JP2008100910A - Cobalt oxide for lithium secondary battery positive electrode active material - Google Patents

Cobalt oxide for lithium secondary battery positive electrode active material Download PDF

Info

Publication number
JP2008100910A
JP2008100910A JP2007287770A JP2007287770A JP2008100910A JP 2008100910 A JP2008100910 A JP 2008100910A JP 2007287770 A JP2007287770 A JP 2007287770A JP 2007287770 A JP2007287770 A JP 2007287770A JP 2008100910 A JP2008100910 A JP 2008100910A
Authority
JP
Japan
Prior art keywords
cobalt oxide
positive electrode
secondary battery
lithium secondary
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007287770A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yamazaki
信幸 山崎
Hidekazu Awano
英和 粟野
Katsuyuki Negishi
克幸 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2007287770A priority Critical patent/JP2008100910A/en
Publication of JP2008100910A publication Critical patent/JP2008100910A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide cobalt oxide as a raw material of lithium cobaltate for a lithium secondary battery excellent in energy density, service capacity and capacity retention. <P>SOLUTION: The cobalt oxide is used as a raw material for producing the positive electrode active material for the lithium secondary battery, which comprises ≤500 ppm (excluding 0 ppm) of silicon (Si) and ≤100 ppm (excluding 0 ppm) of iron (Fe) as impurities, and has 0.1-10 μm average particle diameter. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池正極活物質用酸化コバルトに関するものである。   The present invention relates to cobalt oxide for a positive electrode active material for a lithium secondary battery.

近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウム二次電池が実用されはじめている。   2. Description of the Related Art In recent years, as home appliances have rapidly become portable and cordless, lithium secondary batteries have begun to be used as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras.

このリチウム二次電池については、1980年に水島等によリコバルト酸リチウムがリチウム二次電池の正極活物質として有用であるとの報告〔非特許文献1〕がなされて以来、コバルト酸リチウム系正極活物質に関する研究開発が活発に進められており、これまで多くの提案がなされている。   Regarding this lithium secondary battery, since 1980, when Mizushima et al. Reported that lithium lithium cobaltate was useful as a positive electrode active material of a lithium secondary battery [Non-patent Document 1], a lithium cobaltate-based positive electrode Research and development on active materials has been actively promoted, and many proposals have been made so far.

従来、正極活物質の高エネルギー密度化を図る技術としては、例えばコバルト酸リチウムの組成をLiCoO(但し、1.05≦a≦1.3)とすることによりリチウムリッチにしたもの、逆にLiCoO(但し、0<b≦1)とすることによってコバルトリッチにしたもの、その他にコバルト酸リチウムに、Mn、W、Ni、La、Ta、Nb、Zrなどの金属イオンをドープさせたもの、コバルト酸リチウム中の残留LiCOの量を規定するもの、又は残留アルカリを規定するものなどが提案されている。 Conventionally, as a technology for increasing the energy density of the positive electrode active material, for example, a lithium-rich composition by making the composition of lithium cobaltate Li a CoO 2 (where 1.05 ≦ a ≦ 1.3), On the contrary, Li b CoO 2 (where 0 <b ≦ 1) is used to make cobalt rich, and other metal ions such as Mn, W, Ni, La, Ta, Nb, and Zr are added to lithium cobaltate. Some have been proposed that dope, one that defines the amount of residual Li 2 CO 3 in lithium cobaltate, one that defines residual alkali, and the like.

一方、コバルト酸リチウム系正極活物質の物理的特徴、例えば比表面積を要件とする、LiCoOをアモルファスとする、粒子径を規定する、LiCoOの特定のX線回折強度をもつ結晶粒子などが提案されている。 On the other hand, physical characteristics of the lithium cobaltate-based positive electrode active material, for example, a specific surface area is required, LiCoO 2 is amorphous, a particle diameter is defined, crystal particles having a specific X-ray diffraction intensity of LiCoO 2 , etc. Proposed.

