JP2008101094A - Method for producing fluorescent material - Google Patents

Method for producing fluorescent material Download PDF

Info

Publication number
JP2008101094A
JP2008101094A JP2006284291A JP2006284291A JP2008101094A JP 2008101094 A JP2008101094 A JP 2008101094A JP 2006284291 A JP2006284291 A JP 2006284291A JP 2006284291 A JP2006284291 A JP 2006284291A JP 2008101094 A JP2008101094 A JP 2008101094A
Authority
JP
Japan
Prior art keywords
carbon
nitrogen
compound
temperature
carbon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006284291A
Other languages
Japanese (ja)
Other versions
JP5093772B2 (en
Inventor
Masahiro Tajima
政弘 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane Prefecture
Original Assignee
Shimane Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefecture filed Critical Shimane Prefecture
Priority to JP2006284291A priority Critical patent/JP5093772B2/en
Publication of JP2008101094A publication Critical patent/JP2008101094A/en
Application granted granted Critical
Publication of JP5093772B2 publication Critical patent/JP5093772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for synthesizing a carbon nitride-based fluorophor emitting white fluorescence, while being capable of easily obtaining in high reproducibility and in high efficiency a carbon nitride of high nitrogen content with the N/C ratio of 1 or greater without using any catalyst and solvent. <P>SOLUTION: The method comprises the following process. Using such a compound as to be composed of carbon atom(s), nitrogen atom(s) and hydrogen atom(s), or composed of carbon atom(s), nitrogen atom(s) and hydrogen atom(s) and oxygen atom(s), and represent a carbon-nitrogen bond-recurring structure, the compound is heat-treated under such a condition that the sublimation vapor pressure of the compound is saturated at its decomposition or sublimation temperature or higher. In the above method, the compound representing the carbon-nitrogen bond-recurring structure: (C-N)n is melamine, urea or cyanuric acid, and the heat-treatment condition is such that the temperature is 250-550°C and there is substantially no gas inflow in a lidded vessel or in a low-spacing volume state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蛍光材料、特に無定形窒化炭素を主体とする蛍光材料の製造方法に関する。   The present invention relates to a method for producing a fluorescent material, particularly a fluorescent material mainly composed of amorphous carbon nitride.

窒化炭素は窒素と炭素のみからなる化合物であり、特に窒素含有率の高い窒化炭素(α−C結晶、β−C結晶、グラファイト状C)は超硬質材料として注目されており、半導体、機械部品、又は歯や骨の関節等の耐摩耗材として用いるなど、工業用、理化学用、医療用など様々な分野への応用が期待されることもあり、基礎及び応用の両面から活発な検討が進められている。更に、超硬質窒化炭素材料を合成する過程で、窒素/炭素モル比が1を超える窒化炭素材料では蛍光を発することが確認されている。 Carbon nitride is a compound consisting only of nitrogen and carbon, and carbon nitride (α-C 3 N 4 crystal, β-C 3 N 4 crystal, graphite-like C 3 N 4 ) having a particularly high nitrogen content is an ultra-hard material. It is attracting attention and may be expected to be used in various fields such as industrial, physics and chemistry, and medical applications, such as semiconductors, machine parts, or wear-resistant materials such as teeth and bone joints. Active consideration is ongoing from both sides. Furthermore, in the process of synthesizing an ultra-hard carbon nitride material, it has been confirmed that a carbon nitride material having a nitrogen / carbon molar ratio exceeding 1 emits fluorescence.

本発明で採用する出発物質と類似する塩化シアヌルやトリクロロメラミンのような炭素と窒素のトリアジン環および塩素を含む化合物を反応原料とする炭素と窒素及び水素の化合物の合成については、特許文献1や非特許文献1に見られる。   Regarding the synthesis of a compound of carbon, nitrogen and hydrogen using a compound containing carbon and nitrogen triazine ring and chlorine, such as cyanuric chloride and trichloromelamine, similar to the starting material employed in the present invention, as described in Patent Document 1 and It can be seen in Non-Patent Document 1.

特許文献1には、塩化シアヌルとアンモニア又は塩化シアヌルとメラミンを500℃〜600℃で反応させて層状構造の窒化炭素が製造されること、得られた窒化炭素は蛍光材になることの開示がある。この方法の特徴は、塩化シアヌルを出発原料として、塩素部分をアンモニア又はメラミンと反応させることにより、トリアジン環を窒素で架橋し、窒化炭素中間体を形成することである。更に、この窒化炭素中間体を500℃〜600℃で熱分解し、余分な水素を除去して、黄色の層状構造を持つ窒化炭素を製造することである。   Patent Document 1 discloses that carbon nitride having a layered structure is produced by reacting cyanuric chloride and ammonia or cyanuric chloride and melamine at 500 ° C. to 600 ° C., and that the obtained carbon nitride becomes a fluorescent material. is there. The feature of this method is that a triazine ring is bridged with nitrogen to form a carbon nitride intermediate by reacting a chlorine moiety with ammonia or melamine using cyanuric chloride as a starting material. Furthermore, this carbon nitride intermediate is thermally decomposed at 500 ° C. to 600 ° C. to remove excess hydrogen, thereby producing carbon nitride having a yellow layered structure.

また、非特許文献1にはトリクロロメラミンをオートクレーブ中で、500℃に加熱したニクロム線に接触させることにより、短時間でオレンジ色の窒化炭素を合成する方法が記載されている。この方法の特徴は、トリクロロメラミンを出発原料にすることと、ニクロム線加熱で急速に数10秒で熱分解することにより、高窒素含有で微粒子の窒化炭素を得ることである。   Non-Patent Document 1 describes a method for synthesizing orange carbon nitride in a short time by bringing trichloromelamine into contact with a nichrome wire heated to 500 ° C. in an autoclave. The feature of this method is that trichloromelamine is used as a starting material, and thermal decomposition is rapidly performed in a few tens of seconds by heating with a nichrome wire to obtain fine nitrogen-containing carbon nitride.

特公平5−16364号公報(特許請求の範囲、第3欄)Japanese Patent Publication No. 5-16364 (Claims, third column) J. Mater. Chem. 12, P.2463-2469, 2000(P.2467.Conclusionsほか)J. Mater. Chem. 12, P.2463-2469, 2000 (P.2467. Conclusions et al.)

