2 = 95 to 85% is desirable. This is because in the discharge reaction, lithium ionized from the negative electrode is efficiently transferred when it is inserted into the positive electrode.

アルミニウム箔13は、負極ペレット12とセパレータ14との間に挟まれて負極ペレット12の正極側負極表面に配置されている。   The aluminum foil 13 is sandwiched between the negative electrode pellet 12 and the separator 14 and is disposed on the positive electrode side negative electrode surface of the negative electrode pellet 12.

セパレータ14は、ポリプロピレン(PP)からなる不織布であって、封口ガスケット18を介してアルミニウム箔13と正極ペレット15との間に挟まれて配置される。   The separator 14 is a non-woven fabric made of polypropylene (PP), and is disposed between the aluminum foil 13 and the positive electrode pellet 15 via a sealing gasket 18.

正極ペレット15は、焼成したβ二酸化マンガンを主体として用いた正極の集電材であり、円板形状に成型されている。   The positive electrode pellet 15 is a positive electrode current collector mainly composed of baked β-manganese dioxide, and is formed into a disk shape.

正極リング16は、半断面視L字状の略円筒形状の金属製リングであって、正極ペレット15の正極缶17側において正極ペレット15の内側面に密接されて固定されており、正極缶17の内側から、レーザー溶接により正極缶17に溶着された溶着部19を有する。なお、レーザー溶接に代えて抵抗溶接を用いても良い。   The positive electrode ring 16 is a substantially cylindrical metal ring having an L shape in a semi-sectional view, and is fixed in close contact with the inner surface of the positive electrode pellet 15 on the positive electrode can 17 side of the positive electrode pellet 15. From the inner side, it has the welding part 19 welded to the positive electrode can 17 by laser welding. Resistance welding may be used instead of laser welding.

正極缶17は、ニッケルメッキしたステンレス鋼(SUS)を用いて有底の円筒形状に形成されている。   The positive electrode can 17 is formed into a bottomed cylindrical shape using nickel-plated stainless steel (SUS).

封口ガスケット18は、プラスチックス等の高分子材料を用いて円環形状に形成されており、外縁部が負極缶11の外縁外周と正極缶17の外縁内周との間に挟みこまれ、内縁部がセパレータ14に当接して配置されている。   The sealing gasket 18 is formed in an annular shape using a polymer material such as plastics, and the outer edge portion is sandwiched between the outer periphery of the negative electrode can 11 and the inner periphery of the outer periphery of the positive electrode can 17. The part is disposed in contact with the separator 14.

図2に示すように、正極ペレット15の外径D3と正極リング16の内径d1との比が、D3/d1=1.0〜1.10に設定されている。   As shown in FIG. 2, the ratio between the outer diameter D3 of the positive electrode pellet 15 and the inner diameter d1 of the positive electrode ring 16 is set to D3 / d1 = 1.0 to 1.10.

次に、非水電解液電池10の製造方法について説明する。   Next, a method for manufacturing the nonaqueous electrolyte battery 10 will be described.

先ず、正極として、所定温度で所定時間熱処理を施したβ二酸化マンガン89重量部、グラファイト9重量部、ポリテトラフルオロエチレン(PTFE)2重量部を均質に混合し予備成型した後、所定平均粒径のアルミニウム箔13を予備成型された正極ペレット母材上に所定重量充填し加圧成型することにより正極ペレット15を製作する。   First, 89 parts by weight of β manganese dioxide, 9 parts by weight of graphite, and 2 parts by weight of polytetrafluoroethylene (PTFE) that have been heat-treated at a predetermined temperature for a predetermined time as a positive electrode are homogeneously mixed and preformed, and then a predetermined average particle size is obtained. A positive electrode pellet 15 is manufactured by filling a predetermined weight of the aluminum foil 13 on a preformed positive electrode pellet base material and press-molding it.

そして、正極ペレット15の正極缶17側において正極ペレット15の内側面に正極リング16を密接固定する。   Then, the positive electrode ring 16 is closely fixed to the inner surface of the positive electrode pellet 15 on the positive electrode can 17 side of the positive electrode pellet 15.

また、負極として、リチウムやリチウムアルミ合金を、所定の外径、所定の高さ、所定の重量に打ち抜き加工して負極ペレット12を製作する。このとき、負極ペレット12の外径D1は、正極ペレット15の外径D2よりも小さい。   Further, as the negative electrode, lithium or a lithium aluminum alloy is punched into a predetermined outer diameter, a predetermined height, and a predetermined weight to manufacture the negative electrode pellet 12. At this time, the outer diameter D1 of the negative electrode pellet 12 is smaller than the outer diameter D2 of the positive electrode pellet 15.

次に、負極ペレット12を負極缶11に圧着固定し、その上にセパレータ14を重ね、セパレータ14を介して封口ガスケット18をその上部に置き、この上から非水電解液を滴下する。   Next, the negative electrode pellet 12 is pressure-bonded and fixed to the negative electrode can 11, the separator 14 is stacked thereon, the sealing gasket 18 is placed on the upper part via the separator 14, and the nonaqueous electrolyte is dropped from above.

そして、セパレータ14の上に、正極ペレット15の反正極リング16側を載せ、その上に正極缶17を被せる。そこで、正極リング16と正極缶17との当接部において、正極缶17の内面側にレーザー溶接機を対向配置し、このレーザー溶接機によって、正極リング16と正極缶17との当接部に正極缶17の内側からレーザー光を照射することにより、正極リング16を正極缶17に溶着させる。   Then, on the separator 14, the anti-positive electrode ring 16 side of the positive electrode pellet 15 is placed, and the positive electrode can 17 is placed thereon. Therefore, a laser welder is disposed opposite to the inner surface side of the positive electrode can 17 at the contact portion between the positive electrode ring 16 and the positive electrode can 17, and this laser welder is used to contact the positive electrode ring 16 and the positive electrode can 17. By irradiating laser light from the inside of the positive electrode can 17, the positive electrode ring 16 is welded to the positive electrode can 17.

続いて、正極缶17の外縁部を、封口ガスケット18を介して負極缶11の外縁部側に加締固定することで、非水電解液電池10の製造が完了する。   Subsequently, the outer edge portion of the positive electrode can 17 is crimped and fixed to the outer edge portion side of the negative electrode can 11 via the sealing gasket 18, thereby completing the manufacture of the nonaqueous electrolyte battery 10.

次に、本発明の非水電解液電池10の効果を検証するために行った実施例について説明する。   Next, examples carried out to verify the effect of the nonaqueous electrolyte battery 10 of the present invention will be described.

表1に示すように、比較例1として、直径φ20mmの円盤状の負極ペレットを負極缶内に収納し、厚さ15μm、実測で直径φ15.0mmの外径に切り抜いたアルミニウム箔を負極活物質に圧着した。この時の負極活物質の外径は正極外径よりも小さい。次に、焼成電解二酸化マンガン(β二酸化マンガン)とグラファイトとを主体とする導電材とPTFEを主体とするバインダー2.0%と蒸留水を用いて混合する事により得られたミックスを作製した。   As shown in Table 1, as Comparative Example 1, a negative electrode active material was prepared by storing a disc-shaped negative electrode pellet having a diameter of φ20 mm in a negative electrode can and cutting it to a thickness of 15 μm and actually measuring an outer diameter of φ15.0 mm in diameter. Crimped to. The outer diameter of the negative electrode active material at this time is smaller than the outer diameter of the positive electrode. Next, a mix obtained by mixing conductive material mainly composed of baked electrolytic manganese dioxide (β manganese dioxide) and graphite, 2.0% binder mainly composed of PTFE, and distilled water was prepared.

Figure 2008103109
Figure 2008103109

更に、150℃にて加熱処理し、水を蒸発乾燥させた正極ペレットをペレット状に成型し、正極リングと一体成型する事により作製後、ステンレス製の正極缶に収納した。このとき、正極リング内径/密接された正極ペレット外径に対する比は0.90である。また、この外径の測定(円筒外径測定)には平マイクロメータを使用した。更に、正極リングの内径測定(穴の内径測定)には内側マイクロメータを使用して行った。この測定方法としては、JISB7502に規定のマイクロメータまたは同等以上の制度の測定具を用いる。   Furthermore, the positive electrode pellet which heat-processed at 150 degreeC and evaporated and dried water was shape | molded in the shape of a pellet, and after making it by integrally forming with a positive electrode ring, it accommodated in the stainless steel positive electrode can. At this time, the ratio of positive electrode ring inner diameter / closed positive electrode pellet outer diameter is 0.90. A flat micrometer was used for the measurement of the outer diameter (measurement of the outer diameter of the cylinder). Furthermore, the inner diameter of the positive ring (inner diameter measurement of the hole) was measured using an inner micrometer. As this measuring method, a micrometer specified in JISB7502 or a measuring instrument of the same or higher system is used.

負極ペレットと正極ペレットとはポリプロピレンよりなる坪量50g/m、厚さ300μmのセパレータを介して方向配置し、ステンレス製の正極缶とステンレス製の負極缶とは、ポリプロピレンよりなる封口ガスケットを介する嵌合により密封した。非水電解液には溶質に過塩素酸リチウム(0.5mol/L)、溶媒にプロピレンカーボネート及びジメトキシエタン(容積比5:5)を使用した。これらの構成により電池外径φ24mm、総高5.0mmのコイン形リチウム電池を作製した。 The negative electrode pellet and the positive electrode pellet are arranged in a direction through a separator having a basis weight of 50 g / m 2 and a thickness of 300 μm made of polypropylene, and the stainless steel positive electrode can and the stainless steel negative electrode can are passed through a sealing gasket made of polypropylene. Sealed by mating. In the non-aqueous electrolyte, lithium perchlorate (0.5 mol / L) was used as a solute, and propylene carbonate and dimethoxyethane (volume ratio 5: 5) were used as solvents. With these configurations, a coin-type lithium battery having a battery outer diameter of 24 mm and a total height of 5.0 mm was produced.

比較例2として、比較例1と同様に作製した正極缶と正極リングとをレーザー溶接機にて溶接した。これ以外は比較例1と同様の構成により電池外径φ24mm、総高5.0mmのコイン形リチウム電池を作製した。   As Comparative Example 2, a positive electrode can and a positive electrode ring produced in the same manner as in Comparative Example 1 were welded by a laser welding machine. Other than this, a coin-type lithium battery having a battery outer diameter of 24 mm and a total height of 5.0 mm was produced in the same manner as in Comparative Example 1.

実施例1として、ステンレス製の正極リングと一体成型する事により作製後、ステンレス製の正極缶に収納した。この時の正極リング内径/密接された正極ペレット外径に対する比は1.00である。これ以外は比較例2と同様の構成により電池外径φ24mm、総高5.0mmのコイン形リチウム電池を作製した。   As Example 1, it was fabricated by integrally molding with a stainless steel positive electrode ring, and then housed in a stainless steel positive electrode can. The ratio of the positive electrode ring inner diameter / closed positive electrode pellet outer diameter at this time is 1.00. Except for this, a coin-type lithium battery having a battery outer diameter of φ24 mm and a total height of 5.0 mm was manufactured in the same manner as in Comparative Example 2.

実施例2として、ステンレス製の正極リングと一体成型する事により作製後、ステンレス製の正極缶に収納した。この時の正極リング内径/密接された正極ペレット外径に対する比は1.05である。これ以外は比較例2と同様の構成により電池外径φ24mm、総高5.0mmのコイン形リチウム電池を作製した。   As Example 2, it was fabricated by integrally molding with a stainless steel positive electrode ring, and then housed in a stainless steel positive electrode can. At this time, the ratio of positive electrode ring inner diameter / closed positive electrode pellet outer diameter is 1.05. Except for this, a coin-type lithium battery having a battery outer diameter of φ24 mm and a total height of 5.0 mm was manufactured in the same manner as in Comparative Example 2.

実施例3として、ステンレス製の正極リングと一体成型する事により作製後、ステンレス製の正極缶に収納した。この時の正極リング内径/密接された正極ペレット外径に対する比は1.10である。これ以外は比較例2と同様の構成により電池外径φ24mm、総高5.0mmのコイン形リチウム電池を作製した。   As Example 3, it was fabricated by integrally molding with a stainless steel positive electrode ring, and then housed in a stainless steel positive electrode can. The ratio of the positive electrode ring inner diameter / closed positive electrode pellet outer diameter at this time is 1.10. Except for this, a coin-type lithium battery having a battery outer diameter of φ24 mm and a total height of 5.0 mm was manufactured in the same manner as in Comparative Example 2.

実施例4として、ステンレス製の正極リングと一体成型する事により作製後、ステンレス製の正極缶に収納した。この時の正極リング内径/密接されたペレット外径に対する比は1.15である。これ以外は比較例3と同様の構成により電池外径φ24mm、総高5.0mmのコイン形リチウム電池を作製した。   As Example 4, it was fabricated by integrally molding with a stainless steel positive electrode ring, and then housed in a stainless steel positive electrode can. The ratio of positive electrode ring inner diameter / closed pellet outer diameter at this time is 1.15. Except for this, a coin-type lithium battery having a battery outer diameter of 24 mm and a total height of 5.0 mm was produced in the same manner as in Comparative Example 3.

そして、低温から高温までのヒートサイクルパルス条件試験を実施した。試験条件は23℃から−40℃へ1時間かけて降温し、−40℃で1時間温度を一定にした後に11mA、10msecのパルス試験を行った。その後−40℃から120℃へ1時間かけて温度を上昇し、120℃を1時間一定にした後に1時間かけて23℃の常温に戻す。この試験を50サイクル繰り返した後の電池内部抵抗を測定した。   And the heat cycle pulse condition test from low temperature to high temperature was implemented. The test condition was that the temperature was lowered from 23 ° C. to −40 ° C. over 1 hour, the temperature was kept constant at −40 ° C. for 1 hour, and then a pulse test of 11 mA and 10 msec was performed. Thereafter, the temperature is increased from −40 ° C. to 120 ° C. over 1 hour, 120 ° C. is kept constant for 1 hour, and then returned to room temperature of 23 ° C. over 1 hour. The battery internal resistance after 50 cycles of this test was measured.

表1から明らかなように、−40〜120℃ヒートサイクル(80サイクル)10日後のパルス時閉路電圧結果は、比較例1、2及び実施例4においては、電子機器が一般的に動作可能な閉路電圧の2.0Vを割り込んでしまうために使用可能ではない。これに対して、実施例1、2、3に関しては、2.0V以上の閉路電圧を十分に確保できることがわかる。   As is apparent from Table 1, the pulse closing circuit voltage results after 10 days at −40 to 120 ° C. heat cycle (80 cycles) indicate that the electronic devices can generally operate in Comparative Examples 1 and 2 and Example 4. It cannot be used because it interrupts the closed circuit voltage of 2.0V. On the other hand, regarding Examples 1, 2, and 3, it can be seen that a closed circuit voltage of 2.0 V or more can be sufficiently secured.

続いて、表2に示すように、本発明の非水電解液電池10のさらなる効果を検証するために表1のヒートサイクル50サイクル後の電池内部抵抗を測定した。   Then, as shown in Table 2, in order to verify the further effect of the nonaqueous electrolyte battery 10 of the present invention, the battery internal resistance after 50 heat cycles in Table 1 was measured.

Figure 2008103109
Figure 2008103109

表2から明らかなように、実施例1〜3においては、ヒートサイクル試験終了電池においても、内部抵抗の上昇が変化量で約3Ωとなり、他の比較例1、2及び実施例4の約8Ω以上の上昇と比較してその差は顕著であることがわかる。   As is apparent from Table 2, in Examples 1 to 3, the increase in internal resistance was about 3Ω in the amount of change even in the heat cycle test finished batteries, and about 8Ω in other Comparative Examples 1 and 2 and Example 4. It can be seen that the difference is significant compared to the above increase.

これは、本発明の非水電解液電池10が、正極缶17並びに正極の集電材である正極ペレット15と一体成型された正極リング16が、正極ペレット15の内側面に溶接固定され、且つ正極缶17と正極リング16とがレーザー溶接や抵抗溶接により溶着する事によって、正極リング16と正極缶17との導通である電気的なコンタクトが著しく安定するために、−40℃から120℃の温度変化におけるヒートサイクル後においても重負荷パルスで大きな電圧の低下が起こりにくいからであることが確認できる。特にレーザー溶接が無い比較例1の内部抵抗上昇が顕著である。   This is because the positive electrode ring 16 in which the nonaqueous electrolyte battery 10 of the present invention is integrally formed with the positive electrode can 17 and the positive electrode pellet 15 that is a positive electrode current collector is welded and fixed to the inner surface of the positive electrode pellet 15. Since the electrical contact that is the conduction between the positive electrode ring 16 and the positive electrode can 17 is remarkably stabilized by welding the can 17 and the positive electrode ring 16 by laser welding or resistance welding, a temperature of −40 ° C. to 120 ° C. It can be confirmed that a large voltage drop is unlikely to occur with a heavy load pulse even after a heat cycle in change. In particular, the increase in internal resistance of Comparative Example 1 without laser welding is significant.

以上説明したように、非水電解液電池10及び非水電解液電池の製造方法によれば、正極缶17並びに正極ペレット15と一体成型された正極リング16が正極ペレット15の内側面に密接されて固定され、正極缶17と正極リング16とがレーザー溶接により正極缶17の内側から溶着されているために、正極ペレット15と正極リング16との側面が縮径されて密接に固定される。これにより、高温時に非水電解液電池10が膨れたとしても、負極から正極にリチウムがイオンとなって挿印される際における正極の集電効果を飛躍的に向上させることができるので、−40℃〜120℃のヒートサイクル後でも電池内部抵抗が上昇しないことで、重負荷パルス特性において良好な結果を得ることができる。   As described above, according to the nonaqueous electrolyte battery 10 and the nonaqueous electrolyte battery manufacturing method, the positive electrode can 17 and the positive electrode ring 16 integrally formed with the positive electrode pellet 15 are brought into close contact with the inner surface of the positive electrode pellet 15. Since the positive electrode can 17 and the positive electrode ring 16 are welded from the inside of the positive electrode can 17 by laser welding, the side surfaces of the positive electrode pellet 15 and the positive electrode ring 16 are reduced in diameter and are fixed firmly. Thereby, even if the nonaqueous electrolyte battery 10 swells at a high temperature, the current collection effect of the positive electrode when lithium is ion-implanted from the negative electrode to the positive electrode can be dramatically improved. Since the battery internal resistance does not increase even after a heat cycle of 40 ° C. to 120 ° C., good results can be obtained in the heavy load pulse characteristics.

また、非水電解液電池10によれば、正極ペレット15の外径D3/正極リング16の内径d1の比が、D3/d1=1.0〜1.10であることで、正極の集電効果を飛躍的に向上させることができるので、−40℃〜120℃のヒートサイクル後でも電池内部抵抗が上昇せずに、重負荷パルス特性において良好な結果を得ることができる。   Moreover, according to the nonaqueous electrolyte battery 10, the ratio of the outer diameter D3 of the positive electrode pellet 15 / the inner diameter d1 of the positive electrode ring 16 is D3 / d1 = 1.0 to 1.10. Since the effect can be dramatically improved, the battery internal resistance does not increase even after a heat cycle of −40 ° C. to 120 ° C., and good results can be obtained in the heavy load pulse characteristics.

また、非水電解液電池10によれば、正極ペレット15を収容している正極缶17と、負極ペレット12を収容している負極缶11とを組み立てるに際し、負極ペレット12の外径が正極ペレットの外径15よりも小さいために、正極缶17に対して負極缶11を位置決めし易いので、組立て作業性の向上を図ることができる。   In addition, according to the nonaqueous electrolyte battery 10, when the positive electrode can 17 containing the positive electrode pellet 15 and the negative electrode can 11 containing the negative electrode pellet 12 are assembled, the outer diameter of the negative electrode pellet 12 is the positive electrode pellet. Since the negative electrode can 11 can be easily positioned with respect to the positive electrode can 17, it is possible to improve the assembly workability.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されることはない。   In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

本発明の一実施形態の非水電解液電池の断面図である。It is sectional drawing of the nonaqueous electrolyte battery of one Embodiment of this invention. 図1に示した非水電解液電池の正極ペレットの単体断面図である。FIG. 2 is a single sectional view of a positive electrode pellet of the nonaqueous electrolyte battery shown in FIG. 1. 従来の非水電解液電池の断面図である。It is sectional drawing of the conventional nonaqueous electrolyte battery.

符号の説明Explanation of symbols

10 非水電解液電池
11 負極缶
12 負極ペレット
13 アルミニウム箔
14 セパレータ
15 正極ペレット
16 正極リング
17 正極缶
19 溶着部
DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte battery 11 Negative electrode can 12 Negative electrode pellet 13 Aluminum foil 14 Separator 15 Positive electrode pellet 16 Positive electrode ring 17 Positive electrode can 19 Welding part

Claims (4)

負極缶と、
リチウムもしくはリチウムアルミ合金を用いた負極ペレットと、
該負極ペレットの正極側負極表面に配置されたアルミニウム箔と、
焼成したβ二酸化マンガンを主体として用いた正極の集電材である正極ペレットと、
正極缶と、
該負極ペレットと該正極ペレットとの間に配置されたセパレータを介して対向配置し、前記負極ペレットおよび前記正極ペレットが非水電解液と共に前記負極缶および前記正極缶よりなる電池ケースに封入、組み立てた非水電解液電池であって、
前記正極缶並びに前記正極ペレットと一体成型された半断面視L字状の正極リングが該正極ペレットの内側面に密接されて固定されており、且つ該正極缶と該正極リングとは抵抗溶接もしくはレーザー溶接により前記正極缶の内側から溶着されたことを特徴とする非水電解液電池。
A negative electrode can,
Negative electrode pellets using lithium or lithium aluminum alloy;
An aluminum foil disposed on the negative electrode surface of the negative electrode pellet,
A positive electrode pellet, which is a positive electrode current collector mainly composed of baked β-manganese dioxide;
A positive electrode can,
The negative electrode pellet and the positive electrode pellet are placed opposite to each other with a separator disposed between the negative electrode pellet and the positive electrode pellet, and enclosed in a battery case including the negative electrode can and the positive electrode can together with a non-aqueous electrolyte. Non-aqueous electrolyte battery,
An L-shaped positive electrode ring, which is integrally formed with the positive electrode can and the positive electrode pellet, is fixed in close contact with the inner surface of the positive electrode pellet, and the positive electrode can and the positive electrode ring are bonded by resistance welding or A nonaqueous electrolyte battery characterized by being welded from the inside of the positive electrode can by laser welding.
前記正極リングに密接する前記正極ペレットの外径/該正極リングの内径の比が、1.0〜1.10であることを特徴とする請求項1に記載した非水電解液電池。   2. The nonaqueous electrolyte battery according to claim 1, wherein a ratio of an outer diameter of the positive electrode pellet in close contact with the positive electrode ring to an inner diameter of the positive electrode ring is 1.0 to 1.10. 前記負極ペレットの外径が、前記正極ペレットの外径よりも小さいことを特徴とする請求項1に記載した非水電解液電池。   The nonaqueous electrolyte battery according to claim 1, wherein an outer diameter of the negative electrode pellet is smaller than an outer diameter of the positive electrode pellet. 負極缶と、
リチウムもしくはリチウムアルミ合金を用いた負極ペレットと、
該負極ペレットの正極側負極表面に配置されたアルミニウム箔と、
焼成したβ二酸化マンガンを主体として用いた正極の集電材である正極ペレットと、
正極缶と、
該負極ペレットと該正極ペレットとの間に配置されたセパレータを介して対向配置し、前記負極ペレットおよび前記正極ペレットが非水電解液と共に前記負極缶および前記正極缶よりなる電池ケースに封入、組み立てられる非水電解液電池の製造方法であって、
前記正極缶並びに前記正極ペレットと一体成型される半断面視L字状の正極リングを該正極ペレットの内側面に密接して固定し、且つ該正極缶と該正極リングとを抵抗溶接もしくはレーザー溶接により前記正極缶の内側から溶着したことを特徴とする非水電解液電池の製造方法。
A negative electrode can,
Negative electrode pellets using lithium or lithium aluminum alloy;
An aluminum foil disposed on the negative electrode surface of the negative electrode pellet,
A positive electrode pellet, which is a positive electrode current collector mainly composed of baked β-manganese dioxide;
A positive electrode can,
The negative electrode pellet and the positive electrode pellet are placed opposite to each other with a separator disposed between the negative electrode pellet and the positive electrode pellet, and enclosed in a battery case including the negative electrode can and the positive electrode can together with a non-aqueous electrolyte. A method for producing a non-aqueous electrolyte battery comprising:
An L-shaped positive electrode ring integrally formed with the positive electrode can and the positive electrode pellet is fixed in close contact with the inner surface of the positive electrode pellet, and the positive electrode can and the positive electrode ring are resistance welded or laser welded. A method for producing a non-aqueous electrolyte battery, wherein the non-aqueous electrolyte battery is welded from the inside of the positive electrode can.
JP2006282738A 2006-10-17 2006-10-17 Nonaqueous electrolyte cell Pending JP2008103109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282738A JP2008103109A (en) 2006-10-17 2006-10-17 Nonaqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282738A JP2008103109A (en) 2006-10-17 2006-10-17 Nonaqueous electrolyte cell

Publications (1)

Publication Number Publication Date
JP2008103109A true JP2008103109A (en) 2008-05-01

Family

ID=39437301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282738A Pending JP2008103109A (en) 2006-10-17 2006-10-17 Nonaqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JP2008103109A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187479A1 (en) 2012-06-15 2013-12-19 日立マクセル株式会社 Flat cell
US20170279087A1 (en) * 2013-06-13 2017-09-28 Hitachi Maxell, Ltd. Flat battery
CN107658396A (en) * 2017-10-31 2018-02-02 宁波必霸能源有限公司 Sealing ring of alkaline button type battery and alkaline button cell
WO2019044771A1 (en) * 2017-08-28 2019-03-07 株式会社村田製作所 Nonaqueous electrolyte battery and communication equipment
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024869B2 (en) 2009-02-09 2021-06-01 Varta Microbattery Gmbh Button cells and method of producing same
US11791493B2 (en) 2009-02-09 2023-10-17 Varta Microbattery Gmbh Button cells and method of producing same
US11276875B2 (en) 2009-02-09 2022-03-15 Varta Microbattery Gmbh Button cells and method of producing same
US11258092B2 (en) 2009-02-09 2022-02-22 Varta Microbattery Gmbh Button cells and method of producing same
US11233265B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11233264B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US11024904B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362385B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10971776B2 (en) 2009-06-18 2021-04-06 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024905B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024907B1 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024906B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362384B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11158896B2 (en) 2009-06-18 2021-10-26 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11217844B2 (en) 2009-06-18 2022-01-04 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US9653711B2 (en) 2012-06-15 2017-05-16 Hitachi Maxell, Ltd. Flat battery
WO2013187479A1 (en) 2012-06-15 2013-12-19 日立マクセル株式会社 Flat cell
US20170279087A1 (en) * 2013-06-13 2017-09-28 Hitachi Maxell, Ltd. Flat battery
CN111033816A (en) * 2017-08-28 2020-04-17 株式会社村田制作所 Nonaqueous electrolyte battery and communication device
WO2019044771A1 (en) * 2017-08-28 2019-03-07 株式会社村田製作所 Nonaqueous electrolyte battery and communication equipment
US20200203709A1 (en) * 2017-08-28 2020-06-25 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte solution battery and communication device
JPWO2019044771A1 (en) * 2017-08-28 2020-08-27 株式会社村田製作所 Non-aqueous electrolyte battery and communication equipment
CN111033816B (en) * 2017-08-28 2022-09-13 株式会社村田制作所 Nonaqueous electrolyte battery and communication device
US11811048B2 (en) 2017-08-28 2023-11-07 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte solution battery and communication device
CN107658396A (en) * 2017-10-31 2018-02-02 宁波必霸能源有限公司 Sealing ring of alkaline button type battery and alkaline button cell
CN107658396B (en) * 2017-10-31 2023-05-02 宁波必霸能源有限公司 Alkaline button cell sealing ring and alkaline button cell

Similar Documents

Publication Publication Date Title
JP5355203B2 (en) Lithium primary battery and manufacturing method thereof
JP5011664B2 (en) Sealed secondary battery
KR101954557B1 (en) Non-aqueous electrolyte secondary battery
CN105977403B (en) Nonaqueous electrolyte secondary battery
JP5894118B2 (en) battery
JP5022035B2 (en) Secondary battery with surface mount terminals
JP6372821B2 (en) Nonaqueous electrolyte secondary battery
JP2006351512A (en) Sealed secondary battery and its manufacturing method
KR20150126820A (en) Lithium ion secondary battery
US8210838B2 (en) Method and device for producing electrodes for batteries
JP2009087729A (en) Closed battery
JP6697901B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2008103109A (en) Nonaqueous electrolyte cell
KR20150087131A (en) Nonaqueos electrolyte secondary battery
JP2005093239A (en) Battery
JP2016170957A (en) Nonaqueous electrolyte secondary battery
US9577238B2 (en) Flat-shaped battery
JP2008204839A (en) Sealing plate for cylindrical battery cell
JP2020087903A (en) Nonaqueous electrolyte secondary battery
JPWO2015141120A1 (en) Lithium primary battery
JP6587929B2 (en) Nonaqueous electrolyte secondary battery
WO2018154841A1 (en) Coin-shaped battery
JP2019200859A (en) Sealed battery
JP2010186667A (en) Coin cell
JP6648202B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080527