また、原料に関して、コバルト源として形状がほば球状又は長円球状で、平均粒子径がlμm以下の、一次粒子が複数個直接連接しているコバルト酸化物を用いて、リチウム塩との混合物を焼成する方法(特許文献1)、平均粒径D(50%)=0.5〜l.5μmの範囲にある酸化コバルトを使用する方法(特許文献2)、アトマイズ法による平均粒子径約0.1、0.2、0.5、1、5、10μmのコバルト酸化物粉末と炭酸リチウムとを混合し焼成する方法(特許文献3)等が提案されている。
特開平5−54888号公報 特開平5−94822号公報 特開平5−290832号公報 “マテリアル リサーチブレティン”vo1.15、P783〜789(1980年)
In addition, with respect to the raw material, a cobalt oxide having a shape of almost spherical or oval, an average particle diameter of 1 μm or less, and a cobalt oxide in which a plurality of primary particles are directly connected, is used as a mixture with a lithium salt. Firing method (Patent Document 1), average particle diameter D (50%) = 0.5 to l. A method using cobalt oxide in the range of 5 μm (Patent Document 2), cobalt oxide powder having an average particle size of about 0.1, 0.2, 0.5, 1, 5, 10 μm by an atomizing method, and lithium carbonate A method of mixing and baking (Patent Document 3) and the like has been proposed.
Japanese Patent Laid-Open No. 5-54888 Japanese Patent Laid-Open No. 5-94822 Japanese Patent Application Laid-Open No. 5-290832 "Material Research Bulletin" vo 1.15, P783-789 (1980)

しかしながら、リチウム二次電池正極活物質としてのコバルト酸リチウムは、しばしば含まれる不純物の影響を受け、正極としての性能を低下させることがある。
そこで、本発明者らは、反応原料である酸化コバルト中に含まれるシリカや鉄を除去した酸化コバルトを用いて生成したコバルト酸リチウムが、二次電池用正極活物質として極めて優れた特性を有することを知見し、本発明を完成した。
However, lithium cobalt oxide as a positive electrode active material for a lithium secondary battery is often affected by impurities contained therein and may deteriorate the performance as a positive electrode.
Therefore, the present inventors have extremely excellent characteristics as a positive electrode active material for a secondary battery, lithium cobalt oxide produced using cobalt oxide from which silica or iron contained in cobalt oxide as a reaction raw material has been removed. As a result, the present invention has been completed.

本発明は、上記の知見に基づいて開発されたもので、その目的はリチウム二次電池正極組成液の粘度変化率が少なく安定した状態を保つことができるリチウム二次電池正極活物質の原料である酸化コバルトを提供することにある。   The present invention has been developed based on the above findings, and its purpose is to provide a raw material for a lithium secondary battery positive electrode active material that can maintain a stable state with a low viscosity change rate of a lithium secondary battery positive electrode composition liquid. It is to provide a certain cobalt oxide.

また、本発明は、エネルギー密度と放電容量及び容量保持率の優れたリチウム二次電池用コバルト酸リチウム原料である酸化コバルトを提供することにある。   Another object of the present invention is to provide cobalt oxide which is a lithium cobaltate raw material for a lithium secondary battery excellent in energy density, discharge capacity and capacity retention.

即ち、本発明は、リチウム二次電池用正極活物質の製造原料として使用する酸化コバルトであって、該酸化コバルト中に含まれる不純物の珪素(Si)が500ppm以下(但し、0ppmを除く。)で、Feの含有量がl00ppm以下(但し、0ppmを除く。)であり、旦つ平均粒子径が0.1〜10μmであることを特徴とするリチウム二次電池正極活物質用酸化コバルトに係るものである。   That is, the present invention is cobalt oxide used as a raw material for producing a positive electrode active material for a lithium secondary battery, and the impurity silicon (Si) contained in the cobalt oxide is 500 ppm or less (excluding 0 ppm). The content of Fe is 100 ppm or less (excluding 0 ppm), and the average particle diameter is 0.1 to 10 μm. Is.

前記リチウム二次電池用正極活物質がコバルト酸リチウムであるのが好ましい。
前記酸化コバルトは、酸化コバルトと炭酸リチウムとを混合し、次いで焼成して得られるコバルト酸リチウム用原料の酸化コバルトであるのが好ましい。
The positive electrode active material for a lithium secondary battery is preferably lithium cobaltate.
The cobalt oxide is preferably cobalt oxide as a raw material for lithium cobaltate obtained by mixing cobalt oxide and lithium carbonate and then firing the mixture.

本発明によれば、リチウム二次電池正極組成液の粘度変化率が少なく安定した状態を保つことができるリチウム二次電池正極活物質用酸化コバルトを得ることができる。
また、本発明のリチウム二次電池正極活物質用酸化コバルトを用いることにより、エネルギー密度と放電容量及び容量保持率の優れたリチウム二次電池を得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the cobalt oxide for lithium secondary battery positive electrode active materials which can maintain the stable state with few viscosity change rates of a lithium secondary battery positive electrode composition liquid can be obtained.
Moreover, the lithium secondary battery excellent in energy density, discharge capacity, and capacity retention rate can be obtained by using the cobalt oxide for lithium secondary battery positive electrode active materials of the present invention.

以下、本発明を群細に説明する。
本発明のリチウム二次電池正極活物質用酸化コバルトは、工業的に入手できるものであれば、特に制限されるものではないが、できるだけ精製されているものが好ましい。
Hereinafter, the present invention will be described in detail.
The cobalt oxide for a lithium secondary battery positive electrode active material of the present invention is not particularly limited as long as it is industrially available, but is preferably purified as much as possible.

即ち、本発明のリチウム二次電池正極活物質用の原料としての酸化コバルトの特徴は、酸化コバルト中に含まれる不純物の珪素(Si)が500ppm以下(但し、0ppmを除く。)、好ましくは200ppm以下である。また、該酸化コバルトの粒子の平均粒子径は、0.1〜10μm、好ましくは0.1〜5μmである。   That is, the feature of the cobalt oxide as a raw material for the positive electrode active material of the lithium secondary battery of the present invention is that the impurity silicon (Si) contained in the cobalt oxide is 500 ppm or less (excluding 0 ppm), preferably 200 ppm. It is as follows. The average particle diameter of the cobalt oxide particles is 0.1 to 10 μm, preferably 0.1 to 5 μm.

また、他の不純物として、Feの量が100ppm以下(但し、0ppmを除く。)、好ましくは50ppm以下であるのが望ましい。
これら、Si及びFe等の不純物の測定は、HC1O、HCl等の酸で溶解させ、その溶液をICP測定装置にて定量を行えばよい。
As other impurities, the amount of Fe is 100 ppm or less (excluding 0 ppm), preferably 50 ppm or less.
These impurities such as Si and Fe may be measured by dissolving them with an acid such as HC1O 4 or HCl and quantifying the solution with an ICP measuring device.

また、平均粒子径の測定法は、特に制限されるものではないが、例えばレーザー法で求めたものである。
本発明において、上記の範囲をはずれた酸化コバルトの原料を用いて、該酸化コバルトと炭酸リチウムを反応させて、コバルト酸リチウムを生成したものは、原料の不純物がそのまま生成物に影響を受けてしまい、リチウム二次電池用正極活物質に使用した場合、初期容量やサイクル特性が低下して好ましくない結果となる。
Moreover, the measuring method of an average particle diameter is not specifically limited, For example, it calculates | requires with the laser method.
In the present invention, a cobalt oxide raw material outside the above range is used to react with the cobalt oxide and lithium carbonate to produce lithium cobalt oxide. The raw material impurities are directly affected by the product. Therefore, when it is used as a positive electrode active material for a lithium secondary battery, the initial capacity and cycle characteristics are lowered, which is not preferable.

また、かかる酸化コバルトをリチウム二次電池正極活物質原料として使用する場合、コバルト酸リチウムの他に、例えばコバルト酸リチウムのコバルトの―部をニツケルやマンガン、バナジウム、クロム、チタン、アルミニウム、ホウ素等で置換した化合物の原料としても使用することができることは言うまでもない。   In addition, when using such cobalt oxide as a lithium secondary battery positive electrode active material raw material, in addition to lithium cobaltate, for example, the cobalt part of lithium cobaltate is nickel, manganese, vanadium, chromium, titanium, aluminum, boron, etc. It goes without saying that it can also be used as a raw material for compounds substituted with.

本発明の酸化コバルトを用いてコバルト酸リチウムを製造する方法は、例えば酸化コバルトと炭酸リチウムを、Li/Coの原子比として1付近、好ましくは0.99〜1.10になる範囲の配合割合で混合し、該混合物を600〜1100℃の温度で焼成処理を行なう。焼成時間は、少なくとも2時間以上であり、焼成後、焼成物を冷却し、かるくほぐす程度に粉砕することにより得ることができる。   The method for producing lithium cobaltate using the cobalt oxide of the present invention is, for example, a combination ratio of cobalt oxide and lithium carbonate in the vicinity of 1, preferably 0.99 to 1.10 as the atomic ratio of Li / Co. And the mixture is fired at a temperature of 600 to 1100 ° C. The firing time is at least 2 hours, and after firing, the fired product can be cooled and pulverized to such an extent that it can be loosened.

次に、実施例を挙げて本発明を説明するが、これは単に例示であつて、本発明を制限するものではない。
実施例1〜3および比較例1
原料となる酸化コバルトの物性を下記の表1に示す。
EXAMPLES Next, the present invention will be described with reference to examples, but this is merely illustrative and does not limit the present invention.
Examples 1 to 3 and Comparative Example 1
The physical properties of cobalt oxide as a raw material are shown in Table 1 below.

ただし、以下の実施例において、不純物の珪素(Si)およびFeの含有量がいずれも0ppmである酸化コバルト(原料1)を用いた実施例1は、参考例を示すものである。   However, in the following examples, Example 1 using cobalt oxide (raw material 1) in which the contents of impurities silicon (Si) and Fe are both 0 ppm is a reference example.

Figure 2008100910
Figure 2008100910

(コバルト酸リチウム)
上記原料1〜4の酸化コバルト粉末と炭酸リチウムをLi/Co原子比が1〜1.05となるように秤量し、乳鉢で十分混合して均一な混合物を調製した。次いで、該混合物をアルミナ坩堝に充填し、電気加熱炉に入れて大気雰囲気下で昇温し、700〜1000℃の温度で10時間保持して焼成処理しコバルト酸リチウムの焼成物を得た。得られた焼成物を大気中で冷却した後、粉砕し、レーザー法により平均粒子径を測定し、各Si、Fe等の不純物とアルカリ量をそれぞれ測定した結果を表2に示す。
(Lithium cobaltate)
The cobalt oxide powders of the raw materials 1 to 4 and lithium carbonate were weighed so that the Li / Co atomic ratio was 1 to 1.05, and were sufficiently mixed in a mortar to prepare a uniform mixture. Next, the mixture was filled in an alumina crucible, placed in an electric heating furnace, heated in an air atmosphere, and held at a temperature of 700 to 1000 ° C. for 10 hours to be fired to obtain a fired product of lithium cobalt oxide. The obtained fired product is cooled in the air, then pulverized, the average particle size is measured by a laser method, and the results of measuring the impurities such as Si and Fe and the alkali amount are shown in Table 2.

(リチウム二次電池)
リチウム二次電池の作製;
各々のコバルト酸リチウム91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン(PVDF)3重量%を混合して正極材とし、これを2−メチルピロリドンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥し、2000kg/cmの圧力によリプレスして2cm角に打ち抜いて正極板を得た。
(Lithium secondary battery)
Production of lithium secondary batteries;
91% by weight of each lithium cobaltate, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride (PVDF) were mixed to prepare a positive electrode material, which was dispersed in 2-methylpyrrolidone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, repressed with a pressure of 2000 kg / cm 2 , and punched into a 2 cm square to obtain a positive electrode plate.

また、電解液にlM−LiC1O/EC(エチレンカーボネート)+DEC(ジエチレンカーボネート)を使用し、負極にはLi金属を用いて、リチウム二次電池を作製した。 Further, by using the lM-LiC1O 4 / EC (ethylene carbonate) + DEC (diethylene carbonate) in the electrolyte, the negative electrode using Li metal, to produce a lithium secondary battery.

(スラリー粘度試験)
Siが原料中に存在するとペースト粘度が大きくなることを以下の様にして評価した。
各物性を有するコバルト酸リチウム5g、グラファイト1.0g、PVDF(ポリフッ化ビニリデン)0.3g、N−メチル−2−ピロリドン4mlを45mlの容量をもつボールミルに入れ、回転速度2500rpmにて常温下5分間混練を行つた。混練終了後、得られた混合スラリーを30分及び2時間放置後、それぞれの溶液をB型粘度計でロ―夕回転速度1.5rpmで測定時間20秒の条件で測定を行つた。
(Slurry viscosity test)
The paste viscosity was increased when Si was present in the raw material, and was evaluated as follows.
5 g of lithium cobaltate having various physical properties, 1.0 g of graphite, 0.3 g of PVDF (polyvinylidene fluoride) and 4 ml of N-methyl-2-pyrrolidone were placed in a ball mill having a capacity of 45 ml, and at room temperature at a rotation speed of 2500 rpm. Kneading was performed for a minute. After completion of the kneading, the obtained mixed slurry was allowed to stand for 30 minutes and 2 hours, and each solution was measured with a B-type viscometer at a low rotation speed of 1.5 rpm and a measurement time of 20 seconds.

(アルカリ量の測定方法)
試料30gを蒸留水100gに分散させ、30分間撹拌した。撹拌後、ろ過した後ろ液60mlを0.lN−HCIで滴定をして、アルカリ量を測定した。
(Measurement method of alkali amount)
30 g of the sample was dispersed in 100 g of distilled water and stirred for 30 minutes. After stirring, 60 ml of the filtered back solution was added to 0. The amount of alkali was measured by titration with 1N-HCI.

上記の結果を表2に示す。
結合剤及び溶媒、正極活物質を構成物質と混練した場合、該混練物の下記で定義する粘度比(X)を粘性の評価パラメーターとする。
The results are shown in Table 2.
When the binder, the solvent, and the positive electrode active material are kneaded with the constituent materials, the viscosity ratio (X) defined below of the kneaded product is used as a viscosity evaluation parameter.

X=B/A
[式中、Xは正極組成物の粘度比、Aは正極活物質20℃における均質化30分放置後の粘度(cp)、Bは正極活物質20℃における均質化2時間放置後の粘度(cp)を表わす]
X = B / A
[Wherein, X is the viscosity ratio of the positive electrode composition, A is the viscosity (cp) after 30 minutes of homogenization at 20 ° C. of the positive electrode active material, and B is the viscosity after 2 hours of homogenization at 20 ° C. of the positive electrode active material ( cp)]

Figure 2008100910
Figure 2008100910

上記の表2の結果に示すように、酸化コバルト中のSi、Fe量が増加して行くに従いペースト粘度が増大していくのが分かる。
また、上記値でSiの量が、500ppmを越えると粘度値が増大し電極塗布時に支障をきたすことが分かる。
As shown in the results of Table 2 above, it can be seen that the paste viscosity increases as the amounts of Si and Fe in the cobalt oxide increase.
Further, it can be seen that when the amount of Si exceeds 500 ppm at the above value, the viscosity value increases, causing troubles in electrode application.

それに対して、Siが原料中にほとんど含まれていない場合、初期容量サイクル特性共に良好な値を示したが、Si、Feが増加して行くに従い電池性能の劣化が見られた。   On the other hand, when Si was hardly contained in the raw material, the initial capacity cycle characteristics showed good values, but the battery performance was deteriorated as Si and Fe increased.

本発明は、リチウム二次電池正極組成液の粘度変化率が少なく安定した状態を保つことができるリチウム二次電池正極活物質用酸化コバルトを得ることができるので、エネルギー密度と放電容量及び容量保持率の優れたリチウム二次電池用正極活物質の原料として利用することができる。   The present invention can obtain a cobalt oxide for a lithium secondary battery positive electrode active material that can maintain a stable state with a small viscosity change rate of the lithium secondary battery positive electrode composition liquid, so that energy density, discharge capacity, and capacity retention can be obtained. It can be used as a raw material for a positive electrode active material for a lithium secondary battery having an excellent rate.

Claims (3)

リチウム二次電池用正極活物質の製造原料として使用する酸化コバルトであって、該酸化コバルト中に含まれる不純物の珪素(Si)が500ppm以下(但し、0ppmを除く。)で、Feの含有量がl00ppm以下(但し、0ppmを除く。)であり、旦つ平均粒子径が0.1〜10μmであることを特徴とするリチウム二次電池正極活物質用酸化コバルト。   Cobalt oxide used as a raw material for producing a positive electrode active material for a lithium secondary battery, wherein the impurity silicon (Si) contained in the cobalt oxide is 500 ppm or less (excluding 0 ppm), and the content of Fe Is 100 ppm or less (excluding 0 ppm), and the average particle diameter is 0.1 to 10 μm, and the cobalt oxide for a positive electrode active material for a lithium secondary battery is characterized in that: 前記リチウム二次電池用正極活物質がコバルト酸リチウムである請求項1記載のリチウム二次電池正極活物質用酸化コバルト。   The cobalt oxide for a lithium secondary battery positive electrode active material according to claim 1, wherein the positive electrode active material for a lithium secondary battery is lithium cobaltate. 酸化コバルトと炭酸リチウムとを混合し、次いで焼成して得られるコバルト酸リチウム用原料の酸化コバルトである請求項1記載のリチウム二次電池正極活物質用酸化コバルト。   The cobalt oxide for a lithium secondary battery positive electrode active material according to claim 1, which is a cobalt oxide of a raw material for lithium cobaltate obtained by mixing cobalt oxide and lithium carbonate and then firing the mixture.
JP2007287770A 2007-11-05 2007-11-05 Cobalt oxide for lithium secondary battery positive electrode active material Pending JP2008100910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007287770A JP2008100910A (en) 2007-11-05 2007-11-05 Cobalt oxide for lithium secondary battery positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007287770A JP2008100910A (en) 2007-11-05 2007-11-05 Cobalt oxide for lithium secondary battery positive electrode active material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9341936A Division JPH11157844A (en) 1997-11-28 1997-11-28 Cobalt oxide for lithium secondary battery positive electrode active material

Publications (1)

Publication Number Publication Date
JP2008100910A true JP2008100910A (en) 2008-05-01

Family

ID=39435527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287770A Pending JP2008100910A (en) 2007-11-05 2007-11-05 Cobalt oxide for lithium secondary battery positive electrode active material

Country Status (1)

Country Link
JP (1) JP2008100910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154811A (en) * 2010-01-26 2011-08-11 Dowa Eco-System Co Ltd Method for leaching lithium and method for recovering lithium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263028A (en) * 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09213338A (en) * 1996-01-30 1997-08-15 Shin Kobe Electric Mach Co Ltd Battery and lithium ion secondary battery
JPH11157844A (en) * 1997-11-28 1999-06-15 Nippon Chem Ind Co Ltd Cobalt oxide for lithium secondary battery positive electrode active material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263028A (en) * 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09213338A (en) * 1996-01-30 1997-08-15 Shin Kobe Electric Mach Co Ltd Battery and lithium ion secondary battery
JPH11157844A (en) * 1997-11-28 1999-06-15 Nippon Chem Ind Co Ltd Cobalt oxide for lithium secondary battery positive electrode active material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K.KOUMOTO ET AL.: "Electrical Conduction in Pure and Li-Substituted Co3O4", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. Vol.64 Issue11, JPN6011011056, November 1981 (1981-11-01), pages 156 - 157, ISSN: 0002037684 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154811A (en) * 2010-01-26 2011-08-11 Dowa Eco-System Co Ltd Method for leaching lithium and method for recovering lithium

Similar Documents

Publication Publication Date Title
CN108137347B (en) Lithium-nickel-containing composite oxide, method for producing same, and nonaqueous electrolyte secondary battery
JP5208353B2 (en) Positive electrode active material and manufacturing method thereof
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP5708277B2 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP5730676B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same, and nickel cobalt manganese composite hydroxide and method for producing the same
JP5573081B2 (en) Method for producing lithium manganate particles for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2012169274A1 (en) Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
JPWO2015115547A1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP2012028026A (en) Negative electrode active material for lithium secondary battery, and method of manufacturing the same
WO2012029729A1 (en) Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same
JP2010095439A (en) Process for producing lithium manganate particle powder and non-aqueous electrolyte secondary batter
JP6318956B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2009179544A (en) Composite carbonate and method for producing the same
JP2007294119A (en) Single crystal particle of oxide for lithium secondary battery electrode and its manufacturing method, and lithium secondary battery using it
JP7216059B2 (en) Positive electrode active material composition for lithium secondary battery and lithium secondary battery including the same
JP2018060759A (en) Method for manufacturing nickel cobalt manganese-containing composite hydroxide, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material hereof
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP4374930B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
TWI699926B (en) Positive electrode active material for alkaline ion secondary battery
JP3396076B2 (en) Method for producing lithium cobaltate-based positive electrode active material for lithium secondary battery
US8962187B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP3891458B2 (en) Lithium secondary battery positive electrode active material lithium composite oxide and lithium secondary battery
JP2013170099A (en) Method for producing cobalt hydroxide, method for producing cobalt oxide and method for producing lithium cobaltate
JPH11157844A (en) Cobalt oxide for lithium secondary battery positive electrode active material
JP2008100910A (en) Cobalt oxide for lithium secondary battery positive electrode active material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111006