上記の特許文献1および非特許文献1では、窒化炭素の出発原料として塩化物を使用している。塩素は、熱処理により容易に脱離して、ラジカル又はイオンを生成させ、分子間の架橋の反応点となる。この反応を利用すると、容易に分子同士が架橋反応により重合するため、特許文献1および非特許文献1では、窒化炭素の出発原料として塩素化合物を使用していると推測される。   In Patent Document 1 and Non-Patent Document 1 described above, chloride is used as a starting material for carbon nitride. Chlorine is easily desorbed by heat treatment to generate radicals or ions, which serve as reaction points for cross-linking between molecules. When this reaction is utilized, molecules easily polymerize by a crosslinking reaction, and therefore, in Patent Document 1 and Non-Patent Document 1, it is presumed that a chlorine compound is used as a starting material for carbon nitride.

しかし、出発原料である塩化物が熱分解すると、塩酸又は塩素が生成するため、装置が腐食するという問題がある。また、塩化シアヌルやトリクロロメラミンのような塩化物は高価であり、安価な蛍光材料をつくるには不向きである。更に、特許文献1および非特許文献1では、窒素又はアルゴン等の不活性ガス雰囲気で反応を行っている。不活性ガス雰囲気は、窒化炭素の出発原料の酸化分解を防ぎ、窒化炭素の製造には最適であるが、不活性ガス置換のための煩雑な操作が必要になり、装置の気密性も確保する必要がある。   However, when the starting material chloride is thermally decomposed, hydrochloric acid or chlorine is generated, which causes a problem that the apparatus is corroded. In addition, chlorides such as cyanuric chloride and trichloromelamine are expensive and are not suitable for producing inexpensive fluorescent materials. Furthermore, in Patent Document 1 and Non-Patent Document 1, the reaction is performed in an inert gas atmosphere such as nitrogen or argon. The inert gas atmosphere prevents the oxidative decomposition of the starting material of carbon nitride and is optimal for the production of carbon nitride, but requires complicated operation for replacement of the inert gas and ensures the airtightness of the apparatus. There is a need.

窒化炭素は、超硬質材料として研究が進められているため、窒素と炭素の純粋な化合物であり、結晶性が高いことが必要であった。それ故、今までの研究では、如何に高品質な窒化炭素を製造するかに重点がおかれて、塩素含有窒化炭素原料を不活性ガスで満たした気密性の高い密閉容器内、又は、不活性ガス流通下に550℃以上で熱処理して製造することが主流であった。したがって、550℃未満の低温で得られる、アモルファスで水素が不純物として含まれるような窒化炭素は、求められていなかったのが現状である。   Since carbon nitride is being researched as an ultra-hard material, it is a pure compound of nitrogen and carbon and has to be highly crystalline. Therefore, in the research so far, emphasis has been placed on how to produce high-quality carbon nitride, in a highly airtight sealed container filled with a chlorine-containing carbon nitride raw material with an inert gas, or It was mainstream to manufacture by heat treatment at 550 ° C. or higher under active gas flow. Therefore, the present situation is that amorphous carbon nitride obtained at a low temperature of less than 550 ° C. and containing hydrogen as an impurity has not been required.

本発明は、このような従来技術の問題点を克服するものであって、塩化物を出発原料とすることなく、塩酸による装置の腐食の問題を解決し、不純物としての塩素の混入がない原料を使用することにより、安価な白色蛍光を発する化合物である、窒化炭素系蛍光体の新規な合成方法を提供することを目的とする。   The present invention overcomes such problems of the prior art, solves the problem of corrosion of the apparatus by hydrochloric acid without using chloride as a starting material, and does not contain chlorine as an impurity. An object of the present invention is to provide a novel method for synthesizing a carbon nitride-based phosphor, which is an inexpensive compound that emits white fluorescence.

本発明は、窒化炭素系蛍光体の合成方法について鋭意検討した結果、炭素、窒素及び水素からなる化合物又は炭素、窒素、水素及び酸素からなる化合物を分解温度又は昇華温度以上の温度で昇華蒸気圧が飽和になる条件で加熱処理することにより、効率よく白色に発光する窒化炭素系蛍光体が得られることを見いだしたものである。   The present invention, as a result of intensive studies on a method for synthesizing a carbon nitride-based phosphor, revealed that a compound comprising carbon, nitrogen and hydrogen or a compound comprising carbon, nitrogen, hydrogen and oxygen is subjected to sublimation vapor pressure at a temperature equal to or higher than the decomposition temperature or sublimation temperature. It has been found that a carbon nitride phosphor that emits white light efficiently can be obtained by heat-treating under the condition that becomes saturated.

すなわち、本発明は炭素、窒素及び水素からなるか、あるいは炭素、窒素、水素及び酸素からなり、かつ炭素と窒素の結合の繰り返し構造となっている化合物を用い、該化合物をその分解温度又は昇華温度以上の温度で昇華蒸気圧が飽和になる条件で加熱処理することを特徴とする蛍光材料の製造方法である。   That is, the present invention uses a compound composed of carbon, nitrogen and hydrogen, or composed of carbon, nitrogen, hydrogen and oxygen and having a repeating structure of a bond of carbon and nitrogen, and the compound is decomposed at its decomposition temperature or sublimation. A method for producing a fluorescent material, characterized in that heat treatment is performed at a temperature equal to or higher than a temperature so that a sublimation vapor pressure is saturated.

ここで炭素と窒素の結合の繰り返し構造(C−N)nとなっている化合物は、メラミン、尿素又はシアヌル酸であり、これらの化合物が以下の方法で簡単に青みがかった白色の蛍光体が容易に得られる。アデニンのようにC−C結合が含まれている化合物を出発原料に使用すると、蛍光体は製造できにくい。   Here, the compound having a carbon-nitrogen bond repeating structure (CN) n is melamine, urea or cyanuric acid, and these compounds can easily form a bluish white phosphor by the following method. Is obtained. When a compound containing a C—C bond such as adenine is used as a starting material, it is difficult to produce a phosphor.

化合物の加熱処理は、温度が250℃から550℃の範囲、好ましくは温度が300℃から500℃の範囲で行うのがよい。   The heat treatment of the compound is carried out at a temperature in the range of 250 ° C. to 550 ° C., preferably in a range of 300 ° C. to 500 ° C.

蛍光材料の化合物の加熱処理は、化合物を蓋付容器内又は低隙間容積状態でガス流入がほとんどない状態で行うので、特別なオートクレーブなどを用いる必要もない製造方法である。   The heat treatment of the compound of the fluorescent material is a production method in which the compound is carried out in a container with a lid or in a low gap volume state with almost no gas inflow, so that it is not necessary to use a special autoclave or the like.

本発明の蛍光材料の製造方法によると、メラミン、尿素又はシアヌル酸等の窒素、炭素化合物を用いて今まで、研究が主流であった温度域より低い250℃から550℃の範囲で、不活性ガス置換なしに、簡易な蓋付容器内又は低隙間容積状態でガス流入がほとんどない状態で行うことにより、無機蛍光体を容易に製造できる。   According to the method for producing a fluorescent material of the present invention, inactive in a range of 250 ° C. to 550 ° C., which is lower than the temperature range in which research has been mainstream using nitrogen and carbon compounds such as melamine, urea or cyanuric acid. Inorganic phosphor can be easily manufactured by performing in a simple container with a lid or in a state of low gap volume and almost no gas inflow without gas replacement.

本発明で製造した窒化炭素系蛍光体は、様々な分野で利用が可能である。例えば、蛍光顔料として樹脂系塗料に混合する使用法がある。無機系蛍光体であることから、太陽紫外線等による劣化が少なく、高耐久性が望める。また、蛍光灯に使用されている白色蛍光体の代替も期待できる。現在使用されている白色蛍光体には、Sbが含まれている。結晶内に組み込まれており、容易には溶出しないが、将来的な問題となる可能性が高い。窒化炭素系蛍光体は、有害物質を含まないため、環境に配慮した製品として期待できる。   The carbon nitride phosphor produced in the present invention can be used in various fields. For example, there is a usage method in which a fluorescent pigment is mixed with a resin-based paint. Since it is an inorganic phosphor, it can be expected to have high durability with little deterioration caused by solar ultraviolet rays. In addition, an alternative to white phosphors used in fluorescent lamps can be expected. Currently used white phosphors contain Sb. Although it is incorporated in the crystal and does not elute easily, it is likely to become a future problem. Since carbon nitride phosphors do not contain harmful substances, they can be expected as environmentally friendly products.

更に、本発明の窒化炭素系蛍光体は、半導体としての特性も備えているため、無機ELの発光体として使用できる可能性がある。白色の発光パネルは、携帯電話、携帯ゲーム等の小型画面への利用が期待されている。無機EL発光パネルは、高耐久性が薄型画面として期待されており、安価な製品が求められている。安価に製造できる窒化炭素系蛍光体は、無機EL発光パネルの原料として最適である。   Furthermore, since the carbon nitride phosphor of the present invention also has characteristics as a semiconductor, it may be used as an inorganic EL light emitter. White light-emitting panels are expected to be used for small screens such as mobile phones and mobile games. Inorganic EL light-emitting panels are expected to have high durability as thin screens, and inexpensive products are required. A carbon nitride phosphor that can be manufactured at low cost is optimal as a raw material for an inorganic EL light-emitting panel.

以下に本発明の蛍光体製造方法を更に詳細に説明する。本発明の窒化炭素系蛍光体の合成方法は、図1に示されるように、原料として炭素、窒素及び水素からなる化合物又は炭素、窒素、水素及び酸素からなる化合物を出発原料とし、分解温度又は昇華温度以上で熱処理することにより分子間縮合により蛍光材料を合成する方法である。出発原料は、炭素と窒素の原子が交互に結合する構造が好ましい。このような構造を有する化合物は、尿素、シアヌル酸、メラミン、メラム等がある。   Hereinafter, the phosphor production method of the present invention will be described in more detail. As shown in FIG. 1, the method for synthesizing a carbon nitride-based phosphor of the present invention uses a compound consisting of carbon, nitrogen and hydrogen as a raw material or a compound consisting of carbon, nitrogen, hydrogen and oxygen as a starting material, and a decomposition temperature or This is a method of synthesizing a fluorescent material by intermolecular condensation by heat treatment at a sublimation temperature or higher. The starting material preferably has a structure in which carbon and nitrogen atoms are alternately bonded. Examples of the compound having such a structure include urea, cyanuric acid, melamine, melam and the like.

これらの化合物は、炭素と窒素が交互に結合を繰り返す構造を有している。例えば、尿素はN−C−Nの構造を持ち、シアヌル酸及びメラミンは、C−N−C−N−C−N−の6員環構造を持っている。また、加熱処理、ミル処理、加圧処理等により、メラミン及びメラムの類似化合が合成される原料も使用可能である。   These compounds have a structure in which carbon and nitrogen are alternately bonded. For example, urea has a N—C—N structure, and cyanuric acid and melamine have a C—N—C—N—C—N— six-membered ring structure. Moreover, the raw material by which the similarity compound of a melamine and melam is synthesize | combined by heat processing, a mill process, a pressurization process, etc. can also be used.

しかし、同じような窒素と炭素の化合物でも、アデニンのようにC−C結合が含まれている化合物を出発原料に使用すると、蛍光体は製造できにくい。   However, even with similar nitrogen and carbon compounds, if a compound containing a C—C bond such as adenine is used as a starting material, it is difficult to produce a phosphor.

これらの出発原料は、加熱すると昇華する性質を持つ。したがって、昇華により化合物が蒸発することを防ぐ必要がある。   These starting materials have the property of sublimation when heated. Therefore, it is necessary to prevent the compound from evaporating due to sublimation.

本発明では、昇華を防ぐために蓋付容器を使用する。蓋は、気密性が高いネジ付きの蓋や、固定治具が付いた密着性が高い蓋でも良いが、軽く載せるだけの気密性が低い蓋でも使用可能である。また、このような、気密性が低い蓋では、外気から酸素が入り込んでくる可能性があるが、本発明の窒化炭素系蛍光体の製造では、特に、問題とはならない。実際に、るつぼに軽く載せる蓋を使用して、るつぼの容積の80%から90%程度出発原料を詰めて加熱処理を行っても、窒化炭素系蛍光体は製造できる。これは、出発原料の部分的な分解によるアンモニアガスの発生及び、出発原料の昇華ガスの発生により、容器内部への外部からのガスが入りにくくなることが考えられる。ただし、分解ガスや昇華ガスが容器内に充満していても、完全には外部からのガスの侵入を防ぐことは困難であるので、少量の酸素は特に、影響を及ぼさないと考えられる。   In the present invention, a lidded container is used to prevent sublimation. The lid may be a lid with a screw with high airtightness or a lid with high adhesion with a fixing jig, but it can also be used with a lid with low airtightness that is lightly placed. In addition, such a lid with low airtightness may allow oxygen to enter from the outside air, but this is not a problem in the production of the carbon nitride phosphor of the present invention. Actually, a carbon nitride-based phosphor can be produced even by using a lid that is lightly placed on a crucible and filling the starting material with about 80% to 90% of the crucible volume and performing heat treatment. This is considered to be due to generation of ammonia gas due to partial decomposition of the starting material and generation of sublimation gas of the starting material, making it difficult for gas from the outside to enter the container. However, even if the decomposition gas or sublimation gas is filled in the container, it is difficult to completely prevent the invasion of gas from the outside. Therefore, it is considered that a small amount of oxygen does not particularly affect.

また、容器は、できるだけ加熱する装置の加熱炉内に占める体積が大きく隙間が少ない方が良い。これは、空隙が少ないと、原料の分解ガス又は昇華ガスが、加熱炉内に充満しやすく、原料の昇華が抑制され、生産量が増加するからである。次に、低隙間容積状態について説明する。低隙間容積とは、窒化炭素原料を入れた容器が、加熱炉内容積の大部分を占めて、容器以外の隙間が少ない状態をいう。このような、容器が加熱炉内の容積の大部分を占めた状態では、擬似的に密閉容器に入れた状態と同様の条件となり、窒化炭素原料を入れた容器には蓋をする必要がない。加熱装置は、電気炉、ガス炉どちらでも使用できるが、ガス炉の場合は、加熱炉内にバーナーがある内部加熱タイプではなく、加熱炉の外部から加熱するような外部加熱タイプが良い。炎が加熱炉内に噴射されると、燃焼ガス及び燃焼用空気が一緒に噴射されるため、加熱炉内のガスの出入りが多く、原料の昇華が促進され、生産量が少なくなる。また、加熱炉内を搬送装置で加熱容器を移動させたり、キルン型加熱炉で連続的に窒化炭素系蛍光体を製造したりすることもできる。このとき注意することは、ガスの出入りを少なくして原料の昇華を抑えることが重要である。   Further, it is preferable that the container occupies a large volume in the heating furnace of the apparatus for heating as much as possible and has few gaps. This is because if the voids are small, the decomposition gas or sublimation gas of the raw material is easily filled in the heating furnace, sublimation of the raw material is suppressed, and the production amount increases. Next, the low gap volume state will be described. The low gap volume means a state in which the container containing the carbon nitride raw material occupies most of the heating furnace inner volume and there are few gaps other than the container. In such a state in which the container occupies most of the volume in the heating furnace, the conditions are the same as those in the pseudo-sealed container, and it is not necessary to cover the container containing the carbon nitride raw material. . The heating apparatus can be used in either an electric furnace or a gas furnace, but in the case of a gas furnace, an external heating type in which heating is performed from the outside of the heating furnace is preferable instead of an internal heating type in which a burner is provided in the heating furnace. When the flame is injected into the heating furnace, the combustion gas and the combustion air are injected together, so that the gas in and out of the heating furnace is increased and decreased, the sublimation of the raw material is promoted, and the production amount is reduced. Moreover, a heating container can be moved in a heating furnace with a conveying apparatus, or a carbon nitride phosphor can be continuously produced in a kiln type heating furnace. In this case, it is important to suppress the sublimation of the raw material by reducing the gas entry and exit.

上記に示すような容器及び加熱装置で、出発原料を加熱処理することにより、窒化炭素系蛍光体を製造するときの加熱処理温度は、250℃から550℃、好ましくは300℃から500℃である。250℃未満では、出発原料の分子間縮合が進みにくく長時間の処理が必要となり、生産量が少なく経済的でない。550℃を超える温度では、製品が着色したり、更には蛍光スペクトルの強度が極端に低下したりするため、蛍光材料として不適切である。   The heat treatment temperature when producing the carbon nitride-based phosphor by heat-treating the starting material with the container and the heating device as described above is 250 ° C. to 550 ° C., preferably 300 ° C. to 500 ° C. . If it is less than 250 ° C., the intermolecular condensation of the starting material is difficult to proceed, and a long-time treatment is required, and the production amount is small and not economical. When the temperature exceeds 550 ° C., the product is colored or the intensity of the fluorescence spectrum is extremely lowered, and therefore, it is not suitable as a fluorescent material.

本発明の加熱処理温度は、通常の窒化炭素材料を製造する場合の温度に較べてかなり低い。窒化炭素は、超硬質材料として期待されるため、高結晶性および不純物の少なさが求められて来た。そのため、不純物である水素を除去し、高結晶性を得るために、550℃以上の高温で処理することが求められており、アモルファスで水素含有量が多くなる550℃未満の低温での処理は行われていなかった。   The heat treatment temperature of the present invention is considerably lower than the temperature for producing ordinary carbon nitride materials. Since carbon nitride is expected as an ultra-hard material, high crystallinity and few impurities have been demanded. Therefore, in order to remove hydrogen which is an impurity and to obtain high crystallinity, it is required to process at a high temperature of 550 ° C. or higher. It was not done.

本発明で使用する出発原料である尿素は、加熱処理により分子間縮合して、シアヌル酸、そしてメラミンになることが知られている。更に、メラミンは、分子間縮合が進むとメラムになるとされている。したがって、これらの化合物は、尿素を出発とする分子間縮合の中間生成物であると言える。この分子間縮合が進むと、最終的には炭素と窒素だけの化合物となる。メラミンを出発原料とした場合は、まずメラムが生成するが、更に分子間縮合が進んでN/C比が1.6に近づく。このメラミンがメラムから更に分子間縮合をした炭素と窒素の化合物が蛍光体と考えられる。この化合物は、分解温度以上の熱処理を行うと生成し蛍光体となる。   It is known that urea as a starting material used in the present invention undergoes intermolecular condensation by heat treatment to become cyanuric acid and melamine. Furthermore, melamine is said to become melam as intermolecular condensation proceeds. Therefore, it can be said that these compounds are intermediate products of intermolecular condensation starting from urea. As this intermolecular condensation proceeds, the final compound becomes only carbon and nitrogen. When melamine is used as a starting material, melam is first produced, but further intermolecular condensation proceeds and the N / C ratio approaches 1.6. A compound of carbon and nitrogen obtained by further intermolecular condensation of melamine from melam is considered to be a phosphor. This compound is produced when a heat treatment at a temperature equal to or higher than the decomposition temperature is performed and becomes a phosphor.

この蛍光体は、500℃未満の熱処理ではアモルファスであるため、エックス線回折では確認できない。実際に、蛍光を発している熱処理した化合物をエックス線回折で測定しても、シアヌル酸又はメラムの構造しか確認できない。したがって、450℃以下の熱処理で部分的に生成している窒化炭素系蛍光体を特定することは容易ではない。500℃以上では、窒化炭素系蛍光体は、エックス線回折を測定すると2θ=27°付近にグラファイトと同様の層状構造を示すピークが認められる。窒化炭素系蛍光体の外観は、450℃以下の処理温度では白色又はわずかに黄色みを帯びた白色、薄い灰色の粉末であるが、360nmの紫外線で励起され430nmから480nmを最大波長とする白色光を発する。500℃以上の処理温度では、窒化炭素系蛍光体の外観は、黄色粉末であり、360nmの紫外線で励起され500nm付近を最大波長とする白色光を発する。   Since this phosphor is amorphous when heat-treated at less than 500 ° C., it cannot be confirmed by X-ray diffraction. Actually, only the structure of cyanuric acid or melam can be confirmed by measuring the heat-treated compound emitting fluorescence by X-ray diffraction. Therefore, it is not easy to specify a carbon nitride-based phosphor that is partially generated by heat treatment at 450 ° C. or lower. Above 500 ° C., the carbon nitride phosphor has a peak showing a layered structure similar to that of graphite around 2θ = 27 ° as measured by X-ray diffraction. The appearance of the carbon nitride phosphor is white or slightly yellowish white and light gray powder at a processing temperature of 450 ° C. or lower, but is white with a maximum wavelength of 430 nm to 480 nm when excited by 360 nm ultraviolet light. Emits light. At a processing temperature of 500 ° C. or higher, the appearance of the carbon nitride-based phosphor is a yellow powder, which is excited by ultraviolet rays of 360 nm and emits white light having a maximum wavelength around 500 nm.

以上、希土類や有害物質を含まない蛍光体の製造方法及び利用方法を詳細に説明した。次に本発明を実施例に基づき更に詳細に説明する。   In the above, the manufacturing method and utilization method of the phosphor containing no rare earth and noxious substances have been described in detail. Next, the present invention will be described in more detail based on examples.

実施例1
市販試薬のメラミンを100mlのるつぼに50g入れた。るつぼに蓋をして、電気炉中450℃で2時間加熱処理を行った。電気炉内の雰囲気は窒素の置換等は行わず、空気中で行った。冷却後、るつぼから取り出すと、白色粉末であり、重量は31gであった。また、360nmを中心波長とするブラックライトを照射すると、青味がかった白色に発光した。結果を表1に示す。
Example 1
50 g of a commercial reagent, melamine, was placed in a 100 ml crucible. The crucible was covered and heat-treated at 450 ° C. for 2 hours in an electric furnace. The atmosphere in the electric furnace was in the air without nitrogen replacement. After cooling, when taken out from the crucible, it was white powder and its weight was 31 g. Further, when a black light having a central wavelength of 360 nm was irradiated, the light emitted bluish white. The results are shown in Table 1.

実施例2〜5
実施例1と同様に、市販試薬のメラミンを100mlのるつぼに50g入れた。このるつぼに蓋をして、電気炉の温度を300℃、350℃、400℃、500℃と変更して2時間加熱処理を行った。電気炉内の雰囲気は窒素の置換等は行わず、空気中で行った。冷却後、るつぼから取り出すと、いずれも白色粉末であった。また、360nmを中心波長とするブラックライトを照射すると、いずれも青味がかった白色に発光した。結果を表1に示す。
Examples 2-5
In the same manner as in Example 1, 50 g of a commercially available melamine was placed in a 100 ml crucible. The crucible was covered, and the temperature of the electric furnace was changed to 300 ° C., 350 ° C., 400 ° C., and 500 ° C., and heat treatment was performed for 2 hours. The atmosphere in the electric furnace was in the air without nitrogen replacement. After cooling, the powder was taken out from the crucible and was white powder. Moreover, when black light having a central wavelength of 360 nm was irradiated, all emitted light with bluish white. The results are shown in Table 1.

実施例6〜10
原料として、シアヌル酸を使用し、加熱処理温度を300℃から500℃の範囲で変えて実施例1と同様の方法で加熱処理を行った。加熱処理時間は2時間であった。得られた粉末は加熱温度が450℃まではいずれも白色粉末であったが500℃になると薄黄色に着色した。しかし、360nmを中心波長とするブラックライトを照射すると、いずれも青味がかった白色に発光した。結果を表1に示す。
Examples 6-10
Cyanuric acid was used as a raw material, and the heat treatment was performed in the same manner as in Example 1 while changing the heat treatment temperature in the range of 300 ° C to 500 ° C. The heat treatment time was 2 hours. The obtained powders were all white powders up to a heating temperature of 450 ° C., but became light yellow when the temperature reached 500 ° C. However, when irradiated with black light having a central wavelength of 360 nm, all emitted light in bluish white. The results are shown in Table 1.

実施例11〜15
原料として、尿素を使用し、加熱処理温度を300℃から500℃の範囲で変えて実施例1と同様の方法で加熱処理を行った。加熱処理時間は2時間であった。得られた粉末はいずれも白色粉末でありかつ、360nmを中心波長とするブラックライトを照射すると、いずれも青味がかった白色に発光した。結果を表1に示す。
Examples 11-15
Urea was used as a raw material, and the heat treatment was performed in the same manner as in Example 1 while changing the heat treatment temperature in the range of 300 ° C to 500 ° C. The heat treatment time was 2 hours. All of the obtained powders were white powders, and when irradiated with black light having a central wavelength of 360 nm, all emitted light with a bluish white color. The results are shown in Table 1.

比較例1〜5
原料として、実施例同様にメラミン、シアヌル酸及び尿素を使用し、実施例の加熱処理温度の300℃から500℃の範囲外の低温又は高温で実施例1と同様の方法で加熱処理を行った。加熱処理時間は2時間であった。得られた粉末は当然ながら低温の200℃では白色粉末であるが、高温の600℃では黄色、700℃になるとオレンジ色まで変化した。360nmを中心波長とするブラックライトを照射すると、低温では発光しなかったが、高温ではいずれも黄色味がかった白色に発光した。結果を表1に示す。
Comparative Examples 1-5
As a raw material, melamine, cyanuric acid and urea were used as in the example, and the heat treatment was performed in the same manner as in Example 1 at a low temperature or high temperature outside the range of 300 ° C. to 500 ° C. of the heat treatment temperature of the example. . The heat treatment time was 2 hours. Naturally, the obtained powder was a white powder at a low temperature of 200 ° C., but changed to yellow at a high temperature of 600 ° C. and to an orange color at 700 ° C. When black light having a central wavelength of 360 nm was irradiated, it did not emit light at a low temperature, but emitted light to a yellowish white at a high temperature. The results are shown in Table 1.

比較例6
市販試薬のアデニンを30mlのるつぼに約10g入れた。るつぼに蓋をして、電気炉内で450℃、2時間加熱処理を行った。電気炉内の雰囲気は窒素の置換等は行わず、空気中で行った。冷却後、るつぼから取り出すと、青黒色粉末であった。また、360nmを中心波長とするブラックライトを照射したが、蛍光は認められなかった
Comparative Example 6
About 10 g of a commercially available reagent, adenine, was placed in a 30 ml crucible. The crucible was covered and subjected to heat treatment at 450 ° C. for 2 hours in an electric furnace. The atmosphere in the electric furnace was in the air without nitrogen replacement. After cooling, it was taken out from the crucible and was a bluish black powder. Moreover, although the black light which makes 360nm a center wavelength was irradiated, the fluorescence was not recognized.

表1は核原料の処理温度と生成物の色及び蛍光色についてまとめたものであるが、表2には処理温度における各生成物の元素モル比(N/C及びH/C)の変化を示した。   Table 1 summarizes the processing temperature of the nuclear material, the color of the product, and the fluorescent color. Table 2 shows the change in the element molar ratio (N / C and H / C) of each product at the processing temperature. Indicated.

表2における炭化窒素生成物のモル比はCHN分析装置で測定した値である。メラミンは、原料のN/C=2であるが、加熱処理温度が300℃までは変わらず、500℃と高くなれば、N/C=1.5に近くなり、水素も加熱処理で分子内縮合が進むにつれて、少なくなる。加熱温度を600℃以上に高くすると、N/C=1.49で安定する。   The molar ratio of the nitrogen carbide product in Table 2 is a value measured with a CHN analyzer. Melamine is N / C = 2 as a raw material, but the heat treatment temperature does not change up to 300 ° C., and when it becomes as high as 500 ° C., N / C = 1.5, and hydrogen is also heated in the molecule. As the condensation proceeds, it decreases. When the heating temperature is increased to 600 ° C. or more, N / C = 1.49 becomes stable.

シアヌル酸は、原料がN/C=1である。この場合N/C比は加熱処理温度が高くなっても、あまり変化しないが、蛍光強度は強くなる。500℃では、窒素の含有比が大きくなる。シアヌル酸に限っては、N/C比と発光強度との相関関係は認められなかった。   The raw material of cyanuric acid is N / C = 1. In this case, the N / C ratio does not change much even when the heat treatment temperature is increased, but the fluorescence intensity is increased. At 500 ° C., the nitrogen content ratio increases. For cyanuric acid only, no correlation between N / C ratio and emission intensity was observed.

尿素は、原料がN/C=2である。尿素を加熱処理すると、X線回折スペクトルでもわかるように、300℃で重合して、シアヌル酸に変化する。ここで、N/C=1になり、その後、温度が高くなるにつれて、分子内縮合が進み、N/C比が1.55に近づく結果が得られた。   The raw material of urea is N / C = 2. When urea is heat-treated, as shown in the X-ray diffraction spectrum, it polymerizes at 300 ° C. and changes to cyanuric acid. Here, N / C = 1, and then, as the temperature increased, intramolecular condensation progressed, and the N / C ratio approached 1.55.

次に、図2以下の図面データによって各実施例等の説明をする。図2はメラミンを原料とした窒化炭素系蛍光材料の発光スペクトルであり、熱処理温度350℃(実施例3)では、中心波長が400nmで高い相対値をしめすが、熱処理温度が高くなるにつれて長波長側へシフトし、発光強度は、熱処理温度が低温側から発光強度が増加し、450℃(実施例1)を最高に、500℃(実施例5)以上では、急激に低下した。   Next, each embodiment will be described with reference to the drawing data of FIG. FIG. 2 shows an emission spectrum of a carbon nitride fluorescent material using melamine as a raw material. At a heat treatment temperature of 350 ° C. (Example 3), the center wavelength is 400 nm, which shows a high relative value. The emission intensity increased from the low temperature side, and the emission intensity decreased sharply above 450 ° C. (Example 1) and above 500 ° C. (Example 5).

図3はメラミンを原料とした場合の各温度の生成物のX線回折図である。メラミンの場合、熱処理温度300℃までは、メラミンの構造が残存しており、400℃〜450℃では、メラミンが重合してできるメラムができていることがわかる。更に、500℃以上の熱処理では、生成物がグラファイトと同様の層状構造になっていることがわかる(実施例5)。   FIG. 3 is an X-ray diffraction pattern of the product at each temperature when melamine is used as a raw material. In the case of melamine, it can be seen that the structure of melamine remains up to a heat treatment temperature of 300 ° C., and a melam formed by polymerization of melamine is formed at 400 ° C. to 450 ° C. Furthermore, it can be seen that the product has a layered structure similar to that of graphite after heat treatment at 500 ° C. or higher (Example 5).

図4はシアヌル酸を原料とした場合の各温度の生成物のX線回折図である。シアヌル酸は、450℃まで、構造の変化が認められない。これは、シアヌル酸のX線回折強度が大きいために、他のピークが確認できにくいためと考えられる。500℃では、グラファイトと同様の層状構造が認められた。   FIG. 4 is an X-ray diffraction pattern of the product at each temperature when cyanuric acid is used as a raw material. Cyanuric acid does not show structural changes up to 450 ° C. This is presumably because the X-ray diffraction intensity of cyanuric acid is large and it is difficult to confirm other peaks. At 500 ° C., a layered structure similar to that of graphite was observed.

図5は尿素を原料とした場合の各温度の生成物のX線回折図である。尿素は、熱処理温度が200℃以上でシアヌル酸の構造に変化している。450℃以上では、グラファイトと同様の層状構造が確認できた。   FIG. 5 is an X-ray diffraction diagram of the product at each temperature when urea is used as a raw material. Urea changes to the structure of cyanuric acid at a heat treatment temperature of 200 ° C. or higher. Above 450 ° C., a layered structure similar to that of graphite could be confirmed.

図6は原料であるメラミンの赤外線吸収スペクトルである。図7、8、9は熱処理後のメラミンからの生成物の赤外線吸収スペクトルであり、熱処理温度が400℃、450℃では、メラミンが重合してできるメラムの構造が認められ、500℃では、メラムのスペクトルが小さくなり、全体的に大きなブロードなピークが確認でき、むしろ、熱分解が発生している。   FIG. 6 is an infrared absorption spectrum of melamine as a raw material. FIGS. 7, 8 and 9 are infrared absorption spectra of the product from the melamine after heat treatment. When the heat treatment temperatures are 400 ° C. and 450 ° C., the melam structure formed by polymerization of melamine is observed. As a result, the spectrum becomes smaller, and a large broad peak can be confirmed as a whole. Rather, thermal decomposition occurs.

図10は実施例1の生成物の電子顕微鏡画像(1万倍)であり、表面が溶けたような状態が認められ、原料であるメラミンが部分的に昇華してできた構造であると考えられる。   FIG. 10 is an electron microscopic image (10,000 magnifications) of the product of Example 1, in which a state in which the surface is melted is observed, and it is considered that the structure is formed by partial sublimation of melamine as a raw material. It is done.

図11は実施例14の生成物の電子顕微鏡画像(1000倍)である。ここでは尿素を450℃で熱処理した場合、すでに、部分的にグラファイトと同様な層状構造が確認できた。   FIG. 11 is an electron microscopic image (1000 ×) of the product of Example 14. Here, when urea was heat-treated at 450 ° C., a layered structure similar to that of graphite was already confirmed.

図12は比較例1の生成物の電子顕微鏡画像(13000倍)である。グラファイトと同様な層状構造が全体的に確認できた。   FIG. 12 is an electron microscope image (13,000 times) of the product of Comparative Example 1. A layered structure similar to that of graphite was confirmed as a whole.

図13はメラミンの窒素中におけるTG−DTA曲線であるが、メラミンを窒素中で加熱すると、350℃で完全に昇華してしまっている。図14は実施例1の生成物の窒素中におけるTG−DTA曲線であり、窒化炭素系蛍光材は、440℃から昇華が始まり、約700℃で全て昇華してしまうことが明らかになった。   FIG. 13 is a TG-DTA curve of melamine in nitrogen. When melamine is heated in nitrogen, it completely sublimates at 350 ° C. FIG. 14 is a TG-DTA curve of the product of Example 1 in nitrogen, and it became clear that the carbon nitride fluorescent material started sublimation from 440 ° C. and all sublimated at about 700 ° C.

本発明の窒化炭素系蛍光体の合成方法を示すフローチャートである。It is a flowchart which shows the synthesis | combining method of the carbon nitride fluorescent substance of this invention. 蛍光スペクトルである。It is a fluorescence spectrum. メラミンを原料とした場合の各温度の生成物のX線回折である。It is an X-ray diffraction of the product of each temperature when melamine is used as a raw material. シアヌル酸を原料とした場合の各温度の生成物のX線回折である。It is an X-ray diffraction of the product of each temperature when using cyanuric acid as a raw material. 尿素を原料とした場合の各温度の生成物のX線回折である。It is X-ray diffraction of the product of each temperature when urea is used as a raw material. メラミンの赤外線吸収スペクトルである。It is an infrared absorption spectrum of melamine. 実施例1における生成物の赤外線吸収スペクトルである。It is an infrared absorption spectrum of the product in Example 1. 実施例4の生成物の赤外線吸収スペクトルである。It is an infrared absorption spectrum of the product of Example 4. 実施例5の生成物の赤外線吸収スペクトルである。2 is an infrared absorption spectrum of the product of Example 5. 実施例1の生成物の電子顕微鏡画像(1万倍)である。It is an electron microscope image (10,000 times) of the product of Example 1. 実施例14の生成物の電子顕微鏡画像(1000倍)である。It is an electron microscope image (1000 times) of the product of Example 14. 比較例1の生成物の電子顕微鏡画像(13000倍)である。It is an electron microscope image (13000 times) of the product of Comparative Example 1. メラミンの窒素中におけるTG−DTA曲線である。It is a TG-DTA curve in nitrogen of melamine. 実施例1の生成物の窒素中におけるTG−DTA曲線である。2 is a TG-DTA curve of the product of Example 1 in nitrogen.

Claims (4)

炭素、窒素及び水素からなるか、あるいは炭素、窒素、水素及び酸素からなり、かつ炭素と窒素の結合の繰り返し構造となっている化合物を用い、該化合物をその分解温度又は昇華温度以上の温度で昇華蒸気圧が飽和になる条件で加熱処理することを特徴とする蛍光材料の製造方法。   Using a compound consisting of carbon, nitrogen and hydrogen, or consisting of carbon, nitrogen, hydrogen and oxygen and having a repeating structure of carbon and nitrogen bonds, the compound is at a temperature equal to or higher than its decomposition temperature or sublimation temperature. A method for producing a fluorescent material, characterized in that a heat treatment is performed under a condition in which a sublimation vapor pressure is saturated. 炭素と窒素の結合の繰り返し構造となっている化合物がメラミン、尿素又はシアヌル酸である請求項1記載の蛍光材料の製造方法。   The method for producing a fluorescent material according to claim 1, wherein the compound having a repeating structure of a bond of carbon and nitrogen is melamine, urea or cyanuric acid. 化合物の加熱処理は、温度が250℃から550℃の範囲で行う請求項1又は2記載の蛍光材料の製造方法。   The method for producing a fluorescent material according to claim 1 or 2, wherein the heat treatment of the compound is performed in a temperature range of 250 ° C to 550 ° C. 化合物の加熱処理は、化合物を蓋付容器内又は低隙間容積状態でガス流入がほとんどない状態で行う請求項1乃至3のいずれか記載の蛍光材料の製造方法。   The method for producing a fluorescent material according to any one of claims 1 to 3, wherein the heat treatment of the compound is performed in a state where there is almost no gas inflow in a lidded container or in a low gap volume state.
JP2006284291A 2006-10-18 2006-10-18 Method for producing fluorescent material Expired - Fee Related JP5093772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284291A JP5093772B2 (en) 2006-10-18 2006-10-18 Method for producing fluorescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284291A JP5093772B2 (en) 2006-10-18 2006-10-18 Method for producing fluorescent material

Publications (2)

Publication Number Publication Date
JP2008101094A true JP2008101094A (en) 2008-05-01
JP5093772B2 JP5093772B2 (en) 2012-12-12

Family

ID=39435674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284291A Expired - Fee Related JP5093772B2 (en) 2006-10-18 2006-10-18 Method for producing fluorescent material

Country Status (1)

Country Link
JP (1) JP5093772B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103086332A (en) * 2013-01-30 2013-05-08 华南理工大学 Carbon nitride compound fluorescent powder and preparation method thereof
JP2013234308A (en) * 2012-05-11 2013-11-21 Shimane Prefecture Luminescence material and method for producing the same
CN105776338A (en) * 2016-02-25 2016-07-20 四川大学 Method for preparing Mn3O4/C3N4 composite material through dielectric barrier discharge
CN106928996A (en) * 2017-02-24 2017-07-07 华南理工大学 A kind of three component white radiation fluorescent material of ultraviolet excitation and preparation method thereof
CN108408697A (en) * 2018-02-14 2018-08-17 东华大学 A kind of richness amino graphitic nitralloy carbon and preparation method thereof
CN111302315A (en) * 2020-03-16 2020-06-19 昆明学院 Preparation method and application of nitrogen-carbon-based light conversion agent, light conversion plastic film and preparation method thereof
CN111646437A (en) * 2020-07-07 2020-09-11 安阳工学院 Method for preparing white graphite phase carbon nitride by closed self-pressurization strategy
JP2020152609A (en) * 2019-03-20 2020-09-24 株式会社日本触媒 Method for producing graphitic carbon nitride and novel graphitic carbon nitride
CN113912050A (en) * 2020-07-09 2022-01-11 Tcl科技集团股份有限公司 Graphene quantum dot and processing method thereof
CN114671417A (en) * 2022-04-26 2022-06-28 山西大学 Preparation method and application of nitrogen vacancy type carbon nitride with high specific surface area

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222328A (en) * 1988-07-12 1990-01-25 Central Glass Co Ltd Carbon nitride and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222328A (en) * 1988-07-12 1990-01-25 Central Glass Co Ltd Carbon nitride and production thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234308A (en) * 2012-05-11 2013-11-21 Shimane Prefecture Luminescence material and method for producing the same
CN103086332A (en) * 2013-01-30 2013-05-08 华南理工大学 Carbon nitride compound fluorescent powder and preparation method thereof
CN105776338A (en) * 2016-02-25 2016-07-20 四川大学 Method for preparing Mn3O4/C3N4 composite material through dielectric barrier discharge
CN105776338B (en) * 2016-02-25 2017-07-07 四川大学 Dielectric barrier discharge prepares mangano-manganic oxide/nitridation carbon composite
CN106928996A (en) * 2017-02-24 2017-07-07 华南理工大学 A kind of three component white radiation fluorescent material of ultraviolet excitation and preparation method thereof
CN108408697A (en) * 2018-02-14 2018-08-17 东华大学 A kind of richness amino graphitic nitralloy carbon and preparation method thereof
JP2020152609A (en) * 2019-03-20 2020-09-24 株式会社日本触媒 Method for producing graphitic carbon nitride and novel graphitic carbon nitride
JP7267793B2 (en) 2019-03-20 2023-05-02 株式会社日本触媒 Method for producing graphitic carbon nitride and novel graphitic carbon nitride
CN111302315A (en) * 2020-03-16 2020-06-19 昆明学院 Preparation method and application of nitrogen-carbon-based light conversion agent, light conversion plastic film and preparation method thereof
CN111302315B (en) * 2020-03-16 2023-02-17 昆明学院 Preparation method and application of nitrogen-carbon-based light conversion agent, light conversion plastic film and preparation method thereof
CN111646437A (en) * 2020-07-07 2020-09-11 安阳工学院 Method for preparing white graphite phase carbon nitride by closed self-pressurization strategy
CN113912050A (en) * 2020-07-09 2022-01-11 Tcl科技集团股份有限公司 Graphene quantum dot and processing method thereof
CN113912050B (en) * 2020-07-09 2023-11-14 Tcl科技集团股份有限公司 Graphene quantum dot and processing method thereof
CN114671417A (en) * 2022-04-26 2022-06-28 山西大学 Preparation method and application of nitrogen vacancy type carbon nitride with high specific surface area
CN114671417B (en) * 2022-04-26 2023-07-18 山西大学 Preparation method and application of nitrogen vacancy type carbon nitride with high specific surface area

Also Published As

Publication number Publication date
JP5093772B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5093772B2 (en) Method for producing fluorescent material
Yuan et al. High-yield synthesis and optical properties of gC 3 N 4
Xia et al. Structural and optical properties of YAG: Ce3+ phosphors by sol–gel combustion method
US8455273B2 (en) Method for producing crystalline nitride phosphors
JP4979187B2 (en) Aluminum nitride phosphor and method for producing the same
WO2009048150A1 (en) Β-sialon phosphor powder and process for production of the same
JP2012046625A (en) Method of manufacturing phosphor
TWI575059B (en) Method for fabricating a fluorescent substance
Watanabe et al. Low temperature ammonothermal synthesis of europium-doped SrAlSiN3 for a nitride red phosphor
JP5730319B2 (en) Method for producing β-sialon
JP6354325B2 (en) Method for producing nitride phosphor powder and method for producing pigment
Li et al. Stable CsPbX3 (X= Cl, Br, I) Nanocrystal‐in‐Glass Composite (NGC) for Solid‐State Laser‐Driven White Light Generation
Chou et al. Microwave synthesis of red-emitting Ca2Si5N8: Eu2+ phosphor and its photoluminescence properties for white-LEDs
Zhou et al. Combustion synthesis of LaSi3N5: Eu2+ phosphor powders
JP5093773B2 (en) Phosphor composite porous body and method for producing the same
Permatasari et al. Solid-state nitrogen-doped carbon nanoparticles with tunable emission prepared by a microwave-assisted method
Wang et al. The effect of Li3N flux on properties of Sr2Si5N8: Eu2+ phosphor
JP4788875B2 (en) Boron nitride crystal having fluorescent emission characteristics to which an activator such as rare earth is added, its production method, and boron nitride phosphor
JP5558787B2 (en) Method for producing β-sialon
JP4979194B2 (en) Aluminum nitride phosphor
JP4942062B2 (en) Method for producing oxynitride
JP4613342B2 (en) Cerium phosphate nanotubes and method for producing the same
JP4639125B2 (en) Method for producing blue-emitting phosphor
JPH0516364B2 (en)
Xu et al. Transformation of crystal structure induced by the temperatures in carbon dots (CDs)-based composites with multicolor fluorescence for white Light-Emitting-Diode (WLED)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

R150 Certificate of patent or registration of utility model

Ref document number: 5093772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees