JP2008103091A - High pressure discharge lamp lighting device - Google Patents

High pressure discharge lamp lighting device Download PDF

Info

Publication number
JP2008103091A
JP2008103091A JP2006282238A JP2006282238A JP2008103091A JP 2008103091 A JP2008103091 A JP 2008103091A JP 2006282238 A JP2006282238 A JP 2006282238A JP 2006282238 A JP2006282238 A JP 2006282238A JP 2008103091 A JP2008103091 A JP 2008103091A
Authority
JP
Japan
Prior art keywords
discharge lamp
current
pressure discharge
electrode
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006282238A
Other languages
Japanese (ja)
Other versions
JP4853638B2 (en
Inventor
Yoshio Nishizawa
義男 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2006282238A priority Critical patent/JP4853638B2/en
Publication of JP2008103091A publication Critical patent/JP2008103091A/en
Application granted granted Critical
Publication of JP4853638B2 publication Critical patent/JP4853638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent occurrence of flickering by arc jump due to temperature difference between electrodes by eliminating temperature difference between lamp electrodes in a high pressure discharge lamp. <P>SOLUTION: In a high pressure discharge lamp lighting device, the AC lamp current waveform impressed on the high pressure discharge lamp is made to consist of a repetition of a waveform having as one unit a first period of a current value (+i1) and width (d1), a second period of the current value (-i2) and width (d2), a third period of the current value (+i3) and width (d3), a fourth period of the current value (-i4) and width (d4), a fifth period of the current value (+i5) and width (d5), and a sixth period of the current value (-i6) and width (d6), and (d1+d2)<d3, and (d4+d5)<d6 and at least i5, i2>i3, i6 are set, and in the fifth period, i5×d5≥i1×d1, and i5×d5>i2×d2≥i4×d4 applies. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、高圧放電灯の寿命を短くすることなく、安定した光出力が得られる高圧放電灯点灯装置に関する。   The present invention relates to a high pressure discharge lamp lighting device capable of obtaining a stable light output without shortening the life of the high pressure discharge lamp.

図1は従来の一般的な定ランプ電力点灯方式の高圧放電灯点灯装置を示す回路構成図である。
この高圧放電灯点灯装置は、直流電源部10と直流電源部10の直流電圧をPWM(パルス幅変調)制御回路により所定のランプ電力に制御する直流電力供給部20と、該直流電力供給部20の直流出力電圧を低周波の交流矩形波電圧に変換し、高圧放電灯(以下、「ランプ」という)60に印加するためのフルブリッジ回路40と放電灯始動時に高圧パルス電圧を放電灯に印加するイグナイタ回路部50とランプ電力を検出し定ランプ電力制御や定ランプ電流制御を行う制御回路部30とで構成されている。
FIG. 1 is a circuit configuration diagram showing a conventional high-pressure discharge lamp lighting device of a general constant lamp power lighting system.
The high pressure discharge lamp lighting device includes a DC power supply unit 20 and a DC power supply unit 20 that controls a DC voltage of the DC power supply unit 10 to a predetermined lamp power by a PWM (pulse width modulation) control circuit, and the DC power supply unit 20. A full-bridge circuit 40 for converting the DC output voltage of the lamp into a low-frequency AC rectangular wave voltage and applying it to a high-pressure discharge lamp (hereinafter referred to as “lamp”) 60 and applying a high-voltage pulse voltage to the discharge lamp at the start of the discharge lamp An igniter circuit unit 50 that detects the lamp power and a control circuit unit 30 that performs constant lamp power control and constant lamp current control.

直流電源部10の電圧を受け動作する直流電力供給部20は後述のPWM制御回路36により駆動されるスイッチング素子21とダイオード22と直流リアクトル23と平滑コンデンサ24により構成された降圧チョッパ回路から成り、直流電源回路部から供給される直流電圧に対して所定のランプ電力またはランプ電流制御を行うようになっている。   The DC power supply unit 20 that operates by receiving the voltage of the DC power supply unit 10 includes a step-down chopper circuit that includes a switching element 21, a diode 22, a DC reactor 23, and a smoothing capacitor 24 that are driven by a PWM control circuit 36 described later. Predetermined lamp power or lamp current control is performed on the DC voltage supplied from the DC power supply circuit unit.

また、制御回路部30は、ランプ60に並列に接続されたランプ電圧を分圧して検出する分圧抵抗31cの電圧と、ランプ60と直列に接続されランプ電流を検出する抵抗32の電圧とを掛算処理してランプ電力を算出する掛算器33と該掛算器33の出力端と基準電圧39を分圧した抵抗37の電圧とを比較する誤差増幅器34と、前記誤差増幅器34の出力を入力し、前記直流電力供給回路部20のスイッチング素子21の駆動パルスを出力するPWM制御回路36とで構成される。   Further, the control circuit unit 30 divides the voltage of the voltage dividing resistor 31c that detects the lamp voltage connected in parallel with the lamp 60 and the voltage of the resistor 32 that is connected in series with the lamp 60 and detects the lamp current. A multiplier 33 that calculates the lamp power by multiplication processing, an error amplifier 34 that compares the output terminal of the multiplier 33 and the voltage of the resistor 37 obtained by dividing the reference voltage 39, and the output of the error amplifier 34 are input. And a PWM control circuit 36 that outputs a drive pulse of the switching element 21 of the DC power supply circuit unit 20.

PWM制御回路36は誤差増幅器34の出力に応じたデューティ比の駆動パルスを発生して、直流電力供給回路部20のスイッチング素子21を駆動し、これによりランプ電力を所定値に制御して放電灯を定ランプ電力、あるいは定ランプ電流にて点灯するようになっている。
また、ここで制御回路30の基準電圧39を分圧している抵抗38aをトランジスタ38bにて短絡すると誤差増幅器34の基準電圧となる抵抗端37の電圧が上がるためPWM制御回路36はトランジスタ21のデューティ比を広げ、その間ランプに供給される電流が増大する。制御回路30(少なくともトランジスタ38bのベース端子)及びブリッジ制御回路45はマイコン等の制御手段300に接続される。
The PWM control circuit 36 generates a drive pulse with a duty ratio corresponding to the output of the error amplifier 34 to drive the switching element 21 of the DC power supply circuit unit 20, thereby controlling the lamp power to a predetermined value to discharge the discharge lamp. Is lit at constant lamp power or constant lamp current.
Further, when the resistor 38a that divides the reference voltage 39 of the control circuit 30 is short-circuited by the transistor 38b, the voltage of the resistance terminal 37 that becomes the reference voltage of the error amplifier 34 is increased, so that the PWM control circuit 36 has the duty of the transistor 21. The ratio is increased while the current supplied to the lamp increases. The control circuit 30 (at least the base terminal of the transistor 38b) and the bridge control circuit 45 are connected to a control means 300 such as a microcomputer.

これを図8A、図8Bに示すようにトランジスタ41、44およびトランジスタ42、43のON/OFFのタイミングに同期させてトランジスタ38bを導通させることにより低周波の半サイクルの直前に1サイクルの高周波電流を印加してその1サイクル、又は後ろの半サイクルの電流を増大させたランプ電流波形となり、特許文献1で示されているように高圧放電ランプの電極のアークスポット移動によるフリッカを抑制する効果が得られる。
特開2006−202775号公報
As shown in FIGS. 8A and 8B, the transistor 38b is turned on in synchronization with the ON / OFF timings of the transistors 41 and 44 and the transistors 42 and 43, so that one cycle of the high-frequency current immediately before the low-frequency half cycle. Is applied to the lamp current waveform in which the current of one cycle or the latter half cycle is increased, and as shown in Patent Document 1, the effect of suppressing flicker due to arc spot movement of the electrode of the high-pressure discharge lamp is obtained. can get.
JP 2006-202775 A

ところで、図1に示した従来の構成の高圧放電灯点灯装置を用いて図8A、あるいは図8Bのランプ電流波形でランプ60を点灯させる場合、そのメカニズムは必ずしも明確ではないが、その点灯周波数や点灯波形によっては図9Aのように電極が突起状に成長することが知られている。   By the way, when the lamp 60 is lit with the lamp current waveform of FIG. 8A or FIG. 8B using the conventional high pressure discharge lamp lighting device shown in FIG. 1, the mechanism is not necessarily clear, but the lighting frequency or Depending on the lighting waveform, it is known that the electrode grows in a protruding shape as shown in FIG. 9A.

この現象は加熱された電極材料であるタングステンが蒸発したことによって、発光管内に存在するハロゲン等と結合し、タングステン化合物を形成する。このタングステン化合物は対流などによって管璧付近から電極先端付近へ拡散し、高温部でタングステン原子に分解される。そしてタングステン原子はアーク中で電離することで陽イオンとなる。交流点灯している両電極が陽極と陰極を点灯周波数ごとに繰り返すが、この陰極動作をしている時にアーク中の陽イオンは、電界によって陰極側に引き寄せられることで両電極先端に析出され、それが突起を形成するものと考えている。   This phenomenon is that tungsten, which is a heated electrode material, evaporates, and is combined with halogen or the like present in the arc tube to form a tungsten compound. This tungsten compound diffuses from the vicinity of the tube wall to the vicinity of the tip of the electrode by convection or the like, and is decomposed into tungsten atoms at a high temperature portion. Tungsten atoms become cations by ionizing in the arc. Both electrodes that are lit with alternating current repeat the anode and cathode at each lighting frequency, but when this cathode is operating, the cations in the arc are attracted to the cathode side by the electric field and deposited at the tips of both electrodes, It is thought that it forms a protrusion.

しかし、近年はプロジェクタの小型化を達成するためランプも小型が進み、図2Aで示すようにレフレクタ71外部の空冷手段72によってランプ60への空冷を強めることにより、ランプが短寿命とならないように工夫したものや、図2Bで示すようにランプ60のフロント側(図の右側)に小さなリフレクタ(副鏡)73を設け光の利用率を改善するようになりつつある。   However, in recent years, the size of the projector has been reduced in order to reduce the size of the projector. As shown in FIG. 2A, the air cooling means 72 outside the reflector 71 enhances the air cooling to the lamp 60 so that the lamp does not have a short life. As shown in FIG. 2B, a small reflector (secondary mirror) 73 is provided on the front side (right side in the figure) of the lamp 60 to improve the light utilization rate.

ここで、ランプの空冷を強めるとフロント側の方が冷却され、ネック側(図の左側)の電極よりフロント側の電極の温度が低くなり、一対の電極でありながら動作温度に差が生じてしまう。
また、フロント側に副鏡をつけた場合、副鏡により電極が加熱され、逆にネック側の電極よりフロント側の電極の温度が高くなり、この場合も一対の電極でありながら動作温度に差が生じてしまう。
Here, when the air cooling of the lamp is increased, the front side is cooled, the temperature of the front side electrode becomes lower than that of the electrode on the neck side (left side in the figure), and there is a difference in operating temperature even though it is a pair of electrodes. End up.
In addition, when a secondary mirror is attached to the front side, the electrode is heated by the secondary mirror, and conversely the temperature of the front side electrode is higher than that of the neck side electrode. Will occur.

一対の電極の温度がほぼ対称である場合、ランプは寿命と共に図9Bに示すように突起を維持しながら電極先端側から消耗していくため、図8のような制御を行っていれば電極表面のアーク移動によるフリッカの問題は発生しない。
しかし、上述のように電極に温度差がある場合は、温度が低くなった側の電極のハロゲンサイクルが不十分となり、図9Cに示すように温度が低い側の電極に複数の突起が成長したり、電極表面が一応に荒れたりしてアークジャンプによるフリッカが発生しやすくなる問題がある。
When the temperature of the pair of electrodes is substantially symmetric, the lamp is consumed from the tip side of the electrode while maintaining the protrusion as shown in FIG. The problem of flicker due to the arc movement of this does not occur.
However, when there is a temperature difference between the electrodes as described above, the halogen cycle of the electrode on the lower temperature side becomes insufficient, and a plurality of protrusions grow on the electrode on the lower temperature side as shown in FIG. 9C. There is a problem that the surface of the electrode is temporarily roughened and flicker due to arc jump is likely to occur.

本発明は、従来の放電灯点灯装置における上記問題を解消するためになされたもので、対称となる電流波形で点灯させたときに一対の電極の温度差が大きくなる場合、電極温度が低い側の電極が陽極動作時に低周波の矩形波の半サイクルの直前に挿入した低周波の矩形波電流より大きい値の高周波の矩形波電流の幅を広げる、又は高さを高くした放電灯点灯装置を提供することを目的とする。   The present invention has been made to solve the above-described problems in the conventional discharge lamp lighting device, and when the temperature difference between a pair of electrodes becomes large when lighting with a symmetrical current waveform, the electrode temperature is lower. A discharge lamp lighting device in which the width of a high-frequency rectangular wave current having a value larger than the low-frequency rectangular wave current inserted immediately before the half-cycle of the low-frequency rectangular wave during anode operation is increased or the height is increased. The purpose is to provide.

本発明の第1の側面は、直流電圧が入力され直流電流を出力する直流電力供給部、直流電流を交流変換して高圧放電灯に交流ランプ電流を供給するフルブリッジ回路、並びに直流電力供給部が出力する直流電流値及び該フルブリッジ回路のスイッチング動作を制御する制御回路を備え、交流ランプ電流波形が、電流値(+i1)・幅(d1)の第1の期間、電流値(−i2)・幅(d2)の第2の期間、電流値(+i3)・幅(d3)の第3の期間、電流値(−i4)・幅(d4)の第4の期間、電流値(+i5)・幅(d5)の第5の期間、及び電流値(−i6)・幅(d6)の第6の期間を1つのユニットとする波形の繰り返しからなるように、制御回路によって直流電流値及びスイッチング動作が制御され、少なくとも、(d1+d2)<d3、かつ、(d4+d5)<d6、であり、i5、i2>i3、i6、と設定された高圧放電灯点灯装置において、高圧放電灯が第1及び第2の電極を有し、仮に第1の電極から第2の電極に向けて流す電流とその逆方向の電流とを等しくした場合に第1の電極が第2の電極よりも温度が低くなる場合に、交流ランプ電流(i1〜i6)についてその正(+)方向が第1の電極から第2の電極へ向かう方向として規定され、第5の期間について、i5×d5≧i1×d1、かつ、i5×d5>i2×d2≧i4×d4となるように構成された高圧放電灯点灯装置である。
さらに、第5の期間について、d5≧d1、かつ、d5>d2≧d4としてもよいし、i5≧i1、かつ、i5>i2≧i4としてもよい。
A first aspect of the present invention includes a DC power supply unit that receives a DC voltage and outputs a DC current, a full bridge circuit that converts the DC current into an AC voltage and supplies an AC lamp current to a high-pressure discharge lamp, and a DC power supply unit And a control circuit for controlling the switching operation of the full bridge circuit, and the AC lamp current waveform has a current value (−i2) during a first period of current value (+ i1) and width (d1). The second period of width (d2), current value (+ i3), the third period of width (d3), the current value (−i4), the fourth period of width (d4), the current value (+ i5) A DC current value and a switching operation by the control circuit so as to consist of repetition of a waveform having a fifth period of width (d5) and a sixth period of current value (−i6) and width (d6) as one unit. Are controlled and at least (d1 + d2 <D3 and (d4 + d5) <d6, and in the high pressure discharge lamp lighting device set as i5, i2> i3, i6, the high pressure discharge lamp has first and second electrodes, When the current flowing from one electrode to the second electrode is equal to the current in the opposite direction and the temperature of the first electrode is lower than that of the second electrode, the AC lamp current (i1 to i6) ) Is defined as the direction from the first electrode to the second electrode, and for the fifth period, i5 × d5 ≧ i1 × d1 and i5 × d5> i2 × d2 ≧ i4 This is a high pressure discharge lamp lighting device configured to be xd4.
Furthermore, regarding the fifth period, d5 ≧ d1 and d5> d2 ≧ d4 may be satisfied, or i5 ≧ i1 and i5> i2 ≧ i4 may be satisfied.

本発明の第2の側面は、上記第1の側面の高圧放電灯点灯装置、高圧放電灯点灯装置から交流ランプ電流を供給される第1及び第2の電極を有する高圧放電灯、並びに高圧放電灯が取り付けられるレフレクタを備えた光源装置である。
ここで、さらに、高圧放電灯を冷却する冷却手段を備え、第1の電極がレフレクタのフロント側に設置され、第2の電極がレフレクタのネック側に設置される構成とした。
また、さらに、高圧放電灯に取り付けられた副鏡を備え、第1の電極がレフレクタのネック側に設置され、第2の電極が該レフレクタのフロント側に設置されるとともに副鏡が第2の電極付近に取り付けられる構成とした。
According to a second aspect of the present invention, there is provided a high pressure discharge lamp lighting device according to the first aspect, a high pressure discharge lamp having first and second electrodes to which an AC lamp current is supplied from the high pressure discharge lamp lighting device, and a high pressure discharge. It is a light source device provided with the reflector to which an electric lamp is attached.
Here, cooling means for cooling the high pressure discharge lamp is further provided, and the first electrode is installed on the front side of the reflector, and the second electrode is installed on the neck side of the reflector.
Further, the apparatus further comprises a secondary mirror attached to the high-pressure discharge lamp, the first electrode is installed on the neck side of the reflector, the second electrode is installed on the front side of the reflector, and the secondary mirror is the second mirror. It was set as the structure attached to the electrode vicinity.

本発明によると、従来からフリッカを防止する効果を持つとされるランプ電流波形において、さらに、ランプに流れる電流波形を必要に応じて非対称とすることによりランプの電極間の温度差をなくし、従来着目されていなかったランプ電極間の温度差に起因するアークジャンプによるフリッカの発生も効果的に防止できる。   According to the present invention, in the conventional lamp current waveform that is supposed to have an effect of preventing flicker, the current waveform flowing through the lamp is asymmetrical as necessary to eliminate the temperature difference between the electrodes of the lamp. The occurrence of flicker due to an arc jump due to a temperature difference between the lamp electrodes that has not been noticed can also be effectively prevented.

実施例1.
本発明の実施形態について従来例と比較し説明する。
本実施例において回路構成図は従来例の図1と同じであるため説明は省略する。図3A、図3Bは本発明に係る高圧放電灯点灯装置の実施の形態を示すランプ電流波形とトランジスタの動作図である。なお、本明細書において電流値とはいわゆる低周波の期間T3及びT6においてはその平均値、高周波の期間T1、T2、T4及びT5においてはそのピーク値をいうものとする。
Example 1.
An embodiment of the present invention will be described in comparison with a conventional example.
In this embodiment, the circuit configuration diagram is the same as that of FIG. 3A and 3B are lamp current waveforms and transistor operation diagrams showing an embodiment of a high pressure discharge lamp lighting device according to the present invention. In this specification, the current value means an average value in so-called low frequency periods T3 and T6 and a peak value in high frequency periods T1, T2, T4 and T5.

より具体的には、本発明におけるランプ電流波形の1ユニットは、図4に示すようにT1〜T6の6個の期間からなる。なお、期間T1を電流値(+i1)・幅(d1)、期間T2を電流値(−i2)・幅(d2)、期間T3を電流値(+i3)・幅(d3)、期間T4を電流値(−i4)・幅(d4)、期間T5を電流値(+i5)・幅(d5)、期間T6を電流値(−i6)・幅(d6)とする。なお、期間T1からT6までの1ユニットを1周期とするとその周波数は60Hz〜1KHz程度である。また、幅(d1+d2+d4+d5):(d3+d6)は1:20から1:4程度である。   More specifically, one unit of the lamp current waveform in the present invention is composed of six periods T1 to T6 as shown in FIG. Note that the period T1 is a current value (+ i1) / width (d1), the period T2 is a current value (−i2) / width (d2), the period T3 is a current value (+ i3) / width (d3), and the period T4 is a current value. (−i4) · width (d4), period T5 is current value (+ i5) · width (d5), and period T6 is current value (−i6) · width (d6). If one unit from the period T1 to T6 is one cycle, the frequency is about 60 Hz to 1 KHz. The width (d1 + d2 + d4 + d5) :( d3 + d6) is about 1:20 to 1: 4.

期間T3及びT6の電流はランプの定格定常点灯を行う上で実効ランプ電流に対して支配的な電流である。従って、(d1+d2)<<d3、かつ、(d4+d5)<<d6であり、ランプ電力をほぼ一定にするためにもd3≒d6、i3≒i6である。なお、このi3及びi6の絶対値は要求されるランプ電力に従って決まる。期間T2及びT5は従来技術でも示す通りフリッカ抑制のために最も支配的な電流である。期間T3及びT6は同様に、フリッカ抑制のために期間T2及びT5に次いで支配的な電流である。従って、特許文献1と同様に、少なくとも、i2、i5>i3、i6である。   The currents in the periods T3 and T6 are dominant to the effective lamp current when the rated steady lighting of the lamp is performed. Therefore, (d1 + d2) << d3 and (d4 + d5) << d6, and d3≈d6 and i3≈i6 in order to make the lamp power substantially constant. The absolute values of i3 and i6 are determined according to the required lamp power. The periods T2 and T5 are the most dominant currents for flicker suppression as shown in the prior art. Similarly, the periods T3 and T6 are dominant currents after the periods T2 and T5 for flicker suppression. Therefore, as in Patent Document 1, at least i2, i5> i3, i6.

ここで、本実施例においては図2Aで示すフロント側の電極や、図2Bで示すネック側の電極のように温度が低い側の電極が陽極動作時に図3A又は3B(低温側の電極から高温側の電極へ向かう電流をグラフの正側とする)に示すように、少なくとも期間T5の幅d5、又は期間T5及びT1の幅d5及びd1を大きくし、低温側の電極から高温側の電極へ向かう電流のエネルギーを増大させる。即ち、図2Aにおいては、フロント側電極からネック側電極へ向かう電流(図の左向きの電流)の幅をその逆方向に流れる電流の幅よりも大きくし、一方、図2Bにおいては、ネック側電極から副鏡側電極へ向かう電流(図右向きの電流)の幅をその逆方向に流れる電流の幅よりも大きくする。   Here, in this embodiment, the electrode on the low temperature side such as the front electrode shown in FIG. 2A or the neck electrode shown in FIG. As shown in the graph, the current toward the side electrode is defined as the positive side of the graph), at least the width d5 of the period T5 or the widths d5 and d1 of the periods T5 and T1 are increased, and the low temperature side electrode to the high temperature side electrode Increase the energy of the current that goes. That is, in FIG. 2A, the width of the current from the front side electrode to the neck side electrode (current in the left direction in the figure) is made larger than the width of the current flowing in the opposite direction, while in FIG. The width of the current (current to the right in the figure) from the first to the secondary mirror side electrode is made larger than the width of the current flowing in the opposite direction.

このように、低温側の電極からの電流幅を広げることにより電極温度が上昇し、両電極の温度差が無くなり、どちらも最適なハロゲンサイクルとなり図9Bのように電極は突起を維持しつつ消耗するためアークジャンプによるフリッカを防止することが可能となる。
期間T5は電極間温度差の解消によるフリッカ防止対しても、温度差がなくなった場合のフリッカ防止に対しても有効な作用を持つので、各期間の電流値(電流の高さ)の相対的な関係を一定にするという前提の下、期間T5の電流幅増大は双方の効果を引き出すために最も効果的である。
従って、電流幅の大小関係を明記すると、図3Aにおいては、d5=d1>d2=d4であり、図3Bでは、d5>d1=d2>d4であるが、d5が最も大きく、d4が最も小さく、d1がd2以上であれば、d1、d2、d4及びd5は適宜選択可能である。
Thus, by widening the current width from the electrode on the low temperature side, the electrode temperature rises, the temperature difference between the two electrodes disappears, both become the optimal halogen cycle, and the electrode is consumed while maintaining the protrusion as shown in FIG. 9B. Therefore, flicker due to arc jump can be prevented.
The period T5 has an effective action for preventing flicker by eliminating the temperature difference between the electrodes, but also for preventing flicker when the temperature difference disappears, so the current value (current height) of each period is relative. On the premise that the relationship is constant, the increase in the current width in the period T5 is most effective for bringing out both effects.
Therefore, if the magnitude relation of the current width is specified, d5 = d1> d2 = d4 in FIG. 3A and d5> d1 = d2> d4 in FIG. 3B, but d5 is the largest and d4 is the smallest. , D1 is d2 or more, d1, d2, d4, and d5 can be appropriately selected.

実施例2.
実施例1では電流幅の変化によって各期間のエネルギーを調整するものを示したが、本実施例では電流値の変化によって各期間のエネルギーを調整するものを示す。
図5は本発明の他の実施例の形態を示す回路構成図で、図1に示した実施例1のものと同一または対応する部材については同一の番号を付してその説明を省略する。本発明に係る高圧放電灯点灯装置において実施例1と異なる点は、制御回路30の基準電圧39と誤差増幅器34の間に新たに抵抗38C、トランジスタ38dを接続したところであり、トランジスタ38dのベース端子も制御手段300に接続されている。トランジスタ38dをトランジスタ38bと同時に導通させた場合、誤差増幅器34の基準電圧である抵抗37端の電圧が更に高くなることにより、図6Aでは期間T1及びT5の電流値i1及びi5、図6Bでは期間T5の電流値i5をさらに増大させることができる。
Example 2
In the first embodiment, the energy of each period is adjusted by changing the current width. However, in this embodiment, the energy of each period is adjusted by changing the current value.
FIG. 5 is a circuit configuration diagram showing another embodiment of the present invention. The same or corresponding members as those in the first embodiment shown in FIG. The high pressure discharge lamp lighting device according to the present invention is different from the first embodiment in that a resistor 38C and a transistor 38d are newly connected between the reference voltage 39 of the control circuit 30 and the error amplifier 34, and the base terminal of the transistor 38d. Is also connected to the control means 300. When the transistor 38d is turned on at the same time as the transistor 38b, the voltage at the end of the resistor 37, which is the reference voltage of the error amplifier 34, further increases, so that the current values i1 and i5 in the periods T1 and T5 in FIG. 6A and the period in FIG. The current value i5 of T5 can be further increased.

ここで、本実施例においても図2Aで示すフロント側の電極や、図2Bで示すネック側の電極のように温度が低い側の電極が陽極動作時に図6A又は6B(低温側電極から高温側電極へ向かう電流をグラフの正側とする)に示すように、少なくとも期間T5の電流値i5、又は期間T5及びT1の電流値i5及びi1を大きくし、低温側電極から高温側電極へ向かう電流値を増大させる。即ち、図2Aにおいては、フロント側電極からネック側電極へ向かう電流(図の左向きの電流)の電流値をその逆方向に流れる電流値よりも大きくし、一方、図2Bにおいては、ネック側電極から副鏡側電極へ向かう電流(図の右向きの電流)の電流値をその逆方向に流れる電流値よりも大きくする。   6A or 6B (from the low temperature side electrode to the high temperature side) when the anode is operating, such as the front side electrode shown in FIG. 2A or the neck side electrode shown in FIG. Current flowing toward the electrode is set to the positive side of the graph), at least the current value i5 in the period T5 or the current values i5 and i1 in the periods T5 and T1 are increased, and the current flowing from the low temperature side electrode to the high temperature side electrode Increase the value. That is, in FIG. 2A, the current value of the current from the front side electrode to the neck side electrode (current in the left direction in the figure) is made larger than the current value flowing in the opposite direction, while in FIG. The current value of the current (rightward current in the figure) from the first to the secondary mirror side electrode is made larger than the current value flowing in the opposite direction.

このように、低温側の電極からの電流値を増大させることにより電極温度が上昇し、両電極の温度差が無くなり、どちらも最適なハロゲンサイクルとなり図9Bのように電極は突起を維持しつつ消耗するためアークジャンプによるフリッカを防止することが可能となる。
実施例1と同様に、期間T5は電極間温度差の解消によるフリッカ防止対しても、温度差がなくなった場合のフリッカ防止に対しても有効な作用を持つので、各期間の電流幅の相対的な関係を一定にするという前提の下、期間T5の電流値増大は双方の効果を引き出すために最も効果的である。
従って、電流値の大小関係を明記すると、図6Aにおいては、i5=i1>i2=i4であり、図6Bでは、i5>i1=i2>i4であるが、i5が最も大きく、i4が最も小さく、i1がi2以上であれば、i1、i2、i4及びi5は適宜選択可能である。
In this way, by increasing the current value from the electrode on the low temperature side, the electrode temperature rises, the temperature difference between the two electrodes disappears, both become the optimal halogen cycle, and the electrode maintains the protrusion as shown in FIG. 9B. Since it is consumed, flicker due to arc jump can be prevented.
Similarly to the first embodiment, the period T5 has an effective action for preventing flicker by eliminating the temperature difference between the electrodes and for preventing flicker when the temperature difference disappears. The increase in the current value in the period T5 is most effective for bringing out both effects under the assumption that the general relationship is constant.
Therefore, if the magnitude relationship between the current values is specified, i5 = i1> i2 = i4 in FIG. 6A and i5> i1 = i2> i4 in FIG. 6B, but i5 is the largest and i4 is the smallest. , I1 is equal to or greater than i2, i1, i2, i4 and i5 can be appropriately selected.

なお、実施例1においては特定の期間の電流幅を増大させ、実施例2においては電流値を増大させている。これらから分かるように、期間T5は電極間温度差の解消によるフリッカ防止対しても、温度差がない場合のフリッカ防止に対しても有効な作用を持つので、期間T5の電流エネルギー増大は双方の効果を引き出すために最も効果的であることが分かる。
従って、電流エネルギーを電流値×通電時間と定義すると、従来の図8Aの波形を変化させて、i5×d5=i1×d1>i2×d2=i4×d4となるようにしてもよく、また、図8Bの波形を変化させて、i5×d5>i1×d1=i2×d2>i4×d4となるようにしてもよい。まとめると、i5×d5が最も大きく、i4×d4が最も小さく、i1×d1がi2×d2以上であれば、i1×d1、i2×d2、i4×d4及びi5×d5本発明の効果、即ち、互いに関係する電極間の温度差解消とそれによるフリッカ抑制という双方の効果を引き出すことが可能となる。なお、各期間(T1〜T6)の説明に用いた図4は電流値iと電流幅d双方を変化させた一例である。
In the first embodiment, the current width in a specific period is increased, and in the second embodiment, the current value is increased. As can be seen from the above, the period T5 has an effective action for preventing flicker by eliminating the temperature difference between the electrodes and for preventing flicker when there is no temperature difference. It turns out that it is the most effective for extracting the effect.
Therefore, if the current energy is defined as current value × energization time, the conventional waveform in FIG. 8A may be changed so that i5 × d5 = i1 × d1> i2 × d2 = i4 × d4. The waveform of FIG. 8B may be changed so that i5 × d5> i1 × d1 = i2 × d2> i4 × d4. In summary, if i5 × d5 is the largest, i4 × d4 is the smallest, and i1 × d1 is greater than or equal to i2 × d2, i1 × d1, i2 × d2, i4 × d4, and i5 × d5, Thus, it is possible to bring out both the effects of eliminating the temperature difference between the electrodes related to each other and suppressing the flicker. In addition, FIG. 4 used for description of each period (T1-T6) is an example which changed both the electric current value i and the electric current width d.

また、本発明による制御では、定ランプ電流制御又は定ランプ電力制御を行っているので、高周波電流部分の幅や高さを大きくしても実効値電流又は実効ランプ電力値はほぼ定格値となるような制御であり、ランプの電極に必要以上のストレスを与えないため、本制御によりランプの寿命を短くすることはない。   In the control according to the present invention, constant lamp current control or constant lamp power control is performed. Therefore, even if the width and height of the high-frequency current portion are increased, the effective value current or the effective lamp power value is almost the rated value. Since this control does not apply more stress than necessary to the lamp electrodes, this control does not shorten the lamp life.

なお、実施例1及び2においては、説明の明確化のために制御回路30を主にアナログ回路で構成したが、制御回路30の一部又は全部及び制御手段300をマイコンで構成してもよい。具体的には、少なくともランプ電圧値(抵抗31cの電圧)及びランプ電流値(抵抗32の電圧)がそのマイコンに入力され、ブリッジ制御回路45への制御信号及びPWM制御回路36への制御信号が出力される構成であればよい。   In the first and second embodiments, the control circuit 30 is mainly composed of an analog circuit for clarity of explanation, but a part or all of the control circuit 30 and the control means 300 may be composed of a microcomputer. . Specifically, at least a lamp voltage value (voltage of the resistor 31c) and a lamp current value (voltage of the resistor 32) are input to the microcomputer, and a control signal to the bridge control circuit 45 and a control signal to the PWM control circuit 36 are received. Any configuration may be used as long as it is output.

実施例3.
上記実施例1及び2では、好適にフリッカを防止しつつも、寿命を短くすることなく安定した光出力が得られる高圧放電灯点灯装置を示したが、それを用いたアプリケーションとしての光源装置を図7に示す。
図7において、74は上記で説明した高圧放電灯点灯装置、75は必要に応じて高圧放電灯点灯装置74、ランプ60及びレフレクタ71を内蔵する筐体である。なお、図は実施例を模擬的に図示したものであり、寸法、配置などは図面通りではない。また、図2Aに示したようにレフレクタ71の外部に空冷手段72を設けてもよいし、図2Bに示したようにランプ60に副鏡73を取り付けてもよい。なお、ランプ(又はレフレクタ)の冷却手段の最適な例として空冷手段72を示したが、ヒートシンク等の放熱手段等他の冷却手段を用いてもよい。さらに、図示されない映像系の部材等を筐体75内に適宜配置してプロジェクタを構成することもできる。
Example 3
In the first and second embodiments, the high pressure discharge lamp lighting device capable of obtaining a stable light output without shortening the lifetime while suitably preventing flicker is shown. However, a light source device as an application using the high pressure discharge lamp is shown. As shown in FIG.
In FIG. 7, 74 is the high pressure discharge lamp lighting device described above, and 75 is a housing containing the high pressure discharge lamp lighting device 74, the lamp 60 and the reflector 71 as required. In addition, the figure is a schematic illustration of the embodiment, and the dimensions, arrangement, and the like are not as illustrated. 2A, an air cooling means 72 may be provided outside the reflector 71, or a secondary mirror 73 may be attached to the lamp 60 as shown in FIG. 2B. Although the air cooling means 72 is shown as an optimal example of the cooling means of the lamp (or reflector), other cooling means such as a heat radiating means such as a heat sink may be used. Furthermore, a projector can be configured by appropriately arranging a video system member or the like (not shown) in the housing 75.

上記より、フリッカを防止しつつも、寿命を短くすることなく安定した光出力が得られる高圧放電灯点灯装置を内蔵したので、改善された光学特性及び寿命特性の光源装置を得ることができる。   As described above, since the high-pressure discharge lamp lighting device capable of obtaining a stable light output without shortening the lifetime while preventing flicker is built in, a light source device with improved optical characteristics and lifetime characteristics can be obtained.

なお、上記実施例は本発明の最も好適な例として示したものであるが、それに関連して以下を注記しておく。
(1)上記実施例では、低周波期間T3及びT6におけるランプ電流を矩形波として説明した。しかし、本発明でいう期間T3及びT6における矩形波とは、厳密に矩形でないような波形、例えば、矩形波に他の電流波形が重畳したような波形、矩形波の一部が窪んだような波形、或いは1つの期間T3又はT6の開始時と終了時で電流値が異なるような波形も含まれる。
(2)上記実施例では、高周波期間T1、T2、T4及びT5におけるランプ電流を矩形波として説明した。しかし、本発明でいう期間T1、T2、T4及びT5における矩形波とは、厳密に矩形でないような波形、例えば、矩形波が回路のインピーダンス(特に、イグナイタ回路に使用するパルストランスのインダクタンス成分)により歪んだ波形、或いはスイッチング動作の影響によりピーク付近が割れているような波形も含まれる。
In addition, although the said Example was shown as the most suitable example of this invention, the following is noted in connection with it.
(1) In the above embodiment, the lamp current in the low frequency periods T3 and T6 has been described as a rectangular wave. However, the rectangular wave in the periods T3 and T6 referred to in the present invention is a waveform that is not strictly rectangular, for example, a waveform in which another current waveform is superimposed on the rectangular wave, or a part of the rectangular wave is depressed. A waveform or a waveform having different current values at the start and end of one period T3 or T6 is also included.
(2) In the above embodiment, the lamp current in the high frequency periods T1, T2, T4, and T5 has been described as a rectangular wave. However, the rectangular wave in the periods T1, T2, T4 and T5 referred to in the present invention is a waveform that is not strictly rectangular, for example, a rectangular wave is an impedance of a circuit (in particular, an inductance component of a pulse transformer used in an igniter circuit). Waveform that is distorted due to switching or a waveform in which the vicinity of the peak is broken due to the influence of the switching operation is also included.

本発明の第1の実施例を示す回路構成図。The circuit block diagram which shows the 1st Example of this invention. 本発明の第1及び第2の実施例を説明する図。The figure explaining the 1st and 2nd Example of this invention. 本発明の第1及び第2の実施例を説明する図。The figure explaining the 1st and 2nd Example of this invention. 本発明の第1の実施例の各部波形を示す図。The figure which shows each part waveform of the 1st Example of this invention. 本発明の第1の実施例の各部波形を示す図。The figure which shows each part waveform of the 1st Example of this invention. 本発明の第1及び第2の実施例を説明する図。The figure explaining the 1st and 2nd Example of this invention. 本発明の第2の実施例を示す回路構成図。The circuit block diagram which shows the 2nd Example of this invention. 本発明の第2の実施例の各部波形を示す図。The figure which shows each part waveform of the 2nd Example of this invention. 本発明の第2の実施例の各部波形を示す図。The figure which shows each part waveform of the 2nd Example of this invention. 本発明の第3の実施例の光源装置を示す図。The figure which shows the light source device of the 3rd Example of this invention. 従来例の各部波形を示す図。The figure which shows each part waveform of a prior art example. 従来例の各部波形を示す図。The figure which shows each part waveform of a prior art example. 突起が成長したランプの電極を示す図。The figure which shows the electrode of the lamp | ramp with which the processus | protrusion grew. 電極温度が対象なランプのライフ中における電極を示す図。The figure which shows the electrode in the lifetime of the lamp | ramp whose electrode temperature is object. 電極温度が非対象なランプのライフ中における電極を示す図。The figure which shows the electrode in the life of the lamp | ramp whose electrode temperature is not object.

符号の説明Explanation of symbols

10.直流電源部
20.直流電力供給回路部
21.トランジスタ
22.ダイオード
23.直流リアクトル
24.コンデンサ
30.制御回路部
31a.ツェナーダイオード
31b、31c、32.抵抗
33.掛算器
34.誤差増幅器
35.積分回路
36.PWM制御回路
37、38、38a、38c.抵抗
38b、38d.トランジスタ
39.基準電圧
40.フルブリッジ回路
41〜44.トランジスタ
45.ブリッジ制御回路
50.イグナイタ回路部
60.高圧放電灯(ランプ)
71.レフレクタ
72.空冷手段
73.副鏡
74.高圧放電灯点灯装置
75.筐体
300.制御手段
10. DC power supply unit 20. DC power supply circuit unit 21. Transistor 22. Diode 23. DC reactor 24. Capacitor 30. Control circuit unit 31a. Zener diodes 31b, 31c, 32. Resistor 33. Multiplier 34. Error amplifier 35. Integration circuit 36. PWM control circuits 37, 38, 38a, 38c. Resistors 38b, 38d. Transistor 39. Reference voltage 40. Full bridge circuits 41-44. Transistor 45. Bridge control circuit 50. Igniter circuit section 60. High pressure discharge lamp
71. Reflector 72. Air cooling means 73. Secondary mirror 74. High pressure discharge lamp lighting device 75. Housing 300. Control means

Claims (6)

直流電圧が入力され直流電流を出力する直流電力供給部、該直流電流を交流変換して高圧放電灯に交流ランプ電流を供給するフルブリッジ回路、並びに該直流電力供給部が出力する直流電流値及び該フルブリッジ回路のスイッチング動作を制御する制御回路を備え、
前記交流ランプ電流波形が、電流値(+i1)・幅(d1)の第1の期間、電流値(−i2)・幅(d2)の第2の期間、電流値(+i3)・幅(d3)の第3の期間、電流値(−i4)・幅(d4)の第4の期間、電流値(+i5)・幅(d5)の第5の期間、及び電流値(−i6)・幅(d6)の第6の期間を1つのユニットとする波形の繰り返しからなるように、前記制御回路によって前記直流電流値及びスイッチング動作が制御され、
少なくとも、(d1+d2)<d3、かつ、(d4+d5)<d6、であり、
i5、i2>i3、i6、と設定された高圧放電灯点灯装置において、
前記高圧放電灯が第1及び第2の電極を有し、仮に該第1の電極から該第2の電極に向けて流す電流とその逆方向の電流とを等しくした場合に該第1の電極が該第2の電極よりも温度が低くなる場合に、前記交流ランプ電流(i1〜i6)について、その(+)方向が該第1の電極から該第2の電極へ向かう方向として規定され、
前記第5の期間について、
i5×d5≧i1×d1、かつ、i5×d5>i2×d2≧i4×d4
であることを特徴とする高圧放電灯点灯装置。
A DC power supply unit that receives a DC voltage and outputs a DC current; a full bridge circuit that converts the DC current into an AC voltage to supply an AC lamp current to a high-pressure discharge lamp; and a DC current value output by the DC power supply unit; A control circuit for controlling the switching operation of the full bridge circuit;
The AC lamp current waveform includes a first period of current value (+ i1) and width (d1), a second period of current value (−i2) and width (d2), and a current value (+ i3) and width (d3). The third period, the fourth period of the current value (−i4) · width (d4), the fifth period of the current value (+ i5) · width (d5), and the current value (−i6) · width (d6). ), The direct current value and the switching operation are controlled by the control circuit so as to consist of repetition of a waveform having the sixth period as one unit,
(D1 + d2) <d3 and (d4 + d5) <d6,
In the high pressure discharge lamp lighting device set as i5, i2> i3, i6,
When the high-pressure discharge lamp has first and second electrodes, and the current flowing from the first electrode toward the second electrode is equal to the current in the opposite direction, the first electrode When the temperature is lower than that of the second electrode, the (+) direction of the alternating lamp current (i1 to i6) is defined as the direction from the first electrode to the second electrode,
For the fifth period,
i5 × d5 ≧ i1 × d1 and i5 × d5> i2 × d2 ≧ i4 × d4
A high pressure discharge lamp lighting device characterized by
請求項1記載の高圧放電灯点灯装置において、前記第5の期間について、さらに、
d5≧d1、かつ、d5>d2≧d4
である高圧放電灯点灯装置。
In the high pressure discharge lamp lighting device according to claim 1, further about the fifth period,
d5 ≧ d1 and d5> d2 ≧ d4
High pressure discharge lamp lighting device.
請求項1記載の高圧放電灯点灯装置において、前記第5の期間について、さらに、
i5≧i1、かつ、i5>i2≧i4
である高圧放電灯点灯装置。
In the high pressure discharge lamp lighting device according to claim 1, further about the fifth period,
i5 ≧ i1 and i5> i2 ≧ i4
High pressure discharge lamp lighting device.
請求項1から請求項3いずれか一項に記載の高圧放電灯点灯装置、該高圧放電灯点灯装置から交流ランプ電流を供給される第1及び第2の電極を有する高圧放電灯、並びに該高圧放電灯が取り付けられるレフレクタを備えた光源装置。   The high pressure discharge lamp lighting device according to any one of claims 1 to 3, a high pressure discharge lamp having first and second electrodes to which an AC lamp current is supplied from the high pressure discharge lamp lighting device, and the high pressure A light source device including a reflector to which a discharge lamp is attached. 請求項4記載の光源装置であって、さらに、前記高圧放電灯を冷却する冷却手段を備え、
前記第1の電極が該レフレクタのフロント側に設置され、前記第2の電極が該レフレクタのネック側に設置された光源装置。
The light source device according to claim 4, further comprising cooling means for cooling the high-pressure discharge lamp,
A light source device in which the first electrode is installed on the front side of the reflector and the second electrode is installed on the neck side of the reflector.
請求項4記載の光源装置であって、さらに、前記高圧放電灯に取り付けられた副鏡を備え、
前記第1の電極が該レフレクタのネック側に設置され、前記第2の電極が該レフレクタのフロント側に設置されるとともに前記副鏡が該第2の電極付近に取り付けられた光源装置。
The light source device according to claim 4, further comprising a sub mirror attached to the high pressure discharge lamp,
A light source device in which the first electrode is installed on the neck side of the reflector, the second electrode is installed on the front side of the reflector, and the secondary mirror is attached in the vicinity of the second electrode.
JP2006282238A 2006-10-17 2006-10-17 High pressure discharge lamp lighting device Expired - Fee Related JP4853638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282238A JP4853638B2 (en) 2006-10-17 2006-10-17 High pressure discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282238A JP4853638B2 (en) 2006-10-17 2006-10-17 High pressure discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JP2008103091A true JP2008103091A (en) 2008-05-01
JP4853638B2 JP4853638B2 (en) 2012-01-11

Family

ID=39437283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282238A Expired - Fee Related JP4853638B2 (en) 2006-10-17 2006-10-17 High pressure discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP4853638B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2413188A1 (en) * 2010-07-29 2012-02-01 Seiko Epson Corporation Projector
JP2013083714A (en) * 2011-10-06 2013-05-09 Seiko Epson Corp Projector
JP2014075363A (en) * 2014-01-10 2014-04-24 Seiko Epson Corp Projector and projector system
US8960911B2 (en) 2011-09-27 2015-02-24 Seiko Epson Corporation Projector with three-dimensional display
JP2015165310A (en) * 2015-03-26 2015-09-17 セイコーエプソン株式会社 projector and projector system
US9152027B2 (en) 2011-10-06 2015-10-06 Seiko Epson Corporation Projector and method for controlling a projector discharge lamp
US9152033B2 (en) 2011-09-30 2015-10-06 Seiko Epson Corporation Discharge lamp lighting device and projector
US9425633B2 (en) 2012-10-09 2016-08-23 Toyota Jidosha Kabushiki Kaisha Sodium ion battery system, method for using sodium ion battery, and method for producing sodium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134290A (en) * 2000-10-26 2002-05-10 Olympus Optical Co Ltd Light source equipment
JP2003059684A (en) * 2001-08-10 2003-02-28 Matsushita Electric Works Ltd High pressure discharge lamp device
JP2005283706A (en) * 2004-03-29 2005-10-13 Seiko Epson Corp Lamp device and projector equipped therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134290A (en) * 2000-10-26 2002-05-10 Olympus Optical Co Ltd Light source equipment
JP2003059684A (en) * 2001-08-10 2003-02-28 Matsushita Electric Works Ltd High pressure discharge lamp device
JP2005283706A (en) * 2004-03-29 2005-10-13 Seiko Epson Corp Lamp device and projector equipped therewith

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2413188A1 (en) * 2010-07-29 2012-02-01 Seiko Epson Corporation Projector
JP2012032504A (en) * 2010-07-29 2012-02-16 Seiko Epson Corp Projector
EP2568331A1 (en) * 2010-07-29 2013-03-13 Seiko Epson Corporation Projector
CN104793454B (en) * 2010-07-29 2016-08-24 精工爱普生株式会社 Scialyscope
US8591034B2 (en) 2010-07-29 2013-11-26 Seiko Epson Corporation Projector
CN104793454A (en) * 2010-07-29 2015-07-22 精工爱普生株式会社 Projector
US8807754B2 (en) 2010-07-29 2014-08-19 Seiko Epson Corporation Projector
US8960911B2 (en) 2011-09-27 2015-02-24 Seiko Epson Corporation Projector with three-dimensional display
US9344713B2 (en) 2011-09-27 2016-05-17 Seiko Epson Corporation Projector with three-dimensional display
US9152033B2 (en) 2011-09-30 2015-10-06 Seiko Epson Corporation Discharge lamp lighting device and projector
US8864318B2 (en) 2011-10-06 2014-10-21 Seiko Epson Corporation Projector with alternating power levels
US9152027B2 (en) 2011-10-06 2015-10-06 Seiko Epson Corporation Projector and method for controlling a projector discharge lamp
JP2013083714A (en) * 2011-10-06 2013-05-09 Seiko Epson Corp Projector
US9425633B2 (en) 2012-10-09 2016-08-23 Toyota Jidosha Kabushiki Kaisha Sodium ion battery system, method for using sodium ion battery, and method for producing sodium ion battery
JP2014075363A (en) * 2014-01-10 2014-04-24 Seiko Epson Corp Projector and projector system
JP2015165310A (en) * 2015-03-26 2015-09-17 セイコーエプソン株式会社 projector and projector system

Also Published As

Publication number Publication date
JP4853638B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4853638B2 (en) High pressure discharge lamp lighting device
JP2009520318A (en) Dimming ballast and method
US8115405B2 (en) High pressure discharge lamp lighting device and luminaire using same
JP2010113822A (en) High-pressure discharge lamp lighting device and lighting method of high-pressure discharge lamp
JP5024544B2 (en) High pressure discharge lamp lighting device and light source device
US7443110B2 (en) Discharge lamp energizing circuit and method of energizing discharge lamp
JP2008098074A (en) High pressure discharge lamp lighting device
JP4853831B2 (en) High pressure discharge lamp lighting device and high pressure discharge lamp lighting method
JP4888833B2 (en) High pressure discharge lamp lighting device
JP2006339143A (en) Control apparatus for fluorescent tube of luminaire
US20110298389A1 (en) Discharge lamp lighting apparatus and discharge lamp lighting method
JP4883292B2 (en) High pressure discharge lamp lighting device and dimming method of high pressure discharge lamp
JP5170596B2 (en) High pressure discharge lamp lighting device and light source device
JP2009289555A (en) Discharge lamp lighting device, and luminaire
JP2010080137A (en) High pressure discharge lamp lighting device and luminaire
JP4059053B2 (en) Lighting method of high pressure discharge lamp
JP2002352971A (en) Lighting equipment for electric discharge lamp
WO2009130861A1 (en) Inverter device
US8143796B2 (en) Electronic ballast with controlled filament preheating using half-wave lamp current detection
JP2010135276A (en) Discharge lamp lighting circuit
JP5287525B2 (en) High pressure discharge lamp lighting device and high pressure discharge lamp lighting method
JP2002352990A (en) Lighting equipment for electric discharger lamp
WO2013051193A1 (en) High-voltage discharge lamp lighting device and light source device
JP2004303688A (en) Discharge lamp lighting device
JP5035422B2 (en) Discharge tube lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees